
Multiscale Symmetry Detection in Scalar Fields
by Clustering Contours

Dilip Mathew Thomas and Vijay Natarajan, Member, IEEE

Fig. 1. Clustering based analysis detects symmetry at different scales in a 3D cryo-electron microscopy image of AMP-activated
kinase (EMDB-1897). (left) The three-fold rotational symmetry is apparent from the volume rendering. (center) Contours are repre-
sented as points in a high-dimensional shape descriptor space (illustrated in 2D). Symmetric contours form a cluster in the descriptor
space and can be easily identified. Three such clusters are shown in gold, blue, and pink. (right) Three symmetric regions of different
sizes, highlighted in gold, blue, and pink, detected by the method.

Abstract—The complexity in visualizing volumetric data often limits the scope of direct exploration of scalar fields. Isocontour extrac-
tion is a popular method for exploring scalar fields because of its simplicity in presenting features in the data. In this paper, we present
a novel representation of contours with the aim of studying the similarity relationship between the contours. The representation maps
contours to points in a high-dimensional transformation-invariant descriptor space. We leverage the power of this representation to
design a clustering based algorithm for detecting symmetric regions in a scalar field. Symmetry detection is a challenging problem
because it demands both segmentation of the data and identification of transformation invariant segments. While the former task
can be addressed using topological analysis of scalar fields, the latter requires geometry based solutions. Our approach combines
the two by utilizing the contour tree for segmenting the data and the descriptor space for determining transformation invariance. We
discuss two applications, query driven exploration and asymmetry visualization, that demonstrate the effectiveness of the approach.

Index Terms—Scalar field visualization, symmetry detection, contour tree, data exploration.

1 INTRODUCTION

Many scientific experiments and simulations generate scalar field data
that contain symmetric or repeating patterns. In many disciplines,
symmetry plays an important role in studying the underlying scien-
tific phenomenon. For example, in crystallography, symmetry infor-
mation is used to determine the structure of a crystal [7]. In product
design, symmetry is important to ensure functional efficiency and op-
timal manufacturing cost [3]. Symmetry is a useful cue in biology for
determining growth and development of organs [35]. Since the study
of symmetric features is of great interest in scientific data analysis, the
problem of detecting symmetry in scalar fields has received consider-
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able attention among researchers in the recent past [10, 13, 19, 38, 39].

Automatic detection of symmetry in scalar fields is a challenging
problem and the quest for a widely applicable, efficient, and robust
method for symmetry detection is ongoing. Though symmetry identi-
fication in scalar fields is a relatively new area of research, the problem
of detecting symmetry in shapes has been well studied in the geome-
try processing community. These studies have established that clus-
tering based analysis result in superior performance and robust iden-
tification of symmetry. Some of these methods have been extended
to scalar fields and they operate by determining symmetry transfor-
mations through aggregation of local symmetry of sample points of
the domain. Symmetry in shapes is associated with a group struc-
ture on geometric objects that are invariant under transformations. In
scalar fields, it is more meaningful to relax this constraint and iden-
tify all repeating occurrences since this is more useful for data ex-
ploration. Scalar field datasets are typically represented using scalar
values assigned to a discrete set of sample points that represent the
domain under consideration. However, the domain and the scalar val-
ues are assumed to be continuous by interpolating the values at the
sample points. Therefore, the sample points in a scalar field capture
the lowest level of information. In practice, scientists are more inter-
ested in higher level features, extracted through methods like segmen-
tation and isosurface extraction, for studying the underlying physical



phenomenon. Hence, symmetry identification methods that are based
on local information available at the sample points encounter consid-
erable difficulty in representing and extracting meaningful symmetric
regions. Moreover, these methods are computationally expensive since
the number of sample points in scalar field datasets is typically orders
of magnitude higher than that in geometric shape datasets.

Though it is clear from methods proposed in the geometry pro-
cessing community that a clustering based analysis offers significant
advantages in recognizing symmetry, we believe that unlike shapes,
low-level information available at the sample points of the domain is
not suited for symmetry identification in scalar fields. In this work,
we propose a novel symmetry detection method based on the idea
of clustering contours. Isosurfaces are extensively used in studying
scalar field datasets and contours, which are connected components of
isosurfaces, capture information about a scalar field at a macroscale.
Therefore, contours are more suitable for a clustering based analysis
as opposed to sample points of the domain. Contours belonging to
regions with symmetric scalar field distribution are also symmetric.
Using an appropriate shape descriptor, our method maps contours to
points in a descriptor space such that the distance between points in the
descriptor space is a measure of similarity between the contours. As a
result, points in the descriptor space representing symmetric contours
lie in close proximity to each other and form clusters in the descriptor
space. The region of the domain corresponding to each such contour
can be extracted and these regions are reported as symmetric. Note
that the choice of the shape descriptor is not fixed and depending on
the noise characteristics and the definition of similarity relevant to the
application of interest, an appropriate descriptor may be used. Fig. 1
illustrates our approach on a 3D cryo-EM image of AMP-activated ki-
nase (EMDB-1897) with three-fold rotational symmetry. Our method
identifies symmetric regions of different scales. The large-scale fea-
tures shown in gold and the small-scale features shown in blue and
pink highlight the multiscale aspect of our approach.

The main contributions of this paper are the following:

• A formulation of the problem of symmetry detection in scalar
fields as a clustering problem in a shape descriptor space. This
model provides a lot of flexibility in analyzing similarity of scalar
fields as well as handling noise since it allows the shape repre-
sentation and the descriptor space to be varied.

• A novel representation of contours as points in a contour descrip-
tor space. Similarity between contours is naturally defined as the
distance between points in this space. This is a generic represen-
tation of independent interest and we show its benefit in similar-
ity analysis of scalar fields.

• A robust algorithm to detect symmetric regions at multiple
scales. Though geometry based symmetry detection methods
are typically computationally costly, we design an efficient algo-
rithm that employs elegant optimizations by incorporating topo-
logical information about the contours using the contour tree.

