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Abstract

Data from present day scientific simulations and observations of physical processes often con-

sist of multiple scalar fields. It is important to study the interactions between the fields to

understand the underlying phenomena. A visual representation of these interactions would as-

sist the scientist by providing quick insights into complexrelationships that exist between the

fields.

We describe new techniques for visual analysis of multifieldscalar data where the rela-

tionships can be quantified by the gradients of the individual scalar fields and their mutual

alignment. Empirically, gradients along with their mutualalignment have been shown to be a

good indicator of the relationships between the different scalar variables.

The Jacobi set, defined as the set of points where the gradients are linearly dependent,

describes the relationship between the gradient fields. TheJacobi set of two piecewise linear

functions may contain several components indicative of noisy or a feature-rich dataset. For

two dimensional domains, we pose the problem of simplification as the extraction of level sets

and offset contours and describe a robust technique to simplify and create a multi-resolution

representation of the Jacobi set.

Existing isosurface-based techniques for scalar data exploration like Reeb graphs, contour

spectra, isosurface statistics, etc., study a scalar field in isolation. We argue that the iden-

tification of interesting isovalues in a multifield data set should necessarily be based on the

interaction between the different fields. We introduce a variation density function that profiles

the relationship between multiple scalar fields over isosurfaces of a given scalar field. This
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profile serves as a valuable tool for multifield data exploration because it provides the user

with cues to identify interesting isovalues of scalar fields.

Finally, we introduce a new multifield comparison measure tocapture relationships be-

tween scalar variables. We also show that our measure is insensitive to noise in the scalar

fields and to noise in their gradients. Further, it can be computed robustly and efficiently. The

comparison measure can be used to identify regions of interest in the domain where interac-

tions between the scalar fields are significant. Subsequent visualization of the data focuses on

these regions of interest leading to effective visual analysis.

We demonstrate the effectiveness of our techniques by applying them to real world data

from different domains like combustion studies, climate sciences and computer graphics.
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Chapter 1

Introduction

In this thesis, we develop techniques to visualize featuresof interest in modern scientific data.

The data is typically captured as samples over a domain or a region of interest having a geo-

metric structure or from simulations. As an example, consider the recordings from a weather

station where different quantities like wind velocity, atmospheric pressure and precipitation

are collected as samples over a geographic region (domain).Each sample is a measurement

of a quantity of interest. The measurements could be scalars(precipitation), vectors (wind

velocity) or tensors. An elegant visual representation of these measurements can greatly help

the scientist in analyzing the data. The focus of this thesisis on developing new visualization

techniques for scalar scientific data.

Visualization is a process to communicate information graphically. The information to be

displayed is part of data that could come from many sources like sensors, surveys, scientific

computations etc. Techniques for visualization can be classified based on the type of data to be

displayed. The data may have multiple forms like text, a graph or scientific measurements over

a spatial region. The different areas of focus within the field of visualization classified based

on the kind of data to be visualized, is shown in Figure 1.1. Werefer the interested reader to

the book by Ward et al. [1] for a detailed description of each topic in the figure.

1



Chapter 1. Introduction 2

Figure 1.1: Tree depicting the classification of visualization based on the kind of information
to be visualized. In this thesis, we focus on multi-field scalar field visualization.

(a)

(b) (c)

Figure 1.2: (a) Isosurface of an abdominal CT Scan (data source:http://volvis.org). (b) Volume
rendering of a CT scan of a teapot containing a lobster inside it (data source:http://volvis.org).
(c) MRI scan of brain shown with color coding. The bright spot is a tumor (image
source:http://www.scottcamazine.com).



Chapter 1. Introduction 3

1.1 Scalar Field Visualization

A scalar function or a scalar field is a function that maps points from ann-dimensional space

to real values. Scalar fields are often constructed by measuring devices or simulations. For

example, during a CT scan, X-rays are passed through the body and their strength after passing

is measured and a scalar field is constructed.

Visualization significantly helps in the understanding of the scalar field by allowing the

user to look at the distribution of real values over the domain. The simplest way to visualize a

scalar field is using colors to represent data values. Color coding gives visual representation of

the scalar value at a point in relation to its neighboring values. Another useful approach is to

show an isosurface/level set, which is a set of points with the same function value. Figure 1.2a

shows an isosurface/level set of a CT scan of the abdomen and the pelvis. When the domain is

three dimensional it is possible to view the scalar field as a single volume. A volume rendering

of a CT scan of a teapot containing a lobster inside is shown in Figure 1.2b. Slices of the 3D

volume displayed as 2D images also help understand the data.One such color coded slice

from an MRI scan of the brain with tumor is shown in Figure 1.2c.

1.2 Multifield Visualization

Data from scientific experiments and simulations typicallycontain multiple scalar fields de-

fined on a single domain. Techniques for effective visualization of single scalar fields are often

inadequate for visual analysis of multifield scientific datadue to the complex relationships

that exist between the different scalar fields. As an example, let us consider a simulation of

combustion. The data consists of scalar fields corresponding to fuel and air densities at each

point on a planar domain. Effective visual representationsof the scalar fields individually do

not capture the interactions that exist between fuel and air. As another motivating example, we

consider a simulation of a hurricane. Figure 1.3a shows the domain of simulation. Weather

fronts are regions that separate air masses of different densities. It is also known that regions
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(a) (b) (c)

(d)

Figure 1.3: Fronts in a hurricane. (a) Region of simulation. Land mass is shown in red. (b)
Volume rendering (top view) of horizontal wind speed Uf. (c)Volume rendering (top view) of
horizontal wind speed Vf. (d) Volume rendering (top view) ofa derived scalar field capturing
rainbands at different fronts. The location of the fronts isnot available from visualizations of
the scalar fields Uf and Vf.
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inside the front have high horizontal wind turbulence. Visualizations of the individual wind

velocity components are shown in Figures 1.3b and 1.3c. We observe that the individual vi-

sualizations do not show the weather fronts. We have developed a technique (see Chapter 5)

where we construct a new scalar field that captures relationships between the scalar fields.

We visualize this derived field as shown in Figure 1.3d. The different weather fronts that are

helpful to a climate scientist are now clearly shown in the visualization.

In all the techniques described in this thesis, we consider the lengths and mutual alignment

of gradients of the individual scalar fields to quantify relationships. Gradients and their mutual

alignment have been used in literature to study a wide variety of both single field and multifield

data [2,3,4,5,6]. For example, the notion of critical points for a scalar fields can be extended

to multiple functions by considering the Jacobi set [5].

1.3 Contributions

The goal of this thesis is to develop techniques that help in the understanding and visualization

of the complex interactions that exist between multiple scalar fields in a real world data. As

mentioned in the previous section, we would like to study if the gradients and their mutual

alignment play a role in the relationships that exist between the different scalar variables.

We follow two approaches to visualize interactions betweenthe different scalar fields in

multifield data.

• A subset of the domain relevant to the relationships betweenthe scalar variables under

consideration is extracted. The extracted subset typically has a geometric or topological

structure. The extracted subset is then visualized to gain insight into the multifield data.

• A new scalar field is derived from the scalar variables that capture interactions between

the fields. A visualization of this new derived field gives an indication of the relation-

ships that exist between the scalar variables.
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In our first work, we follow the first approach to simplify Jacobi sets. Jacobi sets, intro-

duced by Edelsbrunner et al. [5], extend the notion of critical points to multiple scalar func-

tions. The alignment of the gradients determine the inclusion of a domain point in the Jacobi

set. We interpret the Jacobi set of a pair of scalar functionsas the level set of a derived function

and describe a new relationship-preserving method for simplifying the Jacobi set. Specifically,

• We describe a new algorithm to compute the Jacobi set of two scalar fields using a level

set interpretation. We derive a new field and extract the Jacobi set as a level set of this

field. Such an interpretation helps us to naturally simplifythe Jacobi set.

• We cast the simplification problem as an integer linear program. We describe an off-

set operation to change the topology of individual components of the Jacobi set. We

then describe a greedy algorithm using offset operations tosolve the linear program re-

moving small loops. Repeated application of the simplification leads to multi resolution

representation of the Jacobi set.

• We show that the change in the relationship between the functions due to simplification

is upper bounded by the amount of simplification.

• We show an application of our technique to computer graphics. We compute the silhou-

ette of a model as a Jacobi set and simplify the silhouette. Wealso apply our technique

on a combustion data to study the relationship between and fuel and air.

Multiple techniques have been proposed in the literature toidentify “important” isosur-

faces in scalar field data [7, 8]. However, these approaches do not have obvious extensions to

multifield data. We argue that it is necessary to consider relationships between scalar fields to

determine the importance of isosurfaces. As part of this thesis,

• We have defined a new function called the variation density function to measure the

importance of an isosurface in multifield scientific data.
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• We have described an efficient algorithm to compute a profile of the importances of iso-

values, called the variation density profile, for piecewiselinear functions. The algorithm

is robust ensuring that the computed profile converges to theactual profile in the limit.

• We have developed a parallel implementation of the variation density profile computa-

tion using GPUs.

• We have theoretical results establishing a link between thevariation density function

and the well understood notion of topological persistence.This also ensures that the

variation density function is insensitive to noise in the data.

• We use the variation density profile to study datasets from different domains like com-

bustion studies, astrophysics and climate sciences. We compare our results with existing

techniques and show that the variation density profile is able to identify important iso-

values better.

We use the local comparison measure [3] to simplify Jacobi sets and and to identify impor-

tant isosurfaces using the variation density profile. The local comparison measure is defined

only when the number of functions being compared does not exceed the dimension of the do-

main. Also, existing approaches to compare scalar functions often do not work well for more

than two functions. We address these limitations by introducing a new derived scalar field

called the multifield comparison measure. Specifically,

• We introduce a new multifield comparison measure to capture relationships. Visual-

ization of the multifield comparison measure shows the interactions between different

scalar variables.

• We show that the multifield comparison measure satisfies important properties like coor-

dinate system independence and its insensitiveness to noise in the scalar fields and also

their gradients.
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• We describe an efficient algorithm to compute the comparisonmeasure for piecewise

linear functions.

• We apply the multifield comparison measure to study data fromclimate sciences and

combustion studies.

1.4 Chapter Outline

In chapter 2, we describe the background required for understanding the techniques that are

described in the thesis. In chapter 3, we describe a new algorithm to compute and simplify

Jacobi sets. In chapter 4, we introduce the variation density function to measure relationships

on an isosurface and apply it to identify important isovalues in multifield data. We describe

the multifield comparison measure and its applications in chapter 5. We conclude the thesis in

Chapter 6.



Chapter 2

Background

This chapter covers the necessary background. Scalar fieldsare defined on spatial domains

with a geometric structure. In this thesis, we restrict our attention to a special class of domains

called manifolds. Intuitively, a manifold is a space that resembles the Euclidean space locally,

for example, a hollow sphere can be considered as a space thatis locally two dimensional. The

n-dimensional Euclidean space is ann-manifold.

2.1 Manifolds

A function f : X→Y between spacesX andY is said to be ahomeomorphismif f is bijective,

continuous and the inverse off is continuous. SpacesX andY are said to behomeomorphicif

there exists a homeomorphism between them. Ann-manifold is a space where every point has

a neighbourhood homeomorphic toRn. Each point can be represented using a local coordinate

system. As inRn, it is possible to define ann-dimensional vector (called the tangent vector) at

every point (technically, vectors can be defined only on a class of manifolds called differential

manifolds). Recall that the length of a vector inRn is given by the square root of the inner

product of the vector with itself. This notion can be extended by allowing inner products to

be defined at every point on the manifold. The metric arising due to such an inner product

is called theRiemannian metricand the manifold itself is said to beRiemannian. A more

9
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Figure 2.1: Left to right: 0-simplex (point), 1-simplex (line segment), 2-simplex (triangle) and
3-simplex (tetrahedron).

Figure 2.2: The model of a teapot represented as a simplicialcomplex. The elements of the
simplicial complex are vertices (0-simplices), edges (1-simplices) and faces (2-simplices). The
simplicial complex is also a 2-manifold.

rigorous and technical explanation can be found in the book by Guillemin and Golubitsky [9].

We consider only Riemannian manifolds throughout this thesis.

2.2 Gradients on manifolds

The gradient of a smooth function defined onRn at a pointx∈ Rn is the vector whose com-

ponents are the partial derivatives of the function along each coordinate axis. The direction

of the gradient vector signifies the direction of steepest ascent of the function. The maximum

rate of change is given by the length of the gradient. Iff is a smooth function defined on a

Riemannian manifold and(x1,x2, . . . ,xn) is a local coordinate system such that the unit tangent

vectors denoted by( ∂
∂x1

, . . . ,
∂

∂xn
) form an orthonormal basis. The gradient off at x is defined

as the tangent vector∇ f (x) = ( ∂ f
∂x1

(x), . . . , ∂ f
∂xn

(x)). If the gradient vanishes atx, thenx is said

to be acritical point of f .
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2.3 Representation of Manifolds

A Manifold can be represented in multiple ways on a computer.For example, it can be rep-

resented as a collection of cells that do not intersect with one another. Astructured gridis a

representation of a manifold with structured geometry where the cells are quadrilaterals (2D)

or cuboids (3D). The cells are attached to each other sharingedges and vertices and partition

the domain.Rectilinear gridsare structured grids where all cells are rectangles (2D) or rect-

angular cuboids (3D). The geometry of the manifold could be irregular where the locations of

points on the manifold are specified arbitrarily.

