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Parallel Computation of 2D Morse-Smale
Complexes

Nithin Shivashankar, Senthilnathan M, and Vijay Natarajan, Member, IEEE

Abstract —The Morse-Smale complex is a useful topological data structure for the analysis and visualization of scalar data. This paper
describes an algorithm that processes all mesh elements of the domain in parallel to compute the Morse-Smale complex of large two-
dimensional data sets at interactive speeds. We employ a reformulation of the Morse-Smale complex using Forman's Discrete Morse
Theory and achieve scalability by computing the discrete gradient using local accesses only. We also introduce a novel approach to
merge gradient paths that ensures accurate geometry of the computed complex. We demonstrate that our algorithm performs well on
both multicore environments and on massively parallel architectures such as the GPU.

Index Terms —Topology-based methods, discrete Morse theory, large datasets, gradient pairs, multicore, 2D scalar functions.
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1 INTRODUCTION 1.1 Related work

Topology-based methods have become very effective for con-

The Morse-Smale (MS) complex of a real-valued functiotfolled simpli cation of features in scalar elds. These the
is an abstract representation of its gradient ow behavibr. ods are primarily based on ideas from Morse theory [19], the
has been extensively studied both within the computatiorgtudy of the relationship between critical points of smooth
geometry and the visualization communities. Researchinvitffunctions and the topology of the domain. The Morse-Smale
the computational geometry community has resulted in bet@omplex partitions the domain into regions. Each region,
understanding of the mathematical structure of the compldg ned by a pair of critical points of the scalar function,
and has led to ef cient algorithms to compute the MS complegg covered by gradient ows between the critical point pair.
for piecewise linear (PL) scalar functions [6], [7]. On théMS complexes were introduced rst to study dynamical sys-
other hand, work within the scienti ¢ visualization comnityn tems [24], [25]. Edelsbrunner et al. [7] rst posed the peshl
has focused on ef cient computation of the MS complex ief computing the MS complex for piecewise linear functions
practice [4], [11], [13], [14] and effective application the de ned on two-dimensional manifolds. The function was sam-
analysis and visualization of 2D and 3D scalar elds [12]f]1 pled at vertices of a mesh that represented the domain and
Data sizes grow faster than processor speeds resulting inliagarly interpolated within mesh elements. They intetgue
ever-present demand for better algorithms to process ttae déhe piecewise linear function as the limit of a series of sthoo
In this paper, we describe a parallel algorithm to compufenctions and hence used ideas from Morse theory to classify
the MS complex. Our algorithm utilizes the multiple coresritical points, follow gradient ows, and compute cells of
available in the CPU and GPU of a typical desktop computérquasi MS complex whose bounding arcs are restricted to
to compute the MS complex of large two-dimensional datefges of the input mesh. The combinatorial structure of the
consisting of several hundred million vertices, within avfe quasi MS complex was proved to be identical to that of the
minutes. MS complex. Henceforth, we refer to the quasi MS complex

The de nition and computation of the MS complex forSIMPlY as the MS complex. A similar approach was employed

sampled functions requires gradient / steepest path comfficonstruct MS complexes of three-dimensional functi@js [
tation and path tracing, which is inherently serial in natur ©h@nges in the topology of isosurfaces of the scalar functio
We prove two lemmas on gradient ow paths and symboliﬂu”ng a sweep of the domain correspond to the features of

perturbation that lead to an algorithm for computing théscel'ntereSt'_ Pairs of critical po.ints represent the creat.iml a
of the MS complex in a few massively parallel steps. destruction of the feature during the sweep. Hence, tojabg
simpli cation refers to the removal or cancellation of a pai

of critical points.
Bremer et al. [4] focused on ef cient computation of the
MS complex, building a multi-resolution representatiorttod
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the MS complex. Later approaches [12], [13] especially fahe MS complex is computed during the merge step. The
three-dimensional functions, were based on repeated kkangeometry of the cells of the MS complex is computed in a
lations applied on an arti cial complex created by incluglin subsequent traversal of a history tree that records theeaserg
dummy critical points. The cancellations were approplyateThe correctness and ef ciency of the algorithm is based on
scheduled in order to remove the dummy critical points legwvi two key lemmas that are valid for all dimensions:

behind the true critical points and cells of the MS complex.  The Order Independent Pairing Lemma, which states that

The scheduling of the critical point pairs for cancellatjays the discrete gradient pairs that de ne the gradient eld
a crucial role both in determining the quality of the resultda can be computed independent of the order in which the
the ef ciency of the algorithm. cells are processed.

Forman developed discrete Morse theory, an analog of The Order Independent Cancellation Lemma, which
Morse theory used to study cell complexes and discrete states that the geometry of the gradient ow is computed
functions de ned on them [10]. King et al. described a method  correctly independent of the order in which the critical
for computing a discrete function on a mesh given a function point pairs on the sub-domain boundary are canceled.
sampled at mesh vertices while guaranteeing that the ##scrgye discuss novel implementation strategies to ensure tieat t
gradient eld agrees with the large-scale ow behavior 0eth massive parallelism available in GPUs is fully utilized. We
input [16]. Reininghaus et al. [21], [22] discuss an appil@a 4|50 describe parallel methods to query the 2D MS complex
of discrete Morse theory to analyze vector elds. Bauer @br feature identi cation and visualization. We demonstra
al. [1] discuss computing simpli ed functions on surfaces!s sing synthetic and real-world data that the algorithm i ab
that the input function is modi ed by no more than a thresholg, compute the MS complex of very large data sets that do
d and all surviving critical point pairs have persistenceaie not t in main memory. We also discuss an application of our

than 2. Discrete Morse theory has also been successfully usggorithm to ef cient processing and tracking of features i
to compute the MS complex of piecewise linear function$p time-varying data.

Early work based on this approach by Cazals et al. [5] and
Lewiner et al. [18] demonstrated applications to segmamntat 1.3 Outline

visualization, and mesh compression. More recently, Gayla _
et al. [11] employed this approach for ef cient computati Section 2 presents the necessary background on Morse-Smale

MS complexes of large data that do not t in main memory;omplexes and topological simpli cation. Section 3 presen
», congpu &N overview of our parallel algorithm and Sections 4-5 de-

They partition the data into blocks called “parcels”, i X , ) , ) )
gradient ows on the boundary of the parcels, propagate i&ribe the algorithm in detail. Section 6 discusses imple-

ows to the interior and compute the MS complex restricteﬂqentation details and Section 7 presents experimentaltsesu

to the parcel. The critical cells created on the boundary ar&ction 8 concludes the paper.

canceled during a subsequent merge step resulting in the
MS complex of the union of the parcels. This method scalds BACKGROUND
well for large data. However, the geometry of the MS complekhis section reviews the necessary background on Morse func
computed using this method is sensitive to the order tbns and discrete Morse functions required for the alparit
cancellations chosen during the merge step. description.