• Applications to query driven exploration and asymmetry visual-
ization.

Symmetry information in scalar fields has been used for transfer
function design, exploration of isosurfaces, selection of cross-section
planes and view directions, linked selection and editing, query driven
exploration, and visualization of features through dual rendering [10,
19,38,39]. We believe that as better techniques for symmetry detection
are developed, many more applications will emerge.

2 RELATED WORK

Existing symmetry identification methods in scalar fields can be
broadly classified into two categories, namely, geometry based meth-
ods and topology based methods. We briefly review these methods in
this section.

2.1 Geometry based approaches
Several methods have been proposed in the literature for detect-
ing symmetry in shapes as described in the survey paper by Mi-

tra et al. [21]. Some of these methods [2, 12, 22] have been applied
to scalar fields [10,13,19]. However, they struggle to address the chal-
lenges in extending geometric methods to scalar fields. Scalar field
datasets are significantly larger in size and hence symmetry detection
is computationally costly. Geometric methods typically consider ge-
ometric information derived from a small region around each sample
point of the domain for symmetry recognition. A direct extension of
this approach to scalar fields suffers from the difficulty of capturing
important features and leads to poor performance in extracting higher
level features and handling of noise in the data. Moreover, the scalar
field is considered to be continuous over the domain by interpolating
the values at the sample points. Inspecting only the sample points
introduces additional challenges due to discretization errors since the
symmetric counterpart for a given point may be an interpolated point.

Hong and Shen [10] propose a method to detect global reflective
symmetry by identifying planes of reflection that minimize the differ-
ence between the scalar value at a point and its reflection. This method
is computationally inefficient and cannot be easily extended to iden-
tify other types of symmetry. Kerber et al. [13] build a graph network
of crease line features and detect symmetry by computing transfor-
mations that match subgraphs within the crease line network. Since
only a small subset of features in scalar fields contain crease lines,
this method is not very useful in practice. Masood et al. [19] detect
symmetry by identifying symmetry transformations as clusters in the
space of all transformations. The clusters are generated by aggregating
local symmetry transformations of pairs of points in the domain. This
method relies on local signatures of sample points for determining
transformations and as a result several parameters need to be tweaked
at various stages of the symmetry detection pipeline to limit the ad-
verse effects of variations in the local signatures and discretization
errors. Moreover, the transformation space often contains additional
transformations that introduces artifacts. The above methods compute
transformations between candidate pairs for identifying symmetry and
are computationally costly. Moreover, they are driven by purely lo-
cal geometric measures and do not incorporate any criterion to either
recognize important features or discard pairs corresponding to noise.
Our method, on the other hand, uses topological information derived
from the contour tree to infer importance of a feature and this allows
the design of a feature-aware algorithm for symmetry identification.

Bruckner et al. propose an information theoretic approach for iso-
surface similarity detection [4, 8]. They use mutual information be-
tween distance transforms to quantify the information common to two
isosurfaces and build a similarity map between all pairs of isosurfaces.
Clusters with high mutual information correspond to similar isosur-
faces both within and across datasets. While this method is related
since it is also based on isosurface similarity, the goal here is to select
a subset of representative and possibly important isovalues. The dis-
tance transform is used to identify redundant isovalues corresponding
to families of isosurfaces that form an onion-peel like layered arrange-
ment. The goal of our method, on the other hand, is to locate regions
that are similar and hence we compute similarity between contours and
not isosurfaces. While the isosurface similarity map based method is
limited to analyzing similarity between pairs of datasets, the descriptor
space can be used to analyze multiple datasets simultaneously. Sim-
ilarity between different scalar fields has also been studied by mea-
suring the extent of overlap between contours [31, 32]. The distance
transform descriptor and the overlap measure are affected by changes
in orientation. Our method is not restricted to a particular choice of
descriptor. Based on the requirements of the application under con-
sideration, our method can be adapted to be sensitive or insensitive to
orientation.

2.2 Topology based methods

Thomas and Natarajan propose topology based methods for symmetry
identification and these methods are computationally efficient because
they operate on graph representations of the scalar field like the con-
tour tree [38] and the extremum graph [39]. The contour tree based
method assumes that the subtrees of the contour tree corresponding
to symmetric regions are structurally similar. They detect symmetry



by evaluating structural similarity between the subtrees using a sim-
ilarity score that measures the overlap between the branches of the
trees. This method can find symmetry at multiple scales but cannot
handle noise that destroy the repeating structure of the subtrees. The
extremum graph based method selects a set of extrema called seed set
and estimates distances robustly through a graph traversal procedure.
A carefully chosen distance threshold is used to disconnect the graph
and classify the seeds into different groups called super-seeds. A re-
gion growing procedure is then used to identify the symmetric region
corresponding to each super-seed. This procedure makes a strong as-
sumption that the symmetric regions can be identified purely from the
proximity relationship between the seeds. Hence, it relies heavily on a
meaningful selection of seed set which involves significant effort and
understanding about the symmetry of the domain. In addition, this
method requires several thresholds to be set.

The above methods, being topological in nature, do not ensure
that the regions reported by them are indeed geometrically symmetric
while our method, being geometric in nature, ensures that the regions
extracted are symmetric. Moreover, current methods compare can-
didate regions pairwise and rely on a similarity threshold to classify
them into symmetric groups. Determining the similarity threshold is a
challenge when using datasets with varying characteristics. Clustering
based analysis avoids the need for pairwise comparisons. Instead, the
symmetric regions are directly obtained as clusters in the descriptor
space. Similarity between scalar fields have been studied in the con-
text of shape matching applications by using graph matching methods
on discrete approximations of the contour tree [9, 43]. The contour
tree provides metadata information about the contours and allows in-
tegration of topological information in geometric processing. Thus, by
utilizing the descriptor space to capture geometric information about
contours together with the power of the contour tree as a topological
abstraction of contours, our method offers significant advantages over
existing symmetry identification methods.

