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Abstract

The Morse-Smale complex is a topological structure that captures the behavior of the gradient of a scalar function
on a manifold. This paper discusses scalable techniques to compute the Morse-Smale complex of scalar functions
defined on large three-dimensional structured grids. Computing the Morse-Smale complex of three-dimensional
domains is challenging as compared to two-dimensional domains because of the non-trivial structure introduced
by the two types of saddle criticalities. We present a parallel shared-memory algorithm to compute the Morse-
Smale complex based on Forman’s discrete Morse theory. The algorithm achieves scalability via synergistic use of
the CPU and the GPU. We first prove that the discrete gradient on the domain can be computed independently for
each cell and hence can be implemented on the GPU. Second, we describe a two-step graph traversal algorithm
to compute the 1-saddle-2-saddle connections efficiently and in parallel on the CPU. Simultaneously, the extrema-
saddle connections are computed using a tree traversal algorithm on the GPU.

Categories and Subject Descriptors (according to ACM CCS):

1.3.5 Computational Geometry and Object Modeling

1. Introduction

The Morse-Smale (MS) complex partitions the domain
of a scalar function into regions with uniform gradient
behavior. It provides an abstract representation that en-
ables multi-scale analysis and visualization of 2D and 3D
scalar functions [LBM*06, GDN*07, RKG*11, KRHH11].
Motivated by the increasing data sizes, recent approaches
towards the computation of MS complexes focus on
memory efficiency and scalability in addition to perfor-
mance [GBPHO8, GRWHI11, PRG*11]. We present a par-
allel shared-memory algorithm to compute the MS com-
plex of a three-dimensional scalar function. Our algorithm
makes a synergistic use of the multi-core CPU and GPU of
a desktop computer to compute the MS complex of large
three-dimensional data sets. Experiments indicate that this
approach can process data consisting of over 1 billion ver-
tices within minutes while utilizing less than 2GB of mem-
ory.

1.1. Related work

MS complexes were initially introduced in the context of
dynamical systems [Sma6la, Sma61b]. Later, Edelsbrun-
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ner et al. [EHZO03] studied the problem of computing the
MS complex for two-dimensional piecewise linear func-
tions. They computed the cells of the MS complex while
restricting the bounding arcs of the complex to edges of
the input mesh. This approach was extended to construct
MS complexes of three-dimensional functions [EHNPO3].
These early approaches traced the gradient paths from sad-
dle critical points and produced a boundary representation of
cells in the MS complex. Bremer et al. [BEHP04] also fol-
lowed this approach and developed a multi-resolution rep-
resentation of 2D scalar functions via controlled topologi-
cal simplification, and demonstrated the application of the
MS complex to feature identification, noise removal, and
view-dependent simplification.

Gyulassy et al. [GDN*07, GNP*06] focused on three-
dimensional functions and employed an approach based on
repeated cancellations of critical point pairs applied on an
artificial complex created from the input mesh by including
dummy critical points. The cancellations were appropriately
scheduled in order to remove the dummy critical points leav-
ing behind the true critical points and cells of the MS com-
plex. The order of cancellation determines the quality of the
resulting MS complex and the algorithm efficiency.
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Another approach to compute the MS complex is based
on a discrete analog of Morse theory [Mil63] introduced
by Forman [For02] to study discrete functions defined on
cells of a cell complex. Reininghaus et al. [RH11, RLH11]
discussed an application of discrete Morse theory to ana-
lyze vector fields. Bauer et al. [BLW11] computed simpli-
fied two-dimensional scalar functions while ensuring that the
input function is modified by no more than a threshold &
and all surviving critical point pairs have persistence greater
than 24. Cazals et al. [CCL03] and Lewiner et al. [LLT04]
successfully employed Forman’s discrete Morse theory to
compute MS complexes of piecewise-linear functions and
demonstrated applications to segmentation, visualization,
and mesh compression. Gyulassy et al. [GBPHO8] also used
a discrete Morse theory based formulation to develop an ef-
ficient algorithm for computing MS complexes of large 3D
data that do not fit in main memory. They partition the data
into blocks called “parcels” that fit in memory, compute gra-
dient flows on the boundary of the parcels, propagate the
flows to the interior and compute the MS complex restricted
to a parcel. Critical cells that are created on the boundary
are canceled during a subsequent merge step resulting in the
MS complex of the union of the parcels. This serial method
scales well for large data but the geometry of the MS com-
plex is sensitive to the order of cancellations chosen during
the merge step.