Manifolds with irregular geometry can be represented usingsimplicial complexes. For

0≤ k ≤ n, a k-simplexin Rn is the convex hull ofk+ 1 affinely independent points. The

interior of a simplex is the set of points in the simplex that do not lie on the boundary. Define

the interior of a 0-simplex to be itself (see Figure 2.1). Asimplicial complex Kis a collection of

simplices such that all faces of simplices in the simplicialcomplex also belong to the complex

and the intersection of any two simplices is empty or a face common to both. Figure 2.2 shows

a simplicial complex representing a 2-manifold. Thedimensionof K is the dimension of the

simplex inK with the highest dimension.

2.4 Representation of Scalar Fields

Scalar data is often available as values defined over a collection of points on a manifold. For

visual analysis, it is often necessary to get a continuous represention of the data. This process

of reconstructing the data into a continuous representation can be accomplished using different

kinds of interpolation like linear, bilinear and trilinearinterpolation [10]. Applications requir-

ing higher order continuity in the scalar field use techniques like cubic interpolation [11].
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2.4.1 Piecewise Linear Functions

In this thesis, whenever the scalar field is defined on a simplicial complex, we use piecewise

linear interpolation to get a continuous representation ofthe field. LetK be a simplicial com-

plex and f̄ : vertices(K)→ R be a real valued function defined on the vertices ofK. We

construct apiecewise-linear function fp : K→R by linearly extendingf̄ within each simplex.

The position of any pointx in the interior of ak-simplex can be written uniquely as a convex

sum of the positions of vertices of the simplex, i.e,x= ∑k+1
i=1 γivi with ∑k+1

i=1 γi = 1. The tuple

(γ1, · · · ,γk+1) is called thebarycentriccoordinate ofx. Define fp(x) = ∑k+1
i=1 γi f̄ (vi). The func-

tion fp is continuous, linear within each simplex, and agrees withf̄ at the vertices ofK. The

gradient offp is well defined in the interior of a simplex and is a constant vector becausefp is

linear within the simplex.

2.4.2 Isosurface / level set

Let f be a smooth real valued function defined on ann−manifold. Thelevel setat c ∈ R is

defined as the preimagef−1(c). The level set atc is always ann−1 manifold if the gradient of

f does not vanish anywhere on the level set. Level sets are alsocalled isocontours or isolines

for two dimensional manifolds and isosurfaces for three dimensional manifolds. When the

scalar field is defined on a rectangular grid, an isosurface can be extracted efficiently using

the marching cubes algorithm [12]. A similar algorithm called marching tetrahedra [13] can

be used for extracting isosurfaces of piecewise-linear functions defined on a 3 dimensional

simplicial complex.



Chapter 3

Simplification of Jacobi Sets

In multifield scalar data, the linear dependence between thegradients of the scalar fields can

be used to study relationships between them. The Jacobi set is a subset of the domain that

captures this linear dependence. In this chapter, We present a new algorithm to compute and

simplify the Jacobi set.

3.1 Introduction

3.1.1 Motivation

The Jacobi set extends the notion of critical points to multiple functions and helps describe

the relationship between multiple scalar functions. Edelsbrunner et al. [14] have shown that

the Jacobi sets can be used to compute a comparison measure between two scalar functions.

Bennett et al. [15] have used the Jacobi set to represent tunnels and the silhouette of a mesh,

both of which are subsequently used to compute a cross parameterization. Jacobi sets have

also been used to track features of time-varying events suchas molecular interactions and

combustion simulation [16]. All the above applications face a common challenge, namely the

presence of degenerate regions and noise in the data. The number of components of the Jacobi

set is often more than what can be visually comprehended. So,it is necessary to simplify the

13
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Jacobi set. The simplification can be accomplished either using the notion of persistence [17],

or otherwise.

3.1.2 Prior work and proposed approach

In their paper, Bremer et al. [16] have described a method to remove noise in the Jacobi set

for time varying data. The persistence of a component of the Jacobi set is the time interval

between its birth and death. This measure has been used to remove components that are either

noise in the data or unimportant features. Extending this for general functions is nontrivial

and hence a more complete approach with guaranteed error bounds is required. We pose the

problem of computing Jacobi sets as the computation of a level set of a function defined on

the input manifold. Jacobi set simplification is accomplished by simplifying the level set. We

also ensure that the change in relationship between the functions due to simplification does not

exceed a given input threshold.

3.2 Background

The simplification algorithm makes use of the Reeb graph to reduce the components in the

Jacobi set. In this section, we give a brief introduction to Morse theory, Reeb graphs and

Jacobi sets.

3.2.1 Morse Theory

Morse theory studies the relationship between functions and domains. LetM be a smooth

Riemannian 2-manifold. Letf be a smooth function defined onM and (x1,x2) be a local

coordinate system such that the unit tangent vectors( ∂
∂x1

,
∂

∂x2
) form an orthonormal basis with

respect to a Riemannian metric. The gradient off at x is defined as the vector∇ f (x) =

( ∂ f
∂x1

(x), ∂ f
∂x2

(x)).
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Figure 3.1:Left: A two-holed 2-manifold and the height function defined on it.Points in blue,
green, and red correspond to minima, saddle, and maxima of the function, respectively.Right:
The Reeb graph of the height function. Loops in the Reeb graph correspond to holes in the
manifold.

A point x is a critical point of f if ∇ f (x) is the zero vector. The functionf is called a

Morse functionif the Hessian

H f (x) =







∂ 2 f
∂x2

1
(x) ∂ 2 f

∂x2∂x1
(x)

∂ 2 f
∂x1∂x2

(x) ∂ 2 f
∂x2

2
(x)







is non-singular at all critical points. Critical points are classified based on the eigenvalues of

the Hessian. A critical point is aminimumif both the eigenvalues are positive. Amaximumis

a critical point with both eigenvalues negative and asaddlehas one positive and one negative

eigenvalue.

3.2.2 Reeb Graphs

The Reeb graphof f is obtained by contracting connected level set components to points.

Nodes in a Reeb graph correspond to critical points off , see Figure 3.1. Forc ∈ R, a level

set atc is the preimagef−1(c) (see Section 2.4.2). The level setssweepthe domain as we

increasec over the range of the functionf . During a sweep over the domain, the topology

of the level set changes at critical points off . If the sweep is in the direction of increasing
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Level sets of

Jacobi set

Y

X

f

Figure 3.2: Jacobi set of analytic functionsf = x2+y2 andg= x defined onR2. The gradients
of f andg align on the Jacobi set.

function value, level set components are created at minima,they merge or split at saddles, and

are destroyed at maxima. Given a sweep direction, saddles may be classified as split or merge

saddles depending on the change in the topology of level setsat these points.

3.2.3 Jacobi Sets

TheJacobi setof two Morse functionsf andg defined on a 2- manifoldM is the collection of

points where the gradients of the functions align with each other or one of the gradients vanish

(see Figure 3.2). Alternately, the Jacobi set can be described as the collection of critical points

of the family of functionsf +λg,λ ∈ R:

J= {x∈M | x is a critical point off +λg or of λ f +g}

Note that the Jacobi set contains critical points off andg. Edelsbrunner and Harer [3] used this

alternate description to compute Jacobi sets of piecewise linear functions. They also showed

that the Jacobi set of two Morse functions is a smoothly embedded 1-manifold inM .

3.3 Simplification

We prefer to use the description of the Jacobi set as the levelset of a gradient-based comparison

measure [14] because it leads us to a natural algorithm for computing Jacobi sets. LetM be a
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Figure 3.3: Offsetting a level set component.Left: Level set components on the manifold.
Right: Offsetting a level set component (blue) to another component (red) along an edge of
the Reeb graph.

2-manifold smoothly embedded inR3. Thelocal comparison measure, κx, at a pointx∈M for

two Morse functionsf andg is defined asκx = ‖∇ f (x)×∇g(x)‖. AssumingM is orientable,

we define thesign extended comparison measure, κs
x , at the pointx with unit normal n̂ as

κs
x ( f ,g) = (∇ f ×∇g) · n̂. The sign extended comparison measure is a function defined onthe

manifoldM and the Jacobi set can be described as the set of points whereκs
x equals zero, i.e.

the zero level set ofκs
x , J= κ−1

x (0) = κs−1

x (0).

The Jacobi set often contains spurious loops because of noise and degeneracies in the data.

Simplification of the Jacobi set refers to the reduction in number of components ofJ with

minimal change to the relationship between the two input functions.

The relationship between the functions is quantified by theglobal comparison measureκ,

which is equal to the comparison measure integrated over themanifold and normalized by the

total area [14].

κ =
1

Area(M)

∫

x∈M

κxdAx,

wheredAx is the area element atx.
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3.3.1 Offsetting Components

The Jacobi set components are altered by computing offset level set components. Letp and

p′ be two level set components such that their corresponding points on the Reeb graph are

connected by a monotone path (path with monotonically increasing or decreasing function

values). The level set componentp is said to be offset top′ if it is replaced by the component

p′. The cost of an offset operation is equal to the hypervolume of the swept region, which is

computed as an integral over the swept regionR of the domain:

H =
1

Area(M)

∫

x∈R

κxdAx. (3.1)

Figure 3.3 shows a level set component offset upwards by a hypervolumeδ . The direction

of offset is upward if the function value increases and downward otherwise. We simplify the

Jacobi set by computing offsets in an appropriate direction.

The following basic offset operations are used in the simplification process.

Merge. Two components whose edges share a common saddle are offset to the saddle so that

they merge. The merged component is further offset by a smallvalue resulting in a single

component.

Split. A component is offset to a saddle and is further offset by a small value resulting in a

split.

Purge. A component is offset to a local maximum or minimum. A furtheroffset by a small

value removes the component.

Create. A component is created at a local maximum or minimum and offset by a small value.

Figure 3.4 illustrates the basic offset operations, using the Reeb graph. The Reeb graph is

naturally suited to represent the offsets because it tracesthe connected components of the level

sets. Only two operations result in a reduction in the numberof components. Temporary
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(a) Merge (b) Split

(c) Purge (d) Create

Figure 3.4: Different offset operations used during simplification. All offsets are shown against
the Reeb graph ofκs

x .

splits may be required to obtain a small number of components. We ensure that the number

of splitting operations is lower than the number of component merging operations. We show

in the next section that twice the total hypervolume swept during the operations is an upper

bound over the total change in relationship between the functions.

The first step in the simplification procedure is the computation of the Reeb graph forκs
x .

Arcs in the Reeb graph that contain the zero level set are also identified.

3.3.2 Greedy Algorithm

The required simplification is specified as a percentage of the global comparison measure. The

corresponding hypervolume threshold, i.e., the total hypervolume allowed for the operations is

calculated next. Since each simplification operation involves exactly one critical point, we can

represent an offset by a critical point. We first augment the Reeb graph by inserting dummy

nodes at level zero. This augmented graph is transformed into a directed graph by replacing

each arcuv with a directed arcuv (arc fromu towardsv), if |κs
v |> |κs

u |, see Figure 3.5 . Each
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node is then assigned a profitP(v) given by

P(v) =















1 if v is a dummy node

in(v)−out(v) otherwise,

wherein(v) andout(v) represent the indegree and outdegree ofv in the directed graph. The

profit for a non dummy node signifies the reduction in number ofJacobi set components if

the operation corresponding to the node is chosen. The optimal simplification can now be

formulated as an integer linear program (ILP) that maximizes profit. The variables in the ILP

correspond to nodes of the directed Reeb graph.

max∑P(v)xv

subject to constraints

∑C(v)xv≤ T

xv−xu≤ 0 for a directed arcuv

xu+xv≤ 1 u,v adjacent to a common dummy node

xu,xv ∈ {0,1}

The costC(v) for each simplification operation is the sum of hypervolumesof the incoming

arcs. T is the threshold given as input. A simplification operation is performed on a node if

the corresponding variable in the ILP is set to one. The first constraint bounds the total hyper-

volume for the simplification. The second constraint enforces a dependency between variables

corresponding to a directed arcuv. This dependency captures the fact that a simplification

operation atv can be performed only after a level set component has been offset through the

nodeu. At dummy nodes, there is a choice to perform an offset in either of the directions but

not both. This choice is modeled in the third constraint. TheILP is a variant of the knapsack
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Figure 3.5: Directed Reeb graph. The
dotted line in the figure shows level
0. The dummy vertices are shown in
black on the zero line. The profit for
each node is also shown.

Figure 3.6: A Section of a Reeb graph
with unreachable vertices shown in
the boxed rectangle. The unreachable
component prevents the algorithm to
proceed beyond the merge saddlev.

problem with dependencies among objects. Though a solutionto the above ILP corresponds

to the optimal simplification, the computation is slow in practice. So, we resort to a greedy

strategy that chooses the least cost offset operation at every step until the threshold is reached.

The greedy strategy has an additional advantage; it enablesthe creation of a multi-resolution

representation of the Jacobi set.

The greedy algorithm requires all nodes to be stored in a priority queue. The priority queue

is initialized with all possible simplification operationsand updated with new operations that

may become valid after an offset is performed. We define a nodeof the directed Reeb graph

asunreachableif it cannot be reached by a path from a dummy node andreachableotherwise.

Unreachable nodes may become obstacles that prevent offsetoperations. For example, a saddle

with an incoming arc from an unreachable node prevents a merge operation, see Figure 3.6. Let

G denote the directed Reeb graph andH denote the subgraph ofG containing all unreachable

vertices. A componentJ of H is a connected component in the undirected version ofH. The

cost of removingJ is the sum of the cost of all edges ofG that have at least one end point in

J. If the algorithm is not able to proceed due to some obstacles, then least cost components

of unreachable vertices are removed fromG until a valid operation is identified. Finally, we
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extract offset components using seed sets stored in the Reeb graph [8]. We also ensure that the

number of simplification operations with negative profits issmaller than a constant fraction of

the operations with positive profits. This ensures that the number of components decreases as

a result of simplification.