3 DEFINITIONS

Consider a scalar field, f : M→ R, defined on a simply connected
domain M. The preimage of f for a given value u ∈ R, f−1(u), is
called a level set of f . A level set may have multiple components and
each component is called a contour. Consider a sweep of the domain
using level sets in the order of increasing function values. A contour
is created at a minimum, may merge with another contour at a join
saddle or split into different contours at a split saddle, and is destroyed
at a maximum. The contour tree is a topological data structure that
captures these changes in the connectivity of the level sets, see Fig. 2.
Let R be an equivalence relation defined on points in M: xRy for x,y ∈
M if x,y belong to the same contour. The contour tree is the quotient
space induced by this relation.

Subdomains M1,M2 ⊆ M are said to be symmetric if there is a
transformation T such that M2 = T (M1) and f (x) = f (T (x)) for all
x ∈M1. If c1 and c2 are contours of the same level set that belong
to M1 and M2 respectively, it is easy to see that if M1 and M2 are
symmetric then c1 and c2 are also symmetric. We make use of this
property and detect symmetric subdomains by identifying symmetry
of the contours belonging to the subdomains. The above definition
of symmetry requires computation of the symmetry transformation T ,

a

be

l

i
j

c

h

fg

n

k

m

d

lm n

b
a

c

d
e
f

g
h
i

jk

Fig. 2. The contour tree captures changes in the topology of the level
sets of a scalar field. (left) A scalar field and its level sets. (right) The
corresponding contour tree. The red nodes are local maxima, the blue
nodes are local minima, and the green nodes are saddles.

which is a costly operation. Therefore, we use an alternate definition
of symmetry. Let C be the set of all contours. Consider a function
g : C→ Rn such that g(c) = g(T (c)) where T is a transformation. In
other words, g is a function that maps each contour to a point in a
high-dimensional space such that a contour and its copies are mapped
to the same point. The point to which a contour is mapped is called
a descriptor and the high-dimensional space is called the descriptor
space, see Fig. 3. For illustration, the descriptor space is shown in
2D but the actual dimension of the space depends on the choice of the
descriptor. The distance between contours in the descriptor space is a
measure of their similarity. In practice, scalar fields do not exhibit per-
fect symmetry and therefore it is important to detect symmetry in an
approximate sense. Ideally, deviation from perfect symmetry should
be measured in the space of shapes but it is more convenient to mea-
sure deviations in the descriptor space. If contours c1 and c2 are not
perfectly symmetric, then c1 and c2 will not be mapped to the same
point in the descriptor space. The distance between the contours in the
descriptor space, ‖g(c1)− g(c2)‖, will be indicative of the deviation
from perfect symmetry.

Definition (Symmetric Contours). Contours c1 and c2 are perfectly
symmetric if ‖g(c1)−g(c2)‖= 0, where ‖·‖ is a norm in the descriptor
space. They are ε-symmetric if ‖g(c1)−g(c2)‖ ≤ ε, for ε > 0.

Shape descriptors have been extensively used in the geometry pro-
cessing community for shape matching and there is a vast collection of
research papers in this area [15, 26, 37, 40]. It is possible that a shape
descriptor may incorrectly map contours c1 and c2 to the same point
even when they have totally different shapes. A good shape descriptor
should discriminate well between different shapes and minimize such
incorrect mappings.

4 SYMMETRY DETECTION VIA CONTOUR CLUSTERING

Methods based on clustering [16,22,23,27,41,42] have shown superior
performance in identifying symmetry in shapes. However, directly
extending these methods to scalar fields is non-trivial. In this section,
we describe a novel symmetry detection method based on the idea of
clustering contours of the scalar field.

4.1 Overview
Fig. 4 illustrates the main steps of our algorithm. Given a scalar field
as input, we generate a set of contours. For each contour thus gener-
ated, a descriptor is computed. The descriptor for each contour can be
considered to be a point in a high-dimensional descriptor space. The
descriptor space is a transformation-invariant space, i.e., it reverses
the effect of geometric transformation on contours. Thus, perfectly
symmetric contours are mapped to the same point in the descriptor
space. Imperfections in symmetry results in imperfections in the map-
ping. Since contours with similar shape have similar descriptors, the
points in the descriptor space representing approximately symmetric
contours will lie in close proximity to each other. Therefore, symmet-
ric contours can be recognized by identifying clusters in the descriptor
space. The volumetric regions represented by the contours within a
cluster are then reported as symmetric regions.

Fig. 3. Mapping contours to points in a descriptor space. Symmetric
contours shown in blue are mapped to the same blue point in the de-
scriptor space. Six approximately symmetric contours shown in gold
are mapped to six points that lie in close proximity to each other in the
descriptor space.
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Fig. 4. Symmetry detection pipeline. Contours are extracted from the scalar field and a descriptor is generated for each contour. A similarity score
is estimated between pairs of contours based on the distance between the points in the descriptor space. Next, the set of symmetric contours are
identified via clustering. Finally, the region of the domain to which each symmetric contour belongs is extracted and reported.

4.2 Contour Generation
Our algorithm assumes that each region of interest in the domain is
represented by a contour belonging to it. Hence, it is important to use
a sampling strategy that generates a contour from each region of inter-
est. The obvious method for generating contours is to sample isovalues
uniformly from the range of the function values and extract contours
corresponding to these isovalues. A coarse uniform sampling may not
generate contours within a specific region and thus fail to recognize it
as a symmetric region. On the other hand, a fine sampling may gen-
erate multiple contours within the same region and redundant compu-
tations. Ideally, each symmetric region should require only a single
representative contour for its detection. The contour tree is a powerful
tool that encapsulates information about the evolution of contours [5]
and we leverage information obtained from the contour tree for opti-
mal generation of contours. Each arc of the contour tree represents a
family of contours that are nested one inside the other forming offset
surfaces similar to layers of onion peel. Hence, to capture the geome-
try of the region of the domain corresponding to an arc of the contour
tree, we select only one contour from each arc of the contour tree.