Robins et al. [RWS11] proposed an algorithm to compute
the Morse complex of 2D and 3D gray-scale digital images
modeled as discrete functions on cubical complexes. The al-
gorithm computes the Morse complex with provable guar-
antees on its correctness with respect to the critical cells.
However, the algorithm does not guarantee polynomial time
execution since they use a modified breadth first search al-
gorithm that traverses all possible paths between two nodes,
which can be exponential in the number of nodes.

More recently, Peterka et al. [PRG*11] introduced a set
of building blocks for implementing parallel algorithms,
which leverage high performance computing clusters. In par-
ticular, they discuss a parallel implementation of the dis-
crete Morse theory based algorithm proposed by Gyulassy
et al. [GBPHO8] using their framework. Unlike the work
of Peterka et al., we focus on a parallel implementation on
a desktop computer. Giinther et al. [GRWHI11] described a
memory efficient algorithm to compute the MS complex for
3D data and use the complex to compute persistent homol-
ogy groups. The discrete gradient field is computed using a
parallel variant of the method proposed by Robins et al. fol-
lowed by an efficient computation of the boundary map that
represents the MS complex. They employ a modified breadth
first search based algorithm to traverse the gradient field, the
maintained of visited flag per cell for each traversal. Thus
the number of traversals that can be launched in parallel is
limited by available memory. In comparison, our parallel al-
gorithm for computing the discrete gradient field is based on
a novel design of the discrete Morse function followed by

a two-step algorithm to compute the cells of the MS com-
plex. Our hybrid multi-core approach for implementing this
algorithm results in a method that is fast in addition to being
memory efficient.

1.2. Contributions

The above mentioned methods for computing the MS com-
plex are either slow or not easily applicable because of one
or more of the following reasons: (a) they compute and trace
the gradient serially, (b) they do not guarantee that they trace
the correct geometry of the gradient flow, or (c) they require
specialized computing resources such as HPC clusters.

Our contributions to solve the above problems for scalar
functions on three-dimensional structured grids is based on
a characterization of MS complexes using Forman’s discrete
Morse theory that leads to a parallel algorithm. We describe
an extension of the parallel discrete gradient field construc-
tion algorithm introduced earlier [SMN11] to compute 2D
MS complexes. The presence of two types of saddle criti-
calities in 3D introduces considerable complexity into the
geometry of the MS complex. The discrete gradient paths
between saddles may split and merge causing an explosion
in the number of paths to be traced. Moreover, the data sizes
are much larger compared to 2D scalar functions. The key
contributions of this paper towards efficient computation of
3D MS complexes are

e An extension of the independent gradient pairing algo-
rithm discussed in [SMN11] that significantly reduces the
number of cells that remain unpaired, thereby producing
fewer artifacts in the form of spurious critical cells.

e An efficient two-step algorithm to compute gradient paths
between 1-saddles and 2-saddles.

e Synergistic use of CPU and GPU to ensure maximum uti-
lization of computational resources.

e Implementation of a split and merge approach that sup-
ports computation of MS complexes for large datasets.

We present experimental results on both synthetic and real-
world data sets to demonstrate the efficiency of the algorithm
in terms of performance and memory requirement.

2. Background

This section reviews the necessary background on Morse
functions and discrete Morse functions required for the al-
gorithm description. While the focus of the paper is on 3D
domains, we often consider 2D domains for ease of illustra-
tion and to describe prior work.

