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Abstract —The Morse-Smale complex is a useful topological data structure for the analysis and visualization of scalar data. This paper
describes an algorithm that processes all mesh elements of the domain in parallel to compute the Morse-Smale complex of large two-
dimensional data sets at interactive speeds. We employ a reformulation of the Morse-Smale complex using Forman's Discrete Morse
Theory and achieve scalability by computing the discrete gradient using local accesses only. We also introduce a novel approach to
merge gradient paths that ensures accurate geometry of the computed complex. We demonstrate that our algorithm performs well on
both multicore environments and on massively parallel architectures such as the GPU.
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1 INTRODUCTION

The Morse-Smale (MS) complex of a real-valued function
is an abstract representation of its gradient �ow behavior.It
has been extensively studied both within the computational
geometry and the visualization communities. Research within
the computational geometry community has resulted in better
understanding of the mathematical structure of the complex
and has led to ef�cient algorithms to compute the MS complex
for piecewise linear (PL) scalar functions [6], [7]. On the
other hand, work within the scienti�c visualization community
has focused on ef�cient computation of the MS complex in
practice [4], [11], [13], [14] and effective application tothe
analysis and visualization of 2D and 3D scalar �elds [12], [17].
Data sizes grow faster than processor speeds resulting in an
ever-present demand for better algorithms to process the data.
In this paper, we describe a parallel algorithm to compute
the MS complex. Our algorithm utilizes the multiple cores
available in the CPU and GPU of a typical desktop computer
to compute the MS complex of large two-dimensional data,
consisting of several hundred million vertices, within a few
minutes.

The de�nition and computation of the MS complex for
sampled functions requires gradient / steepest path compu-
tation and path tracing, which is inherently serial in nature.
We prove two lemmas on gradient �ow paths and symbolic
perturbation that lead to an algorithm for computing the cells
of the MS complex in a few massively parallel steps.
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1.1 Related work

Topology-based methods have become very effective for con-
trolled simpli�cation of features in scalar �elds. These meth-
ods are primarily based on ideas from Morse theory [19], the
study of the relationship between critical points of smooth
functions and the topology of the domain. The Morse-Smale
complex partitions the domain into regions. Each region,
de�ned by a pair of critical points of the scalar function,
is covered by gradient �ows between the critical point pair.
MS complexes were introduced �rst to study dynamical sys-
tems [24], [25]. Edelsbrunner et al. [7] �rst posed the problem
of computing the MS complex for piecewise linear functions
de�ned on two-dimensional manifolds. The function was sam-
pled at vertices of a mesh that represented the domain and
linearly interpolated within mesh elements. They interpreted
the piecewise linear function as the limit of a series of smooth
functions and hence used ideas from Morse theory to classify
critical points, follow gradient �ows, and compute cells of
a quasi MS complex whose bounding arcs are restricted to
edges of the input mesh. The combinatorial structure of the
quasi MS complex was proved to be identical to that of the
MS complex. Henceforth, we refer to the quasi MS complex
simply as the MS complex. A similar approach was employed
to construct MS complexes of three-dimensional functions [6].
Changes in the topology of isosurfaces of the scalar function
during a sweep of the domain correspond to the features of
interest. Pairs of critical points represent the creation and
destruction of the feature during the sweep. Hence, topological
simpli�cation refers to the removal or cancellation of a pair
of critical points.

Bremer et al. [4] focused on ef�cient computation of the
MS complex, building a multi-resolution representation ofthe
scalar �eld via controlled topological simpli�cation, andappli-
cation of the MS complex to various data analysis and visual-
ization tasks including feature identi�cation, noise removal,
and view-dependent simpli�cation. These early approaches
were based on tracing the gradient paths from saddle critical
points, which produced a boundary representation of cells in
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the MS complex. Later approaches [12], [13] especially for
three-dimensional functions, were based on repeated cancel-
lations applied on an arti�cial complex created by including
dummy critical points. The cancellations were appropriately
scheduled in order to remove the dummy critical points leaving
behind the true critical points and cells of the MS complex.
The scheduling of the critical point pairs for cancellationplays
a crucial role both in determining the quality of the result and
the ef�ciency of the algorithm.

Forman developed discrete Morse theory, an analog of
Morse theory used to study cell complexes and discrete
functions de�ned on them [10]. King et al. described a method
for computing a discrete function on a mesh given a function
sampled at mesh vertices while guaranteeing that the discrete
gradient �eld agrees with the large-scale �ow behavior of the
input [16]. Reininghaus et al. [21], [22] discuss an application
of discrete Morse theory to analyze vector �elds. Bauer et
al. [1] discuss computing simpli�ed functions on surfaces such
that the input function is modi�ed by no more than a threshold
d and all surviving critical point pairs have persistence greater
than 2d. Discrete Morse theory has also been successfully used
to compute the MS complex of piecewise linear functions.
Early work based on this approach by Cazals et al. [5] and
Lewiner et al. [18] demonstrated applications to segmentation,
visualization, and mesh compression. More recently, Gyulassy
et al. [11] employed this approach for ef�cient computationof
MS complexes of large data that do not �t in main memory.
They partition the data into blocks called “parcels”, compute
gradient �ows on the boundary of the parcels, propagate the
�ows to the interior and compute the MS complex restricted
to the parcel. The critical cells created on the boundary are
canceled during a subsequent merge step resulting in the
MS complex of the union of the parcels. This method scales
well for large data. However, the geometry of the MS complex
computed using this method is sensitive to the order of
cancellations chosen during the merge step.

Robins et al. [23] proposed an algorithm to compute
the Morse complex of 2D and 3D grayscale digital images
modeled as discrete functions on cubical complexes. While
the algorithm computes the Morse complex with provable
guarantees on its correctness with respect to the critical cells,
it does not guarantee the geometric accuracy of the complex.
Further, the algorithm does not scale to large datasets.

In summary, the above mentioned methods are slow because
(a) they compute and trace the gradient serially or (b) do
not guarantee that they trace the correct geometry of the
gradient �ow. We address the former shortcoming by designing
a massively data parallel algorithm and the latter by ensuring
that we reproduce the gradient �ows independent of the choice
of partition.

1.2 Results

The main result of this paper is a parallel algorithm to compute
the MS complex of a two-dimensional scalar function. We
partition the domain into sub-domains, compute gradient �ows
within each sub-domain, and merge the gradient �ows while
merging the sub-domains. The combinatorial connectivity of

the MS complex is computed during the merge step. The
geometry of the cells of the MS complex is computed in a
subsequent traversal of a history tree that records the merges.
The correctness and ef�ciency of the algorithm is based on
two key lemmas that are valid for all dimensions:

� The Order Independent Pairing Lemma, which states that
the discrete gradient pairs that de�ne the gradient �eld
can be computed independent of the order in which the
cells are processed.

� The Order Independent Cancellation Lemma, which
states that the geometry of the gradient �ow is computed
correctly independent of the order in which the critical
point pairs on the sub-domain boundary are canceled.

We discuss novel implementation strategies to ensure that the
massive parallelism available in GPUs is fully utilized. We
also describe parallel methods to query the 2D MS complex
for feature identi�cation and visualization. We demonstrate
using synthetic and real-world data that the algorithm is able
to compute the MS complex of very large data sets that do
not �t in main memory. We also discuss an application of our
algorithm to ef�cient processing and tracking of features in
2D time-varying data.