Selecting a representative contour from each arc of the contour tree
ensures that no regions are missed in the subsequent symmetry analy-
sis. An arc in the contour tree may either represent a feature associated
with a single extremum or a region formed by the merger of multiple
features and hence associated with multiple extrema. As a result, our
method can detect symmetry at multiple scales. However, for noisy
scalar fields, a large number of arcs of the contour tree may corre-
spond to noise. Selecting a contour from each arc of the contour tree
will result in significant amount of computational time spent in pro-
cessing these noisy contours. To overcome this problem, we generate
a contour from an arc of the contour tree only if the arc is deemed to
represent a feature and not noise. The definition of noise is subjective
and depends on the application. In this work, we consider an arc to
be noise if the volume of the largest contour associated with the arc
is below a user defined noise threshold δ . Assuming that the scalar
field is uniformly sampled, the volume of a contour is approximated
as the number of vertices of the domain enclosed by the contour. Since
each arc of the contour tree can be associated with the set of vertices
of the domain that comprise the subvolume corresponding to the arc,
this estimation of the volume can be done efficiently [5]. In the ab-
sence of the metadata information provided by the contour tree, all
contours would have had to be treated as equally important. In sum-
mary, contour tree driven sampling both ensures that each region has
a unique representative contour and avoids sampling of contours from
noisy regions.

4.3 Contour Representation in Descriptor Space
Once a representative contour is generated from each region of inter-
est, the next step is to generate its descriptor. The similarity score be-
tween a pair of contours is estimated using the distance between their

descriptors. Designing shape descriptors for matching and retrieving
similar shapes is a well studied area in the geometry processing com-
munity. The notion of similarity is subjective and varies from appli-
cation to application. A major advantage of our method is that it is
not restricted, in principle, to a particular choice of the shape descrip-
tor. Instead, it offers flexibility in choosing the descriptor appropriate
for an application. Hence, our method may be viewed as a generic
framework for identifying similar regions in a scalar field. For exam-
ple, if an application is interested in identifying similarity only with
respect to rotation, a rotation invariant descriptor may be used. The
only prerequisite on the descriptor is that it should be discriminative,
i.e., similar contours should be mapped to points that are nearby in
the descriptor space while contours that differ from each other should
be mapped to far away points. Therefore, it is important to use shape
descriptors with high precision and recall ratios [15] for applications
that cannot tolerate false positives during shape retrieval.

4.4 Contour Clustering
After the descriptor generation stage, any standard clustering method
may be used to locate the clusters in the descriptor space that represent
symmetric contours. However, requiring the explicit generation of de-
scriptors as a constraint limits the flexibility of using our approach as
a generic framework for similarity detection. We observe that map-
ping of contours to points in the descriptor space is not a prerequisite
for clustering. A similarity correspondence graph can be constructed
from a set of contours by representing each contour as a node in the
graph and inserting an edge between two nodes if the respective con-
tours are similar. It is easy to see that the contours that are similar form
a clique under this representation [16] and these cliques can be iden-
tified to detect a set of similar contours. Thus, given a procedure that
assigns a similarity score between pairs of contours, further process-
ing is performed solely on the graph and is independent of the actual
definition of similarity. This allows considerable freedom in choosing
a similarity measure that is relevant to an application. In particular, for
symmetry identification, the distance between points in the descriptor
space is used to assign the score between pairs of contours.

Given a set of contours marked as symmetric, the arc in the contour

Fig. 5. When contours merge, their shape change significantly. (left) Six
contours before they merge. (center) Part of the contour tree depicting
merging of pairs of contours. (right) Three contours after the merge.



tree to which each contour belongs to can be determined. The region
of the domain enclosed by the largest contour of the arc can then be
extracted and reported as a symmetric region. Although this works
well in practice, note that the contour itself may have evolved due to
the merging of contours nested within it. An application with stricter
requirements on symmetry detection may need to also incorporate the
symmetry of these nested contours in the algorithm. This presents a
challenge in directly using clusters in the descriptor space for detect-
ing symmetric regions because the descriptor space is not continuous
with respect to the evolution of the shape of a contour during a level
set sweep, see Fig. 5. Recall that a cluster in the descriptor space rep-
resents a set of contours with the same shape. As illustrated in the left
and right figures, the shape of individual nested contours before merge
is different from the shape of the contour after the merge. Therefore
the points corresponding to the contours before and after the merge
may not be part of the same cluster.

To address this issue, we incorporate the similarity score between
the children contours (contours before merging) into the calculation
of the similarity score between a given pair of parent contours (con-
tours after merging). Let p and q be two parent contours with children
contours c1

p, . . . ,cn
p and c1

q, . . . ,cm
q, respectively. Assume that the

score between two children contours ci
p and c j

q is known. For con-
tours with children, the procedure below can be applied bottom up to
determine their score while for contours that do not have children, the
score can be directly determined from the descriptor space. To calcu-
late the similarity score between p and q, first the contribution from the
children contours is determined. We construct a bipartite graph where
nodes in the two partitions are c1

p, . . . ,cn
p and c1

q, . . . ,cm
q, see Fig. 6.

An edge between ci
p and c j

q is weighted with the score between ci
p

and c j
q. The maximum weight matching is computed to determine the

similarity score between the children contours. The score between the
contours p and q obtained directly from the descriptor space is added
to the value of maximum weight matching to obtain the cumulative
similarity score between p and q. An analogous procedure may be
used for nested contours that split from a parent contour.

5 IMPLEMENTATION

We now elaborate on the implementation details of our symmetry iden-
tification algorithm. We describe the factors that determine the selec-
tion of isovalues, the particular shape descriptor that we use and its
properties, and the clustering algorithm we employ.