ProcedureInitialize
Input: Directed Reeb GraphG(V,E).
Returns: Initialized listL

1: mark all edgesuv∈ E as ’NONE’.
2: List L←{φ}
3: for each dummy nodeu do
4: for each outgoing edgeuv from u do
5: markuv ’READY’
6: if all incoming edges ofv are marked ’READY’then
7: addv to L.
8: end if
9: end for

10: end for
11: return L

3.3.3 Implementation

The idea of the greedy approach is to schedule the best possible offset operation that can be

performed. This would require all vertices to be stored in a priority queue and updated with

new operations that may unravel after an operation is performed. The INITIALIZE procedure

populates a list with all possible initial simplification operations. Marking an edge as READY

signifies a component’s readiness to be offset.

The SIMPLIFY JACOBISET procedure greedily chooses the least cost operation and exe-

cutes it. Marking an incoming edge as DONE signifies an offseting along the edge. We define

a node of the directed Reeb graphG asunreachableif it cannot be reached by a path from a

dummy node andreachableotherwise. A saddle with an incoming edge from an unreachable

node prevents a merge. If we denoteH as the subgraph ofG containing all unreachable ver-

tices, a component ofH is a connected component in the undirected version ofH. The cost
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ProcedureExtract
Input: Directed Reeb graphG(V,E) with marked edges from Procedure

SIMPLIFY JACOBISET().
Returns: List X of components of the simplified Jacobi set.

1: List K←{φ}
2: for each nodev∈V do
3: if in(v) = 0 or all incoming edges ofv are marked ’DONE’then
4: if out(v) = 0 or all outgoing edges fromv are marked ’READY’then
5: addv to K.
6: end if
7: end if
8: end for
9: for each nodev in K do

10: if v is a dummy nodethen
11: add component corresponding tov in the Reeb graph toX.
12: else
13: for each outgoing edgevwdo
14: add component corresponding to a small constant offset along vw to X
15: end for
16: end if
17: end for
18: return X

ProcedureSimplifyGraph

Input: Directed Reeb graphG(V,E), Sub graphH of G containing unreachable vertices.
Returns: ComponentJ after removing it fromG

1: J← least cost component fromH.
2: if J 6= φ then
3: remove all vertices inJ along with their edges fromG
4: end if
5: return J
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ProcedureSimplifyJacobiSet

Input: Directed Reeb graphG(V,E) , List L from Procedure INITIALIZE () and ThresholdT.
Returns: None

1: while T ≥ 0 do
2: while empty(L) andT ≥ 0 do
3: J← Simpli f yGraph
4: if J = φ then
5: goto line 35
6: end if
7: T = T−cost(J)
8: for each edgeuvwith u∈ J,v∈V−J do
9: markuv ’READY’.

10: if all incoming edges ofv are marked ’READY’ then
11: addv to L
12: end if
13: end for
14: end while
15: Choosev from L with leastC(v) andC(v)≤ T
16: if no suchv exists then
17: goto line 35
18: end if
19: for each incoming edgeuvdo
20: if u is a dummy nodethen
21: mark all outgoing edgesuw,v 6= w ’NONE’.
22: removew from L
23: end if
24: markuv ’DONE’
25: end for
26: for each outgoing edgevw do
27: markvw ’READY’
28: if all incoming edges ofw are marked ’READY’then
29: addw to L
30: end if
31: end for
32: removev from L
33: T = T−C(v)
34: end while
35: return
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of a componentJ denoted bycost(J) is the sum of the cost of all edges ofG which have at

least one end point inJ. The SIMPLIFY GRAPH removes a least cost component of unreachable

vertices fromG so that the simplification can proceed.

The final step extracts the simplified Jacobi set. Vertices inG that have all incoming edges

marked as DONE and outgoing edges marked READY represent the final offset components

after simplification.

3.4 Analysis

In this section we show that twice the hypervolume swept during a simplification operation is

an upper bound over the change in the relationship between the input functions.

3.4.1 Simplifying the input function

We do not change the function values in our experiments. However, we now compute changes

to the functionf caused by a small offset in order to obtain the upper bound. Figures 3.7a and

3.7b depict the changes to the functionf after offsets in the up and down directions respec-

tively. An upward offset introduces critical points at E andF of f restricted to level set I ofg.

To accomplish this, the function values at E and F can be interchanged to becomef (F) and

f (E) respectively. Within level set II ofg, the critical points off move from B and C to A and

D respectively. The functionf restricted to level set II between A and D is made monotone to

achieve this movement of critical points. The function values at A and D do not change and

therefore the new pair have a reduced persistence. Downwardoffset destroys the critical point

pair E and F and the restricted functionf between E and F is made monotone. The function

values at E and F are interchanged to becomef (F) and f (E) respectively. Within level set II

of g, critical points move from A and D to B and C respectively.
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Figure 3.7: Simplifying the input function. The left columnshows a Jacobi set componentJi

and its offset versionJ′i . The dashed lines are level sets of the functiong. The center column
showsf restricted to the level sets I and II. The right column shows the simplified functionf∗
that corresponds to the offset Jacobi set componentJ′i .

3.4.2 Effect on global comparison measure

As shown by Edelsbrunner et al. [14], the global comparison measure can be computed by

considering restrictions of one function on the isocontours of the second function. The global

comparison measure in this form is given by

κ =
2

Area(M)

∫

v∈J

sign(v) f (v)dg,

wheresign(v) is defined as

sign(v) =















+1 if v is a maximum off|g−1(g(v))

−1 otherwise.
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Let Ji denote theith component of the Jacobi set. Define

κi =
2

Area(M)

∫

v∈Ji

sign(v) f (v)dg.

κi can be interpreted as the contribution ofJi to the global comparison measure,κ = ∑i κi .

Since the change to the functionf corresponding to an offset is local to the region of the

component, we will now compute the change inκi corresponding to an upward offset. Iff∗ is

the modified function, the change inκi is given by

|δκi |=
2

Area(M)

∣

∣

∣

∫

v∈J′i

sign(v) f∗(v)dg−
∫

v∈Ji

sign(v) f (v)dg
∣

∣

∣
.

Let R be the region ofM swept during the offset andR1 be the region where the level sets of

g do not intersectJi (shaded region in Figure 3.7a). The integral overJ′i can be rewritten as a

sum of integrals over two regions:

|δκi |=
2

Area(M)

∣

∣

∣

∫

v∈J′i∩R1

sign(v) f∗(v)dg−
∫

v∈Ji

sign(v) f (v)dg

+
∫

v∈J′i∩(R−R1)

sign(v) f∗(v)dg
∣

∣

∣
.

(3.2)

Consider the level sets I in Figure 3.7a. The difference between function values atE andF can

be written as

f∗(F)− f∗(E) = f (E)− f (F) =

E
∫

F

‖∇ ft(x)‖dl.

Here,∇ ft(x) represents the tangential component of∇ f (x) along the level sets anddl is the

length element along the level set. The integral ofsign(v) f∗(v) overJ′i ∩R1 can be rewritten as
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an integral overR1 using the above expression,

∫

v∈J′i∩R1

sign(v) f∗(v)dg=
∫∫

x∈R1

‖∇ ft(x)‖dldg.

Let du be the length element orthogonal to the level set. The area element is given bydldu.

Using the fact thatdg= ‖∇g(x)‖du,

∫

v∈J′i∩R1

sign(v) f∗(v)dg=
∫∫

x∈R1

‖∇ ft(x)‖‖∇g(x)‖dldu=
∫

x∈R1

‖∇ f (x)×∇g(x)‖dAx

=
∫

x∈R1

κxdAx. (3.3)

Consider the level set II ofg in Figure 3.7a:

f∗(A) = f (A) = f (B)+

A
∫

B

‖∇ ft(x)‖dl

and

f∗(D) = f (D) = f (C)−
C
∫

D

‖∇ ft(x)‖dl.

Combining the above two equations,

( f (C)− f (B))− ( f∗(D)− f∗(A)) =( f∗(A)− f (B))+( f (C)− f∗(D))

=

A
∫

B

‖∇ ft(x)‖dl+

C
∫

D

‖∇ ft(x)‖dl.
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Figure 3.8: Consider the vertexv and its adjacent vertices as a point set. The neighborhoodR
of a vertexv on a piecewise linear surface is represented by the Voronoi region ofv.

All pairs of pointsA,D ∈ J′i ∩ (R−R1) have a corresponding pairB,C∈ Ji. So, we have

∣

∣

∣

∫

v∈J′i∩(R−R1)

sign(v) f∗(v)dg−
∫

v∈Ji

sign(v) f (v)dg
∣

∣

∣

=
∫∫

x∈(R−R1)

‖∇ ft(x)‖‖∇g(x)‖dldu

=
∫

x∈(R−R1)

κxdAx. (3.4)

Substituting (3.4) and (3.3) in (3.2) and using the triangleinequality,

|δki | ≤
2

Area(M)

∫

R

κxdAx = 2H.

The above inequality can be similarly derived for the downward offset. Thus, the hypervolume

is a conservative estimate of the change in relationship between f andg caused by an offset.

3.5 Implementation for Piecewise Linear Functions

Scalar scientific data is often represented by piecewise linear functions on triangle meshes,

where the gradient and henceκs
x is not defined at vertices of the mesh. Given a vertexv of the

triangle mesh, its neighborhood is the Voronoi region as shown in Figure 3.8. Meyer et al. [18]

used the Voronoi region to define discrete differential operators with minimal numerical error

for triangulated surfaces. LetT1,T2, · · · ,Tt be triangles that intersect the neighborhoodR of v.



Chapter 3. Simplification of Jacobi Sets 30

The sign extended comparison measureκs is constant within each of the regionsTi ∩R. We

follow Meyer et al. to defineκs
v as the average value of the sign extended measure overR;

κs
v =

1
Area(R)

t

∑
i=1

κs
i Area(Ti ∩R),

whereκs
i is the value of the sign extended comparison measure at a point that lies in the interior

of Ti. Note that the gradients off andg are constant in the interior of a triangle and henceκs
x

is also constant within a triangle. The sign extended comparison measure is stored at vertices

and a linear approximation is used within the edges and triangles. This approximation does not

introduce significant artifacts in practice. The zero levelset can be extracted using a marching

triangles algorithm or from seed sets computed using a Reeb graph ofκs
x .

3.6 Applications

We demonstrate the usefulness of the simplified Jacobi set using two different applications.

Our approach to the definition and simplification of Jacobi sets is particularly useful when

studying the relationship between two functions using their gradients.

3.6.1 Visualizing Silhouettes

Given a view directiond in R3 and a 2-manifoldM embedded smoothly inR3, the silhouette is

the set of points inM where the tangent plane is parallel tod. Consider a Cartesian coordinate

system with thez-axis along the view directiond. The Jacobi set of the two scalar fields

f (x,y,z) = x andg(x,y,z) = y is the required silhouette. The silhouette of a model of the hand

1is shown in Figure 3.9c. The model is shown in the original orientation in Figure 3.9a. The

view direction is perpendicular to the plane of paper. The orientation of the model has been

changed for a better view of the computed silhouette in Figures 3.9b and 3.9c. As seen from the

1The models of hand and torso were downloaded from the AIM@SHAPE repository
( http://www.aimatshape.net/).
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(a)

(b) (c)

Figure 3.9: Silhouettes. (a) Model of a hand in its original orientation. (b) Silhouette when
viewed from a different angle. (c) Simplified silhouette.

figure, the silhouette has many components that are unimportant caused by small bumps in the

model and the silhouette itself appears to contain noise. The simplification process removes

small components because their removal does not adversely affect the relationship between the

fields f andg used to compute the silhouette. We found that simplificationusing 2% threshold

removed all noise. The Jacobi set was simplified using the greedy algorithm. Similar results

are shown for another model in Figure 3.10

3.6.2 Combustion

We apply our algorithm to study a time varying dataset from the simulation of a combustion

process.2 This application demonstrates the use of simplification when handling degenerate

data. Degeneracies occur whenκx is zero within a region, resulting in the Jacobi set containing

2We would like to thank Jackie Chen and Valerio Pascucci for providing the combustion data .
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(a)

(b) (c)

Figure 3.10: Silhouettes. (a) Silhouette computed on the model of a torso. (b) Zoomed-in view
of the model with noisy silhouette (c) Simplified silhouette.

(a) (b) (c)

Figure 3.11: Combustion. (a) Jacobi set of H2 and O2 in the 64th time step. (b) Simplified
Jacobi set. (c) Concentration of O2.
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higher dimensional parts. During simplification, Jacobi set components within degenerate

regions are automatically removed because they do not contribute toκ.

The dataset consists of the concentrations of H2(fuel) and O2(air) defined on a 600x600

grid for 67 time steps. We compute and simplify the Jacobi setfor H2 and O2 at different

time steps to identify the front of combustion. Combustion begins at regions where the fuel-

air mixture is appropriate for ignition. The data is degenerate away from the front, thereby

introducing noise in the Jacobi set.

Figure 3.11 shows the results for the 64th time step when the combustion is in its final stage.

The simplified Jacobi set again appears at the front. Figure 3.11c shows the O2 concentration.

Blue signifies a low function value and red signifies a high function value.The front consists

of the boundary of red regions, which is also traced by the simplified Jacobi set.

3.7 Conclusions

We have described an algorithm for simplifying the Jacobi set of two Morse functions. The

algorithm is robust because it ensures minimal change to therelationship between the two

functions (bounded change to the global comparison measure). The Jacobi set can be dis-

played at different levels of simplification due to the nature of our greedy algorithm. This

allows for a representation of the Jacobi set with differentlevels of simplification (multi-level

representation). Future work includes extending the algorithm to multiple functions and higher

dimensions.