Robins et al. [23] proposed an algorithm to compute
the Morse complex of 2D and 3D grayscale digital images1 Morse functions

modeled as discrete functions on cubical complexes. While) _<ijar a smooth scalar functidn R"! R. A point p2 R"

the algorithm computes the Morse complex with provablg ., eq acritical point with respect tof if the gradient of
guarantees on its correctness with respect to the critalid,c

it does not guarantee the geometric accuracy of the complex. . 7t qf 7t

Further, the algorithm does not scale to large datasets. Nf = 1771;777)(2;:::;% ;

In summary, the above mentioned methods are slow because | . o ,
(a) they compute and trace the gradient serially or (b) dd |dent|c_ally zero atp. A critical point is non-degenerate !f
not guarantee that they trace the correct geometry of tHi¢ Hessianof f, equal to the matrix of second order partial
gradient ow. We address the former shortcoming by designiﬁjer'vat“_’?s’ IS n.on—smgular. We cdllla Morse functionif all
a massively data parallel algorithm and the latter by enguri©f itS critical points are non-degenerate.

that we reproduce the gradient ows independent of the cehoic,The index of a cr|t|cal_p0|nt IS the ”“mbef of neg_atwe
of partition. eigenvalues of the Hessian matrix. Amtegral line passing

through a poinp is a one-dimensional cuntfe R! R", where

%I(t): Nf(l(t)); 8t2 R andl(0) = p. In other words, itis a
1.2 Results maximal curve inR™ whose tangent at every point equals the
The main result of this paper is a parallel algorithm to cotapugdradient off at that point. The functiori increases along the
the MS complex of a two-dimensional scalar function. wisiteégral line. The limit points of integral lines,! ¥, are
partition the domain into sub-domains, compute gradiemso the critical points off. _
within each sub-domain, and merge the gradient ows while The set of all integral lines that share a common source
merging the sub-domains. The combinatorial connectivity ®= ,/im, 1(t), together with the poinp, is called theascending



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, SEPTEMBER 2010 3

the MS complex. This cancellation corresponds to the reinova
of the feature represented by the critical point pair. Fegtu
are ordered based on the notion persistenceequal to the
absolute difference in function value between the two aalti
points. Persistence measures the importance of a critigat p
pair [8]. More sophisticated measures of importance based o
persistence have also been described in the literaturee Sin
the focus of this paper is on the computation of MS complex
and not necessarily on ef cient simpli cation, we restrigtir
discussion to the persistence measure. The least petsisten
critical point pair is always connected by an arc in the
MS complex [7].

Simpli cation of a pair of critical points can be achieved
by a local smoothing of the function in the neighborhood
of the two critical points, more precisely within the ascend
ing / descending manifolds containing the critical points.
The cancellation is realized by updating the 1-skeleton of
the MS complex. For example, consider the case of a two-
dimensional Morse-Smale function after a maximum-saddle

(c) Descending manifold of a maeh) Combinatorial structure of the  cancellation. The 1-skeleton is updated by deleting the two

imum. MS complex. nodes, deleting the arcs incident on the saddle, and r&gut
Fig. 1: (a) A Morse-Smale function shown as a height eldhe arcs incident on the maximum to the surviving maximum
over a two dimensional domain. Critical points are shown i&djacent to the saddle (see Figure 2). The embedding of a new
red, green, and blue corresponding to maxima, saddle, aard is obtained by extending the old arc along the arc between
minima, respectively. (b) The reversed integral lines o tithe maximum and saddle. We allow only those cancellations
function over the surface. (c) The descending manifold ofthat can be realized by a local smoothing of the function.
maximum shown as the closure of the set of reversed integfdilis is feasible if the pair of critical points is connecteg &
lines that originate from the critical point. (d) Combina& single arc. Canceling a pair of critical points that are ewtad
structure of the MS complex where nodes are critical poiniy two distinct arcs in the Morse-Smale complex results in a
and connecting integral lines are arcs. strangulation which cannot be realized by a local smoothing
of the function.

P y

(a) Morse-Smale function and its (b) Reversed integral lines.
critical points.

manifold of p and the set of all integral lines that shar
a common destinatiomp = I|m I(t), together with the point _
p, is called thedescendlng manlfold)f p. The ascending Earlier approaches to compute MS complexes were based on

manifolds of all critical points partition the domain. Slanly PL extensions of functions sampled at ve_rtices of simplic;ia

the descending manifolds of all critical points also pamtit complexes [6], [7]. Though we adopt_ the d|scr<_ate formutatio

R". The Morse-Smale compleis a partition ofR" into cells of MS complexes for our computations, we mtroducg here
ome notions of PL function so that we may establish the

formed by the collection of integral lines that share a comma&
source and a common destination. closeness of our approach to the PL approach. For further

The ascending manifold of a critical point of indek reading on the basi_c notions of algebraic topology, we rifer
is a(n d)-dimensional manifold, where as its descendingader to the classic text books by Munkres [20] and Hatcher

manifold is ann-dimensional manifold. A Morse functiof is
called aMorse-Smale functioif all ascending and descending
manifolds of two critical points intersect transversalljus,

if the index of two critical points differ by one then thei

9.3 Piecewise Linear(PL) Functions

A function f sampled at vertices of a simplicial complex
may be extended to form a continuous function that is linear
ron every cell. Thestar of a vertexv is the set of simplices

ascending / descending manifolds either do not intersect IBFident onv. Thelink of a vertexv is the set of faces of cells

intersect along a one-dimensional manifold connecting t# the star ofv, that are not incident om. The lower star of
critical points. The critical points, referred to asdes along vertexv is the set of cells in the star where the PL extension

with the 1-manifolds that connect them, referred toaass —assSumes values lower thdifv). Thelower link of a vertexv

form the 1-skeleton of the MS complex, which is referred ti$ the set of faces of cells in the lower star\ofthat are not

as the combinatorial structure of the complex. incident onv.
The Betti numbersof a cell complex,K, are a useful

o characterization of the underlying space of a cell complex.
2.2 Simpli cation They are de ned for eactk = 0;1::;dim(K) and denoted by
A Morse-Smale functionf can be simplied to a smoother by. Intuitively, by counts the number of componentskof by
function by repeated application of a cancellation operati counts the number of tunnels K and b, counts the number
that removes a pair of critical points connected by an arc @f voids of K. The reduced Betti numberdenoted byb, and
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space homeomorphic todball BY = fx2 E9:jxj 1g. For
example, a vertex is a 0-cell, an edge between two vertices is
a 1-cell, a polygon is a 2-cell, and in generad-@limensional
polytope is ad-cell. We will restrict our attention to cells of
the above kind, which can be represented by a set of vertices.
A cell a is afaceof b, denoteda < b, if a is represented
by a subset of vertices di. The cellb is called acofaceof
a. Afacea is called afacetof b if a < b anddim(a)+ 1=
dim(b). In this caseb is a cofacetof a denoted byal b.
The set of zero-dimensional faces of a cellis called the
vertex set ofa denoted by;.

A cell complex Kis a collection of cells that satis es two
properties: (a) l&a belongs tK then so do all faces af, and
(b) If a1 anday are two cells irK then either they are disjoint
or they intersect along a common faceregular cell complex
is a cell complex in which, given two incident cellgd*1
andg® 1, there are exactly two celis{;ad such thatgf ! <
a;ad < b. In this paper, we consider only nite regular cell
complexes. Altration of a cell complexK is a sequence of

(a) MS complex and reversed integ(al) Canceling a pair of critical points
lines

cell complex,K, is the cell complexX, andK; is obtained by
(c) Combinatorial realization (d) Geometric realization attaching one or more cells t§ 1 for i = 1::n.