5.1 Isovalue Selection
Each arc of the contour tree encodes the range of values of the scalar
field restricted to the subdomain represented by the arc. The question
that remains is which function value in this range should be used to
generate the representative contour for the arc. To generate a large
contour belonging to the subvolume represented by an arc, the iso-
value selected should be close to the saddle value at which the contour
merges into another contour. However, as discussed by Thomas and
Natarajan [38], perturbation in function values due to noise may lead
to instability of the saddles in the contour tree. As a result, the func-
tion value at which the contours from symmetric regions merge and

p q

c1
q

cm
q

c1
p

cn
p

Fig. 6. Maximum weight matching is used to determine the contribu-
tion of children contours towards the similarity score between the parent
contours p and q. Each edge ci

pc j
q is weighted with the similarity score

between the child contours ci
p and c j

q.

split may not be consistent. Fig. 10(b) shows an example where, for
the same isovalue, children contours of the green contours have al-
ready merged to form a single component while the blue contours are
yet to merge. We require an isovalue that is both close to the saddle
and generates isocontours that are consistent, with respect to merg-
ing. A simple strategy we adopt is to ensure that none of the contours
merge by selecting an isovalue that is lower than the lowest join saddle
at which the contours merge. We introduce a stabilization parameter
α that determines the length of the interval of function values within
which the saddle values are not consistent with respect to merging of
contours. From the list of all saddles in the contour tree, we first re-
move all saddles belonging to arcs that are considered to be noise with
respect to the noise threshold δ . Within the reduced list, we consider
each join saddle s, where contours merge into one, and select an iso-
value w = f (s)−α if there are no other saddles whose function value
lie within the interval [w, f (s)]. Among the set of isovalues thus gen-
erated, if w is the highest isovalue that lies in between the function
values at the end points of an arc, then w is chosen as the isovalue for
the arc. An analogous procedure is used to select isovalues with re-
spect to split saddles. A procedure for determining the value of α is
described in Section 7.2.

5.2 Shape Descriptor
The choice of shape descriptor depends on the kind of similarity anal-
ysis required by an application. A function φ which satisfies the equa-
tion ∆φ =−λφ , where ∆ is the Laplace-Beltrami operator, is called an
eigen function of ∆ and λ is called an eigen value [30]. We use the first
ten non-zero eigen values of the Laplace-Beltrami spectra as the shape
descriptor since noise in the shape has limited influence on the initial
eigen values [15]. This descriptor has been used for shape match-
ing and retrieval and is robust in the presence of noise, deformations
in shape, and differences in the underlying triangulation [24, 28, 29].
Although it is possible that two different shapes may have the same
spectra, it is very rare in practice [28]. The descriptor is discrimina-
tive with high precision and recall ratios [15]. We use the popular
cotangent weighted scheme for computing the Laplace-Beltrami spec-
tra [25]. Computation of the Laplace-Beltrami spectra on large meshes
is costly and therefore we simplify the contour meshes so that the num-
ber of vertices is small. We simplify the mesh down to 1000 vertices
in our experiments through edge collapses driven by the quadric error
metric [11]. If the isosurfaces contain skinny triangles that result in
numerical errors in the computation of the spectra, mesh quality aware
isosurface generation or remeshing [33,34] may have to be performed.

5.3 Clustering
We observe that clusters in the descriptor space are well separated
and therefore employ a simple scheme based on nearest neighbor
search for clustering. For a given contour c, other contours that are
ε-symmetric with respect to c are determined by locating points in the
descriptor space that lie within a sphere of radius ε centered at pc,
where pc is the point in the descriptor space to which c is mapped.
We limit the number of points in the search space by considering only
those points that represent the contours that belong to the level set of
c. The ideal metric for computing distances in the descriptor space
may be determined using methods like metric learning [14]. However,
we use Euclidean distances since it has yielded good results for shape
retrieval with the Laplace-Beltrami spectra [15, 28]. The value of the
approximation parameter ε is specified by the user.

6 APPLICATIONS

It is easy to see that our method can be used to demonstrate the existing
applications of identifying symmetry in scalar fields reported earlier
in the literature. In this section, we describe two new applications for
improving exploration and visualization of scalar fields.

6.1 Query Contour Driven Exploration
As the size and complexity of data generated through imaging and
simulations grows, newer paradigms for effective exploration and in-
teraction with the data are required. Query driven exploration is one
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Fig. 7. Query driven exploration using contours. (a) Volume rendering of the first time step of the hurricane Isabel dataset. Low pressure region
shown in red. Querying with (b) a synthetically generated half-ellipsoid finds (c) an isocontour with similar shape from the low pressure region.
(d) The corresponding volumetric region shown in yellow. (e)-(h) The isocontour from the low pressure region of the first time step is employed as
the query contour and the result on four different time steps, 12, 24, 36, and 48 is shown. Note that even though the contours contain noise, they
are located correctly due to the robustness of our method. The corresponding volumetric regions are shown in the supplementary material.

such paradigm that facilitates navigation through complex data and is
gaining popularity over the last few years [1, 17]. Symmetric regions
in a dataset facilitate query driven exploration of the data [19, 39]. A
region of interest that is segmented from the domain is employed as the
query region and symmetry information is utilized to identify other re-
gions similar to the query. To facilitate exploration using regions of
the domain as query, the domain needs to be segmented and this is of-
ten a challenge. Instead, we visualize the evolution of contours during
a level set sweep and select a contour of interest. We demonstrate that
our symmetry detection method can be used to explore datasets using
a contour as the query object.

A simulation of the hurricane Isabel, which struck the west Atlantic
in 2003, was performed on a 500×500×100 grid over 48 time steps.
Fig. 7(a) shows a volume rendering of the pressure field in the first
time step. The low pressure region is shown in red. A domain expert
with the knowledge that isocontours in the low pressure region roughly
has the shape of a hemisphere can use a synthetically generated shape,
shown in Fig. 7(b), as the query object. We generate a scale invariant
version of the Laplace-Beltrami spectra by dividing all the eigen val-
ues with the first non-zero eigen value. The scale invariant descriptor
for the query object is then computed. Next, we apply the first and sec-
ond steps of our symmetry identification method to generate different
contours of the volume and compute their scale invariant descriptors.
Finally, we locate the nearest neighbor of the descriptor representing
the query object in the descriptor space. We identify the contour shown
in Fig. 7(c) through this search. Note that the size and the exact shape
of the query object is different from that of the contour. The descriptor
is robust to small variations and therefore the query successfully iden-
tifies a contour from the low pressure region. The volumetric region
of the domain from which the contour is generated is extracted and
displayed in the context of the rest of the volume in Fig. 7(d).