2.1. Morse functions

Consider a smooth scalar function f : R} 5 R A point
JAS R is called a critical point with respect to f if the gradi-
ent of f, Vf,is identically zero at p. A critical point is non-
degenerate if the Hessian of f, equal to the matrix of second
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(a) Minima. (b) 1-Saddle (c) 2-saddle (d) Maxima.
o
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(e) Reversed integral(f) Descending mani-(g) Combinatorial
lines fold structure

Figure 1: (a)-(d) Behavior of a Morse-Smale function near
the critical points in a 3D domain. (e) The reversed inte-
gral lines of a 2D function. (f) The descending manifold of a
maximum shown as the closure of the set of reversed integral
lines that originate from the critical point. (g) Combinatorial
structure of the MS complex where nodes are critical points
and connecting integral lines are arcs.

order partial derivatives, is non-singular. We call f a Morse
function if all of its critical points are non-degenerate. The
index of a critical point is the number of negative eigenval-
ues of the Hessian matrix. An integral line passing through a
point p is a maximal curve in the domain, whose tangent at
every point equals the gradient of f at that point. The func-
tion f increases along the integral line and its limit points
are the critical points of f.

The set of all integral lines that share a common source to-
gether with the point p, is called the ascending manifold of p
and the set of all integral lines that share a common destina-
tion together with the point p is called the descending mani-
fold of p, see Figure ??. The ascending manifolds (similarly,
the descending manifolds) of all critical points partition the
domain. The Morse-Smale complex is a partition of the do-
main into cells formed by the collection of integral lines that
share a common source and a common destination. The as-
cending manifold of a critical point of index d is a (n — d)-
dimensional manifold, where as its descending manifold is
a d-dimensional manifold. A Morse function f is called a
Morse-Smale function if all ascending and descending man-
ifolds of two critical points intersect transversally. Thus, if
the index of two critical points differ by one then their as-
cending / descending manifolds either do not intersect or
intersect along a one-dimensional manifold connecting the
critical points. The critical points, referred to as nodes, to-
gether with the 1-manifolds that connect them, referred to
as arcs, form the 1-skeleton of the MS complex, which is
referred to as the combinatorial structure of the complex.

© 2019 The Author(s)
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(a) MS complex and re-(b) Critical point pair can-
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tion
Figure 2: (a) MS complex for a simple height function.
(b) Canceling a pair of critical points, g;, pi+1, of index i,
i+ 1 that are connected by a single arc. (c) Combinatorial
realization: connect all index i critical points (Nl’;i 1) that are
connected to p;1 except g;, to index i+ 1 critical points
(Néj'l) that are connected to g; except p;;+1. (d) Geometric
realization: compute the union of the descending manifold of
pi+1 with the descending manifolds of all index i+ 1 critical
points connected to ¢;. Compute the union of the ascending
manifold of ¢; with the ascending manifolds of all index i
critical points connected to p; 1.

2.2. Simplification

A Morse-Smale function f can be simplified to a smoother
function by repeated application of a cancellation operation
that removes a pair of critical points connected by an arc in
the MS complex. Critical point pairs correspond to topolog-
ical features and are ordered based on the notion of persis-
tence, which is equal to the absolute difference in function
value between the two critical points. Persistence measures
the importance of a critical point pair [ELZ02]. The least
persistent critical point pair is always connected by an arc in
the MS complex [EHZ03].

Cancellation of a pair of critical points is achieved by a
local smoothing of the function within the ascending / de-
scending manifolds containing the critical points. For exam-
ple, consider the case of a two-dimensional Morse-Smale
function after a maximum-saddle cancellation (see Fig-
ure 2). The 1-skeleton is updated by deleting the two cor-
responding nodes, deleting the arcs incident on the saddle,
and re-routing the arcs incident on the maximum to the sur-
viving maximum adjacent to the saddle. The embedding of
a new arc is obtained by extending the old arc along the arc
between the removed maximum and the saddle. We allow
only cancellations between a pair of critical points that are
connected by a single arc. Canceling a pair of critical points
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3: A 2D discrete Morse function.
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that are connected by two distinct arcs in the Morse-Smale
complex results in a strangulation, which cannot be realized
by a local smoothing of the function [GNP*06].