Fig. 2: (a) MS complex for a simple height function. (bx/eNOte that asimplexis a d-cell which has exactlyd + 1

Canceling a pair of critical pointsy, pi1, of indexi, i+ 1 rtices in its vertex set. Aimplicial cell complexs a cell

that are connected by a single 1-manifold. (c) Combindtori\%ggg‘laix :&hfse t(r:iill LS I:;d'ti'?;hlsé?gﬂn?n;g“gﬁs :L;?r: b?ii
realization: connect all indek critical points {\},, ) that are » £ages, ges, :

. : o, i+ 1 i+1, complex is also a regular cell complex.
connected tg;. 1 excepty, o indexi+ 1 critical pomts .Nqi .) Given a regular cell compleK representing the domain, a
that are connected tp exceptp;+ 1. (d) Geometric realization:

compute the union of the descending manifoldppf, with ]tg?;tl|lodn fc'elﬁs'aﬁzlisald to be adiscrete Morse functioif

the descending manifolds of QII index+ 1 cr?tical po.ints if b 1] ad< b1 and f(b) f(a)gj 1 and
conr)ected t@y. Compute thg union the e_lscgnd[n_g man!fold of if 1jg! '<aandf(g fa)g L

g with the ascending manifolds of all indéxcritical points

connected ti+ 1. A cell a9 is critical if

jfpd*ljad< p™* 1l andf(b) f(a)gj= 0 and
ifg tig t<aandf(g f(a)gj=0
dened for k= 1,0;::;dim(K), is exactly the same abic A discretevectoris a pairing between two incident cells that

for all k= 1;::;;dim(K). The zeroth reduced Betti number isgiffer in dimension by one. Adiscrete vector eldon K is a
bo 1if bo> 0 and O otherwise. Alst 1= 1if bo= 0 and set of discrete vectors such that every celKirs represented

0 otherwise. . _ in at most one pair of the eld. A/-pathis a sequence of
Reduced Betti numbers of the lower link can be useg|s
to classify a vertex of a simplicial complex as non-critical ad;bd* L ad;pd i ad; b Al

(regular) or critical and to further classify critical vieds.
A vertex in a 2D simplicial complex is said to be regular iSuch thata andag, are facets ob® ! and @ b™ 1) is a
all b¢'s of the lower link are zero, minimum ib_; = 1 and vector,i = 1.:r. AV-path is called gradient pathf it contains
bo= by = 0, simple saddle ip= 1 andb 1= by =0, and NhO cycles (see Figure 3). discrete gradient eldis a discrete
maximum if by = 1 andb 1 = b = 0. Critical points with vector eld that contains no non-trivial closed-paths. We
bo> 1 are called multi-saddles. refer to discrete vectors in a discrete gradient patbradient

The weak Morse inequality is a classic result of Morspairs.
theory which states that, given a Morse functibnde ned Maximal gradient paths of the discrete Morse function
on a manifold, the number of index critical points of f is correspond to the notion of integral lines of Morse funcsion
greater than or equal to tHd" Betti number [20]. Forman Ascending / descending manifolds are similarly de ned for
established the analogous result for discrete Morse fomsti discrete Morse functions.
[10].

2.5 Simulation of simplicity

2.4 Discrete Morse functions Simulation of simplicity (SoS) is a programming technique
Discrete Morse theory was developed by Forman [10] to stutlyat allows us to cope with degenerate data for many gearnetri
the topology of cell complexes. A-cell a? is a topological algorithms [9]. In the context of Morse-Smale complexes
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Fig. 3: A discrete Morse Stage 1.Split the domain into sub-domains. Compute the
function de ned over a discrete gradient on each sub-domain. Compute the

2029 1*7 14 2D cell complex. The combinatorial MS complex on each sub-domain.

o o gradient pairs are shown Stage 2. Merge the combinatorial MS-complexes of each

oy — as arows oriented to- of the sub-domains.
@ 30 wards the higher dimen- Stage 3.Simplify the MS-complex
-~ 5,&{; sional cell. Dashed red Stage 4.Traverse the history of merges in reverse order

m 29 N 28 in 2IMOWS denote edge-quad to determine the incidence of geometry of ascend-

pairs and solid blue ar- ing / descending manifolds of critical points that are
¥ i 28 rows denote vertex-edge outside the sub-domain.

N o e pairs. Critical cells are Stage 5.Extract the geometry, restricted to the sub-domain,

~ 25 © 24 < shown in red (maxima), of the ascending / descending manifolds of critical
green (saddle), and blue points (that lie possibly outside the sub-domain).

1‘»7 4»2 o (minima).

Section 5 discusses the strategy to merge the sub-domain
pieces. Essentially, we mark gradient pairs that cross a com
mon boundary as critical. This enables us to identify these
airs as critical points of the MS complex of both sub-dorsain
Erform a merge, and simplify them away. We show that the
S complex is combinatorially and geometrically unaltered

the merge procedure. Furthermore, we show that the order

we require that the function be nowhere at to ensure no
degeneracy. Implementing SoS is simple in this case.

simulate a non-degenerate function using the availableror
of vertices in the storage device and hence consistenthves b

comparisons when function values at two vertices are equ ‘these cancellations do not alter the resulting MS complex

In the following sectllon we assume théfx) 6, ) for_ all Since the number of gradient pairs crossing common bound-

vertu;esx@ y. We dISCUSS' how to extend t'h|s tec'hnlque WBries is signi cant, storing the geometry of the ascendidg-/

obtain a total order on all input mesh cells in Section 4. scending manifolds of these critical points along with the
combinatorial connectivity data strains memory requiretse

3 ALGORITHM OVERVIEW We propose an alternate scheme, whereby we traverse the

aéﬂstory of merges in reverse order to infer the geometric

towards the design of a parallel algorithm to compute the N%)ntribution of the canceled critical po?nts o survivingical
complex for two-dimensional scalar functions. When therentipo'ms' Stage 1 and 5 can proceed in parallel on each sub-

dataset ts in memory, the MS complex is computed by atWod_omain whilst the other stages merge sub-domains and thus
step algorithm: ' proceed hierarchically.

. . . In both cases of small and large datasets, the algorithm to
Stage 1.Compute the discrete gradient on the domain. ompnte the discrete gradient pairs works for higher dimen-

Stage 2Compute the combinatorial MS-complex and thgigna| gata also. However, for massively parallel envirents
geometry of ascending / descending manifolds @ sypsequent stage of the algorithm, which traverses the
critical points. gradient eld, is restricted to 2D datasets.