We describe the above experiment to demonstrate the power of the
descriptor space as a geometry based representation of the scalar field.
But, we concede that using a synthetic shape as query object may not
always be possible. However, the user could select one of the contours
from a region of interest as the query object. It is straightforward to
see that this approach may be used to query for symmetric regions
within the same dataset, similar to earlier approaches [19,39]. What is
more interesting is that the same approach can be extended to search
through multiple datasets. We use the contour shown in Fig. 7(c) from
the first time step as the query object to search through the other time

steps. The contours detected as a result of executing the query on
four different time steps, 12, 24, 36, and 48, are shown in Fig. 7(e)-
7(h). Observe that the contours show variations in their shape and have
considerable amount of noise. Also, as opposed to the query contour, a
significant portion of the mouth of the contour is closed in Fig. 7(h) as
the hurricane makes landfall. The query is successful even with these
challenges and emphasizes the robustness of our method. Similar to
Fig. 7(d), the volumetric region of the domain can be extracted in each
case as shown in the supplemental material. We also show results on
another weather simulation dataset in the supplemental material.

6.2 Asymmetry Visualization

Asymmetry in scalar fields often reveals crucial characteristics of the
underlying physical phenomenon. For example, asymmetry between
the left and the right breasts in mammogram images is an indica-
tor of breast cancer [36]. Given a set of contours c1, . . . ,cn, marked
as symmetric by our algorithm, we determine asymmetry of con-
tour ck, 1 ≤ k ≤ n, with respect to the set of remaining contours
S = {c1, . . . ,ck−1,ck+1, . . . ,cn}. For this, we first determine the sym-
metry transformation that maps each ci ∈ S onto ck and spatially align
ci with ck by applying the transformation. The transformation may be
determined using the ICP (Iterative Closest Point) algorithm. These
spatially aligned meshes in S are then glued together to generate a
single mesh, say cavg, with respect to which asymmetry of ck is deter-
mined. For this purpose, we use the Metro tool [6], which evaluates
the distance from the vertices of the mesh ck to the mesh cavg by com-
puting for each vertex in ck the closest point in cavg. A large distance
means that there was no point corresponding to it in the other contours,
an indication of asymmetry. Note that the Metro tool cannot compute
distances between contours directly from their original spatial coordi-
nates. It requires both the meshes to be spatially aligned. The distance
computed at each vertex is stored as a scalar field of ck and the pro-
cedure is repeated for each contour. The asymmetry in the contours
can then be located by visualizing the distance fields. Fig. 8 shows a
cryo-EM dataset in which the top and bottom regions are symmetric.
The procedure above is applied to two contours marked as symmetric
by our method. Observe that the tip of the long club-like portion of
the top contour is thin while that of the bottom contour is fat. This
asymmetry can be distinguished from the dark red regions that depict
vertices with large distance values.
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Fig. 8. Asymmetry visualization. (a) Volume rendering of a cryo-EM dataset (EMDB-1134) depicts two symmetric regions. (b) Two symmetric
contours extracted by our algorithm shown in maroon and orange. The tip of the long club-like portion of the contours at the top and bottom is
asymmetric. (c) The top contour is aligned with the bottom contour and a distance field is computed. (d) Visualization of the distance field. The
dark red regions are asymmetric.
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Fig. 9. Comparison with topological methods for symmetry detection. (a) Volume rendering of a cryo-EM dataset (EMDB-1654), with noisy regions
depicted in violet. (b)-(e) Symmetric regions at multiple scales detected by our method. The extremum graph based method [39] reports symmetry
only at the largest scale. (f) Volume rendering of a CT scan of a pair of knees. (g) Bilateral symmetry of the bones detected by our method, shown
in orange, blue, and pink, even in the presence of missing regions and noise in the contours of the dataset. (h) Volume rendering of the electron
density of a hemoglobin molecule (PDB-ID 1HGA) that exhibit 2-fold rotational symmetry. (i) The two symmetric regions are detected by our method
even though they lie in close proximity to each other. (j) Flat regions corresponding to the global maximum of the knee dataset and (k) asymmetric
distribution of the extrema of the molecule dataset, shown within dotted boxes, pose challenges in determining the seed set for the extremum graph
based method.

7 DISCUSSION

In this section, we report the results of applying our method on differ-
ent datasets and elaborate on comparison with existing topology based
methods, selection of parameters, and computational performance.

7.1 Comparison With Topological Methods
The segmentation of the domain utilized by our algorithm is induced
by topological features identified through the contour tree. We com-
pare our method with existing symmetry detection methods that also
segment the domain on the basis of topological features. While the
contour tree based method relies on structural similarity between the
subtrees for symmetry identification [38], the extremum graph based
method depends on distances between the extrema evaluated on an
augmented version of the extremum graph [39].