Chapter 4

Relation-aware Isosurface Extraction

In the previous chapter, we used the comparison measure to compute and simplify the Jacobi

set. In this chapter, we describe a new technique that uses the comparison measure to identify

important isosurfaces in multifield data.

4.1 Introduction

The design of interactive and useful techniques for multi-field data remains a challenging prob-

lem. Scientists hope to understand the underlying phenomena by studying the relationship

between several quantities measured or computed over a domain of interest. Therefore, multi-

field data is ubiquitous to all scientific studies.

Naturally, the design of analysis and visualization techniques for multi-field data will ben-

efit by studying the relationship between fields as opposed toa focused study of inherent

properties of individual fields. We follow this principle todevelop a relation-aware method for

exploring scalar multi-field data.

Identification of important isovalues of scalar fields is a well studied problem. Current

approaches focus on individual scalar fields and study geometric properties of the isosurface

like surface area or enclosed volume, or study the topological properties abstracted into a Reeb

graph or contour tree. We study this problem in the context ofmulti-field data. Specifically, we

34
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introduce a variation density function, whose profile is a good indicator of interesting isovalues

of individual scalar fields in a multi-field dataset.

There is no unique definition for the relationship between functions in the literature. The

alignment of gradients is widely used within the visualization community to quantify relation-

ship between scalar fields [2, 3, 4]. We follow this approach and use the comparison measure

proposed by Edelsbrunner et al. [3] to measure the relationship between different scalar fields.

For a given scalar fieldf and a sub-collectionAof scalar fields from the multi-field data, the

variation density function measures the relationship between scalar fields inA over isosurfaces

of f . Similar to Edelsbrunner et al. [3], the variation density function quantifies the relationship

between multiple scalar fields by comparing their gradients. Our hypothesis is that extrema

and regions of rapid changes in the profile of the variation density function are indicative of

interesting features or events in the data. Experiments on data from different applications

indicate that our hypothesis is indeed true for these data sets.

Our contributions include a relation-aware approach to identification of interesting isoval-

ues of a scalar field in a multi-field data set, a successful application of this approach to explore

data from diverse application domains and a demonstration of the advantages over analyzing

scalar fields in isolation. Central to the data exploration process is a variation density func-

tion that measures the relationship between scalar fields inthe data. We derive links between

the variation density and well understood measures like topological persistence and isosur-

face area statistics. We also describe a simple algorithm tocompute an approximate profile

of the variation density function, which provably converges to the true profile with increasing

sample size. Finally, we show that our approach can be used for effective exploration of both

simulation and measurement data from a wide variety of application domains.

4.1.1 Related Work

Bajaj et al. [8] introduced the popularcontour spectrumas a method for exploring scalar

fields by studying distributions of metric properties like area, volume, and their derivatives
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and integrals. Early approaches to identification of interesting isovalues study the histogram

of the scalar field [22,23].

Carr et al. [7] showed that histograms suffered from many deficiencies because they were

equivalent to nearest neighbor interpolant and suggest theuse of isosurface statistics computed

with higher quality interpolation. Scheidegger et al. [24]proposed an improved formulation

of isosurface statistics by weighting it with the inverse gradient magnitude. This essentially

means that the value of the statistic reaches infinity if the gradient vanishes. We fill this minor

gap in the definition of the variation density function by excluding critical values. However,

this does not affect the utility of the variation density function because we include the criti-

cal values while computing the variation density profile forpiecewise linear input functions.

Both Carr et al. and Scheidegger et al. mention an application of isosurface statistics to iden-

tification of interesting isovalues. Isosurface statistics considers geometric properties of an

isosurface to determine its importance. For multi-field data, the importance of an isovalue ad-

ditionally depends on the interaction between the different fields. In this regard, our method

can be considered a generalization of their work to multi-field data. Section 4.5 describes this

generalization in detail.

Structures like contour trees [25], and more generically Reeb graphs [26], provide an ab-

stract representation of topological changes in isosurfaces of a scalar field as we sweep the

domain in the direction of increasing / decreasing scalar value. The Reeb graph has been used

as an interface for flexible extraction of individual components of interesting isosurfaces [27].

All the above methods are oblivious to other scalar fields in the data and hence do not

consider relationships between fields. So, these methods may not be effective in the study of

multi-field data.

Gosink et al. [2] present a method that allows visualizationof interaction between three

scalar fields by studying the correlation between two fields over isosurfaces of the third field.

Their approach allows the classification of isosurfaces into two classes, primary and secondary,
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but does not provide further information to allow the identification of a smaller set of inter-

esting isovalues. They design the method to be used within the framework of Query-Driven

Visualization, which benefits from user queries.

4.1.2 Outline

Section 4.2 reviews the necessary background on comparisonmeasure, defines the variation

density function, and describes its properties. Section 4.3 describes an algorithm to compute

the variation density profile. Section 4.4 reports results of experiments on 2D, 3D, and time-

varying multi-field data. Section 4.5 discusses some properties of the variation density function

and an interesting variant. Section 4.6 concludes the paper.

4.2 Variation Density Function

The variation density function measures the relationship between multiple scalar fields over

isosurfaces of one of the input scalar field. The relationship is quantified by the comparison

measure introduced by Edelsbrunner et al. [3].

4.2.1 Comparison Measure

Let M be a smooth compactn-dimensional Riemannian manifold. LetF = { f1, f2, . . . , fk}

be a set ofk≤ n smooth real-valued functions defined onM, fi : M→ R. Thecomparison

measure, for F , over a domainD⊆M, is defined as the normalized integral

κD(F) =
1

vol(D)

∫

x∈D

‖d f1∧d f2∧ . . .∧d fk‖,

wherevol(D) is the volume ofD and d f1∧ d f2∧ . . .∧ d fk is the wedge product of thek

derivatives. κM(F) is called theglobal comparison measure. WhenD shrinks to a point

x∈M, we get thelocal comparison measure, κx(F), in the limit. The product,κD(F) ·vol(D),
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∇ f (x)

∂
∂x1

∂
∂x2

∂
∂x3

f−1(r +δ r)

f−1(r)

x

Figure 4.1: Isosurfaces shown atf−1(r) and f−1(r +δ r) whenn= 3. It is always possible to
choose a local orthonormal coordinate system such that one tangent vector∂

∂x3
is aligned with

the gradient off . From the definition of gradients, it follows thatdr = ‖∇ f (x)‖dx3.

can be used to quantify the relationship between the different functions inF . Whenk= n= 2

andM is smoothly embedded inR3 with the standard Euclidean metric,κx(F) is the length of

the cross product of the two gradients atx:

κx({ f1, f2}) = ‖∇ f1(x)×∇ f2(x)‖.

4.2.2 Definition

For a smooth functionf :M→R, a real numberc is a critical value if for somex∈M,‖∇ f (x)‖=

0 andc= f (x). LetP⊆ R denote the set of non-critical, orregular, values off .

Define a scalar functionψ : F×2F ×P→ R as

ψ( f ,A, r) =
∫

x∈ f−1(r)

κx(A)
‖∇ f (x)‖dSx,

wheredSx is then−1 dimensional isosurface area element. We assume that all the functions

in F have a finite number of critical values. Given a regular valuer, we can therefore choose



Chapter 4. Relation-aware Isosurface Extraction 39

an intervalI : [r, r +δ r] that contains no critical values. We claim that

∫

I

ψ( f ,A, r)dr =
∫

x∈ f−1(I)

κx(A)dVx

= κ f−1(I)(A) ·vol( f−1(I)), (4.1)

wheredVx is the volume element. So,ψ( f ,A, r) can be considered as the density of the varia-

tion between functions in the setA. Hence, we callψ thevariation density function. We now

prove (4.1) from first principles.

Consider a local coordinate system(x1,x2, . . . ,xn) at x such that the unit tangent vectors

( ∂
∂x1

, . . . ,
∂

∂xn
) form an orthonormal basis. The volume elementdVx equalsdx= dx1dx2 . . .dxn.

Assume, without loss of generality, that the firstn−1 basis vectors lie on the tangent plane of

f−1(r) atx and the last tangent vector is aligned with∇ f (x) (see Figure 4.1). We transform the

coordinate system atx to (x1,x2, . . . ,xn−1, f (x)). The volume element in the new coordinate

system is obtained by multiplying with the Jacobian determinant, which is equal to the length

of the gradient‖∇ f (x)‖. Therefore

dVx =
dx1dx2 . . .dxn−1dr
‖∇ f (x)‖ .

Now,

∫

I

ψ( f ,A, r)dr =
∫

I

∫

x∈ f−1(r)

κx(A)
‖∇ f (x)‖dSxdr

=
∫

I

∫

x∈ f−1(r)

κx(A)
‖∇ f (x)‖dx1dx2 . . .dxn−1dr.

Rewriting the double integral as a single integral overf−1(I) and using the above expression

for dVx, we get the desired equality in (4.1).
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∇gt(x)

∇g(x)

∇ f (x)

f−1(r)

Figure 4.2: Isocontours off whenn = 2 andF = { f ,g}. The isocontourf−1(r) shown in
green, has critical points of the restricted functiong∗, at the points shown in red (maxima) and
blue (minima). Theψ function is the sum of persistence values of the critical points. It also
captures the total variation ofg∗ on the isocontour.

4.2.3 Variation Density and Total Variation

In this section, we motivate the use of variation density by showing that it captures the total

“variation” of a function restricted to an isosurface of theother. Specifically, we show that, for

the special case of smooth functionsf andg defined on a 2-manifold, the variation density is

equal to the difference between the sum of values at maxima and minima ofg restricted to an

isocontourf−1(r). However, it is not clear how to extend this result to the caseof multiple

functions defined on a higher dimensional manifold.

Let r be a regular value off . The isocontourf−1(r) is a smooth curve embedded inM.

So, we have

ψ( f ,{ f ,g}, r) =
∫

x∈ f−1(r)

‖∇ f (x)×∇g(x)‖
‖∇ f (x)‖ dlx

=
∫

x∈ f−1(r)

‖∇gt(x)‖dlx, (4.2)

where∇gt(x) is the component of∇g(x) along the tangent tof−1(r) atx, anddlx is the length

element of f−1(r) at x (see Figure 4.2). Letg∗ be the function obtained by restricting the

domain ofg to f−1(r). The derivative ofg∗ vanishes at a critical point. Critical points are
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Figure 4.3: (a) Color map of functionf2. Blue and red regions indicate low and high function
values respectively. (b) The variation density profile off0, ψ( f0,{ f0, f1}, r) with f1(x) =
‖x−2‖. The jagged boundary of the shaded region is an artifact of using a discrete domain
for computation. (c) The variation density profile off0, ψ( f0,{ f0, f2}, r), showing peaks at
depressions off2.

either maxima or minima assuming the second derivative ofg∗ does not vanish at such points.

Applying the fundamental theorem of calculus to each regionof f−1(r) whereg∗ is monotone,

we rewrite the integral of‖∇gt(x)‖ over the isocontourf−1(r) as the difference between the

sum of function values at maxima and minima ofg∗. In other words, ifC is the set of critical

points ofg∗, then

∫

x∈ f−1(r)

‖∇gt(x)‖dlx = 2 ∑
v∈C

sign(v)g∗(v), (4.3)

wheresign(v) is either+1 or−1 depending on whetherv is a maximum or minimum, respec-

tively. Thus,ψ is equal to the total variation ofg∗ over the isocontourf−1(r).

Thesub-level setof a real values is the union of pre-images of all real values less than or

equal tos. Consider the sub-level sets ofg∗ as we sweepf−1(r) in the direction of increasing

value ofg∗. New components are created at local minima ofg∗. Components of the sub-

level set merge at all maxima except for the global maximum where the sub-level set is equal

to f−1(r). We represent each sub-level set component by its oldest minimum. When a merge

happens at a maximum, we pair the maximum with the younger of the two minima representing

the two merging components. The global maximum is paired with the global minimum. The
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persistenceof a critical point is equal to the absolute difference in function values between

the critical point and its pair. Persistence of a critical point pair represents the lifetime of a

feature,i.e., the time between the creation and destruction of a component in f−1(r) during

the sweep process. Long-living components that have higherpersistence values are considered

to be more important.

In recent years, the notion of persistence has been used to measure, order, and simplify

features [14, 17, 28, 29, 30]. This measure has been shown to be stable in the presence of

noise assuming a bottleneck metric and the functions are tame [31]. From Equation (4.2) and

Equation (4.3), we know that

ψ( f ,{ f ,g}, r) = 2 ∑
v∈C

sign(v)g∗(v). (4.4)

Since every critical point is counted twice in the above expression,ψ( f ,{ f ,g}, r) is equal to

the sum of persistence values of all critical points ofg∗. The variation density functionψ,

therefore, represents the total importance of all sub-level set components ofg∗ in f−1(r). This

equality also suggests that we can expect the variation density function to be insensitive to

small perturbations ing. This is because a small perturbation applied to the function implies a

small perturbation applied to the restriction ofg∗. Now,g∗ and its perturbed versions are close

to each other under theL∞ metric, which implies that the persistence values of their critical

points, and hence their sum, are close to each other. Note that the function is tame because we

assume that it has a finite number of critical values.

Finally, note that the integral of the expression in Equation (4.4) over all isovalues off is

equal to the global comparison measure as shown previously by Edelsbrunner et al [3].

4.2.4 Variation Density Profile

We are interested in the plot of variation density for a givenscalar field f and a subsetA

of scalar fields. The observation that the integral of the variation density over all isovalues
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is the global comparison measure motivates us to study the plot of variation density against

isovalues. We can consider the profile of the variation density as a plot of the contribution to

the global comparison measure from the level sets of the scalar field. Givenk scalar fields, only

a few of thek2k possible plots are interesting. This choice ofA and f is typically determined

by the application. Prior knowledge of potential interaction between the scalar fields can help

us make an informed choice. Each plot can provide cues that help in identifying interesting

isovalues. The following examples are aimed at providing intuition behind the use of the

variation density profile.