Section 4 discusses in detail how a discrete gradient eld

based on the scalar function is computed and how that4S MS cOMPLEX ALGORITHM

used to extract the combinatorial structure of the MS-cempl Wi d i lorithm t te the MS |
Speci cally, a technique to extend a scalar function samhple € now describe our aigorithm to compute the complex
at vertices of a regular CW-complex to a totally ordere nder_ the assumption that the dataset ts in memory. We rst
discrete Morse function is discussed. The de nition of thi esprlbe a cgnonlcal extension gf scalar functions samgtled .
function for a CW-cell relies only on the scalar values of jrgertices to _dlscrete 'V'°r$e functions an_d demonstrate why it
vertex set. This motivates a massively parallel algoritlum S not a §U|table extension for computing the MS _compl_ex.
determine discrete gradient pairs (of CW-cells). The etiva ext, we introduce a we|ght_ed discrete Morse function which
of the qualitative structures of the MS-complex using thaatis es a key property leading to an algorithm that comgute
radient pairs in parallel. We discuss how the gradient eld

discrete gradient eld and a simple BFS algorithm is the . . o
discussed. The BFS algorithm, being serial, does not sagle e ned by the collection of gradient pairs is used to extract
' ! the MS complex. Finally, we analyze the computed gradient

to massively parallel environments. For this case, we dascr .

an alternate method for traversal which is applicable oaly teld and argue for its correctness.

2D datasets. We corroborate the relevance of the computed _

MS complex by arguing the closeness of its critical pointd1 Discrete function

and gradient pairs to the PL formulation of critical pointela Given a regular cell compleX with vertex setV and a

gradients. scalar functionf : V! R, a canonical extension of to a
For large datasets that do not t in memory, a split andiscrete Morse functiorfy : K! R, is de ned recursively on

merge strategy is adopted. The gradient computation pdscea cell a as Fy(a) = max<a Fg(s)+ e, wheree> 0 is an

without change. The algorithm for large datasets is sptit inin nitesimally small real value [11]. Extending the funoti

ve stages: f in this manner results in all cells becoming critical with

In this section, we present an overview of our appro
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Fig. 4: The weighted dis- e 8 + 5e e 84 Te 0 t o 1
crete function is de ned re- al
A G cursively as a weighted sum 5 9+ 9 o 7 t‘jt‘,!
of the function value at faces Z 2(5 4 4¢) ; 27 60 g ’ ’
Go andG;. Faces3g (in red) ¢ X X

~

. 4 9+ 4 9 9+ 6 6
shown. The function value at 4 t ‘ L

X ! X 4 + +F
vertices increases along the 3¢ €B+2) o €@2+19 .

e vertical axis.
0 @ = @

(@)

/6 /. >/0\. andG; (in blue) for an edge, 9+ de e 91 6e G )
¢ .Q\ . / triangle and quad cells are

i TSe Y ™y

\\\\: //4 ‘////—”/_7,,/

respect to the discrete Morse functiég. This implies that

each cell in the input is essentially a cell of the MS complex. ©

Further, newly introduced critical cells that are incidemt Fig. 5: (a) A scalar functionf, de ned on the vertices is

each other can be canceled using an in nitesimally smafcusively extended to a discrete Morse funcfignThe value

persistence thresholglto create are-persistent MS complex. of Fy is shown for each cell. (b) Gradient pairs determined

The motivation for extending the functiohto F4 is that the by algorithm AsSIGNGRADIENT. (c) The combinatorial MS

MS complex can be computed via repeated cancellations asfmplex computed using a BFS traversal on the gradient eld.

e-persistent pairs. The collection efpersistent critical point

pairs are viewed as a pairing of incident cells or discrete Gi(a%) = argmax  Fu(Q):

gradient pairs. The pairs are represented by arrows from g<adivg f

the lower dimensional cell to the higher dimensional cell

indicating descent. These pairings constitute a discretignt Vo,(a) is the vertex set ofsp(a?), and argmax denotes the

eld. Gyulassy et al. [11], [13] compute the MS complex viavalue of the argumeng that maximizes the function. Similar

a sequence of cancellations of teepersistent critical point t0 Fq, Fy is also equal tof at mesh vertices. The weighted

pairs. However, this approach does not necessarily compugégsion of the discrete function ensures that when two cells

paths of steepest descent. Consider the case when two céli@re a common face whose function value is the maximum

by; by, share a common facet such thatFq(b;) andFq(b,) among both face sets, then the tie is broken using the second

are written as maximum face whose vertex sets are disjoint from the above

common face. See Figure 4 for the de nition of the weighted

Fa(by) = Fa(a) + € discrete function for some common cell types. Figure 5a show
Fa(b2) = Fa(a) + e. the expansion oF,, for a function sampled on a 2D grid.

Either one ofb; or b, can be paired witka. For both pairs,  Go(a®) is necessarily @ 1 cell. This is becausg, of any

the difference in value oFy is equal toe. The tie is broken d 1 face ofa? is greater than all faces incident on ttie 1

arbitrarily in this case. cell. Thus, thed 1 cell that maximizess, will have higher

function value than all faces @f9. Also G1(a) must exist for

all cells withd > 0. Theoretically, we requir&,(Gy(a?)) to

be strictly positive to ensure that its value at cofacetséatpr

We now describe a method to extend a given real valugghn at the facet. This assumption is valid if we rescale the

function (f) on the vertex set\) of a given meshK) to range off to [0+ d;1], d 2 (0;1). In practice we obtain the

a function ) that is dened on all cells of the mesh.qrder on the cells via a symbolic comparison and do not need
We show that this function is a discrete Morse functiogy explicitly computer,.

and that it imposes a total order on the cells. Since the

algorithm for computing the MS complex requires only thg 5 o Fw is well de ned and totally ordering
order between cells, we describe a symbolic comparator tlf%[r
does not explicitly compute the function value. We assumﬁ]e
that the input vertices are totally ordered based on thetin
function speci ed at the mesh vertices.

Veg(ad)™

4.2 Weighted discrete function

Fv to be well de ned we requirésg, G; to be unique.
cellsGo(a®) and Gy(a9) for a givena¥ are unique if
F]HW induces a total order on all cells of dimension less than
This suggests an inductive proof, which we outline below.
Since f(x) 6 f(y) for all x6 vy, F, is well de ned and
induces a total order on all zero-dimensional cells. Now,
assume thak, induces a total order on all cells of dimension
less thard. We will show that we can order two celisl; ad

4.2.1 De nition of F

We de ne a weighted discrete functidf, on ad-dimensional
cell a9 recursively as

Fu(a®) = Fu(Go(a®))+ 4 Fu(Gi(a?)); or ad;ad’ whered’< d anda; 6 a,.
h _ i nitesimall Il bositi | b Let Go(al) = ¢ and Gi(ad) = @. We haveF,(af) =
wheree is an in nitesimally small positive real number, Fu(a) + € Fu(Gu(ad)) and Fu(al) = Fu(g)+ &
Go(ad): argmax@y(g), and FW(Gl(ag)). Assume thatg 6 @. Cells g¢ and g have

o< ad dimension less thard and can therefore be ordered. We
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choose e to be arbitrarily small, so that the comparisorcollection of cofacetsh, of a such thata = Gg(b). In other
of FW(af) and F(ag) is dominated by the comparison ofwords, P, is the set of cofacets o where a is the facet
F(q) andF(@).i.e. Fu(a) < Fu(a) ) Fa(ai) < Rw(az) and with the maximum value oF,,. Figure 5b shows the gradient
Fu(a) > Fu(@) ) Fw(ai) > Fu(az). eld determined by the algorithm ASIGNGRADIENT for the

If g = @ then the second term induces an orderan function in Figure 5a.

it dg Ad d d
anda,. Note that ifa; 6 a; thenGi(ay) & Gi(ay) because ORDERINDEPENDENTPAIRING LEMMA. The pairing deter-

K is a cell complex. This is because if twddimensional . . .
cells intersect they do so along a single common cell whomeIned by the algorithmhSSIGNGRADIENT is independent of

dimension is less thad. The cellsa{ and ag“ can be ordered "¢ qrder _in \.NhiCh cells are procgssed. In_ par_ticular, i Ef“ ce
using a similar argument. Thus, the weighted discrete fanct a pairs with its cofaceb thenb will not pair with any of its

i : cofacets.
Fy is well de ned and induces a total order.