Thomas and Natarajan [39] point out that noise in the data that de-
stroy the repeating structure of the subtrees of the contour tree poses
challenges in determining symmetry using the contour tree. They ar-
gue that their method using the extremum graph is better at handling
noise and report symmetry detected at the largest scale for several
cryo-EM datasets. The contour tree based method, on the other hand,
can detect symmetry at different scales. Our method combines the

advantage of these two methods. The first row in Fig. 9 shows the re-
sult of our method on one of the noisy datasets used by Thomas and
Natarajan [39], EMDB-1654. In addition to detecting symmetry at the
largest scale, our method is able to identify smaller symmetric regions
at different scales. The supplemental material shows the projection of
the descriptors onto 2D using multidimensional scaling and illustrates
that the clusters representing symmetric regions are well separated and
can be easily identified. In contrast, the extremum graph based method
requires user guidance for carefully selecting a set of well separated
and symmetrically distributed extrema, called the seed set, for sym-
metry detection. Typical cryo-EM datasets is devoid of noise in the
high and low density regions and therefore the symmetry of the ex-
trema belonging to these regions can be easily identified for choosing
a seed set. Our method does not make such assumptions and we show
the results of our method on two datasets where selection of seed set is
non-trivial. Fig. 9(f) shows a volume rendering of a CT scan of a pair
of knees. Observe the dark regions in the bone where the scalar values
are noisy. Our method identifies the symmetry between the contours
belonging to three portions of the bones in the left and the right knee,
shown in orange, blue, and pink in Fig. 9(g). An inspection of these
contours show that the dark regions of the bone in the volume ren-
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Fig. 10. Influence of stabilization parameter, α, on symmetry detection. (a) Volume rendering of a cryo-EM dataset (EMDB-1292) shows long
tube-like structures that exhibit 7-fold rotational symmetry. (b) Setting α to 0.2% of the length of the range of scalar values generates unstable
contours within the tube-like regions. The inconsistency in the merging of the blue and green contours indicates this instability. (c) Setting α to 1%
discards the unstable contours. Instead, the small blue contours are generated at a more stable isovalue. (d) The 7-fold symmetry of the tube-like
regions are identified in both cases since these larger features are not sensitive to the exact value of α. (e) The plot of the number of critical points
with increasing simplification shows a significant drop at a low value of α. We set α to a value immediately after this drop.
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Fig. 11. Influence of approximation parameter, ε, on symmetry detection. (a) Volume rendering of a cryo-EM dataset (EMDB-5214) with 2-fold
symmetry where the left and the right regions show deviations from perfect symmetry. (b) The green oval contours that are almost perfectly
symmetric are identified when ε = 0.1%. (c) Increasing ε to 1% results in the addition of two more smaller contours of oval shape and a new
set of symmetric contours shown in maroon. (d) At ε = 4% a new maroon contour, which is only partially symmetric with respect to the existing
maroon contours, is located. Similarly, the green contours also deviate from perfect symmetry. (d) Larger green regions are detected at ε = 8%
and (e) ε =10%. The occluded contours are not shown.

dering denote missing regions and noise in the contours. Despite these
missing regions and noise, our method successfully identifies the sym-
metry of the bones. The isosurface for this dataset at the global max-
imum in Fig. 9(j) shows that the global maximum is degenerate and
forms a flat region. Fig. 9(h) shows an electron density field derived
from the atomic coordinates of a hemoglobin molecule using EMAN
software [18]. Our method identifies two symmetric regions, shown
in blue and pink in Fig. 9(i), despite these two regions being in close
proximity to each other. The isosurface for an isovalue close to the
global maximum, see Fig. 9(k), shows that the extrema belonging to
the high density regions are not symmetrically distributed within the
two regions. In both these cases, selection of a set of extrema as seed
set is not an easy task because of the flat regions and the asymmetric
distribution of the extrema.

7.2 Parameter Selection

The approximation parameter ε and the noise parameter δ are external
to our algorithm. Hence, the stability parameter α is the only parame-
ter that is specific to our method.
Stabilisation parameter α . The value of the stabilization parameter
affects the detection of features that are very transient with respect
to the evolution of contours during a level set sweep. Choosing too
small a value for the stabilization parameter may result in only partial
detection of such unstable symmetric regions while choosing too high
a value may result in ignoring these unstable regions in the symmetry
analysis. We illustrate this with a cryo-EM dataset (EMDB-1292) with
7-fold rotational symmetry, see the volume rendering in Fig. 10(a).
In an attempt to capture the symmetry of the small unstable regions
within the long tube-like regions that form the 7-fold symmetry, we set
α to 0.2% of the total range of scalar values. However, only four of the
seven symmetric regions generate small-scale contours belonging to
the tube-like region, shown in blue in Fig. 10(b). Due to the instability
of the saddles, the contours belonging to the remaining three regions,

for the same isovalue, have already merged, as shown by the green
contours.

To determine a suitable value for α , we adopt the same heuristic
used by Thomas and Natarajan to stabilize the branch decomposition
representation of the contour tree [38]. We plot the drop in the number
of critical points with increasing simplification of the contour tree, see
Fig. 10(e). Initially, there is a sudden drop due to the unstable critical
points, after which the curve tapers off. Based on this plot, we select a
value immediately after the initial drop. Setting α to 1% discards the
unstable isovalue generated earlier. Fig. 10(c) depicts the 7-fold sym-
metry of the small blue contours from the top portion of the tube-like
regions identified using the new isovalue generated. The symmetry of
the remaining small regions are not detected since the higher value of
α discards the unstable contours in this region. Note that the exact
value of α is crucial only while determining symmetry of the contours
belonging to very small arcs of the contour tree. These contours are
very transient and quickly merge or split into another contour during
a level set sweep. For both values of α , the symmetry of the tube-like
regions is detected correctly at a different isovalue that is more sta-
ble, see Fig. 10(d). This is because these contours belong to longer
arcs and are insensitive to the exact value of α . The inability to de-
tect symmetric regions due to unstable contours is a limitation of our
implementation. This limitation arises from the constraint that for the
same isovalue, contours should be consistent with respect to merging.
A solution is to relax this constraint and allow a small interval of iso-
values from which stable contours may be generated independently by
employing a geometric criterion like maximally stable contour [20].
However, when contours at different isovalues are used to detect sym-
metry, the variation in the isovalues should also be considered in deter-
mining the quality of the symmetry. For this purpose, we are currently
exploring ways to include the differences in the isovalues into the dis-
tance measure between contours in the descriptor space.