Consider the following analytic functions defined onR2.

f0(x) = ‖x‖,

f1(x) = ‖x−a‖,

f2(x) =−(Ga1(x)+Ga2(x)+Ga3(x)).

Wherex,a,a1,a2,a3 ∈ R2 andGai (x) is a Gaussian with a low standard deviation centered at

ai. The isocontours off0 and f1 are circles centered at origin and the pointa respectively.

Consider an isovaluer < ‖a‖ of f0. The value ofψ( f0,{ f0, f1}, r) can be calculated from

using Equation (4.4) to be 4r. If r ≥ ‖a‖, we haveψ( f0,{ f0, f1}, r) = 4‖a‖. The functionψ,

therefore, increases linearly withr till the isovalue‖a‖ and then becomes constant.

If we considerf0 to be elevation andf1 to be atmospheric pressure,ψ would tell us that the

variation in pressure at all points with the same elevation increases linearly till height‖a‖ and

remains constant for higher elevations. The pressure depression at elevation‖a‖ is captured

by a knee in the graph ofψ, see Figure 4.3b. Note that the corrected isocontour perimeter

statistic [24] would assign the same value in the statistic graph for each isovalue off0. This

follows from the fact that the ratio of the perimeter of an isocontour to the length of the gradient

of f0 on the isocontour is the same for all isocontours.

The function f2 has three depressions at distances‖a1‖, ‖a2‖ and‖a3‖ from the origin.
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f−1(r)
f−1(r)

f−1(r +δ r)

Figure 4.4: Computation ofψ for a two dimensional simplicial complex. The shaded region
indicates the area corresponding to a bin[r, r + δ r]. This region is a small strip if the bin is
contained within the range off restricted to the triangle. The entire triangle is shaded ifthe bin
contains the range off restricted to the triangle or if the triangle is degenerate.If the bin and
the range off have a non-empty intersection but do not contain each other,then the shaded
region contains one or two vertices of the triangle.

Figure 4.3a shows a color map off2 with depressions (blue regions) centered at distances

1,2 and 3 from the origin. The functionf2 is nearly constant at all points far away from the

depressions. The variation off2 on an isocontour off0 is nearly zero if the isocontour does not

pass through any of the depressions. The variation is maximum on isocontours off0 passing

through the depressions. This results in peaks in the variation density profile (see Figure 4.3b).

In both the examples, select isovalues off0 are found to be interesting only after studying the

relationship between functions.

4.3 Computation

In this section, we describe the computation ofψ whenF is a set of piecewise-linear functions

andM is represented by ann-dimensional simplicial complex (see Chapter 2).

The gradient of a piecewise-linear functionfp is well defined in the interior of a simplex

and is a constant vector becausefp is linear within the simplex. The gradient vanishes inside

a simplex iff the function values at all vertices of the simplex are equal. Note that a constant

gradient implies that the local comparison measure is also constant in the interior of a simplex.

For a smooth functionf , we first divide the range off into a fixed number of intervals
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called bins. For an intervalI = [r, r +δ r], define

ψ̄( f ,A, I) =

∫

f−1(I)
κx(A)dx

|I | , (4.5)

where|I | is the length of the intervalI . The functionψ̄( f ,A, I) is well defined even ifI contains

a critical value. Note that

ψ( f ,A, r) = lim
δ r→0

r+δ r
∫

r
ψ( f ,A, r)dr

δ r

= lim
δ r→0

∫

f−1(I)
κx(A)dVx

δ r

Therefore, in the limit, when|I | → 0, ψ̄ converges toψ( f ,A, r) at a regular valuer.

For a piecewise-linear functionfp, we compute the integral in Equation (4.5) as a summa-

tion:

ψ̄( fp,A, I) =
1
|I | ∑

σ∈K
κσ ∗vol(interior(σ)∩ f−1

p (I)),

whereκσ is the value ofκx for anyx∈ interior(σ) (see Figure 4.4). Note that for piecewise-

linear functions, the local comparison measure is a piecewise-constant function. Therefore,

κx is the same for anyx∈ interior(σ). The procedure COMPUTEPSI computes the variation

density profile for a given bin widthh. The procedure is easily parallelizable because the com-

putation for each simplex is independent of other simplices. The time required for a simplex

inside the outer loop depends on the range of the function restricted to it andh. The worst

case complexity is thereforeO(mn), wherem and n are the number of bins and simplices

respectively.
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ProcedureCOMPUTEPSI( fp,A,h)

Initialize ψ̄( fp,A, I)← 0 for all binsI

for each simplexσ ∈ K do

R← range offp restricted toσ

for each binI such thatR∩ I 6= φ do

ψ̄( fp,A, I)← ψ̄( fp,A, I)

+
κσ ∗vol( f−1

p (R∩ I)∩ interior(σ))

h
end for

end for

4.4 Applications

We study a variety of data using the variation density function. Our implementation works

directly on simplicial complexes. If the input domain is available as a rectilinear grid, we first

subdivide it into simplices by inserting diagonals and analyze the corresponding piecewise lin-

ear function. Area and volume are computed using the QHull library (http://www.qhull.org).

We have also parallelized the computation using OpenCL1 (http://www.khronos.org/opencl/).

The software is available for free from http://vgl.serc.iisc.ernet.in/software/software.php?pid=002.

We use a fixed number of bins (100 or 200) in all our experiments. We focus on local

maxima, minima and regions of steep gradients in the profile in order to identify potentially

interesting isosurfaces. In all experiments, we compare our result with the isosurfaces identi-

fied using the corrected isosurface area statistic [24].
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Figure 4.5: Profiling isocontours of oxygen during a combustion simulation. (a)ψ computed
with f = O2 andA = {O2,H2 }. (b) Isocontour of O2 at 1010, the global maximum ofψ.
Isocontours of oxygen in the range(800,1400) belong to the front of combustion. (c) Color
map of oxygen with red and blue areas indicating high and low concentrations respectively.

4.4.1 2D Combustion

We first experiment on a 2D combustion simulation data2. Hydrogen fuel at 300K is mixed

with an oxidizer (21% oxygen) at 1200K. The goal of the simulation is to study the influence

of turbulence on the different phases of combustion. When compressed, the fuel ignites at mul-

tiple spots because of the inhomogeneity in the air-fuel ratio. Depending on the air-fuel ratio,

the flame either propagates in an outward direction from the ignition spot or burns out [19,32].

1Shantanu Chaudhary wrote the implementation using OpenCL for computing the variation density profile on
GPUs.

2We would like to thank Valerio Pascucci and Jackie Chen for providing the combustion data.
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The combustion is simulated on a plane over 67 time steps. Theinput data comprises of three

scalar fields defined on a 600 x 600 grid for 67 time steps. The value of the first field at each

point indicates the progress of combustion at the point. Theconcentrations of oxygen (O2) and

hydrogen (H2) are the other fields.

The concentrations of H2 and O2 are nearly constant away from the front of combustion.

Also, the gradients of the two functions are aligned in theseregions. The comparison measure

is therefore zero in these regions. The variation density ofoxygen or hydrogen will therefore

have non-zero values only for isocontours passing through the front.

For this experiment, we consider the 64th time step as our input domain. The combustion

is in its later stages in this time step. We profile the isocontours of oxygen considering its

relationship with the fuel (hydrogen). This is accomplished by choosingA= {O2,H2}. The

variation density profile is shown in Figure 4.5a.

We observe from the profile that it increases to a maximum whenthe oxygen level is

approximately 800 and remains high till the oxygen level is approximately 1400. We notice

a gradual decline for higher isovalues. The isocontours of oxygen in this range(800,1400)

belong to the front of the combustion. However, this information cannot be directly inferred

from the isosurface statistic. Figure 4.5b shows the isocontour of O2 at the value 1010, the

global maximum ofψ. The front is the region where the fuel is actively burning.

The scientists who designed the simulation commented that the isocontour based segmen-

tation of the ignition region or a burned out/extinction hole is useful in studying and under-

standing the nonlinear coupling that governs ignition and extinction. The shape and size of the

segmented region and the correlation between the multitudeof scalar fields computed within

the segment play an important role in the study. We also observed that the level of detail of the

front was higher at O2 concentration∼ 800 compared to∼ 1400.
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Figure 4.6: Time varying combustion. (a) Variation densityprofile with f = t, A = {t,O2}.
(b) Profile ofψ with f = t, A= {H2,O2}. (c) Ignition: color-mapped image of the scalar field
prog, which measures the completion of combustion. Red regions indicate high values and
blue regions indicate low values. The distribution ofprog in the 28th time step indicates the
regions where the fuel is ignited. (d) Burning: The distribution ofprog in the 52nd time step.

4.4.2 Time Varying Combustion

Next, we show the application of the variation density function to time-varying data. We

consider the time varying combustion data described in the previous experiment as a three-

dimensional data with timet defined as an additional scalar field. The fuel consumption rate

at a point in a time step can be used to measure the progress of combustion at the point. This

information is available as a scalar functionprog.

The goal of this experiment is to identify important time phases of the combustion process.

The relationship that O2 has with time changes during the important phases of combustion. For
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example, on every time slice before ignition, the concentration of oxygen is nearly constant

everywhere and on ignition, oxygen begins to be consumed at regions of ignition. We therefore

profile the isosurfaces of time withA = {t,O2} (see Figure 4.6a). The profile successfully

captures the ignition and the burning phases of the combustion process. The time stepst =

27 to t = 35 in the data correspond to the ignition process. This is captured as a trough in

the profile. The burning phase (t=50 to t=55) is also capturedby a maximum in the plot.

Ignition and burning are indeed considered to be the two important phases of this combustion

process [32].

The interaction between O2 and H2 can also be considered to determine the different

phases. There is no real interaction between O2 and H2 before ignition. We plotψ with

A = {O2,H2} hoping to find more information (see Figure 4.6b). The information extracted

from this profile is essentially the same compared to the profile ψ with A= {t,O2}. The profile

begins to increase from zero during the ignition phase and reaches a global maximum during

the burning phase. Isosurface statistics considers only geometric properties of a time slice and

hence would not be able to detect any of the above phases. For example, the corrected area

statistic would give equal importance to each isovalue and hence the plot would be a horizontal

line.

The developers of the combustion simulation noted that it isdesirable to identify and track

transient and intermittent events like auto-ignition and extinction 3. They comment that our

approach of studying the relationship between the air-fuelmixture over the non-local geometry

of the flame front is a new idea and could help attain further insights into flame interactions.



Chapter 4. Relation-aware Isosurface Extraction 51

isovalues (pressure Pf)

ψ
(P

f,
{P

f,
T

C
f}
,
r)

(a)
isovalues (pressure Pf)

Is
os

ur
fa

ce
st

at
is

tic
s

(b) (c)

Figure 4.7: Hurricane Isabel. In regions of low correlationbetween the fields (-100 pascals,
20 pascals) (a) the variation density function and (b) isosurface statistics behave similarly. The
two values are nearly equal at isovalue 7 pascals. (c) Isobarof the hurricane at 7 pascals.

4.4.3 Hurricane Isabel

Hurricane Isabel was a strong hurricane that struck the westAtlantic region in September

2003. We consider a simulation of this event [33]4. The domain is a 3D rectilinear grid of

size 500×500×100 corresponding to a physical scale of 2139km×2004km×19.8km. Eight

scalar fields are defined over this domain. This data is definedfor 48 time steps corresponding

to an actual time of 48 hours. For experimental purposes, we look at only pressure (Pf) and

temperature (TCf).

We study the isosurfaces of pressure at the first time step with A= {Pf,TCf}. During the

initial phase of the hurricane, the eye of the storm was located in the ocean. The swirling

motion around the eye corresponded to a low pressure region (-100 pascals, 20 pascals). Tem-

perature and pressure have low correlation in this region [4]. The variation density profile

shows an exponential increase for the isobars corresponding to low pressure (Figure 4.7a).

A natural question to ask is “Under what conditions do the isosurface statistics and the

variation density function produce similar results?”. In areas of low correlation, we observe

3We thank Jackie Chen and Ajith Mascarenhas for their help with interpreting the results of our experiments
on the combustion data.

4Hurricane Isabel data was produced by the Weather Research and Forecast (WRF) model, courtesy of NCAR
and the U.S. National Science Foundation (NSF)
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that the isosurface statistics plot (see Figure 4.7b) behaves similarly. Both exhibit an expo-

nential increase in the region of low pressure. In fact, at approximately 7 pascals pressure, we

observe that the two plots have nearly equal values. These experimental observations lead us

to believe that when the input fields have a low correlation, the variation density function has

no added advantage over isosurface statistics.

4.4.4 Universe Simulation

In the fourth experiment, we consider the simulation of ionization front instability in the uni-

verse [34]5. The input domain is a 600×248×248 rectilinear grid which is equivalent to a

physical volume of 0.6parsec× 0.25parsec× 0.25parsec. The simulation is done over 200

time steps corresponding to 25.37 thousand years. The data has ten different simulated scalar

fields: particle density, temperature (TCf), and eight chemical species including gaseous hy-

drogen (H2), ionized hydrogen(H+) and ionized helium(He+).

The ultraviolet radiations from stars ionize hydrogen and oxygen present in space. This

ionization process slows down the photons, which now proceed at a much slower pace behind

a radiation wall known as the ionization front. This front separates the hot gases (> 20000K ),

which are in an ionized state, from the ambient space at 72 K.