1.3 Outline

Section 2 presents the necessary background on Morse-Smale
complexes and topological simpli�cation. Section 3 presents
an overview of our parallel algorithm and Sections 4-5 de-
scribe the algorithm in detail. Section 6 discusses imple-
mentation details and Section 7 presents experimental results.
Section 8 concludes the paper.

2 BACKGROUND

This section reviews the necessary background on Morse func-
tions and discrete Morse functions required for the algorithm
description.

2.1 Morse functions

Consider a smooth scalar functionf : Rn ! R. A point p2 Rn

is called acritical point with respect tof if the gradient of
f ,

Ñ f =
�

¶ f
¶x1

;
¶ f
¶x2

; : : : ;
¶ f
¶xn

�
;

is identically zero atp. A critical point is non-degenerate if
the Hessianof f , equal to the matrix of second order partial
derivatives, is non-singular. We callf a Morse functionif all
of its critical points are non-degenerate.

The index of a critical point is the number of negative
eigenvalues of the Hessian matrix. Anintegral line passing
through a pointp is a one-dimensional curvel : R ! Rn, where
¶
¶t l (t) = Ñ f (l (t)) ; 8t 2 R andl(0) = p. In other words, it is a
maximal curve inRn whose tangent at every point equals the
gradient of f at that point. The functionf increases along the
integral line. The limit points of integral lines,t ! � ¥ , are
the critical points off .

The set of all integral lines that share a common source
p= lim

t!� ¥
l (t), together with the pointp, is called theascending
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(a) Morse-Smale function and its
critical points.

(b) Reversed integral lines.

(c) Descending manifold of a max-
imum.

(d) Combinatorial structure of the
MS complex.

Fig. 1: (a) A Morse-Smale function shown as a height �eld
over a two dimensional domain. Critical points are shown in
red, green, and blue corresponding to maxima, saddle, and
minima, respectively. (b) The reversed integral lines of the
function over the surface. (c) The descending manifold of a
maximum shown as the closure of the set of reversed integral
lines that originate from the critical point. (d) Combinatorial
structure of the MS complex where nodes are critical points
and connecting integral lines are arcs.

manifold of p and the set of all integral lines that share
a common destinationp = lim

t! ¥
l (t), together with the point

p, is called thedescending manifoldof p. The ascending
manifolds of all critical points partition the domain. Similarly
the descending manifolds of all critical points also partition
Rn. The Morse-Smale complexis a partition ofRn into cells
formed by the collection of integral lines that share a common
source and a common destination.

The ascending manifold of a critical point of indexd
is a (n � d)-dimensional manifold, where as its descending
manifold is ann-dimensional manifold. A Morse functionf is
called aMorse-Smale functionif all ascending and descending
manifolds of two critical points intersect transversally.Thus,
if the index of two critical points differ by one then their
ascending / descending manifolds either do not intersect or
intersect along a one-dimensional manifold connecting the
critical points. The critical points, referred to asnodes, along
with the 1-manifolds that connect them, referred to asarcs,
form the 1-skeleton of the MS complex, which is referred to
as the combinatorial structure of the complex.

2.2 Simpli�cation

A Morse-Smale functionf can be simpli�ed to a smoother
function by repeated application of a cancellation operation
that removes a pair of critical points connected by an arc in

the MS complex. This cancellation corresponds to the removal
of the feature represented by the critical point pair. Features
are ordered based on the notion ofpersistence, equal to the
absolute difference in function value between the two critical
points. Persistence measures the importance of a critical point
pair [8]. More sophisticated measures of importance based on
persistence have also been described in the literature. Since
the focus of this paper is on the computation of MS complex
and not necessarily on ef�cient simpli�cation, we restrictour
discussion to the persistence measure. The least persistent
critical point pair is always connected by an arc in the
MS complex [7].

Simpli�cation of a pair of critical points can be achieved
by a local smoothing of the function in the neighborhood
of the two critical points, more precisely within the ascend-
ing / descending manifolds containing the critical points.
The cancellation is realized by updating the 1-skeleton of
the MS complex. For example, consider the case of a two-
dimensional Morse-Smale function after a maximum-saddle
cancellation. The 1-skeleton is updated by deleting the two
nodes, deleting the arcs incident on the saddle, and re-routing
the arcs incident on the maximum to the surviving maximum
adjacent to the saddle (see Figure 2). The embedding of a new
arc is obtained by extending the old arc along the arc between
the maximum and saddle. We allow only those cancellations
that can be realized by a local smoothing of the function.
This is feasible if the pair of critical points is connected by a
single arc. Canceling a pair of critical points that are connected
by two distinct arcs in the Morse-Smale complex results in a
strangulation, which cannot be realized by a local smoothing
of the function.

2.3 Piecewise Linear(PL) Functions

Earlier approaches to compute MS complexes were based on
PL extensions of functions sampled at vertices of simplicial
complexes [6], [7]. Though we adopt the discrete formulation
of MS complexes for our computations, we introduce here
some notions of PL function so that we may establish the
closeness of our approach to the PL approach. For further
reading on the basic notions of algebraic topology, we referthe
reader to the classic text books by Munkres [20] and Hatcher
[15].

A function f sampled at vertices of a simplicial complex
may be extended to form a continuous function that is linear
on every cell. Thestar of a vertexv is the set of simplices
incident onv. Thelink of a vertexv is the set of faces of cells
in the star ofv, that are not incident onv. The lower star of
vertexv is the set of cells in the star where the PL extension
assumes values lower thanf (v). The lower link of a vertexv
is the set of faces of cells in the lower star ofv, that are not
incident onv.

The Betti numbersof a cell complex,K, are a useful
characterization of the underlying space of a cell complex.
They are de�ned for eachk = 0;1::;dim(K) and denoted by
bk. Intuitively, b0 counts the number of components ofK, b1
counts the number of tunnels inK andb2 counts the number
of voids of K. The reduced Betti number, denoted byb̃k and
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(a) MS complex and reversed integral
lines

(b) Canceling a pair of critical points

(c) Combinatorial realization (d) Geometric realization

Fig. 2: (a) MS complex for a simple height function. (b)
Canceling a pair of critical points,qi , pi+ 1, of index i, i + 1
that are connected by a single 1-manifold. (c) Combinatorial
realization: connect all indexi critical points (Ni

pi+ 1
) that are

connected topi+ 1 exceptqi , to indexi + 1 critical points (Ni+ 1
qi

)
that are connected toqi exceptpi+ 1. (d) Geometric realization:
compute the union of the descending manifold ofpi+ 1 with
the descending manifolds of all indexi + 1 critical points
connected toqi . Compute the union the ascending manifold of
qi with the ascending manifolds of all indexi critical points
connected topi+ 1.

de�ned for k = � 1;0; :::;dim(K), is exactly the same asbk
for all k = 1; :::;dim(K). The zeroth reduced Betti number is
b0 � 1 if b0 > 0 and 0 otherwise. Alsõb� 1 = 1 if b0 = 0 and
0 otherwise.

Reduced Betti numbers of the lower link can be used
to classify a vertex of a simplicial complex as non-critical
(regular) or critical and to further classify critical vertices.
A vertex in a 2D simplicial complex is said to be regular if
all b̃k's of the lower link are zero, minimum if̃b� 1 = 1 and
b̃0 = b̃1 = 0, simple saddle ifb̃0 = 1 and b̃� 1 = b̃1 = 0, and
maximum if b̃1 = 1 and b̃� 1 = b̃0 = 0. Critical points with
b̃0 > 1 are called multi-saddles.