Proof: Inconsistencies occur if the algorithm determines

4.2.3 Symbolic comparison of cells two or more pairs for the same cell. A cell present in two
We essentially require only an ordering of cells knand pairings can be of the natufa;b),(a;b9 or (a®b), (a;b)
not the explicit values ofyy. We now describe a method toor (g;a), (a;b) wheregl al b.
establish this order using comparisons. This rst con ict is trivially not possible because for a del

The value offF(a) is equal to the weighted sum &f, at a a we determine a unique pair from a set of candidate facets.
subset of the vertices @. Further, sinc&g(a) andGy(a) are In the second case, b were to be paired with two different
also vertex disjoint, no vertex appears more than once in tfagets,a anda® thenb 2 P;:P,0. But, from the de nition of
above sum. Replace the coef cient Bf(G1(a)) to e'(¢1(&) | p. we know thatGo(b) is unique and equal to eithar or a°
whereT(a) is equal to the number of terms in the weightedherefore,b must either belong t®, or to P,0 but not both.
sum of Ry(Gy(a)). It can be easily veri ed thaf, remains So, b is paired either witha or with a°
well de ned and induces the same total order. This is becauseTo prove that the third con ict does not arise, we show that
T(a%) d. The functionF,(a) is therefore expressed as df a pairs with one of its cofacets, thena is not the lowest
weighted combination of the function values at a subset phirable cofacet of any of its facets. b = Ming(P;) implies
Va. Thus, the ordering of cells follows from a lexicographicah & Ming(P,) for all gl a. This will imply that if a paired
ordering where a cela is represented as an ordered list ofvith b, then it is not paired with any other cejl Consider a
vertices,S;, which is a subset of the vertex set,. facetg of a, gl a. If a 2 R, then there is nothing to prove

In the case of simplicial complexes, this ordering is eqaal because the algorithm will not paiy with a. Now assume
the sorted order of all vertices. For quad cells in a re@din a 2 P;. For a regular cell complex, if is a face of a celb
mesh, it is the ordered vertices of the edge with highestevalguch thatdim(g) = dim(b) 2, then there exists exactly two
of Fy followed by the ordered vertices of the edge disjointells s1;s5 such thatgl s1l b andgl s»| b. Without loss
from the rst edge. This ordering of vertices is a speci cof generality, we relabe$; s, asa;a® Since(a;b) form a
permutation of the vertex set. Similarly the ordering foheee pair and not(a®b), we haveF,(a% < Fy(a). Hence, it is
dimensional cube mesh is a speci ¢ permutation of the vertexf cient to show thata®2 Py
set. Note that it is not necessary for the $gtto contain Assume that°2 Py. There existg6 g2 K such thatgI
all vertices ofV,. For example, the size d&; will remain  2%anda®2 Pp. This impliesFu(g®) > Fu(g). SinceFy(a) =
four for a hexagon cell in a hexagonal tessellation of the twg,(g)+ e andFy(a% = Fu(9)+ e we haveRy(a) < Fu(a9.

dimensional plane whereas contains six vertices. This is a contradiction. Hence, we haa&2 Py and Fw(a9 <
Fw(a). So, if(a; b) is a pair thera 6 Ming(Py) for anyg< a,
4.3 Computing gradient pairs which implies that there is no such pdiy; a). O

We now outline our algorithm that computes gradient pairs

using the comparator based weighted discrete functioneté n4 4 Computing the MS complex
above. We prove that the pairs found by the algorithm ar . . .
unique and independent of the order in which the cells aﬁnce the discrete gradient eld is computed, the descend-

e . ! . .
considered, thus providing scope for parallelizing theoalg'ng / ascending manifolds and the combinatorial MS complex
rithm.

are extracted as a collection of gradient paths. The deswend

manifold of a critical point is equal to the closure of all

A|gor|thm 1 ASSIGNGRADIENT (Ce” Comp|exK) gradient pathS that Originate from that critical pOint. ghi
is computed using a breadth rst traversal of gradient pairs

1: forall a2 K do o .. . : . .

2 Py=fbjal b anda = Gy(b)g beginning from the critical point. The ascending manifadd i

) a the closure of the set of gradient paths that terminate atemgi

i_ i bPa_ SM’;n t(hF()er; critical point. This is computed using a breadth rst trasedr
' N Flra of reversed gradient pairs beginning from the critical poin
5 pair_cells @,b)

A combinatorial connection between any two critical cedls i

established if there is a gradient path that connects them.
In the above algorithma denotes a cell in the compldg, Figure 5¢ shows the combinatorial MS complex extracted

andb is a cofacet ofa, denoted byal b. The setP, is the from the gradient eld shown in Figure 5b. For multicore
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environments, multiple BFS traversals from critical peiate b Nt b
launched. The number of parallel BFS traversals launches ‘ ‘
usually depends on the number of cores. [ Y H
Since the BFS algorithm is essentially a serial algorithm %
we adopt a different strategy in the case of massively parall / ‘I ‘ I
environments. This strategy is applicable for 2D discrete ® ® ° ®
(@) (b)

gradient elds. 2D discrete gradient paths that originate a

maxima split but do not merge and discrete gradient paths ) ]

that terminate at minima merge but do not split [5]. Thug;i9- 6: (RLST (cells in purple) andLLK (cells in dark gray)
every gradient pair on a path from a maximum is immediateg)‘ a vertex,_for_ a function sample_d at the vertices. Othels(_:el
preceded by a unique source which is either another gradiéf¢ Shown in light gray. (b) Gradient vector pairs and altic
pair or the maximum. Similarly, every pair on a path t&ells determined by the algorithms&IGNGRADIENT.

a minimum is succeeded by a unique destination which is

either another gradient pair or the minimum. The traversal . .

is now posed as an iterative search for the source/destmal imilarly, de ne e-lower link (eLLK) of a vertexv to be the

extremum of every gradient pair. For completeness, maximat of faces of cells ireLST(v) that are not incident ow.

are their own source and minima are their own destinatioWe show that any gradient algorithm that pairs cells within

Each work item (thread) is mapped to iteratively determintE'_G_‘;’LIO\Ner s_tar of a vertex mgst_ retain at least , |_ndexk
the eventual source/destination of a gradient pair. At wve?r't'cal cells inel ST(v), whereby is the reduced Betti number
iteration the source of gradient pairs that are on gradiatitg of eLLK(v).