2.3. Discrete Morse functions

Discrete Morse theory was developed by Forman [F0r02] to
study the topology of cell complexes. A d-cell ol is a topo-
logical space homeomorphic to a d-ball BY = {x € R? : |x| <
1}. For example, a vertex is a 0-cell, an edge between two
vertices is a 1-cell, a polygon is a 2-cell, and in general a
d-dimensional polytope is a d-cell. We will restrict our at-
tention to cells of the above kind, which can be represented
by a set of vertices. A cell o is a face of B, denoted o < J,
if o is represented by a subset of vertices of 3. The cell B is
called a coface of a. A face o is called a facer of B if o <
and dim(o) + 1 = dim(B). In this case B is a cofacet of o de-
noted by o < 3. The set of zero-dimensional faces of a cell
« is called the vertex set of o denoted by V.

A cell complex K is a collection of cells that satisfies two
properties: (a) If o belongs to K then so do all faces of .,
and (b) If o} and oy are two cells in K then either they are
disjoint or they intersect along a common face. A regular
cell complex is a cell complex in which, given two incident
cells, [5‘”1 and Yi ~! there are exactly two cells oc‘li7 ag such
that “{i 1< (x‘ll, oc‘zi < B. In this paper, we consider only finite
regular cell complexes.

Given a regular cell complex K representing the domain,
a function f: K — R is said to be a discrete Morse func-
tion if for all d—cells o € K, (a) at most one of its cofacets
has a lower function value, and (b) at most one of its facets
has a higher function value (see Figure 3). A cell is critical
if none of its cofacets have a lower function value and none
of its facets have a higher function value. A discrete vector,
referred to as a gradient pair, is a pairing between two inci-
dent cells that differ in dimension by one. A discrete vector
field on K is a set of discrete vectors such that every cell in
K is represented in at most one pair of the ﬁeld A V-path

isa sequence of cells ol g“ of, B‘”l Lol [5‘”1 ‘fH

such that of and OLlH are facets of B‘Hl and (of BdH) is
a vector for all i = 0..r. A V-path is called a gradient path
if it contains no cycles. A discrete gradient field is a dis-
crete vector field that contains no non-trivial closed V-paths.
Maximal gradient paths of the discrete Morse function cor-
respond to the notion of integral lines of Morse functions.

4: The weighted discrete
function is defined recursively
as a weighted sum of the
function value at facet Gy and A
face Gy. Facets Gy (in red)
and faces G (in blue) for an
edge, triangle and quad cell
are shown. The function value
at vertices increases along the
vertical axis.

~

Ascending / descending manifolds are similarly defined for
discrete Morse functions.

3. 2D MS complex Algorithm

In this section, we briefly describe the algorithm for 2D MS-
complexes by [SMNI11], without proof and detailed justifi-
cations. In the next section, we describe how the algorithm
can be extended to three-dimensional scalar functions focus-
ing on the additional challenges present in 3D. Given an
input scalar function f, it is extended to a discrete Morse
function F,, which imposes a total ordering on all cells of
the domain K. The gradient field is interpreted as a directed
acyclic graph and gradient paths as traversals on this graph.
The gradient field decomposes into a union of trees and the
graph traversal is performed in parallel as an iterative search
procedure towards the root of the trees.

3.1. Weighted discrete function

The weighted discrete function F,, is equal to f at ver-
tices.The value of F,, on a d-dimensional cell o is recur-
sively determined by its facet with highest function value,
while ensuring that the value of F,, at two different cells are
never equal. Specifically,

Fy(o) = Fu(Go(a)) +&! x Fo(Gi (o)),
where € is an infinitesimally small positive real number,

GQ(OLd) = argmax F,(y), and
,Y<ad
G (ocd) = argmax  Fy(Yy).
y<od Vo 0y =0

Go(ot) represents the highest facet of a and G (o) repre-
sents the highest face of a that is disjoint from Go(a). Vi, ()

is the vertex set of Go(ocd), and argmax denotes the value of
the argument Y that maximizes the function. F,, is equal to f
at mesh vertices. F, ensures that when two cells share their
highest facet, then the tie is broken using their respective sec-
ond maximum face whose vertex sets are disjoint from the
common facet. Figure 4 shows the definition of the weighted
discrete function for some common cell types. Subsequent

(© 2019 The Author(s)
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algorithms require only the order on the cells induced by F,.
This order may be computed in terms of f instead of explic-
itly computing F,, assuming that the function values at the
vertices are totally ordered. We use simulation of simplic-
ity [EM90] to handle datasets that do not satisfy this require-
ment. In the following discussion we will use the analogy of
height while referring to the value of Fy, at a cell.