The weak Morse inequality is a classic result of Morse
theory which states that, given a Morse functionf de�ned
on a manifold, the number of indexk critical points of f is
greater than or equal to thekth Betti number [20]. Forman
established the analogous result for discrete Morse functions
[10].

2.4 Discrete Morse functions

Discrete Morse theory was developed by Forman [10] to study
the topology of cell complexes. Ad-cell a d is a topological

space homeomorphic to ad-ball Bd = f x 2 Ed : jxj � 1g. For
example, a vertex is a 0-cell, an edge between two vertices is
a 1-cell, a polygon is a 2-cell, and in general ad-dimensional
polytope is ad-cell. We will restrict our attention to cells of
the above kind, which can be represented by a set of vertices.
A cell a is a face of b , denoteda < b , if a is represented
by a subset of vertices ofb . The cellb is called acofaceof
a . A facea is called afacetof b if a < b anddim(a )+ 1 =
dim(b ). In this caseb is a cofacetof a denoted bya l b .
The set of zero-dimensional faces of a cella is called the
vertex set ofa denoted byVa .

A cell complex Kis a collection of cells that satis�es two
properties: (a) Ifa belongs toK then so do all faces ofa , and
(b) If a1 anda2 are two cells inK then either they are disjoint
or they intersect along a common face. Aregular cell complex
is a cell complex in which, given two incident cells,bd+ 1

andgd� 1, there are exactly two cellsa d
1 ;a d

2 such thatgd� 1 <
a d

1 ;a d
2 < b . In this paper, we consider only �nite regular cell

complexes. A�ltration of a cell complexK is a sequence of
nested cell complexesK0;K1; : : : ;Kn, such thatK0 is the empty
cell complex,Kn is the cell complexK, andKi is obtained by
attaching one or more cells toKi� 1 for i = 1::n.

Note that asimplex is a d-cell which has exactlyd + 1
vertices in its vertex set. Asimplicial cell complexis a cell
complex whose cells ared-dimensional simplices such as
vertices, edges, triangles, tetrahedra and so on. A simplicial
complex is also a regular cell complex.

Given a regular cell complexK representing the domain, a
function f : K ! R is said to be adiscrete Morse functionif
for all d� cells a d 2 K,

jf bd+ 1 j a d < bd+ 1 and f (b ) � f (a )gj � 1 and
jf gd� 1 j gd� 1 < a and f (g) � f (a )gj � 1:

A cell a d is critical if
jf bd+ 1 j a d < bd+ 1 and f (b ) � f (a )gj = 0 and

jf gd� 1 j gd� 1 < a and f (g) � f (a )gj = 0

A discretevector is a pairing between two incident cells that
differ in dimension by one. Adiscrete vector �eldon K is a
set of discrete vectors such that every cell inK is represented
in at most one pair of the �eld. AV-path is a sequence of
cells

a d
0 ;bd+ 1

0 ;a d
1 ;bd+ 1

1 ; : : : ;a d
r ;bd+ 1

r ;a d
r+ 1

such thata d
i anda d

i+ 1 are facets ofbd+ 1
i and (a d

i ;bd+ 1
i ) is a

vector,i = 1::r. A V-path is called agradient pathif it contains
no cycles (see Figure 3). Adiscrete gradient �eldis a discrete
vector �eld that contains no non-trivial closedV-paths. We
refer to discrete vectors in a discrete gradient path asgradient
pairs.

Maximal gradient paths of the discrete Morse function
correspond to the notion of integral lines of Morse functions.
Ascending / descending manifolds are similarly de�ned for
discrete Morse functions.

2.5 Simulation of simplicity

Simulation of simplicity (SoS) is a programming technique
that allows us to cope with degenerate data for many geometric
algorithms [9]. In the context of Morse-Smale complexes
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Fig. 3: A discrete Morse
function de�ned over a
2D cell complex. The
gradient pairs are shown
as arrows oriented to-
wards the higher dimen-
sional cell. Dashed red
arrows denote edge-quad
pairs and solid blue ar-
rows denote vertex-edge
pairs. Critical cells are
shown in red (maxima),
green (saddle), and blue
(minima).

we require that the function be nowhere �at to ensure non-
degeneracy. Implementing SoS is simple in this case. We
simulate a non-degenerate function using the available order
of vertices in the storage device and hence consistently resolve
comparisons when function values at two vertices are equal.
In the following section we assume thatf (x) 6= f (y) for all
verticesx 6= y. We discuss how to extend this technique to
obtain a total order on all input mesh cells in Section 4.

3 ALGORITHM OVERVIEW

In this section, we present an overview of our approach
towards the design of a parallel algorithm to compute the MS
complex for two-dimensional scalar functions. When the entire
dataset �ts in memory, the MS complex is computed by a two-
step algorithm:

Stage 1.Compute the discrete gradient on the domain.
Stage 2.Compute the combinatorial MS-complex and the

geometry of ascending / descending manifolds of
critical points.

Section 4 discusses in detail how a discrete gradient �eld
based on the scalar function is computed and how that is
used to extract the combinatorial structure of the MS-complex.
Speci�cally, a technique to extend a scalar function sampled
at vertices of a regular CW-complex to a totally ordered
discrete Morse function is discussed. The de�nition of this
function for a CW-cell relies only on the scalar values of its
vertex set. This motivates a massively parallel algorithm to
determine discrete gradient pairs (of CW-cells). The extraction
of the qualitative structures of the MS-complex using the
discrete gradient �eld and a simple BFS algorithm is then
discussed. The BFS algorithm, being serial, does not scale well
to massively parallel environments. For this case, we describe
an alternate method for traversal which is applicable only to
2D datasets. We corroborate the relevance of the computed
MS complex by arguing the closeness of its critical points
and gradient pairs to the PL formulation of critical points and
gradients.

For large datasets that do not �t in memory, a split and
merge strategy is adopted. The gradient computation proceeds
without change. The algorithm for large datasets is split into
�ve stages:

Stage 1.Split the domain into sub-domains. Compute the
discrete gradient on each sub-domain. Compute the
combinatorial MS complex on each sub-domain.

Stage 2. Merge the combinatorial MS-complexes of each
of the sub-domains.

Stage 3.Simplify the MS-complex
Stage 4.Traverse the history of merges in reverse order

to determine the incidence of geometry of ascend-
ing / descending manifolds of critical points that are
outside the sub-domain.

Stage 5.Extract the geometry, restricted to the sub-domain,
of the ascending / descending manifolds of critical
points (that lie possibly outside the sub-domain).

Section 5 discusses the strategy to merge the sub-domain
pieces. Essentially, we mark gradient pairs that cross a com-
mon boundary as critical. This enables us to identify these
pairs as critical points of the MS complex of both sub-domains,
perform a merge, and simplify them away. We show that the
MS complex is combinatorially and geometrically unaltered
by the merge procedure. Furthermore, we show that the order
of these cancellations do not alter the resulting MS complex.

Since the number of gradient pairs crossing common bound-
aries is signi�cant, storing the geometry of the ascending /de-
scending manifolds of these critical points along with the
combinatorial connectivity data strains memory requirements.
We propose an alternate scheme, whereby we traverse the
history of merges in reverse order to infer the geometric
contribution of the canceled critical points to surviving critical
points. Stage 1 and 5 can proceed in parallel on each sub-
domain whilst the other stages merge sub-domains and thus
proceed hierarchically.