originating from a unique maximum is updated to the source _ofWe rst _clalm;hat(ge_ ItratlolndK I|:ndt1;]ced by attachllng c?rl]lst
its source. Similarly, the destination of gradient pairattare IN Incréasing order o IS a valid. Furthermore, we claim tha

on gradient paths terminating at a unique minimum is updatgbe cells meLS_T(v_) are ordered contiguously . The rst
to the destination of its destination. The iterations stdpemw part of the claim is true because faces of a cell always have

all pairs nd their unique source or destination. For a patprmctlon value lower than that of the ceI.I (by de n|t|pn of
) and therefore appear before the cell in the ordering. For

of length n, the rst iteration updates each node's source t .
the gradient pair at a distance two. The next iteration prdalt e second part, consider agff 2 eLST(v). We can express

it to the gradient pair at a distance four. Thus, the proce’é‘éﬁ(gi) as
terminates inogy(n) steps. Though the worst case asymptotic d
complexity of this traversal islog,(n), in practice we observe Fu(d”) = Fa(G(d") + é ¢ Fa(Gi(GH(d")
that traversal requires lgfn) time due to the parallelization. =1
The combinatorial MS complex is computed by querying they successively rewriting the leading term. Sigfe eLST(v)
source/destination of gradient paths that originatefieate we have thaGg(gd) 6 v. By writing the expression fol, for
at facets/cofacets of saddles. The geometry of extremaais cells s®2 eLST(v) in the above form, the comparison
available as a disjoint set of trees rooted at them. Howdver, of ¢° and s% will be dominated by the comparison of cells
geometry of saddles is not directly available and is exérctGd(of') and GZ°(s%"). Henceg® would precede or succeed all
by serial BFS traversals. cells of eLST(v).

Next we observe that algorithm $SIGNGRADIENT pairs
cells within theeLST of a vertexy, i.e. if (a%;s%*1) is a pair

_ _ then botha? and s+ belong to thee-lower star of some
In this section, we argue for the correctness of the MS complgertexy and no other vertes?. This follows from the de nition

computed by our algorithm. Speci cally we show that theyt ¢ ST and Gl Thus the same pairs are determined for a
computed critical points and gradient pairs are close tsethogiven e-lower star attached to a givemlower link regardless

4.5 Analysis and Correctness

of the PL function. of other cells in the cell complex.
N N . Consider the hypothetical situation where a veréxyre-
4.5.1 Closeness of critical cells to PL critical points cedesvin the ltration such thateLST(\V9 is a duplicate of the

The weighted discrete functioR,(a®) is de ned recursively. eLST(v) attached taeLLK(v). We will relate the reduced Betti
In order to obtain a simple expression, we introd@igad) numbers ofeLLK (V) to the increase in the Betti numbers of the
that allow us to unravel the de nition oFy(a%) up to complex after attaching and itse-lower star (See Figure 7).
i levels of recursion. LetG'O(ad) denote theGp function Let Ky denote the cell complex obtained after attachibgnd

appliedi ( 0) times on a cella®. For example,G%(ad) = its e-lower star. Since the gradient pairs are determined within
Go(Go(a%);G3(a’) = a¥. De ne e-lower star of the vertex the eLST(v), they are not affected by gradient pairing in the
v as the set of cells 9 such thatv= Gg(s): rest of the complex. Assume that the gradient eld is optimal

in the sense that the number of critical points of iné€ry) is
exactly the same as thé' Betti number fy). In this scenario
We note that ifK is a simplicial complexy is a vertex and the the net effect of attachingLST(v) is the creation oby (k+ 1)
function is a PL extension of samples at the vertices, then tbycles. For example ib 1(eLLK(v)) = 1, attachingeLST(v)
e-lower star ofv is exactly the lower star of (See Figure 6a). would create a new component. In other words it increases

eLST(v)= fs92 K jv= Gi(s%g
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® Fig. 7. A cell complex

( where a duplicate of

A A\ eLST(v) precedes in the

© ity 2 Itration and is attached
@ 10 eLLK(v).

the by of Ko by one. Similarly if50(eLLK(y)) = ¢, attaching

eL ST(v) would increasd; of Ky by c. If by(eLLK(Vv)) = 1,

attaching eLST(v) would increaseb; of Kw by 1. Thus

attachingeLST(v) causes an increase ik of Ky by by 1. ()
Since the gradient eld was optimal beforelLST(v) was

attached,n¢ should increase by at leask | to satisfy the

weak Morse inequalityrg  by). Since the only new cells

were that ofeLST(v), the new critical points must be present

within the eLST(V).

This result shows that PL critical points are approximated
by a critical cell incident on the PL critical vertex. Furthe
more multi-saddles are also approximated with the appatgri
number of critical cells.

4.5.2 Steepest descent (b) (c)

Consider a PL function de ned on a simplicial complex whosgig. 8: (a) Gradient eld of the functionsin(x) + sin(y)
function value at vertices is known. The gradient pairingvaluated at mesh vertices. (b) Close up view of the gradient

algorithm will attempt to pair a cela® with a cell s%,  g|d. (c) Discrete gradient vectors for function sampled at
wheres 91 is a simplex formed by adding a vertex\g and vertices.

the new vertex has function value lesser than all vertices in
V,. For every point ora9, the gradient of the PL interpolant
is oriented towards the new vertex. Hence the gradient linegyure 9). The data is rst hierarchically partitioned irsab-

originating from the interior ofa®, are oriented towards the domains blocks. The partitioning stops when the sub-dosnain
interior of s9*1, Because of the discontinuity of gradients ofre small enough to t in memory.

PL interpolants on cells that are shared, the gradient idhgor
will pair the d+ 1-cell attached t@9 with minimum function
value. This will be thel+ 1-cell attached t@® with minimum
function value on the vertex not present m, therefore The Computation of the gradient proceeds as outlined in the
maximizing the magnitude of the gradient. Hence the gradig?fevious section. To obtain a equivalent gradient eld on a
vector pairing agrees with the maximal PL gradient on g!bdomin, the gradient algorithm needs only a cell's cdface
simplicial complex. and their facets in the domain. The cell complex of the
In the case of two dimensional rectilinear grids using gUb-domain is extended to include the set of cells that are
bilinear interpolant it is seen that the same argument e$p|i.n0|dent on the shared bgu.nldary of sub—c_iomalns and gradient
except for the case when the quad contains a face saddleiS|gomputed only on the initial sub-domain cell complex (see
this case we see that gradient at the mid point of the maxinfd@ure 9a). Thus, we obtain identical pairings for cellsrglo
edge has steepest descent gradient towards the quad elent@@tShared boundary when we process all sub-domains that
Figure 8 shows the comparison of the continuous gradieiftare the boundary cell. _ _
of the analytic functiorsin(x)+ sin(y) evaluated at the vertices 10 facilitate merging we mark all gradient pairs that cross
of the two dimensional rectilinear grid, with the discret@ Shared boundary as critical (see Figure 9a). We establish t
gradient computed on the grid using the gradient algorithi¥@lidity of this step in the following section.
The discrete gradient pair arrow are aligned along edges for
vertex-edge pairs and orthogonal to edges for edge-quasl pa&.2 Merging sub-domain MS complexes

In both cases, they agree with the gradients computed for {1gxt, we merge the sub-domains in a bottom up fashion by
analytic function at mesh vertices. identifying boundary critical point pairs and cancelingttin
when they enter the interior of the union. The cancellation
repeatedly merges the MS complex across the sub-domains
till we obtain the MS complex of the input function.