The e-lower-star of a d-cell o is defined as the set of cells,
including «, that have o as their highest d-face. As shown
in [SMN11], the cells in the €-lower-star of a cell appear
contiguously in the ordering induced by F,.

3.2. Computing gradient pairs

All cells are critical with respect to F,. Algorithm 1 uses
the ordering based on the weighted discrete function defined
above to determine the gradient pairs of a simpler discrete
Morse function that contains fewer critical cells. The gradi-
ent pairs are unique and independent of the order in which
cells are processed. Algorithm 1 processes all cells o € K
individually to compute gradient pairs. The cell o belongs
to the complex K, and B is a cofacet of a. The set Py is the
collection of cofacets, B3, of o such that o is the highest facet
of B, i.e., = Go(B). The cell a is paired with the lowest cell
in P, o-

Algorithm 1 ASSIGNGRADIENT (Cell complex K)

1: forall a € K do
Po, = {Bloo<Pand o= Go(B)}
if Py, 7£ ¢ then

B = Ming, (Pa)

pair_cells (o)

3.3. Computing the 2D MS complex

Once the discrete gradient field is computed, the descend-
ing / ascending manifolds and hence the combinatorial
MS complex are extracted as a closure of the set of gradi-
ent paths that originate at a critical cell / closure in the dual
of the set of inverted gradient paths that originate at a crit-
ical cell. These are computed using a breadth first traver-
sal of gradient paths. A combinatorial connection between
any two critical cells is established if there is a gradient path
that connects them. For multi-core environments, multiple
BES traversals are launched, one from each critical point.
The gradient paths of a 2D domain decomposes to a union
of trees [CCLO3]. In massively parallel environments, each
cell iteratively queries its parent for its parent, to locate the
root.

4. 3D MS Complex computation
In this section, we discuss how the algorithm discussed in

Section 3 is extended to work for three dimensional scalar

© 2019 The Author(s)
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Figure 5: (left) The e-lower-star and the lower link of a ver-
tex with the height function defined. (center) Algorithm 1
declares the green edge and the red triangle as critical be-
cause the edge is not the highest facet of any of its cofacets.
(right) Algorithm 2 pairs these cells because the edge is the
second highest facet of the unpaired triangle.

functions. In particular, Algorithm 1 is conservative and may
leave multiple cells unpaired thereby declaring them critical
(See Figure 5). We introduce an additional pairing proce-
dure that avoids the creation of such e-persistent pairs within
the e-lower star. This procedure executes during a second
pass over the cells and essentially seeks to pair cells with
their second highest facet consistently when their highest
facet is paired with another cell. Next, we describe a traver-
sal algorithm to compute the incidence of 2-saddles on 1-
saddles. This algorithm is adapted to determine the ascend-
ing/descending manifolds of 2-saddles and 1-saddles. Fi-
nally, the descending manifolds of maxima and ascending
manifolds of minima are computed using an iterative search
procedure marching towards the root of the tree.

4.1. Gradient pairing

Figure S illustrates a configuration where Algorithm 1 leaves
a pair of cells unpaired because the green edge is not the
highest facet for either of its two cofacets. However the edge
is the second highest facet of its lowest cofacet. Further this
cofacet remains unpaired, because it is not the lowest cofacet
of its highest facet. Such situations occur frequently and in
these cases we pair the cell with its second highest facet dur-
ing a second pass over all d-cells (d > 0). We omit vertices
since the change in the discrete Morse function required to
realize the pairing is no longer arbitrarily small but is deter-
mined by the input scalar function. The pairing procedure is
outlined in Algorithm 2.

Algorithm 2 ASSIGNGRADIENT?2 (Cell complex K)

1: forall o€ K\K do

2:  if o not paired by Algorithm 1 then

3 Po = {B|at is the second highest facet of B}
4: if Py # ¢ then

5: B =Ming, (Po)

6 if P not paired by Algorithm 1 then

7 pair_cells (o)
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Independence and Correctness. We first state and prove a
Lemma to show that the pairs determined by Algorithm 2
are unique and hence the algorithm can be parallelized.
The following Lemma states that if a cell is paired by
Algorithm 2, then the pairing is unique, i.e., the cell is either
paired with one of its cofacets or with its second highest
facet, independent of the order in which cells are paired.