In both cases of small and large datasets, the algorithm to
compute the discrete gradient pairs works for higher dimen-
sional data also. However, for massively parallel environments
the subsequent stage of the algorithm, which traverses the
gradient �eld, is restricted to 2D datasets.

4 MS COMPLEX ALGORITHM

We now describe our algorithm to compute the MS complex
under the assumption that the dataset �ts in memory. We �rst
describe a canonical extension of scalar functions sampledat
vertices to discrete Morse functions and demonstrate why it
is not a suitable extension for computing the MS complex.
Next, we introduce a weighted discrete Morse function which
satis�es a key property leading to an algorithm that computes
gradient pairs in parallel. We discuss how the gradient �eld
de�ned by the collection of gradient pairs is used to extract
the MS complex. Finally, we analyze the computed gradient
�eld and argue for its correctness.

4.1 Discrete function

Given a regular cell complexK with vertex setV and a
scalar functionf : V ! R, a canonical extension off to a
discrete Morse function,Fd : K ! R, is de�ned recursively on
a cell a as Fd(a ) = maxs < a Fd(s ) + e, where e > 0 is an
in�nitesimally small real value [11]. Extending the function
f in this manner results in all cells becoming critical with
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Fig. 4: The weighted dis-
crete function is de�ned re-
cursively as a weighted sum
of the function value at faces
G0 andG1. FacesG0 (in red)
andG1 (in blue) for an edge,
triangle and quad cells are
shown. The function value at
vertices increases along the
vertical axis.

respect to the discrete Morse functionFd. This implies that
each cell in the input is essentially a cell of the MS complex.
Further, newly introduced critical cells that are incidenton
each other can be canceled using an in�nitesimally small
persistence thresholde to create ane-persistent MS complex.
The motivation for extending the functionf to Fd is that the
MS complex can be computed via repeated cancellations of
e-persistent pairs. The collection ofe-persistent critical point
pairs are viewed as a pairing of incident cells or discrete
gradient pairs. The pairs are represented by arrows from
the lower dimensional cell to the higher dimensional cell
indicating descent. These pairings constitute a discrete gradient
�eld. Gyulassy et al. [11], [13] compute the MS complex via
a sequence of cancellations of thee-persistent critical point
pairs. However, this approach does not necessarily compute
paths of steepest descent. Consider the case when two cells,
b1;b2, share a common faceta such thatFd(b1) and Fd(b2)
are written as

Fd(b1) = Fd(a ) + e
Fd(b2) = Fd(a ) + e.

Either one ofb1 or b2 can be paired witha . For both pairs,
the difference in value ofFd is equal toe. The tie is broken
arbitrarily in this case.

4.2 Weighted discrete function

We now describe a method to extend a given real valued
function (f ) on the vertex set (V) of a given mesh (K) to
a function (Fw) that is de�ned on all cells of the mesh.
We show that this function is a discrete Morse function
and that it imposes a total order on the cells. Since the
algorithm for computing the MS complex requires only the
order between cells, we describe a symbolic comparator that
does not explicitly compute the function value. We assume
that the input vertices are totally ordered based on the input
function speci�ed at the mesh vertices.

4.2.1 De�nition of Fw

We de�ne a weighted discrete functionFw on ad-dimensional
cell a d recursively as

Fw(a d) = Fw(G0(a d)) + ed � Fw(G1(a d)) ;

wheree is an in�nitesimally small positive real number,

G0(a d) = argmax
g< a d

Fw(g), and

(a)

(b)

(c)

Fig. 5: (a) A scalar function,f , de�ned on the vertices is
recusively extended to a discrete Morse functionFw. The value
of Fw is shown for each cell. (b) Gradient pairs determined
by algorithm ASSIGNGRADIENT. (c) The combinatorial MS
complex computed using a BFS traversal on the gradient �eld.

G1(a d) = argmax
g< a d;Vg\ VG0(a d)= f

Fw(g):

VG0(a ) is the vertex set ofG0(a d), and argmax denotes the
value of the argumentg that maximizes the function. Similar
to Fd, Fw is also equal tof at mesh vertices. The weighted
version of the discrete function ensures that when two cells
share a common face whose function value is the maximum
among both face sets, then the tie is broken using the second
maximum face whose vertex sets are disjoint from the above
common face. See Figure 4 for the de�nition of the weighted
discrete function for some common cell types. Figure 5a shows
the expansion ofFw for a function sampled on a 2D grid.

G0(a d) is necessarily ad� 1 cell. This is becauseFw of any
d� 1 face ofa d is greater than all faces incident on thed� 1
cell. Thus, thed � 1 cell that maximizesFw will have higher
function value than all faces ofa d. Also G1(a d) must exist for
all cells with d > 0. Theoretically, we requireFw(G1(a d)) to
be strictly positive to ensure that its value at cofacets is greater
than at the facet. This assumption is valid if we rescale the
range of f to [0+ d;1], d 2 (0;1). In practice we obtain the
order on the cells via a symbolic comparison and do not need
to explicitly computeFw.

4.2.2 Fw is well de�ned and totally ordering

For Fw to be well de�ned we requireG0, G1 to be unique.
The cellsG0(a d) and G1(a d) for a given a d are unique if
Fw induces a total order on all cells of dimension less thand.
This suggests an inductive proof, which we outline below.

Since f (x) 6= f (y) for all x 6= y, Fw is well de�ned and
induces a total order on all zero-dimensional cells. Now,
assume thatFw induces a total order on all cells of dimension
less thand. We will show that we can order two cellsa d

1 ;a d
2

or a d
1 ;a d0

2 whered0< d anda1 6= a2.
Let G0(a d

1 ) = g1 and G1(a d
2 ) = g2. We haveFw(a d

1 ) =
Fw(g1) + ed � Fw(G1(a d

1 )) and Fw(a d
2 ) = Fw(g2) + ed �

Fw(G1(a d
2 )) . Assume thatg1 6= g2. Cells g1 and g2 have

dimension less thand and can therefore be ordered. We
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choose e to be arbitrarily small, so that the comparison
of Fw(a d

1 ) and F(a d
2 ) is dominated by the comparison of

F(g1) andF(g2).i.e. Fw(g1) < Fw(g2) ) Fw(a1) < Fw(a2) and
Fw(g1) > Fw(g2) ) Fw(a1) > Fw(a2).

If g1 = g2 then the second term induces an order ona1
anda2. Note that ifa d

1 6= a d
2 thenG1(a d

1 ) 6= G1(a d
2 ) because

K is a cell complex. This is because if twod-dimensional
cells intersect they do so along a single common cell whose
dimension is less thand. The cellsa d

1 anda d0

2 can be ordered
using a similar argument. Thus, the weighted discrete function
Fw is well de�ned and induces a total order.

4.2.3 Symbolic comparison of cells
We essentially require only an ordering of cells inK and
not the explicit values ofFw. We now describe a method to
establish this order using comparisons.