We study the impact of each of the chemical species on the importance of isotherms. We

first study the effect of H+. Since hydrogen is in the ionized state, we expect to find the relevant

isotherms at high temperatures. This is indeed the case (seeFigure 4.8b). The profile peaks

in the temperature range 14000-16000K, which is the temperature range in which hydrogen

is ionized. We get similar results for ionized helium (A = {TCf,He+}) (Figure 4.8c). The

temperatures relevant for gaseous hydrogen (H2) (Figure 4.8d) were found to be 2000-15000K,

after which the plot goes to zero. This is in accord with the known fact that hydrogen is

typically in the ambient state (>72K) or shocked state (>2000K). Above 15000K, hydrogen is

5Universe simulation data was produced by Daniel Whalen at LosAlamos National Labs and Michael L.
Norman at San Diego Supercomputer Center.
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Figure 4.8: Universe Simulation. (a) Isotherm statistics.(b) The profile ofψ plotted with
A= {TCf,H+}. Most of the area under the curve is centered around the ionization temperature
of hydrogen. Similar results are seen in (c) whenA= {TCf,He+}. (d) The profile ofψ with
A = {TCf,H2}. Hydrogen in the temperature range 72-14000K is in either cool or shocked
states. (e) Isotherm of universe at 3000K which lies in the range where hydrogen is in shocked
state. (f) Isotherm of universe at 14500K which lies in the range where hydrogen and helium
are ionized. (g) Isotherm of universe at 19500K which lies inthe range where hydrogen is
already ionized and there is no other significant event.
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primarily in the ionized state. Isotherms in Figures 4.8(e-f) correspond to isovalues identified

from the variation density profile. These isovalues belong to ranges where hydrogen is in a

shocked state (Figure 4.8e), hydrogen and helium are ionized (Figure 4.8f), and where there

is no specific interaction between temperature and the different elements (Figure 4.8g). The

geometry of the isotherm has no particular interpretation to the best of our knowledge.

4.5 Discussion

The derivation of isosurface statistics by Scheidegger et al. [24] may also be extended to de-

velop a relation-aware statistic. In the case of three dimensional domains, isosurface statistics

considers the volume enclosed by the isosurfacesf−1(r) and f−1(r + δ r) asδ r approaches

zero. Normalizing this volume by the volume of the manifold,we get a probability density

function that measures the probability that the scalar fieldassumes values betweenr andr+δ r

asδ r approaches zero. Clearly, the profile of this probability density function is the same as

the isosurface statistic. However, the notion of a probability density function can be extended

to two fields.

When two fields are available, we may consider the joint probability density (JPD). Ra-

jwade et al. [35] use theJPD for two scalar fields in the context of computing mutual informa-

tion and solving the image registration problem. The scalarfields are essentially grayscales of

the two images that are to be registered. They show that theJPDequals

p(α1,α2) =
∫

{x| f (x)=α1}∩{x|g(x)=α2}

dx
‖∇ f (x)×∇g(x)‖ ,

wheref andg are the scalar fields, andα1 andα2 are isovalues off andg respectively. TheJPD

is essentially the continuous scatterplot recently introduced by Bachthaler and Weiskopf [36].

Note that this integrand is equal to the inverse of the local comparison measureκx, which

suggests a direct extension to multiple fields.

We also observe that the isosurface area statistic [7] and the corrected statistic [24] can be
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derived as special cases of the variation density function.If the setA contains a single element

f , the scalar field under consideration, then the local comparison measureκx({ f}) = ‖∇ f (x)‖.

This implies that the variation density function

ψ( f ,{ f}, r) =
∫

x∈ f−1(r)

dSx,

which is exactly the isosurface area statistic derived by Carr et al. Now, consider the case when

κx is a constant function, which essentially means that we haveno additional information on

the relationship between the scalar fields. In this case, thevariation density function reduces

to the corrected isosurface statistic.

The derivation in Section 2.3 indicates that the variation density function is not likely

to be susceptible to noise, especially when the dimension ofthe domain is less than three.

The derivation, however, extensively utilizes the property that regions in an isocontour can be

broken into monotone paths of the restricted functiong∗ resulting in a closed form expression

for the integrals. It is unclear if such an approach can be extended to higher dimensional

domains.

4.6 Conclusions and Future work

We have introduced a variation density functionψ to profile isosurfaces based on relationships

between different scalar fields in multi-field data. We also described an algorithm to compute

the profile. The fact thatψ captures significant information that is typically not captured by

isosurface statistics is evident from our experiments withseveral data sets from diverse real-

world applications. We also conjecture that for fields with low correlation,ψ may be no better

than isosurface statistics.

We list the following problems as future work:

• Characterizing the link between persistence and variation density in higher dimensions.
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• Extension of our results to arbitrary number of scalar fields. Currently, the number of

fields that can be compared (i.e. the size of the setA) is bounded by the dimension of

the domain. This is primarily because the comparison measure considers the alignment

of gradients of the fields to determine relationships. If thenumber of fields is greater

than the dimension of the domain, the gradients become linearly dependent and hence

the comparison measure is zero everywhere. One solution is to consider only a subset of

fields at a time and then collect the different statistics together in a well defined way. In

Chapter 5, we describe a new multifield comparison measure that allows the number of

fields to be compared to exceed the dimension of the domain.

• Extending the definition of the variation density function to vector fields will be a chal-

lenging task because the comparison measure cannot trivially be extended to compare

vector fields. We define a new multifield comparison measure that can be extended to

multiple vector fields in Chapter 5.

• It would be interesting to see if single scalar fields can be studied more effectively using

our approach. This would involve identifying suitable derived fields that can be used to

profile the input scalar field.



Chapter 5

Multifield Comparison Measure

In Chapters 3 and 4, we noticed that the local/global comparison measure could compare scalar

fields only if the number of fields did not exceed the dimensionof the domain. In this chapter,

we define a new gradient-based multifield comparison measurethat can compare an arbitrary

number of scalar fields.

5.1 Introduction

Data from present day simulations and observations of physical processes often consists of

multiple scalar and vector fields. Studying the interactions between the fields is pivotal to

understanding the underlying phenomenon.

Single scalar fields are typically studied using techniqueslike isosurfacing, direct volume

rendering and contour trees [22, 25, 27, 37, 38]. When visualizing multiple scalar fields, the

above methods can be used separately on each field and visualized side by side or as overlays.

The relationships and interactions that exist between the fields are often not captured by such

methods. Simultaneous visualization of all the fields facilitates the understanding of interac-

tions and relationships between them. This can be accomplished by employing a comparative

approach to capture the relationships between variables.

57
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5.1.1 Proposed Approach

We present a new gradient-based comparison measure for scalar fields that is applicable on an

arbitrary number of scalar fields defined on a manifold. The measure captures the extent of

alignment of the gradient vectors at a point. The distribution of the measure over the domain

provides key insights into the interaction between input fields. The measure satisfies various

desirable mathematical properties, can be computed efficiently, and is practically useful for

studying relationships between multiple scalar fields. We apply this measure for analyzing

a hurricane simulation data set and a global climate simulation data set. The analysis helps

explain various known meteorological and climatic phenomena. We also demonstrate the ef-

fective use of an aggregated version of the measure to the study of a combustion simulation

data set.

The main contributions of this chapter are :

• A new multifield comparison measure to capture interactionsbetween multiple scalar

fields defined on ann-dimensional domain,

• Theoretical results that establish the robustness of the measure by showing its insensi-

tivity to noise in the scalar fields,

• An algorithm to compute the measure efficiently, and

• Real world applications to demonstrate the effectiveness ofthe measure in studying in-

teractions between scalar fields in physical phenomena and an extension to vector fields.

5.1.2 Related Work

A popular approach to visualizing multiple fields is to combine them into a single value and

then render the combined volume [39, 40]. Woodring et al. [41] propose that the data fields

should be rendered together within the same space for user comparison. They use set operators

to combine the different fields into a single field that extracts the interesting portions of the
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data. These set operators can either combine the color values of the input fields or directly

apply the operation in data space. Though combining volumesshows important parts of the

data, the interactions between the different variables that are of importance to the domain

scientists are not captured. For multifield time varying data, Lee et al. [42] propose a linear

time algorithm to extract trend relationships among variables based on studying the change

of variables over time and how these changes are related among different variables. Features

in multifield data have been extracted using techniques likescatter plots [36] and variation

density plots (see Chapter 4).

Multifield data have also been studied using statistical methods. One important work in

this area uses the local statistical complexity [43] to identify features which may exhibit the

same behavior in the future. Features are identified as complex if the probability that they

occur again is low. In a later work, Jänicke et al. [44] improve the accuracy and efficiency of

computing the local statistical complexity.

The relationship between the different scalar fields is popularly captured with the help

of correlation measures. Sauber et al. [4] use two differenttechniques to compare different

scalar fields at a point. One of them uses the alignment of gradients of the fields and also

their magnitudes as a criterion to measure similarity. When the number of fields exceed two,

pairwise similarity is computed and the least value is considered. This would detect regions

where two of the fields are highly correlated. An obvious limitation of this approach is that two

fields with low correlation would result in the other fields ofthe data to be ignored. In the same

paper, the authors also describe a local correlation coefficient to detect linear dependencies

between the scalar fields. The advantage of this method is itsinsensitivity to scaling of the

data fields. It also has the same limitation as the first approach. Gosink et al. [2] also use

correlation fields to study the interactions between the different variables in multi-field data.

The inner product of the gradients of two fields of interest iscomputed over principle level

sets of a third field. They use this approach to study combustion in methane and hydrogen. A

limitation with using the inner product of the gradients is that only two fields can be compared.
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Edelsbrunner et al. [3] also employ a gradient-based approach to measure relationships

between scalar fields. In their work, they introduce a measure to compare multiple scalar fields

both locally at a point as well as over a region of the domain. In the case of three dimensional

Euclidean space and two fields, they show that the measure at apoint reduces to the length of

cross product of the gradients of the fields. This measure, though useful, has a limitation that

the number of scalar fields that can be compared cannot exceedthe dimension of the domain.

In this chapter, we also explore a gradient-based approach to compare scalar fields locally

at a point. However, our method is not limited by the number offields that can be compared

unlike previous approaches. Our method also extends to time-varying scalar fields and to

vector fields. Further, the measure is provably robust to noise in the input fields.

5.1.3 Outline

The rest of the chapter is organized as follows. In Section 5.2, we define the multifield com-

parison measure and prove its robustness and other properties. We motivate the use of the

measure and explain its working in Section 5.3. Computation of the measure is described in

Section 5.4. We describe several applications of the measure in Section 5.5. In Section 5.6, we

discuss the limitations of the multifield comparison measure and its insensitivity to noise in a

real world data. We conclude the chapter in Section 5.7.

5.2 Multifield Comparison Measure

In this section, we introduce a gradient-based comparison measure for multiple scalar func-

tions. The measure is defined as the norm of a matrix comprising the gradient vectors of the

different functions. We first define the matrix norm before defining the measure and listing

and proving its properties.
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5.2.1 Matrix Norm

Let A be am×n matrix of real numbers. Thenormof the matrixA, denoted as‖A‖, is defined

as

‖A‖= max
‖x‖=1, x∈Rn

‖Ax‖,

where‖x‖ represents the Euclidean norm of vectorx [45]. We list four properties of the matrix

norm that we will use later to prove key properties of the comparison measure. In particular,

if A andB are matrices of real numbers, then

1. ‖A‖> 0 if A 6= 0 and‖A‖= 0 iff A= 0.

2. Forα ∈ R, ‖αA‖= |α|‖A‖.

3. ‖A+B‖ ≤ ‖A‖+‖B‖ and‖A−B‖ ≥ |‖A‖−‖B‖|

4. ‖AB‖ ≤ ‖A‖‖B‖.

5.2.2 Comparison Measure

Let M be a compact Riemannian manifold of dimensionn. Let (x1,x2, . . . ,xn) be a local

coordinate system such that the unit tangent vectors form anorthonormal basis with respect

to the Riemannian metric. LetF = { f1, f2, f3, . . . , fm} be a set of smooth functions defined on

the manifold. The derivative at a pointp∈M is written as a matrix of partial derivatives,

dF(p) =











∂ f1
∂x1

(p) . . .
∂ f1
∂xn

(p)
...

. ..
...

∂ fm
∂x1

(p) . . .
∂ fm
∂xn

(p)











We define themultifield comparison measureηF
p at pointp as the norm of the matrixdF(p),

ηF
p = ‖dF(p)‖. The measureηF

p satisfies three important properties: symmetry, coordinate

system independence and stability. We now state and prove these properties.
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Figure 5.1: Piecewise-linear function defined on a trianglein a 2D mesh.

Symmetry

The measure is independent of the permutation of the functions in F . The proof follows di-

rectly from the definition.

Coordinate system independence

Let (x′1,x
′
2, . . . ,x

′
n) denote a second orthonormal local coordinate system. LetJ denote the

Jacobian matrix that transforms the second coordinate system to the first. SinceJ represents

a transformation between orthonormal coordinate systems,|Jv|= |v| for v∈ Rn. This implies

that ‖J‖ = 1. We first observe that ifdF′(p) is the derivative atp for the new coordinate

system, then,

dF′(p) = dF(p)J.

This implies that‖dF′(p)‖= ‖dF(p)J‖ ≤ ‖dF(p)‖‖J‖ by applying Property 4 of the matrix

norm. Since‖J‖= 1, we have‖dF′(p)‖ ≤ ‖dF(p)‖. Similarly, we can prove that‖dF(p)‖ ≤

‖dF′(p)‖ by considering the Jacobian that transforms the first coordinate system to the second.

This implies that the matrix norms are equal independent of the coordinate system.