EXTENDED ORDER INDEPENDENT PAIRING LEMMA.
If Algorithm 2 pairs a cell B with its second-highest facet
o then it will not pair oL with its second-highest facet .

Proof. Consider the incidence relationships shown in Fig-
ure 6a between a d-cell B, its highest facet o, second highest
facet o, highest (d —2) face ¥/, highest (d — 3) face v/, and
o’s second highest facet y. Since the input cell complex K is
regular, there exists exactly two facets of 3, say o} and oy,
incident on Y. Further ¥ is the highest facet of o and oy,
which in turn implies that any third facet of § does not con-
tain 7 and is hence lower than both o and a,. So, o, and
oy are the highest and second highest facets of B, namely
o and o. A similar argument on ¢ and its highest (d — 3)
face ' shows that y and 7/ are incident on ' and ' is their
highest facet.

We will prove the existence of a facet, o/, of B that con-
tains v as its highest or second highest facet. In either case,
v will be paired with a cell different from o. If y is the high-
est facet of o’ then Algorithm 1 would have paired it with
a cell different from o because o remains unpaired until it
is processed by Algorithm 2. If v is the second highest facet
of o/, then Algorithm 2 will seek to pair it with the lowest
cofacet in Py. The cell o’ is lower than ¢ and belongs to Py.
So o will not be paired with 7.

We now show the existence of the cell o’. Consider the
(d —2) cell y as a face of B. Since the input is a regular cell
complex, there exists exactly two facets of B incident on .
The cell o is one such facet of . Let o’ be the other. The
regularity of the input cell complex also implies the exis-
tence of exactly two facets, yand Y’, that are incident on /.
Further, ' is the highest (d — 3) face of o”’. It follows that y
is either the highest facet or second highest of o/ using the
same argument as above to show that o and o are incident
onY. O

We now prove that Algorithm 2 produces a valid gradient
field. A pairing between a cell o and its cofacet f3 is valid if
there exists a corresponding discrete Morse function. Such a
function can be realized via a perturbation if none of the co-
facets of o are lower than 3. Let B be a cofacet of o different
from B. The cell a is clearly not the highest facet of [~5 since
it remains unpaired after being processed by Algorithm 1. If
a is the second highest facet of f, then B is higher than B
because it was not selected by Algorithm 1. If o is neither
the highest nor the second highest facet of B, then the highest
facet of o, say Y, is not the highest (d — 2) face of fﬁ This

Figure 6: (a) a is the second highest facet of B and vy is the
second highest facet of o. Respective maximal facets are
shown (o). Solid lines represent maximal facet relation.
Dotted lines represent incidence relation. (b) The regularity
of K implies the existence of faces o’ and Y.

T e

Figure 7: (left) The (1,2) sub-structure of a possible gradi-
ent field between a the red 2-saddle and the green 1-saddle.
(right) The gradient field interpreted as a directed acyclic
graph. The nodes are 2-saddles, (1,2) pairs and 1-saddles.
Dashed curves show directed edges from 2-saddles or from
the 2-cells of (1,2) gradient pairs to incident 1-cells of dis-
tinct (1,2) pairs or to 1-saddles. The gradient paths from the
2-saddle split and merge twice before they reach the 1-saddle
resulting in four possible paths between them. Repetition of
this configuration causes an exponential growth in the num-
ber of paths connecting the 2-saddle to the 1-saddle.

follows from the converse of the argument used in the above
proof to show that o and o, the highest and second highest
facets of B, are incident on 7. Cells in the e-lower-star of Y
appear contiguously in the ordering induced by F, . Since B
does not lie in the e-lower-star of Y and B does, it follows
that P is not lower than p.