The value ofFw(a ) is equal to the weighted sum ofFw at a
subset of the vertices ofa . Further, sinceG0(a ) andG1(a ) are
also vertex disjoint, no vertex appears more than once in the
above sum. Replace the coef�cient ofFw(G1(a )) to eT(G1(a )) ,
whereT(a ) is equal to the number of terms in the weighted
sum of Fw(G1(a )) . It can be easily veri�ed thatFw remains
well de�ned and induces the same total order. This is because
T(a d) � d. The functionFw(a ) is therefore expressed as a
weighted combination of the function values at a subset of
Va . Thus, the ordering of cells follows from a lexicographical
ordering where a cella is represented as an ordered list of
vertices,Sa , which is a subset of the vertex set,Va .

In the case of simplicial complexes, this ordering is equal to
the sorted order of all vertices. For quad cells in a rectilinear
mesh, it is the ordered vertices of the edge with highest value
of Fw followed by the ordered vertices of the edge disjoint
from the �rst edge. This ordering of vertices is a speci�c
permutation of the vertex set. Similarly the ordering for a three
dimensional cube mesh is a speci�c permutation of the vertex
set. Note that it is not necessary for the setSa to contain
all vertices ofVa . For example, the size ofSa will remain
four for a hexagon cell in a hexagonal tessellation of the two
dimensional plane whereasa contains six vertices.

4.3 Computing gradient pairs

We now outline our algorithm that computes gradient pairs
using the comparator based weighted discrete function de�ned
above. We prove that the pairs found by the algorithm are
unique and independent of the order in which the cells are
considered, thus providing scope for parallelizing the algo-
rithm.

Algorithm 1 ASSIGNGRADIENT (Cell complexK)

1: for all a 2 K do
2: Pa = f b ja l b anda = G0(b )g
3: if Pa 6= f then
4: b = MinF (Pa )
5: pair cells (a ,b )

In the above algorithm,a denotes a cell in the complexK,
andb is a cofacet ofa , denoted bya l b . The setPa is the

collection of cofacets,b , of a such thata = G0(b ). In other
words, Pa is the set of cofacets ofa where a is the facet
with the maximum value ofFw. Figure 5b shows the gradient
�eld determined by the algorithm ASSIGNGRADIENT for the
function in Figure 5a.

ORDER INDEPENDENTPAIRING LEMMA . The pairing deter-
mined by the algorithmASSIGNGRADIENT is independent of
the order in which cells are processed. In particular, if a cell
a pairs with its cofacetb thenb will not pair with any of its
cofacets.

Proof: Inconsistencies occur if the algorithm determines
two or more pairs for the same cell. A cell present in two
pairings can be of the nature(a ;b ),(a ;b0) or (a 0;b ), (a ;b )
or (g;a ), (a ;b ) whereg l a l b .

This �rst con�ict is trivially not possible because for a cell
a we determine a unique pair from a set of candidate facets.
In the second case, ifb were to be paired with two different
facets,a anda 0, thenb 2 Pa ;Pa 0. But, from the de�nition of
Pa we know thatG0(b ) is unique and equal to eithera or a 0.
Therefore,b must either belong toPa or to Pa 0 but not both.
So, b is paired either witha or with a 0.

To prove that the third con�ict does not arise, we show that
if a pairs with one of its cofacetsb , thena is not the lowest
pairable cofacet of any of its facetsi.e. b = MinF (Pa ) implies
a 6= MinF (Pg) for all g l a . This will imply that if a paired
with b , then it is not paired with any other cellg. Consider a
facet g of a , g l a . If a =2 Pg then there is nothing to prove
because the algorithm will not pairg with a . Now assume
a 2 Pg. For a regular cell complex, ifg is a face of a cellb
such thatdim(g) = dim(b ) � 2, then there exists exactly two
cells s1;s2 such thatgl s1 l b andgl s2 l b . Without loss
of generality, we relabels1;s2 asa ;a 0. Since(a ;b ) form a
pair and not(a 0;b ), we haveFw(a 0) < Fw(a ). Hence, it is
suf�cient to show thata 02 Pg.

Assume thata 0 =2 Pg. There existsg06= g 2 K such thatg0l
a 0 anda 02 Pg0. This impliesFw(g0) > Fw(g). SinceFw(a ) =
Fw(g) + e andFw(a 0) = Fw(g0) + e we haveFw(a ) < Fw(a 0).
This is a contradiction. Hence, we havea 02 Pg andFw(a 0) <
Fw(a ). So, if (a ;b ) is a pair thena 6= MinF (Pg) for anyg< a ,
which implies that there is no such pair(g;a ).

4.4 Computing the MS complex

Once the discrete gradient �eld is computed, the descend-
ing / ascending manifolds and the combinatorial MS complex
are extracted as a collection of gradient paths. The descending
manifold of a critical point is equal to the closure of all
gradient paths that originate from that critical point. This
is computed using a breadth �rst traversal of gradient pairs
beginning from the critical point. The ascending manifold is
the closure of the set of gradient paths that terminate at a given
critical point. This is computed using a breadth �rst traversal
of reversed gradient pairs beginning from the critical point.
A combinatorial connection between any two critical cells is
established if there is a gradient path that connects them.
Figure 5c shows the combinatorial MS complex extracted
from the gradient �eld shown in Figure 5b. For multicore



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, SEPTEMBER 2010 8

environments, multiple BFS traversals from critical points are
launched. The number of parallel BFS traversals launches
usually depends on the number of cores.

Since the BFS algorithm is essentially a serial algorithm
we adopt a different strategy in the case of massively parallel
environments. This strategy is applicable for 2D discrete
gradient �elds. 2D discrete gradient paths that originate at
maxima split but do not merge and discrete gradient paths
that terminate at minima merge but do not split [5]. Thus,
every gradient pair on a path from a maximum is immediately
preceded by a unique source which is either another gradient
pair or the maximum. Similarly, every pair on a path to
a minimum is succeeded by a unique destination which is
either another gradient pair or the minimum. The traversal
is now posed as an iterative search for the source/destination
extremum of every gradient pair. For completeness, maxima
are their own source and minima are their own destination.
Each work item (thread) is mapped to iteratively determine
the eventual source/destination of a gradient pair. At every
iteration the source of gradient pairs that are on gradient paths
originating from a unique maximum is updated to the source of
its source. Similarly, the destination of gradient pairs that are
on gradient paths terminating at a unique minimum is updated
to the destination of its destination. The iterations stop when
all pairs �nd their unique source or destination. For a path
of length n, the �rst iteration updates each node's source to
the gradient pair at a distance two. The next iteration updates
it to the gradient pair at a distance four. Thus, the process
terminates inlog2(n) steps. Though the worst case asymptotic
complexity of this traversal isnlog2(n), in practice we observe
that traversal requires log2(n) time due to the parallelization.
The combinatorial MS complex is computed by querying the
source/destination of gradient paths that originate/terminate
at facets/cofacets of saddles. The geometry of extrema is
available as a disjoint set of trees rooted at them. However,the
geometry of saddles is not directly available and is extracted
by serial BFS traversals.

4.5 Analysis and Correctness

In this section, we argue for the correctness of the MS complex
computed by our algorithm. Speci�cally we show that the
computed critical points and gradient pairs are close to those
of the PL function.

