RESEARCH

Supplementary material for "MS3ALIGN: An efficient molecular surface aligner using the topology of surface curvature"

Nithin Shivashankar ${ }^{1 *}$, Sonali Patil ${ }^{1}$, Amrisha Bhosle ${ }^{2}$, Nagasuma Chandra ${ }^{2}$ and Vijay Natarajan ${ }^{3}$

*Correspondence:
nithin@csa.iisc.ernet.in
${ }^{1}$ Department of Computer Science and Automation, Indian Institute of Science, 560012 Bangalore, India
Full list of author information is available at the end of the article

Abstract

This is the supplementary material for the paper titled "MS3ALIGn: An efficient protein surface aligner using the topology of surface curvature". Additional figures and data pertaining to the evaluation of MS3ALIGN is presented.

Keywords: Molecular Alignments; Molecular Surfaces

Appendix 1: Dataset for performance Evaluation

In this section we present data pertaining to the set of molecules used in evaluating the performance of MS3ALIGN. Table 2 shows the set of proteins along with additional data comprising of x-ray crystallographic resolution, protein length, SCOPe 2.01 class and fold [1] (if available), and a brief secondary structure description.

PDB ID(s)	Macromolecule Name	Resolution (A)	Length (\#amino acids)	Class (SCOPe)	Fold (SCOPe)	Description

Table 1 Details of the 20 proteins chosen for Performance Analysis.

Appendix 2: Datasets for comparison with SurfComp

In this section, we provide the chemical structure of the datasets used to compare mS3ALIGN with SurfComp.

(a) 1 THL (0DB)

(b) 1TLP (RDF)
(d) $3 \mathrm{TMN}(\mathrm{TRP})$

(e) $4 \mathrm{TMN}(0 \mathrm{PK})$

(g) 5TMN (0PJ)

(f) 5 TLN (BAN)

(h) $6 \mathrm{TMN}(0 \mathrm{PI})$

Figure 1 Thermolysin Inhibitors. (a)-(d) Ligand structures with Tryptophan shown in the orange boxes. (e)-(h) Ligand structures with aliphatic residue shown within green shaded regions. The ligand structure images were obtained from the RCSB's [2] Protein Data Bank website.

Thermolysin Inhibitor Dataset

In this experiment, SURFComp computes pairwise alignments within two sets of thermolysin inhibitor ligands. Figure 1 shows the chemical structure of the ligands in both the sets.

DHFR Dataset

In this experiment, alignments of surfaces of four ligands interacting with DHFR are analyzed. In this set Folic acid (FOL) and Methotrexate (MTX) have very similar sub-structures. Trimethoprim (TOP) and Br-WR99210 (WRB) share similar structures in terms of two amino groups attached to a heterocylic ring. Similar substructures are present in MTX and FOL with minor differences. Figure 2 shows the chemical structures of the molecules.

(a) Folic Acid (FOL)

(b) (TOP)

(d) Br-WR99210 (WRB)

Figure 2 DHFR ligands FOL, MTX, TOP, and WRB taken from pdbs 1DHF, 1DF7, 1DG5, and 1DG7 respectively. The ligand structure images were obtained from the RCSB's [2] Protein Data Bank website.

Appendix 3: Dataset for validation using PocketMatch and PyMol

Table 2 shows data pertaining to the molecules used in the validation of MS3ALIGN with PocketMatch and PyMol.