Stability

We prove robustness of the measure when the scalar functionsin the setF are piecewise-linear

functions defined on a triangle mesh. We first observe that thederivative in the interior of a
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triangle is well defined and is a constant. To simplify the description, we prove stability for a

2D triangle mesh representing a surface. Extension to higher dimensions is straightforward.

Consider a triangle in the mesh with coordinates as shown in Figure 5.1. The function

value at any interior pointp(x,y) is given by

f p
i = (A1 f 1

i +A2 f 2
i +A3 f 3

i )x+(B1 f 1
i +B2 f 2

i +B3 f 3
i )y,

where the constants(A1,A2,A3,B1,B2,B3) depend only ona,b, andc. Consider a perturbation

F = { f1, . . . , fm} of the functions in the setF , where fi = fi + εi andεi assumes small values.

The partial derivatives satisfy the following relationship:

∂ fi
∂x
− ∂ fi

∂x
= (A1ε1

i +A2ε2
i +A3ε3

i )

and
∂ fi
∂y
− ∂ fi

∂y
= (B1ε1

i +B2ε2
i +B3ε3

i ).

Therefore, the difference between the derivative matricesis

dF(p)−dF(p)

=











A1ε1
1 +A2ε2

1 +A3ε3
1 B1ε1

1 +B2ε2
1 +B3ε3

1
...

...

A1ε1
m+A2ε2

m+A3ε3
m B1ε1

m+B2ε2
m+B3ε3

m
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...

ε1
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.

Using Property 3 of the matrix norm,

|ηF
p −ηF

p | ≤ ‖dF(p)−dF(p)‖.
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Let ε = sup
1≤i≤m,p∈M

|εi(p)|. Using Property 4 of the matrix norm to rewrite‖dF(p)−dF(p)‖,

we get

|ηF
p −ηF

p | ≤ ‖dF(p)−dF(p)‖
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When the data is available over a structured grid and linearlyinterpolated along each co-

ordinate axis, the difference between neighboring points in each axis direction can be used to

approximate the partial derivatives at sample points and hence computeηF . We show that the

multifield comparison measure is stable when we use such an approximation. For simplicity,

we assume that the domain is a 2-dimensional grid with each cell of size 1×1 units. Therefore,

at grid pointp= (x,y),

ηF
p =
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It is easy to see that
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.

Equations 5.1 and 5.2 indicate that a finite change in the functions results in a bounded

change in the multifield comparison measure. In the case of piecewise linear functions, the

amount of change additionally depends on the size of the triangle.

The rows in the matrixdF(p) represent the gradient vectors of the function. It is there-

fore easy to see (using property 3 from section 5.2.1) that a bounded change in the gradients

will also result in a bounded change in the comparison measure. The multifield comparison

measure is therefore robust with respect to perturbations in the scalar functions as well as their

gradients. For smooth functions, the latter property stillholds.

5.3 Analyzing Synthetic Functions

We describe the motivation for the definition of the multifield comparison measure by consid-

ering the case of one and two analytic functions. Next, we show how the comparison measure

naturally extends to a larger number of scalar functions. Wealso show that the comparison

measure can be used to capture the variation in gradient vectors over time for time varying

scalar fields and to capture variation in time-varying vector fields.
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Figure 5.2: Multifield comparison measureηF computed for synthetic functions defined on a
2D grid with the center as origin. (a) Two functionsf1(x,y)=

√

(x−0.25)2+y2 and f2(x,y)=
√

(x+0.25)2+y2. The measureηF attains high values on the Jacobi set and low values where
the gradients are orthogonal. (b) The sinusoidal functionf1(x,y) = sin(3(x+y)) and the linear
function f2(x,y) = y. (c) Three functionsf1(x,y) =

√

x2+y2, f2(x,y) =
1
2(
√

3x+ y), and
f3(x,y) =

1
2(−
√

3x+ y). (d) One hundred different scalar functions, whose gradientvectors
have unit magnitude and directions are chosen uniformly at random at points on the two axes
and are chosen to be some constant at remaining points on the plane.

=

=

Figure 5.3: Two pairs of equivalent configurations of gradients of three functions described in
Figure 5.2c. Gradient vectors subtend an angle of 120◦ at points along theY-axis (top) and are
more closely aligned with each other at points along theX-axis.
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5.3.1 One / two scalar functions

In the special case of a single scalar function, the comparison measure at a pointp is equal

to the maximum rate of change of the function, which is essentially the length of the gradient

vector atp. The gradient vector and its length have been used to study the behavior of a

function with respect to the domain [30]. The proposed measure ηF is a natural extension of

the notion of gradients and their relationship to multiple functions.

In the case of two smooth scalar functions, the gradients along with their mutual align-

ment is an indicator of the relationship between them [2, 3, 4]. Given two non-zero gradi-

ents, the multifield comparison measureηF assumes the highest value when the gradients

are parallel or anti-parallel. This set of points where the gradients align is called the Jacobi

set [5]. The Jacobi set has been previously used to study the relationship between scalar func-

tions [3]. The comparison measure assumes a minimum when thegradients are orthogonal.

Orthogonality of the gradients indicates mutual independence of the functions. Figure 5.2a

shows the computed comparison measure for two paraboloids,f1(x,y) =
√

(x−0.25)2+y2

and f2(x,y) =
√

(x+0.25)2+y2 defined on a 2D grid. The Jacobi set is the liney= 0 shown

in dark red. The dark blue circle joining the centers of the paraboloids is the set of points

where the gradients are orthogonal. Figure 5.2b depicts another example, a sinusoidal function

f1(x,y) = sin(3(x+ y)) and a linear functionf2(x,y) = y. The comparison measure assumes

high values at the Jacobi set (shown in bright red) and the setof points with orthogonal align-

ment of gradients has low values (shown in blue). We note thatwhen the gradient of a function

is replaced with its negative, the measure remains the same.Two different configurations of

the gradients yield the same comparison measure if it is possible to make a transition from one

to another by replacing gradients with their negatives.

5.3.2 Multiple / time-varying scalar functions

Consider three functionsf1(x,y) =
√

x2+y2, f2(x,y) =
1
2(
√

3x+y), and f3(x,y) =
1
2(−
√

3x+

y). The multifield comparison measure (see Figure 5.2c) is minimum along theY-axis. The
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gradient vectors at points on theY-axis subtend an angle of 120◦ with each other, whereas they

are more aligned at points on theX-axis, see Figure 5.3. Figure 5.2d shows the comparison

measure computed for hundred different scalar functions defined on a grid. All gradients have

unit magnitude and the direction of the gradients for pointson theX andY axis are chosen

uniformly at random. The gradients of all scalar functions are chosen to be equal at other

points on the plane. We observe that the values of the comparison measure on the two axes are

low compared to the values elsewhere on the grid. This indicates that given a set of gradient

vectors with fixed magnitudes, the measure takes high valueswhere the directions are more

“coherent”.

Given a single time varying scalar field, we construct the setF of multiple scalar functions

with one function corresponding to each time step. The multifield comparison measure in this

case measures the variation of the scalar function over time. We extend the measure to compare

multiple vector fields or analyze the variation in time-varying vector fields by replacing each

row in the derivative matrixdF(p) with the input vector at the pointp.

5.4 Computation

Evaluating the multifield comparison measure at a point requires the solution to a maximiza-

tion problem. In this section, we describe how this computation can be reduced to the faster

evaluation of the maximum eigenvalue of a positive semi-definite matrix.

5.4.1 Maximum eigenvalue computation

From the definitions of the multifield comparison measure andthe norm of a matrix, we have

ηF
p =

(

max
x∈Rn,‖x‖=1

xT(dF(p))T(dF(p))x

)
1
2

.
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We rewrite the matrix product(dF(p))T(dF(p)) asUTΛU , whereU is an orthogonal matrix

andΛ is a diagonal matrix consisting of the eigenvalues of(dF(p))T(dF(p)) as entries in its

diagonal. This follows from the spectral theorem from linear algebra [46]:

ηF
p =

(

max
x∈Rn,‖x‖=1

xTUTΛUx

)
1
2

.

Since the orthogonal matrixU represents a length preserving and invertible transformation, we

can write the above expression as

ηF
p =

(

max
x∈Rn,‖x‖=1

xTΛx

)
1
2

= max{
√

λ : λ is a diagonal element ofΛ}

= max{
√

λ : λ is an eigenvalue of(dF(p))T(dF(p))}.

For piecewise linear functions defined on a triangle mesh, the derivative matrixdF(p) is con-

stant within a triangle and can be computed by choosing a local coordinate system.

5.4.2 Analysis

The size of then×n matrix (dF(p))T(dF(p)) depends only on the dimension of the domain.

Therefore, the time taken for computing the eigen values of the product matrix also depends

only on the dimension of the domain and is, in particular, independent of the number of fields

m.

5.5 Applications

We use the multifield comparison measure to study various real-world data from weather mod-

eling, climate simulations, and combustion simulations. Observations on the combustion data

were compared with prior work described in the literature. First, we study a simulation of the
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Figure 5.4: (a) The hurricane track released by the US National Hurricane Center (source:
http://www.nhc.noaa.gov). The track relevant to the period of simulation is between point 17
and point 19 when the hurricane struck the coast. (b) Multifield comparison measure com-
puted for nine pressure fields. The region in red with high values of the comparison measure
corresponds to the trace of the eye of the hurricane. Land is shown in green.

hurricane Isabel. Next, we apply our multifield comparison measure on a global wind pat-

tern data set. Finally, we study a combustion simulation data set by aggregating the multifield

comparison measure over the domain at each time step. The data in the following applications

varies in the dimensionality of the domain and the number of fields – two scalar fields defined

on a 3D domain, multiple time-varying scalar fields defined on2D and 3D domains, and time-

varying vector fields. In all cases the analysis is based on the proposed multifield comparison

measureηF . We perform experiments on data sets obtained using a variety of climate models.

In Section 5.5.2, we describe results from four different climate models, which demonstrate

the applicability of the proposed method.

5.5.1 Isabel Hurricane

Hurricane Isabel struck the west Atlantic region in September 2003. A simulation of the phe-

nomenon was performed on a 600× 600× 100 grid corresponding to a physical volume of

2139km×2004km×19.8 km over 48 time steps corresponding to 48 simulated hours [33] 1.

1Hurricane Isabel data was produced by the Weather Research and Forecast (WRF) model, courtesy of NCAR
and the U.S. National Science Foundation (NSF).
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Figure 5.5: Fronts in Hurricane Isabel at hour 10. (a) Region of simulation. Land mass is
shown in red. (b) Volume rendering (top view) of horizontal wind speed Uf. (c) Volume ren-
dering (top view) of horizontal wind speed Vf. (d) Volume rendering (top view) of multifield
comparison measureηF computed for Uf and Vf showing the rainbands at different fronts.
The location of the fronts is not available from the individual scalar fields Uf and Vf.
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Figure 5.6: Fronts in Hurricane Isabel at hour 40. (a) Volumerendering (top view) of horizontal
wind speed Uf. (b) Volume rendering (top view) of horizontalwind speed Vf. (c) Volume
rendering (top view) of multifield comparison measureηF computed for Uf and Vf showing
the rainbands at different fronts. The cold front leads the warm front resulting in an occlusion.
(d) Volume rendering from a different viewpoint .
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Several quantities were computed by the simulation. The scalar fields relevant to our experi-

ment are pressure (Pf) and the horizontal wind velocity components (Uf and Vf).

Hurricane track

The horizontal pressure gradient can be observed to be high near the eye of the hurricane

throughout the simulation. We study the pressure field at every fifth time step defined on

a 2D slice corresponding to altitude 1500m. Figure 5.4b shows the multifield comparison

measure computed for the nine pressure fields. The red circular regions that correspond to

high values of the comparison measure correspond to the hurricane track. Figure 5.4a shows

the track provided by the US National Hurricane Center for reference. The results are similar

when we compute the multifield comparison measure for all 48 pressure fields. One of the

horizontal pressure gradients assumes a high value at the eye compared to the rest and hence

the comparison measure is higher compared to regions far from the path of the eye.

Rainbands and front

Cloud structures associated with an area of rainfall, calledrainbands, occur mainly at bound-

aries separating two masses of air of different densities and temperatures, called fronts. The

leading edge of the cooler mass of air is called the cold frontand the leading edge of a warm

air mass is called the warm front. The turbulence of the horizontal wind velocity is high near

rain bands. We study the fronts by computing the multifield comparison measure for the pair

of 3D scalar fields Uf and Vf, where the 3D domain corresponds to the volume in the altitude

range 1500m-5800m.

First, we compute the multifield comparison measure for the fields Uf and Vf in the 10th

time step. Figure 5.5 shows the result of our experiment as volume rendered images with the

view point located above the volume. In particular, Figure 5.5d shows the location of two

warm fronts and a cold front. This information about fronts cannot be extracted from the

two functions individually (see Figures 5.5b and 5.5c). Thecomparison measure successfully
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captures the relationship between the fields at the fronts. The warm front leads the cold front in

the 10th time step. The precipitation structures indicated by lightred spots on the rain bands on

the land mass were responsible for heavy rainfall in Florida. Next, we compute the multifield

comparison measure for the fields Uf and Vf in the 40th hour of simulation. We observe that

the warm front at the north has disappeared, see Figures 5.6cand 5.6d . The previously leading

warm front is overtaken by the cold front resulting in an occlusion.

Value of Study

Both structures discussed above are key to a comprehensive study of the hurricane. The track

of a hurricane or a cyclone generated from a forecast is helpful in predicting the areas sus-

ceptible to severe weather. Fronts often give valuable information about severe weather to

the forecaster. Rainbands at cold fronts are often strong in nature and can be responsible for

heavy thunder storms. Typically, occlusion fronts are associated with thunder storms and their

passage results in the reduction of humidity.