We now discuss the computation of the MS complex of 2D We rst establish the equivalence of gradient paths and the
scalar functions with a focus on large datasets that do notpaths computed by a sequence of cancellations. A conseguenc
entirely in memory. The computation is done in ve stage®(sef this result is that we can process the sub-domains inlparal

5.1 Gradient and MS Complex on sub-domains

5 OUT-OF-CORE ALGORITHM
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(a) Gradient and MS complex on sub-domain (b) Merging and Simpli cation

(c) Traversing merge history (d) Extracting geometry

Fig. 9: MS complex for large domains is computed in ve stageata is rst split into sub-domains. (a) Gradient is conguiit
on sub-domains. Unpaired cells and gradient pairs inciderghared boundary are marked critical. Combinatorial Mi@pmdex

on each sub-domain is computed. (b) The combinatorial MSpbexof the domain is computed by identifying and canceling
gradient pairs incident on the shared boundary. (c) Thelyisif merge cancellations is traversed to reveal the imzideof
critical cells across sub-domains. This information isdutetrace the geometry of the cells of the MS complex. (d) Fahe
sub-domain, the geometry of the descending and ascendingallaof an incident critical cell restricted to the subrdain

is extracted.

and later merge them to obtain the MS complex while ensuricgncellations of boundary critical point pairs in any order
combinatorial and geometric equivalence. Gyulassy et al. [11] also employ a divide and conquer ap-
proach to compute the MS complex. However, they partition
ORDER INDEPENDENT CANCELLATION LEMMA. Let the domain into “parcels” that do not share common boundary.
P:@0;S0;::1;ai;Si;1 18k Sk q  denote a gradient path The merge step, therefore, has to process new cells and
between two critical points p and qg. This gradient pathyay introduce new critical points. Hence, they are not able
is faithfully traced independent of the scheduled order @f ensure the geometric equivalence of the MS complex.
boundary critical point pair cancellations. Our partitioning scheme is the central reason for the Order

Proof: In the above gradient path, canceling paits; Independent Cancellation Lemma to be true.

results in establishing the connectivity betwesn 1;aj+1.
Iterating forward, we see that cancellation of any pairgltve 5.3 History Tree
gradient path successively establishes connectivityéetvhe One of the implications of declaring all boundary cells and
preceding and succeeding surviving critical point. Eveliyu their outgoing / incoming pairs as critical is the creatidn o
the critical pointsp; g are connected by an arc. Thus combingg |arge number of critical cells. Since the merge operation
torially, this is equivalent to the MS complex obtained witlt jnyolves cancellation of critical points, the ascendingd an
by tracing a path directly fronp or q without any intermediate gescending manifolds need to be computed and merged.
step of creating boundary critical points. The same argimefowever the number of cells that are present in the ascend-
extends to prove the resulting geometric equivalence. [ jng / descending manifold of a critical point 8(n), where

As a consequence of the above lemma, we can scheduls the number of cells in the cell complex. This leads to a



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ?, NO. ?, SEPTEMBER 2010 11

large memory foot print of intermediate complexes. maintained as two-dimensional buffers with the same size as
The arti cial critical points represent regions throughialih  that of the domain. This simpli es queries for facets / c&fes;
ow enters / leaves a sub-domain. Therefore, recording thehich can now be computed using arithmetic operations with
combinatorial connectivity to a surviving critical point tne boundary conditions.
boundary is sufcient to compute the ascending/descendingFor the gradient information we require one buffer to store
manifold restricted to the sub-domain. We record this infothe pair of the cell and a ag buffer to store whether the
mation during the merge step and are therefore able to cempegll is critical or paired or both in the case of boundary
the 1-skeleton of the MS complex with a small memorgritical pairs. While working with the GPU for the gradient
footprint. The recorded combinatorial connectivity betwe assignment we need to mirror these buffers in both the CPU
boundary critical points is used later to extract the geoynetand GPU . This is required only for geometry extraction in
of the gradient paths. We now describe how we traverse tthee nal stage of our algorithm. The counting and collection
history of cancellations to compute the geometry of the.arosf critical points from the ag buffers is posed as the pazhll
Consider a series d€ cancellations to determine the comypre x sum problem [2], [3]. The pre x scan implementations
binatorial connection between two critical poirgsandqg’ 1. have asymptotic complexity o®(nlog(n)) but in practice
The series of canceled critical point pairs is equal to thee observe that traversal requiresg,(n) time due to the

gradient path connecting the two critical points: parallelization.
D1l D1 D1l For the CPU implementation, the standard BFS algorithm
Piiinia 1Sk it a8 BSkiina 7Sk 200051 - I
k 1 is used considering cells as nodes and edges between cells

Consider the nal cancellation that determines the coriact if they are pairs or if they are adjacent on a gradient
betweenp and g. Before cancellationp is contained in as- path. For the GPU implementation, we adopt the iterative

Cending connections afy andq is contained in the descendingsource/destination search described in Section 4.4. $irece
connections ofsy. Before the cancellation of thék 1)t is an issue of concurrent updates, we use two buffers to store

pair, aj, * is connected t®| ;. By retaining this information, the source/destination information. Each iteration retius

after thek!" cancellation we can infer tha&t ; is connected source/destination information from one buffer and upslate

to all surviving critical points in the descending conneot it t0 the second buffer. In the next |tera.t|o_n.t_he. roles of the

of ay's pair. Extending this further to previous cancellationduffers are swapped. A global boolean is initializedfaise

we see that if we traverse the critical point pairs in revergdld set tarue if a cell updates its buffer.

order of their cancellations, we can infer the entire geoynet

of the gradient path. This is accomplished by traversing tige2  Merging

history tree, which records all merges, in a top-down mann . . .
' . . . . 1o enable stream processing of sub-domains we recursivel

At the leaf of the history tree, we obtain the comblna\ton%r P 9 y

) o . divide the domain along a single axis. The desired level of
connections from the BFS traversal within the SUb'domam'subdivision is adjusted to accommodate the largest p@ssibl

sub-domain within memory (GPU memory in the case of the
5.4 Geometry extraction GPU implementation). The recursive subdivision leads to a
The history tree traversal returns the points of entry aritl eRierarchical structure with 2sub-domains, wherel is the
of all critical cells that have gradient entering or leavihg depth of the recursion, and?2 1 intermediate nodes that
sub-domain. Thus the geometry of the descending/ascendifigresent the hierarchy. Merging of intermediate nodesahe
manifold of a critical cell restricted to the sub-domain ¢an level can be done in parallel.
computed by tracking the gradient from the cells of entrig/ex
that are on shared boundaries. If the critical cell is com@di 6.3 Simpli cation

:2 122 srusts—st(;r;:m then the geometry is computed as mdmaﬁ% perform a persistence based simpli cation of the nal

MS complex. The simplication affects the MS complex
computed for each sub-domain. The MS complex of a sub-
6 IMPLEMENTATION domain is updated by identifying surviving critical points
In this section we brie y outline our experimental setup foe deactivating them, and introducing new critical pointd thay
various stages of our algorithm. We proceed with two setugsve become incident on the sub-domain. Since simpli catio
one leveraging multicore architectures and another tadgeby persistence does not require any geometry computation,
at massively parallel architectures, namely the GPU. We use simplify before we traverse the history tree and push the
the OpenCL framework for programming the GPU. We reporesults down the tree.