Approximation parameter ε . Changing the value of ε directly affects
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Fig. 12. Influence of noise parameter, δ , on symmetry detection. (a) Vol-
ume rendering of the Fuel dataset, which exhibits 4-fold rotational sym-
metry at the top of the long tube-like region. (b) Three symmetric re-
gions reported when δ is set to 200 vertices. (c) Lowering δ to 20 ver-
tices results in the detection of two additional symmetric regions that are
smaller.

the output of our method since ε controls the quality of the symmetry
detected. We believe that it is best to let the user choose the value
of ε for a dataset, on the basis of the output it generates, instead of
determining a specific value through a heuristic procedure. Note that
the first and the second stages of our algorithm, namely, generation of
contours and computation of descriptors, are independent of the value
of ε . Nearest neighbor search can be performed efficiently. Therefore,
if the first and second stages of our method are precomputed, it is
possible to efficiently regenerate the output as ε is varied. This makes
it possible to provide the user with a slider interface to visualize the
effect of varying ε and choose the ideal value for a dataset.

Fig. 11 illustrates the effect of varying ε on a cryo-EM dataset
(EMDB-5214). Even though the global symmetry is evident, carefully
observe the variation between the left and the right regions. These
variations affect the quality of symmetry and is captured by different
values of ε in our experiment. We determine the maximum distance
between a pair of points in the descriptor space and specify different
values of ε as a percentage of the maximum distance. For ε = 0.1%,
the oval contours that are highly symmetric, shown in Fig. 11(b), are
detected. As the value of ε is increased, more approximately symmet-
ric contours are detected as shown in Fig. 11(c)-11(f). In each figure,
contours belonging to the same cluster are shown with the same color.
Note that the same dataset was used by Thomas and Natarajan to em-
phasize the advantage of the extremum graph based method [39] over
the contour tree based method [38]. They illustrate, that the extremum
graph based method is able to detect the global symmetry by virtue
of being geometry-aware, while the contour tree based method fails to
do so due to variations in the features of the left and the right regions.
Our method is able to quantify the effect of these variations on the out-
put quality. Moreover, it can recognize partial symmetry at different
scales in addition to identifying the global symmetry.
Noise parameter δ . We determine the number of arcs of the con-
tour tree with volume above a particular value and plot the drop in the
number of arcs with increasing value of volume. For the Fuel dataset
in Fig. 12(a), this plot is shown in the supplemental material. The
plot shows a sudden drop in the number of arcs initially, similar to the
graph used for determining the stabilization parameter α . This drop

Table 1. Running time, measured in seconds, for the different steps in
the symmetry detection algorithm. All experiments were performed on a
2 GHz Intel Xeon processor with 8GB RAM. The time taken for comput-
ing contour tree is denoted by tct , generating contours by tcg, and com-
puting contour descriptors by tcd . The number of contours processed is
denoted by #ctrs and the number of critical points by #crit.

Dataset #vertices tct (s) tcg(s) tcd(s) #ctrs #crit
1HGA 72×72×72 1.3 7.7 28.7 78 4698

EMDB-1654 112×112×112 4.6 1.0 8.7 92 55762
Vortex 253×253×253 82.0 19.9 163.7 119 1184142

EMDB-1179 255×255×255 67.4 10.6 84.9 339 338688
Knee 379×229×305 120.4 94.6 429.1 442 1222491

is due to a large number of small sized features in the data which are
considered to be noise. We choose a value immediately after this sud-
den drop. When δ is set to 200 vertices for the Fuel dataset, three
sets of symmetric features, each exhibiting 4-fold rotational symmetry
are identified, see Fig. 12(b). Lowering δ to 20 vertices identifies two
more smaller symmetric regions as illustrated in Fig. 12(c). Thus, δ

acts as a parameter that controls the size of features analyzed for mul-
tiscale symmetry detection. Setting δ to an even lower value generates
contours of very small size whose descriptors cannot be reliably com-
pared due to numerical errors. In comparison, the contour tree based
method is able to easily capture the symmetry of smaller symmetric
regions for this dataset. They use a different model for determining
noise based on persistence, which is the difference in function value
between the extremum and the saddle of a topological feature. Al-
though our implementation may be modified to incorporate persistence
based noise determination, it is not possible to use a single model that
works across datasets with different noise characteristics. Therefore,
we suggest that the model for determining noise be adapted based on
the application under consideration.

7.3 Performance

Table 1 lists the running time of our algorithm on different datasets.
The time required to compute the contour tree depends on the size of
the dataset and the number of critical points present in it. The con-
tour generation and the descriptor computation stages are primarily
affected by the size and number of contours processed. The contour
generation stage includes the time taken for the simplification of large
meshes. In our implementation, symmetry with respect to contours
that evolve from maxima and minima are identified in two separate
passes and the running time listed above is for a single pass. The
clustering stage is very quick and requires less than a second. The
current implementation is not very efficient and offers a lot of scope
for improvement. However, we believe that even with our suboptimal
implementation, the running times that we report are reasonable for a
geometry based algorithm that identifies symmetry at multiple scales.
The symmetries detected in the Vortex and EMDB-1179 datasets are
shown in the supplemental material.

8 CONCLUSIONS

In this paper, we present a novel symmetry detection method based
on the idea of clustering contours. We show that mapping contours to
points in a descriptor space is a powerful representation for performing
similarity analysis on scalar fields. One of the main limitations of our
method is that symmetry identification is restricted to regions obtained
from the segmentation of the domain induced by the contour tree. We
plan to extend our method to handle other kinds of segmentation by
designing an appropriate surface representation for the segments. A
related issue is that our method does not consider symmetry within
a contour. A preprocessing step that segments contours into smaller
partial surfaces may be designed to solve this problem. The current
implementation does not incorporate geometric stability criteria for
selecting representative contours. It is beneficial to employ such a cri-
teria that selects a stable contour from each arc of the contour tree to
ensure consistency in the shape of the contours extracted. We believe
that the descriptor space representation of scalar fields will spur re-
search in determining structurally similar features for applications like
querying and tracking in time-varying and ensemble data.
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