4.5.1 Closeness of critical cells to PL critical points

The weighted discrete functionFw(a d) is de�ned recursively.
In order to obtain a simple expression, we introduceGi

0(a d)
that allow us to unravel the de�nition ofFw(a d) up to
i levels of recursion. LetGi

0(a d) denote theG0 function
applied i (� 0) times on a cella d. For example,G2

0(a d) =
G0(G0(a d)) ;G0

0(a d) = a d. De�ne e-lower star of the vertex
v as the set of cellss d such thatv = Gd

0(s ):

eLST(v) = f s d 2 K j v = Gd
0(s d)g

We note that ifK is a simplicial complex,v is a vertex and the
function is a PL extension of samples at the vertices, then the
e-lower star ofv is exactly the lower star ofv (See Figure 6a).

�� �
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� 	
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�� �

�

�

��

� 	

(b)

Fig. 6: (a)eLST (cells in purple) andeLLK (cells in dark gray)
of a vertex, for a function sampled at the vertices. Other cells
are shown in light gray. (b) Gradient vector pairs and critical
cells determined by the algorithm ASSIGNGRADIENT.

Similarly, de�ne e-lower link (eLLK) of a vertexv to be the
set of faces of cells ineLST(v) that are not incident onv.
We show that any gradient algorithm that pairs cells within
thee-lower star of a vertexv must retain at least̃bk� 1 indexk
critical cells ineLST(v), whereb̃k is the reduced Betti number
of eLLK(v).

We �rst claim that the �ltrationK induced by attaching cells
in increasing order ofFw is a valid. Furthermore, we claim that
the cells ineLST(v) are ordered contiguously byFw. The �rst
part of the claim is true because faces of a cell always have
function value lower than that of the cell (by de�nition of
Fw) and therefore appear before the cell in the ordering. For
the second part, consider anygd =2 eLST(v). We can express
Fw(gd) as

Fw(gd) = Fw(Gd
0(gd)) +

d

å
i= 1

ei � Fw(G1(Gd
0(gd)))

by successively rewriting the leading term. Sincegd =2 eLST(v)
we have thatGd

0(gd) 6= v. By writing the expression forFw for
all cells s d0

2 eLST(v) in the above form, the comparison
of gd and s d0

will be dominated by the comparison of cells
Gd

0(gd) andGd0

0 (s d0
). Hencegd would precede or succeed all

cells of eLST(v).
Next we observe that algorithm ASSIGNGRADIENT pairs

cells within theeLST of a vertexv, i.e. if (a d;s d+ 1) is a pair
then botha d and s d+ 1 belong to thee-lower star of some
vertexv and no other vertexv0. This follows from the de�nition
of eLST and Gi

0. Thus the same pairs are determined for a
given e-lower star attached to a givene-lower link regardless
of other cells in the cell complex.

Consider the hypothetical situation where a vertexv0 pre-
cedesv in the �ltration such thateLST(v0) is a duplicate of the
eLST(v) attached toeLLK(v). We will relate the reduced Betti
numbers ofeLLK(v) to the increase in the Betti numbers of the
complex after attachingv and itse-lower star (See Figure 7).
Let Kv0 denote the cell complex obtained after attachingv0 and
its e-lower star. Since the gradient pairs are determined within
the eLST(v), they are not affected by gradient pairing in the
rest of the complex. Assume that the gradient �eld is optimal
in the sense that the number of critical points of indexk (nk) is
exactly the same as thekth Betti number (bk). In this scenario
the net effect of attachingeLST(v) is the creation of̃bk (k+ 1)
cycles. For example if̃b� 1(eLLK(v)) = 1, attachingeLST(v)
would create a new component. In other words it increases
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�

�� Fig. 7: A cell complex
where a duplicate of
eLST(v) precedesv in the
�ltration and is attached
to eLLK(v).

the b0 of Kv0 by one. Similarly if b̃0(eLLK(v)) = c, attaching
eLST(v) would increaseb1 of Kv0 by c. If b̃1(eLLK(v)) = 1,
attaching eLST(v) would increaseb1 of Kv0 by 1. Thus
attachingeLST(v) causes an increase inbk of Kv0 by b̃k� 1.
Since the gradient �eld was optimal beforeeLST(v) was
attached,nk should increase by at least̃bk� 1 to satisfy the
weak Morse inequality (nk � bk). Since the only new cells
were that ofeLST(v), the new critical points must be present
within the eLST(v).

This result shows that PL critical points are approximated
by a critical cell incident on the PL critical vertex. Further-
more multi-saddles are also approximated with the appropriate
number of critical cells.

4.5.2 Steepest descent

Consider a PL function de�ned on a simplicial complex whose
function value at vertices is known. The gradient pairing
algorithm will attempt to pair a cella d with a cell s d+ 1,
wheres d+ 1 is a simplex formed by adding a vertex toVa and
the new vertex has function value lesser than all vertices in
Va . For every point ona d, the gradient of the PL interpolant
is oriented towards the new vertex. Hence the gradient lines
originating from the interior ofa d, are oriented towards the
interior of s d+ 1. Because of the discontinuity of gradients of
PL interpolants on cells that are shared, the gradient algorithm
will pair the d+ 1-cell attached toa d with minimum function
value. This will be thed+ 1-cell attached toa d with minimum
function value on the vertex not present inVa , therefore
maximizing the magnitude of the gradient. Hence the gradient
vector pairing agrees with the maximal PL gradient on a
simplicial complex.

In the case of two dimensional rectilinear grids using a
bilinear interpolant it is seen that the same argument applies
except for the case when the quad contains a face saddle. In
this case we see that gradient at the mid point of the maximal
edge has steepest descent gradient towards the quad element.

Figure 8 shows the comparison of the continuous gradient
of the analytic functionsin(x)+ sin(y) evaluated at the vertices
of the two dimensional rectilinear grid, with the discrete
gradient computed on the grid using the gradient algorithm.
The discrete gradient pair arrow are aligned along edges for
vertex-edge pairs and orthogonal to edges for edge-quad pairs.
In both cases, they agree with the gradients computed for the
analytic function at mesh vertices.

5 OUT-OF-CORE ALGORITHM

We now discuss the computation of the MS complex of 2D
scalar functions with a focus on large datasets that do not �t
entirely in memory. The computation is done in �ve stages (see

(a)

(b) (c)

Fig. 8: (a) Gradient �eld of the functionsin(x) + sin(y)
evaluated at mesh vertices. (b) Close up view of the gradient
�eld. (c) Discrete gradient vectors for function sampled at
vertices.

Figure 9). The data is �rst hierarchically partitioned intosub-
domains blocks. The partitioning stops when the sub-domains
are small enough to �t in memory.

5.1 Gradient and MS Complex on sub-domains

The computation of the gradient proceeds as outlined in the
previous section. To obtain a equivalent gradient �eld on a
subdomin, the gradient algorithm needs only a cell's cofacets
and their facets in the domain. The cell complex of the
sub-domain is extended to include the set of cells that are
incident on the shared boundary of sub-domains and gradient
is computed only on the initial sub-domain cell complex (see
Figure 9a). Thus, we obtain identical pairings for cells along
the shared boundary when we process all sub-domains that
share the boundary cell.

To facilitate merging we mark all gradient pairs that cross
a shared boundary as critical (see Figure 9a). We establish the
validity of this step in the following section.

5.2 Merging sub-domain MS complexes

Next, we merge the sub-domains in a bottom up fashion by
identifying boundary critical point pairs and canceling them
when they enter the interior of the union. The cancellation
repeatedly merges the MS complex across the sub-domains
till we obtain the MS complex of the input function.