the implementation and results for rectilinear two-dimenal

grids. 6.4 History tree
) ) _ The history tree that records the merges is traversed to
6.1 Gradient Pairs and MS complex on sub-domains compute the incidence of surviving critical points on sub-

Since we work with grid domains, we use the centroids @fomain boundary. Because of the hierarchical decompasitio
cells to represent them. We scale the cell identi ers by twile traversal can be done in parallel for all nodes within a
so that they are integral values. Therefore cell infornmat® level.
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(a) CPU out-of-core (b) GPU in-core (c) GPU out-of-core

Fig. 10: Time required to compute the MS complex for tingauss dataset cumulated over the ve stages of the algorithm.
(a) The 8192 8192 data does not t in CPU memory. (b) Data ts in CPU but nd®?l& memory. (¢) Data ts neither in
CPU nor GPU memory.

6.5 Fast Geometry Queries

Once we know the combinatorial structure of the MS com-
plex at the boundary of a sub-domain, the computation of
descending and ascending manifolds is essentially a walver
of gradient paths from these entry and exit points along with
the paths that originate from or terminate at the criticahpo
In our implementation, we track only the surviving saddle (@) (b)
points, because maxima partition the diverging gradientso
and minima partition the converging gradient ows. In our
experiments we recompute the gradients because we found
that the disk latency involved in storing the gradient and
retrieving them later is costlier. This is because, recaimgu
the gradient requires only a single read of the functioneslu
at the vertices.
(© (d)
7 EXPERIMENTAL RESULTS Fig. 11: (a),(c) The full resolution descending and asaepdi

We now present results of our experiments on both syntheltorse complex for thevgauss dataset for a grid size of
and the hurricane Isabel data set from the Vis 2004 coh924 1024. (b),(d) The simpli ed descending and ascending
test [26]. All experiments were performed on a workstatioMorse complex simpli ed upto 10%. As expected the descend-
with two Intel Xeon quad core processors, 8GB RAM, anihg manifolds partition the domain into regions that coped
nVidia GeForce 260 GTX graphics card which has 196 corég peaks and the ascending manifold partition the domain to
and 896MB RAM. The rst synthetic data sefine is a regions that correspond to valleys.
sinusoidal function sampled over a rectilinear grid. Theosel
synthetic data setvgauss is a 2D Gaussian distribution
centered at the origin and weighted by a radially decreasimgrious grid sizes. Figure 10b shows results from the GPU
sinusoidal curve. Thevgauss dataset contains large numbegexecution for thewgauss for varying grid sizes and the
of critical points and degenerate regions which help tosstrecorresponding speed up. Here the data is resident in the CPU
test our algorithm. We study the performance and scalgbilimemory.
of our algorithm using these two synthetic data sets. Figure 10c shows results from an out-of-CPU-core execu-
Figure 10a shows the speed up obtainedWgauss sam- tion on wgauss using the GPU for varying domain sizes.
pled on an 8192 8192 grid for varying number of processorsThe size of the sub-domains is restricted to contain 1 millio
using the CPU implementation. Time is cumulated over thgoints. Figure 11 shows the full resolution and simpli ed
ve stages of the algorithm. The data is processed out-afescending and ascending Morse complex of wWgauss
CPU-core (not all data is present in CPU memory) to conserdataset with a grid size of 10241024.
memory. The graphs indicate near linear scaling with the Hurricane Isabel was a strong hurricane that struck the west
number of cores. We observed a similar execution pro le foktlantic region in September 2003. We consider a simulation
the sinusoidal dataset with 163846384 data points. The MS of this event [26]. The domain is a 3D rectilinear grid of
complex was was computed in 3 minutes and 6 seconds. size 500 500 100 available over 48 time steps. We extract
To study the scalability of the algorithm with input sizes wa 500 500 grid representing the land/sea surface to study
conducted experiments with thhggauss dataset computed onthe pressure (Pf), temperature (TCf) and magnitude of wind
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(a) Pressure (b) Wind speed

Fig. 12: Time taken for computing the MS complex for all tisteps for simpli cation thresholds of 0.1%, 1%, 5% and 10%
for (a) Pressure and (b) Magnitude of wind velocity eldsmE taken for stages one, three and ve are shown in the breakup
along y-axis. Stages two and four are not present since tteefdaeach eld of each time-step ts in GPU memory. Time
taken for geometry extraction in stage ve reduces dralyichthe MS complex is simpli ed.

@ (b) (c)

Fig. 13: (a) The wind speed eld of the™ltime step over the surface (function normalized@pl]). (b) The full resolution
ascending Morse complex (c) The simplied MS complex resagsigni cant critical points. The most persistent minimum
corresponds to the eye of the hurricane.

velocity elds over time. We compute the MS complex for allabove 5%, thereby supporting interactive analysis of tha.da
three scalar elds in each time step using our parallel algor With additional optimizations we hope to be able to further
and track signi cant features in the data. Figure 12 showeduce the processing time and hence enable real-timesimaly
the execution pro le, along with the stage wise breakup @&nd feature tracking on larger time-varying data.

time, for the pressure and magnitude of wind velocity elds,

for various simpli cation thresholds. Since the data in leac

eld of each time-step ts in GPU memory, the merge an® CONCLUSIONS

history tree traversal stages are not present. We obsem@¢d {\,e have described the rst parallel algorithm to compute
t_he time required for computation of thg MS cqmpl_ex fqr MOo$HS complexes. Our approach is based on two key lemmas
time steps was below 0.5 seconds. Without simpli catio® thyy the gradient-based pairing of cells and critical pair-can
time required to compute the MS complex increased up t0c§iations. The algorithm performs well on both multicore
seconds. However, it dropped below 0.5 seconds for sevegalironments like the CPU and massively parallel architest
time.steps once we simplied critical pairs below a 0.1%ke the GPU. We describe fast methods for querying the
persistence threshold. MS complex, in particular to extract the ascending / descend
Figure 13 shows the decomposition of the domain ining manifolds of a query critical point.
ascending manifolds of the critical points of wind speed. In future, we plan to extend our implementation to three-
Our implementation supports the interactive extraction dfimensional grid and unstructured meshes. The algorithm
these manifolds using a parallel algorithm. We simplify thean be implemented for multicore CPUs without change.
wind speed eld within each time step to identify signi cantFor GPUs, the key challenge is the design of an efcient
features after removing all the small features. Figure 1 arallel BFS procedure. Unlike 2D discrete gradient elds
the appendix shows the result of this experiment using thieat decompose into trees (Section 4.4), 3D gradient elds
wind speed, where we track the ascending manifold of tl® not. Specically the discrete gradient eld restricted t
most persistent minimum corresponding to the eye of thpaths that originate at 2-saddles or terminate at 1-sadslles
hurricane. Currently, we are able to process each time-stapgeneral, a directed acrylic graph whereas discrete gnadi
of the speed within 0.5 seconds for simpli cation threshofd paths that originate/terminate at extrema form a tree. We
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