Set No.	PDB ID(s)	Lig ID	Ligand Name	Identifier	Mol Wt (g/mol)
1	$\begin{aligned} & \text { 3vev, 3vf6, } \\ & \text { 4ixc } \end{aligned}$	GLC	Glucose	alpha-D-glucopyranose	180.16
2	$4 \mathrm{bkj}, 3 \mathrm{k} 5 \mathrm{v} \text {, }$ 3hec	STI	Imatinib	4-[(4-methylpiperazin-1-yl)methyl]-N- \{4-methyl-3-[(4-pyridin-3-ylpyri midin-2-yl)amino]phenyl $\}$ benzamide	493.60
3	1h9z, 2bxd	RWF	Warfarin	4-hydroxy-3-[(1R)-3-oxo-1-phenylbutyl]-2H-chromen-2-one	308.33
4	$\begin{aligned} & \text { 4ggz, 4jnj, } \\ & 3 \mathrm{v} 8 \mathrm{k} \end{aligned}$	BTN	Biotin	5-[(3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentan oic acid	244.31
5	$\begin{aligned} & \text { ladl, 3tzi, } \\ & \text { 1 vyg } \end{aligned}$	ACD	Arachidonic acid	(5Z, $8 \mathrm{Z}, 11 \mathrm{Z}, 14 \mathrm{Z}$)-icosa-5,8,11,14-tetraenoic acid	304.47
6	3tqh, 3two, $4 \mathrm{a} 51$	NDP	Dihydro-nicotinam ide-adenine-dinucl eotide phosphate	[[(2R,3S,4R,5R)-5-(3-aminocarbonyl-4H-pyridin-1-yl)-3,4-dihydroxy-o xolan-2-yl]methoxy-hydroxy-phosphoryl]	745.42
7	$\begin{aligned} & \text { 1epb, 1tyr, } \\ & 2 \mathrm{ve3} 3 \end{aligned}$	REA	Retinoic acid	(2E,4E, 6E, 8E)-3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)nona-2, 4,6,8-tetraenoic acid	300.44
8	2bl8, 3tpp	5HA	β-secretase inhibitor	N-[(1S,2R)-1-benzyl-3-(cyclopropylamino)-2-hydroxypropyl]-5-[methy 1(methylsulfonyl)amino]-N'-[(1R)-1-phenylethyl]benzene-1,3-dicarboxa mide	578.2
8	2g94	ZPQ	β-secretase inhibitor	$\mathrm{N} \sim 2 \sim-[(2 \mathrm{R}, 4 \mathrm{~S}, 5 \mathrm{~S})-5-\{[\mathrm{N}-\{[(3,5-$ dimethyl-1H-pyrazol-1-yl)methoxy]car bonyl\}-3-(methylsulfonyl)-L-alanyl]amino\}-4-hydroxy-2,7-dimethyloct anoyl]-N-(2-methylpropyl)-L-valinamide	658.85
8	3ixj	586	β-secretase inhibitor	$\mathrm{N}-\{(1 \mathrm{~S}, 2 \mathrm{~S}, 4 \mathrm{R})-5-\{[(1 \mathrm{~S})-1$-(benzylcarbamoyl)-2-methylpropyl]amino $\}$ -1-[(3,5-difluorophenoxy)methyl]-2-hydroxy-4-methoxy-5-oxopentyl $\}$-5 -[methyl(methylsulfonyl)amino]-N'-[(1R)-1-phenylethyl]benzene-1,3-di carboxamide	851.96
8	3dm6	757	β-secretase inhibitor	5-[[(2S)-2-[[(3R,4S)-5-(3,5-difluorophenoxy)-3-hydroxy-4-[[3-(methyl-methylsulfonyl-amino)-5-[[(1R)-1-phenylethyl]carbamoyl]phenyl]carbo nylamino]pentanoyl]amino]-3-methyl-butanoyl]amino]benzene-1,3-dica rboxylic acid	881.90
8	2p4j	23 I	β-secretase inhibitor	$-[(1 \mathrm{~S}, 2 \mathrm{~S}, 4 \mathrm{R})-2-$ hydroxy-4-methyl-5-(\{(1S)-2-methyl-1-[(1-methylethyl) carbamoyl]propyl amino)-1-(2-methylpropyl)-5-oxopentyl]-5-[methyl(methylsulfonyl)amino]-N'-[(1R)-1-phenylethyl]benzene-1,3-dicarboxa mide	701.92
8	3ixk	929	β-secretase inhibitor	N-[(2S,3S,5R)-1-[(3,5-difluorophenyl)methoxy]-3-hydroxy-5-methyl-6-[[(2S)-3-methyl-1-oxo-1-(phenylmethylamino)butan-2-yl]amino]-6-oxo -hexan-2-yl]-5-(methyl-methylsulfonyl-amino)-N'-[(1R)-1-phenylethyl] benzene-1,3-dicarboxamide	849.98
8	2p8h	MY9	β-secretase inhibitor	N - $\{(1 \mathrm{~S}, 2 \mathrm{~S})$-1-benzyl-2-hydroxy-2-[(4S)-1,2,2-trimethyl-5-oxoimidazoli din-4-yl]ethyl $\}-\mathrm{N}^{\prime}-[(1 \mathrm{R})-1$-(4-fluorophenyl)ethyl]-5-[methyl(methylsulf onyl)amino]benzene-1,3-dicarboxamide	653.76
8	2 qzl	IXS	β-secretase inhibitor	N-[(1S)-1-benzyl-2-(\{(1S)-1-methyl-2-[(2-methylpropyl)amino]-2-oxoe thyl $\}$ amino)ethyl]-N'-[(1R)-1-(4-fluorophenyl)ethyl]-5-[methyl(methyls ulfonyl)amino]benzene-1,3-dicarboxamide	653.81
8	4dpi	0N1	β-secretase inhibitor	(4R,6E,11S)-16-methyl-11-[(1R)-1-oxidanyl-2-[(3-propan-2-ylphenyl) methylamino]ethyl]-4-phenyl-9-oxa-3,12-diazabicyclo[12.3.1]octadeca-1(18),6,14,16-tetraene-2,13-dione	555.71
8	2vkm	BSD	β-secretase inhibitor	N^{\prime}-[(2S,3R)-3-hydroxy-4-[(3-methoxyphenyl)methylamino]-1-phenyl-b utan-2-yl]-5-(methyl-methylsulfonyl-amino)-N-[(1R)-1-phenylethyl]ben zene-1,3-dicarboxamide	658.81
8	4 gid	0GH	β-secretase inhibitor	5-[methyl(methylsulfonyl)amino]-N1-[(2S)-1-[[(2S,3R)-1-(2-methylpro pylamino)-3-oxidanyl-1-oxidanylidene-butan-2-yl]amino]-3-phenyl-pro pan-2-yl]-N3-[(1R)-1-phenylethyl]benzene-1,3-dicarboxamide	665.84

Table 2 Validation dataset comprising of proteins bound to eight types of ligands.

List of abbreviations used
PDB: protein data bank, DHFR: DiHydro Folate Reductase.
Competing interests
The authors declare that they have no competing interests.
Author details
${ }^{1}$ Department of Computer Science and Automation, Indian Institute of Science, 560012 Bangalore, India.
${ }^{2}$ Department of Biochemistry, Indian Institute of Science, 560012 Bangalore, India. ${ }^{3}$ Department of Computer Science and Automation, and Supercomputer Education and Research Centre, Indian Institute of Science, 560012 Bangalore, India.

References

1. Fox NK, C.J. Brenner SE: SCOPe: Structural Classification of Proteins-extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Research (2014)
2. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res 28, 235-242 (2000)