5.5.2 Global Wind Patterns

Prevailing winds are winds that blow in a dominant directionat a particular point. Movements

in the Earth’s atmosphere affect these winds. In regions of mid-latitudes, the winds blow

from west to the east and are known as westerlies. The winds found in the tropics near the

equator are easterlies or trade winds. Figure 5.7a shows thedifferent prevailing winds on

earth. We study wind patterns on earth using a climate simulation of 50 years between 1960

and 2009 [47]2. The data is available for 600 time steps corresponding to each month over

the period of simulation. Each time step is a 3D grid with resolution corresponding to 1◦×

2The climate data was part of the WCRP CMIP3 Multi-Model data repository at https://esgcet.llnl.gov:8443.
We acknowledge the modeling groups for making their model output available for analysis, the Program for
Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving this data, and the WCRP’s
Working Group on Coupled Modelling (WGCM) for organizing themodel data analysis activity. The WCRP
CMIP3 multi-model dataset is supported by the Office of Science, U.S. Department of Energy.
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Figure 5.7: Multifield comparison measureηF computed for wind velocities over the years
1960-2009, where the comparison is over a set of six hundred 3D vector fields. (a) Map of
world showing wind patterns (source: Wikipedia) (b) Distribution of ηF over surface corre-
sponding to pressure elevation 925 hPa. The dark red regionscorrespond to the wind patterns.
(c) Distribution ofηF over surface corresponding to pressure elevation 300 hPa. The temper-
ate regions exhibit higher values. (d) Storm track for the years 1985-2005 (source: Wikipedia)
(e) Distribution ofηF after removing regions with low mean temperature (< 27◦C). Red re-
gions correspond to the storm tracks. The world map is overlaid for clarity.
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1◦×16plev(pressure elevations) on earth. Pressure elevations correspond to pressures varying

from 1000 hPa on the surface to 30 hPa in the upper atmosphere.

Westerlies and trade wind

The wind velocity at a point on the grid is a vector quantity. We use the monthly wind velocities

as rows in the derivative matrix and compute the matrix norm for 600 vector fields. The norm

ηF measures the variation of the wind velocities over a time period of 50 years. Figure 5.7b

shows the distribution of the computed comparison measure over a surface corresponding to

pressure elevation 925 hPa. Comparing with wind patterns in Figure 5.7a, we see that the

measure assumes high values in regions that lie in the path ofprevailing winds, particularly

the westerlies found in the regions surrounding Antarctica, the region of hurricanes in Atlantic,

the cyclone prone region between Madagascar and Australia,and the trade winds across the

Atlantic sea traveling towards the Caribbean sea. The distribution of the comparison measure

over the isobar for pressure level 300 hPa, which corresponds to approximately 30000 feet

above sea level, is shown in Figure 5.7c. The values of the comparison measure are higher

compared to Figure 5.7b because friction and other effects can cause the wind flow at 925 hPa

to be less steady than at higher levels such as 300 hPa. We notethat the comparison measure

assumes high values over the temperate regions corresponding to the westerly jet. This is a

semi-permanent feature of the mid-latitudes. Many regionsin the tropics undergo a seasonal

reversal of wind (called the monsoons). Lower values of the comparison measure over the

tropics indicates unsteadiness and corresponds to a seasonal reversal in wind pattern over this

part of the world.

Storm track

The regions over the ocean with warm temperatures (> 27◦C) are susceptible to storms. We

filter out regions with lower temperatures and restrict our analysis to the months from June

to November with the aim of locating storm tracks. Regions shown in blue in Figure 5.7e
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have been filtered out. The red regions match closely with thestorm tracks shown in Figure

5.7d. We notice that even though the west coast of South America has trade winds, storms

are particularly absent due to lower temperatures. The storm prevalent regions in the Indian,

Atlantic, and Pacific oceans have high values of the comparison measure. To ensure the validity

of our results, we compute wind patterns for other models: cccma-cgcm3 [48, 49] and bccr-

bcm2.0 [50]. (see Figure 5.9)

We next study the changes in storm tracks over two centuries.For each century, the storm

track is computed over a period of 25 years (see Figure 5.8). The distribution of the differ-

ence between both images indicate that there could bechanges in storm patterns with possibly

stronger winds over the Indian Ocean, near Phillipines, theCentral Pacific and off the coast of

Indonesia/Australia. The conditions could be less stormy off the American coasts (both east

and west), northern and southern Pacific and off the Chinese coast. This however does not

preclude individual storms being of higher strength as suggested by Webster et al. [51]. Also,

these results could be dependent upon the ECHAM5 coupled ocean-atmosphere model used.

We note that the signals are stronger in the figure on the right.

Value of Study

Wind patterns give the details of the wind over a particular place. They cause various local

and global phenomena and are widely studied by climate scientists. For example, the trade

winds are responsible for tropical cyclones over oceans. Storm tracks generated using winds

give us information on regions where storms are more probable. Computing storm tracks for

long periods would require ascertaining tracks of every individual hurricane and cyclone and

plotting them. Our approach simplifies this computation by considering all 600 time steps

together to generate the distribution of the comparison measure.
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Figure 5.8: Changes in storm tracks studied by computing the difference in multifield compar-
ison measure computed for two periods of 25 years. (a)ηF for the years 1985-2010 subtracted
from ηF for the years 1885-1909. (b)ηF for the years 2075-2099 subtracted fromηF for the
years 1885-1909.

5.5.3 Hydrogen Combustion

We study phases in the combustion of an inhomogeneous turbulent mixture of fuel and oxi-

dizer. Hydrogen fuel at 300K is mixed with an oxidizer (21% oxygen) at 1200K. The influ-

ence of turbulence on the different phases of combustion is studied in the simulation3. The

compressed fuel ignites at multiple spots because of the inhomogeneity in the air-fuel ratio.

Depending on the air-fuel ratio, the flame either propagatesin an outward direction from the

ignition spot or burns out. Further details of the computation can be found in the description

of the simulation by Echekki and Chen [19] and in the description of a visual analysis of this

data by Koegler [32]. The domain of the simulation is a 600×600 grid for 67 time steps. The

species mass fractions of the fuel H2, oxygen O2, and intermediate HO2 are given at each grid

point for all time steps. The reactions between these different radicals determine the phases of

combustion. We study these phases with the multifield comparison measure.

Phases of combustion

We aggregate the multifield comparison measure for a time step t by computing its integral

over the domainD of simulation:

ηF, t =
∫

x∈D

ηF
x dx.

3We would like to thank Valerio Pascucci and Jackie Chen for providing the combustion data
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Figure 5.9: Study of wind patterns and storm tracks using data from different climate models.
Global wind pattern captured by the multifield comparison measure: (a) model bccr-bcm2.0
and (b) model cccma-cgcm3. Storm track for the years 1976-2000 highlighted by the multifield
comparison measure: (c) model bccr-bcm2.0 and (d) model:cccma-cgcm3.

In our study, we consider all three scalar fields for computing the comparison measure for a

time step, i.e.F = {H2,O2,HO2}. The plot ofηF, t over time is shown in Figure 5.10. We

compare our results with a plot of the global comparison measureκ, introduced by Edelsbrun-

ner et al. [3], see Figure 5.10. The fields used for computingκ are H2 and O2. The maximum

number of fields thatκ can compare over a 2D domain is two, whereas we are able to consider

all three fields in our analysis.

Following the work of Koegler, the areas in the domain that eventually ignite can be con-

sidered as features. In the pre-ignition phase, the concentrations of the intermediate radicals

build up in regions that have sufficient mass fraction of H2. The number of features attains

a maximum during time steps 7-14 [32]. This is captured by a knee in the plot ofηF, t . The

plot of κ does not indicate changes that happen in the pre-ignition build up of radicals because

the intermediate HO2 is not considered in the computation. Ignition (time step 28) happens at

areas with high radical concentrations during the ignitionphase and the flame front spreads to

hot enough areas with the right mix of fuel and oxidizer during the burning phase (time steps
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Figure 5.10: Analyzing phases of combustion using an aggregateηF, t of the multifield com-
parison measure over the domain within a time stept. The setF = {H2,O2,HO2}. The plot
of ηF, t (blue) over time captures more phases of the combustion process compared to the plot
of the global comparison measureκ(H2,O2) (red) proposed by Edelsbrunner et al. [3]. The
vertical dashed lines approximately correspond to the fourphases of combustion: pre-ignition,
ignition, burning, and extinction.

50-55). Ignition and burning are captured by a minimum and a maximum respectively in the

plot of ηF, t . These phases are also captured byκ because of the interaction between H2 and

O2 during this time period. The beginning of the extinction phase (approximately time step

60) where the flame begins to extinguish is also captured moreclearly by a minimum in the

plot of ηF, t . We believe that the reasonηF, t is able to capture more information compared to

κ is because all three fields play a role in defining the phases.

5.6 Discussion

We now discuss some limitations of the multifield comparisonmeasure and describe an ex-

periment to study the sensitivity of the measure to noise in the input. We also discuss its

relationship with principal component analysis (PCA).
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Figure 5.11: Stability in the comparison measure for Isabel. (a) Volume rendering (top view) of
multifield comparison measureηF computed after adding Gaussian noise (standard deviation
= 1) to the fields Uf and Vf. The rain bands are still clearly visible. (b) Graph showing near
linear relationship between the standard deviation of the noise in the inputσin, and the mean
deviation of the comparison measureσηF .

5.6.1 Limitations

The basic premise behind using the comparison measure to capture relationships in multifield

real world data is the fact that the agreement among the different gradient fields can often cap-

ture interactions among fields. In many applications, wherethis does not hold good, using the

comparison measure or other gradient based comparison measures would be less fruitful. We

therefore believe that gradient based techniques such as ours complements other well known

techniques like the local statistical complexity [43] and the Pearson correlation coefficient.

Another drawback of the comparison measure is its sensitivity to scaling of individual fields.

5.6.2 Sensitivity to noise

We validate our claim that the comparison measure is insensitive to noise using the hurricane

data described in Section 5.5.1. The different features present in the data like the weather

fronts are still clearly visible in the computed comparisonmeasure field after adding a Gaus-

sian noise (standard deviation = 1) to the input fields Uf and Vf of the 10th time step in the
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simulation, see Figure 5.11a. It should be noted that the noise we have added is large and quite

unlikely to occur in real data sets. We also study the mean deviation in the comparison mea-

sure computed on input with Gaussian noise of different amplitudes. Figure 5.11b shows the

linear relationships between the observed mean deviation of ηF and the noise, which indicates

that the multifield comparison measure is not much sensitiveto noise.

5.6.3 Multifield comparison measure and PCA

In Section 5.4, we showed that the multifield comparison measure can be computed by finding

the maximum eigenvalue of the matrixdFTdF. if the components of the gradients have a

zero mean, the direction of the eigenvector corresponding to the maximum eigenvalue is the

direction in which the variance of the inner products of the gradients with the eigenvector

is maximum. The multifield comparison measure is therefore the variance of the principal

component when performing principal component analysis onthe matrixdF [52]. The matrix

dFTdF can be considered the covariance matrix.

5.7 Conclusions

We have described a robust multifield comparison measure forscalar fields whose distribution

over the domain plays an important role in the visual analysis of the input fields. The compar-

ison measure is computed locally at all points of the domain as the maximum eigenvalue of

a small sized matrix. We described applications of the comparison measure to study various

simulation datasets from climate science and combustion studies where the data is represented

using multiple 2D, 3D, or time-varying scalar fields. We usedthe comparison measure to study

up to 600 scalar fields defined on the domain. We list three ideas for future work:

• The multifield comparison measure being sensitive to the scaling of individual fields

may not be always desirable. One approach to address this issue is to scale the scalar

fields or normalize their gradients. Though this method would work in some cases, it



Chapter 5. Multifield Comparison Measure 82

could bias the results by scaling up small insignificant gradients. A complete solution

remains to be a challenge.

• Integrating the multifield comparison measure into the query-based visualization frame-

work of Gosink et al. [2] will be an interesting task.

• Identification of important isovalues of a scalar function in multifield data is a challeng-

ing problem (see Section 4.1 in Chapter 4). A global version ofthe proposed comparison

measure may help locate these isovalues.



Chapter 6

Conclusions

In this thesis, we have argued that to effectively understand and visualize multifield scientific

data, it is necessary to consider the interactions that exist between the different fields. We

have restricted our focus to scalar fields defined on manifolds. Whenever the field is given as

samples over a simplicial complex, we have used piecewise linear interpolation to reconstruct

the original field.

We have described three new techniques to understand and visualize inter-variable relation-

ships in multifield scientific data. For each technique, we have described real world applica-

tions where the technique could be used. Also, we have discussed future work and limitations

at the end of the corresponding chapter. We summarize the thesis contributions in the following

list :

• We have introduced a new technique to compute and simplify the Jacobi set of two morse

functions. Our approach allows the representation of the Jacobi set at multiple levels of

simplification.

• We have developed software to compute, simplify and view thesimplified Jacobi set.

• We have introduced a new variation density function to identify interesting isosurfaces

in multifield data.
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• We developed an efficient parallel implementation to identify interesting isovalues using

the variation density function.

• We have introduced a new multifield comparison measure that captures relationships

between an arbitrary number of scalar fields. We also have an efficient implementation

to compute the multifield comparison measure.

Throughout the thesis, we have assumed that the gradients along with their mutual align-

ment play a significant role in defining relationships between fields. Extending the proposed

techniques to data where this assumption is false is a challenging problem. We believe that our

techniques complement existing techniques for multifield visualization.
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