We �rst establish the equivalence of gradient paths and the
paths computed by a sequence of cancellations. A consequence
of this result is that we can process the sub-domains in parallel
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(a) Gradient and MS complex on sub-domain (b) Merging and Simpli�cation

(c) Traversing merge history (d) Extracting geometry

Fig. 9: MS complex for large domains is computed in �ve stages. Data is �rst split into sub-domains. (a) Gradient is computed
on sub-domains. Unpaired cells and gradient pairs incidenton shared boundary are marked critical. Combinatorial MS complex
on each sub-domain is computed. (b) The combinatorial MS complex of the domain is computed by identifying and canceling
gradient pairs incident on the shared boundary. (c) The history of merge cancellations is traversed to reveal the incidence of
critical cells across sub-domains. This information is used to trace the geometry of the cells of the MS complex. (d) For each
sub-domain, the geometry of the descending and ascending manifold of an incident critical cell restricted to the sub-domain
is extracted.

and later merge them to obtain the MS complex while ensuring
combinatorial and geometric equivalence.

ORDER INDEPENDENT CANCELLATION LEMMA . Let
p;a0;s0; : : : ;a i ;s i ; : : : ;ak;sk;q denote a gradient path
between two critical points p and q. This gradient path
is faithfully traced independent of the scheduled order of
boundary critical point pair cancellations.

Proof: In the above gradient path, canceling paira i ;s i
results in establishing the connectivity betweens i� 1;a i+ 1.
Iterating forward, we see that cancellation of any pair along the
gradient path successively establishes connectivity between the
preceding and succeeding surviving critical point. Eventually
the critical pointsp;q are connected by an arc. Thus combina-
torially, this is equivalent to the MS complex obtained without
by tracing a path directly fromp or q without any intermediate
step of creating boundary critical points. The same argument
extends to prove the resulting geometric equivalence.

As a consequence of the above lemma, we can schedule

cancellations of boundary critical point pairs in any order.
Gyulassy et al. [11] also employ a divide and conquer ap-
proach to compute the MS complex. However, they partition
the domain into “parcels” that do not share common boundary.
The merge step, therefore, has to process new cells and
may introduce new critical points. Hence, they are not able
to ensure the geometric equivalence of the MS complex.
Our partitioning scheme is the central reason for the Order
Independent Cancellation Lemma to be true.

5.3 History Tree

One of the implications of declaring all boundary cells and
their outgoing / incoming pairs as critical is the creation of
a large number of critical cells. Since the merge operation
involves cancellation of critical points, the ascending and
descending manifolds need to be computed and merged.
However the number of cells that are present in the ascend-
ing / descending manifold of a critical point isO(n), where
n is the number of cells in the cell complex. This leads to a
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large memory foot print of intermediate complexes.
The arti�cial critical points represent regions through which

�ow enters / leaves a sub-domain. Therefore, recording the
combinatorial connectivity to a surviving critical point at the
boundary is suf�cient to compute the ascending/descending
manifold restricted to the sub-domain. We record this infor-
mation during the merge step and are therefore able to compute
the 1-skeleton of the MS complex with a small memory
footprint. The recorded combinatorial connectivity between
boundary critical points is used later to extract the geometry
of the gradient paths. We now describe how we traverse the
history of cancellations to compute the geometry of the arcs.

Consider a series ofk cancellations to determine the com-
binatorial connection between two critical pointspi andqi� 1.
The series of canceled critical point pairs is equal to the
gradient path connecting the two critical points:

p; : : : ;a i� 1
k� 1;s i

k� 1; : : : ;a i� 1
k ;s i

k; : : : ;a
i� 1
k� 2;s i

k� 2; : : : ;q

Consider the �nal cancellation that determines the connection
betweenp and q. Before cancellation,p is contained in as-
cending connections ofak andq is contained in the descending
connections ofsk. Before the cancellation of the(k � 1)th

pair, a i� 1
k is connected tos i

k� 1. By retaining this information,
after thekth cancellation we can infer thatsk� 1 is connected
to all surviving critical points in the descending connections
of ak's pair. Extending this further to previous cancellations,
we see that if we traverse the critical point pairs in reverse
order of their cancellations, we can infer the entire geometry
of the gradient path. This is accomplished by traversing the
history tree, which records all merges, in a top-down manner.
At the leaf of the history tree, we obtain the combinatorial
connections from the BFS traversal within the sub-domain.

5.4 Geometry extraction

The history tree traversal returns the points of entry and exit
of all critical cells that have gradient entering or leavingthe
sub-domain. Thus the geometry of the descending/ascending
manifold of a critical cell restricted to the sub-domain canbe
computed by tracking the gradient from the cells of entry/exit
that are on shared boundaries. If the critical cell is contained
in the sub-domain then the geometry is computed as indicated
in the �rst stage.

6 IMPLEMENTATION

In this section we brie�y outline our experimental setup forthe
various stages of our algorithm. We proceed with two setups,
one leveraging multicore architectures and another targeted
at massively parallel architectures, namely the GPU. We use
the OpenCL framework for programming the GPU. We report
the implementation and results for rectilinear two-dimensional
grids.

6.1 Gradient Pairs and MS complex on sub-domains

Since we work with grid domains, we use the centroids of
cells to represent them. We scale the cell identi�ers by two
so that they are integral values. Therefore cell information is

maintained as two-dimensional buffers with the same size as
that of the domain. This simpli�es queries for facets / cofacets,
which can now be computed using arithmetic operations with
boundary conditions.

For the gradient information we require one buffer to store
the pair of the cell and a �ag buffer to store whether the
cell is critical or paired or both in the case of boundary
critical pairs. While working with the GPU for the gradient
assignment we need to mirror these buffers in both the CPU
and GPU . This is required only for geometry extraction in
the �nal stage of our algorithm. The counting and collection
of critical points from the �ag buffers is posed as the parallel
pre�x sum problem [2], [3]. The pre�x scan implementations
have asymptotic complexity ofO(nlog2(n)) but in practice
we observe that traversal requireslog2(n) time due to the
parallelization.

For the CPU implementation, the standard BFS algorithm
is used considering cells as nodes and edges between cells
if they are pairs or if they are adjacent on a gradient
path. For the GPU implementation, we adopt the iterative
source/destination search described in Section 4.4. Sincethere
is an issue of concurrent updates, we use two buffers to store
the source/destination information. Each iteration readsthe
source/destination information from one buffer and updates
it to the second buffer. In the next iteration the roles of the
buffers are swapped. A global boolean is initialized tof alse
and set totrue if a cell updates its buffer.

6.2 Merging

To enable stream processing of sub-domains we recursively
divide the domain along a single axis. The desired level of
subdivision is adjusted to accommodate the largest possible
sub-domain within memory (GPU memory in the case of the
GPU implementation). The recursive subdivision leads to a
hierarchical structure with 2d sub-domains, whered is the
depth of the recursion, and 2d � 1 intermediate nodes that
represent the hierarchy. Merging of intermediate nodes in each
level can be done in parallel.

6.3 Simpli�cation

We perform a persistence based simpli�cation of the �nal
MS complex. The simpli�cation affects the MS complex
computed for each sub-domain. The MS complex of a sub-
domain is updated by identifying surviving critical points,
deactivating them, and introducing new critical points that may
have become incident on the sub-domain. Since simpli�cation
by persistence does not require any geometry computation,
we simplify before we traverse the history tree and push the
results down the tree.

6.4 History tree

The history tree that records the merges is traversed to
compute the incidence of surviving critical points on sub-
domain boundary. Because of the hierarchical decomposition,
the traversal can be done in parallel for all nodes within a
level.
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(a) CPU out-of-core (b) GPU in-core (c) GPU out-of-core

Fig. 10: Time required to compute the MS complex for thewgauss dataset cumulated over the �ve stages of the algorithm.
(a) The 8192� 8192 data does not �t in CPU memory. (b) Data �ts in CPU but not GPU memory. (c) Data �ts neither in
CPU nor GPU memory.

6.5 Fast Geometry Queries

Once we know the combinatorial structure of the MS com-
plex at the boundary of a sub-domain, the computation of
descending and ascending manifolds is essentially a traversal
of gradient paths from these entry and exit points along with
the paths that originate from or terminate at the critical point.
In our implementation, we track only the surviving saddle
points, because maxima partition the diverging gradient �ows
and minima partition the converging gradient �ows. In our
experiments we recompute the gradients because we found
that the disk latency involved in storing the gradient and
retrieving them later is costlier. This is because, recomputing
the gradient requires only a single read of the function values
at the vertices.

7 EXPERIMENTAL RESULTS

We now present results of our experiments on both synthetic
and the hurricane Isabel data set from the Vis 2004 con-
test [26]. All experiments were performed on a workstation
with two Intel Xeon quad core processors, 8GB RAM, and
nVidia GeForce 260 GTX graphics card which has 196 cores
and 896MB RAM. The �rst synthetic data setsine is a
sinusoidal function sampled over a rectilinear grid. The second
synthetic data setwgauss is a 2D Gaussian distribution
centered at the origin and weighted by a radially decreasing
sinusoidal curve. Thewgauss dataset contains large number
of critical points and degenerate regions which help to stress
test our algorithm. We study the performance and scalability
of our algorithm using these two synthetic data sets.

Figure 10a shows the speed up obtained forwgauss sam-
pled on an 8192� 8192 grid for varying number of processors
using the CPU implementation. Time is cumulated over the
�ve stages of the algorithm. The data is processed out-of-
CPU-core (not all data is present in CPU memory) to conserve
memory. The graphs indicate near linear scaling with the
number of cores. We observed a similar execution pro�le for
the sinusoidal dataset with 16384� 16384 data points. The MS
complex was was computed in 3 minutes and 6 seconds.

To study the scalability of the algorithm with input sizes we
conducted experiments with thewgauss dataset computed on

(a) (b)

(c) (d)

Fig. 11: (a),(c) The full resolution descending and ascending
Morse complex for thewgauss dataset for a grid size of
1024� 1024. (b),(d) The simpli�ed descending and ascending
Morse complex simpli�ed upto 10%. As expected the descend-
ing manifolds partition the domain into regions that correspond
to peaks and the ascending manifold partition the domain to
regions that correspond to valleys.

various grid sizes. Figure 10b shows results from the GPU
execution for thewgauss for varying grid sizes and the
corresponding speed up. Here the data is resident in the CPU
memory.

Figure 10c shows results from an out-of-CPU-core execu-
tion on wgauss using the GPU for varying domain sizes.
The size of the sub-domains is restricted to contain 1 million
points. Figure 11 shows the full resolution and simpli�ed
descending and ascending Morse complex of thewgauss
dataset with a grid size of 1024� 1024.

Hurricane Isabel was a strong hurricane that struck the west
Atlantic region in September 2003. We consider a simulation
of this event [26]. The domain is a 3D rectilinear grid of
size 500� 500� 100 available over 48 time steps. We extract
a 500� 500 grid representing the land/sea surface to study
the pressure (Pf), temperature (TCf) and magnitude of wind
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(a) Pressure (b) Wind speed

Fig. 12: Time taken for computing the MS complex for all time-steps for simpli�cation thresholds of 0.1%, 1%, 5% and 10%
for (a) Pressure and (b) Magnitude of wind velocity �elds. Time taken for stages one, three and �ve are shown in the breakup
along y-axis. Stages two and four are not present since the data for each �eld of each time-step �ts in GPU memory. Time
taken for geometry extraction in stage �ve reduces drastically if the MS complex is simpli�ed.

(a) (b) (c)

Fig. 13: (a) The wind speed �eld of the 1st time step over the surface (function normalized to[0;1]). (b) The full resolution
ascending Morse complex (c) The simpli�ed MS complex retains signi�cant critical points. The most persistent minimum
corresponds to the eye of the hurricane.

velocity �elds over time. We compute the MS complex for all
three scalar �elds in each time step using our parallel algorithm
and track signi�cant features in the data. Figure 12 shows
the execution pro�le, along with the stage wise breakup of
time, for the pressure and magnitude of wind velocity �elds,
for various simpli�cation thresholds. Since the data in each
�eld of each time-step �ts in GPU memory, the merge and
history tree traversal stages are not present. We observed that
the time required for computation of the MS complex for most
time steps was below 0.5 seconds. Without simpli�cation, the
time required to compute the MS complex increased up to 6
seconds. However, it dropped below 0.5 seconds for several
time steps once we simpli�ed critical pairs below a 0.1%
persistence threshold.

Figure 13 shows the decomposition of the domain into
ascending manifolds of the critical points of wind speed.
Our implementation supports the interactive extraction of
these manifolds using a parallel algorithm. We simplify the
wind speed �eld within each time step to identify signi�cant
features after removing all the small features. Figure 1 in
the appendix shows the result of this experiment using the
wind speed, where we track the ascending manifold of the
most persistent minimum corresponding to the eye of the
hurricane. Currently, we are able to process each time-step
of the speed within 0.5 seconds for simpli�cation thresholdof

above 5%, thereby supporting interactive analysis of the data.
With additional optimizations we hope to be able to further
reduce the processing time and hence enable real-time analysis
and feature tracking on larger time-varying data.

8 CONCLUSIONS

We have described the �rst parallel algorithm to compute
MS complexes. Our approach is based on two key lemmas
on the gradient-based pairing of cells and critical pair can-
cellations. The algorithm performs well on both multicore
environments like the CPU and massively parallel architectures
like the GPU. We describe fast methods for querying the
MS complex, in particular to extract the ascending / descend-
ing manifolds of a query critical point.

In future, we plan to extend our implementation to three-
dimensional grid and unstructured meshes. The algorithm
can be implemented for multicore CPUs without change.
For GPUs, the key challenge is the design of an ef�cient
parallel BFS procedure. Unlike 2D discrete gradient �elds
that decompose into trees (Section 4.4), 3D gradient �elds
do not. Speci�cally the discrete gradient �eld restricted to
paths that originate at 2-saddles or terminate at 1-saddlesis,
in general, a directed acrylic graph whereas discrete gradient
paths that originate/terminate at extrema form a tree. We
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believe a synergistic approach, using both the CPU and the
GPU should yield good performance.

Our algorithm does not implicitly handle noisy data. This
can be a problem in case of large datasets because of the large
number of low persistence critical points which will have to
be tracked through the various stages of the algorithm. For
large noisy datasets, we advocate the approach adopted by
Gyulassy et al[11], where a �rst round of simpli�cation is
done to eliminate low persistence critical point pairs within
sub-domains before they are merged.

The development of fast parallel methods for other tasks like
creation of a multi-resolution representation and segmentation
using the MS complex are also interesting open problems.
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