4.2. Saddle connection Algorithm

The sub-structure of the gradient field consisting of 1-
saddles, 2-saddles and (1,2) gradient paths between them can
be very intricate. This is because 1-saddle-2-saddle gradi-
ent paths in a three-dimensional domain may both split and
merge. Figure 7 depicts the sub-structure of a gradient field
that originates from a 2-saddle, splits and merges twice, be-
fore reaching a 1-saddle.

We trace the (1,2) gradient paths by interpreting the sub-
structure as a directed acyclic graph (DAG) induced by them.
The number of paths between a 2-saddle and 1-saddle may
be counted as the number of paths between 2-saddles and 1-
saddles nodes in this DAG. We do not employ the standard
breadth first search algorithm to traverse the graph because

(© 2019 The Author(s)
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this would necessitate the use of an array of flags to maintain
if every cell is visited or not. Parallelizing the traversal will
require a buffer, whose size equals that of the input, for each
thread. This approach is clearly not scalable. We note that
the number of critical cells reachable from a given cell tends
to be small. Algorithm 3 describes a priority-queue based
traversal method to determine the paths between 2-saddles
and 1-saddles. The algorithm computes the number of gra-
dient paths from a given 2-saddle to all (1,2) gradient pairs
and 1-saddles that are reachable from it.

The algorithm begins by first initializing a priority queue,
PQ, that can contain 2-cells and 1-cells of K. The priority
queue is ordered based on the simpler discrete Morse func-
tion computed by the gradient pairing algorithms. We asso-
ciate with each element o of PQ the number of paths that
arrive from ©. PQ is initialized with the pair (c,1). The
algorithm pops the first cell a from PQ. It is possible for
copies of the same cell to be entered into PQ. Since all these
cells have the same priority, PQ is repeatedly popped until
all copies of o are removed and the number of paths (npaths)
that reach o are summed over all copies. If o is a critical 1-
cell, then an arc with npaths multiplicity is inserted between
¢ and o. If o is a 2-cell, then all the 1-saddles and 2-cells of
(1,2) pairs incident on the boundary of o (other than itself)
are inserted into PQ. The newly inserted pairs/saddles lie on
npaths number of paths from ¢ through o. Newly inserted
cells are lower than a.. So, o never re-enters PQ. A cell is in-
serted into PQ when processing one of its neighboring cells.
So, the number of copies of the cell in PQ is upper bounded
by the number of its neighbors.

Each cell enters PQ only a constant number of times.
So, the complexity of the algorithm is nlog(n), where n is
the number of 2-cell-1-cell pairs and 1-saddles. Descend-
ing manifolds of saddles are computed by modifying Algo-
rithm 3 to save the cells popped out of the priority queue
at each iteration of the main loop. Ascending manifolds of
1-saddles are computed by employing the same procedure
after reversing the priority, and reversing the role of 1-cells
and 2-cells.

5. Handling large data

The 3D MS complex algorithm is extended to handle large
data that do not fit in memory using a split and merge tech-
nique similar to that described in [SMN11] for 2D scalar
functions. The MS-complex is computed in a five-stage pro-
cess:

e Split dataset

e Compute MS complex on sub-domains
e Merge sub-domains

e Traverse merge history

e Extract geometry

The splitting of the data in stage 1 and simplification

in stages 2 and 3 are different from the method described
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Algorithm 3 CONNECTSADDLES
INPUT: Cell complex K, 2-Saddle o,
OUTPUT: Updated Morse-Smale Graph G

I: PQ := CreatePriorityQueue()

2: PQ.push(c,1)

3: while PQ # ¢ do

o := PQ.top().cell

5. npaths := PQ.top().npaths

6. PQ.pop()

7. while PQ # ¢ and PQ.top().cell = a.do
8.

9

ANE

npaths = npaths + PQ.top().npaths

: PQ.pop()
10:  if dim(a) = 1 then
11: G.connect (G, o, npaths)
12:  if dim(o) = 2 then
13: for all y<o do
14: if is_critical (y) then
15: PQ.push(y,npaths)
16: else if dim(pair(y)) = 2 and pair(y) # o. then
17: PQ.push(pair(y),npaths)

in [SMN11]. We describe these steps below. The complete
algorithm is described in the Appendix.

First, the dataset is split into sub-domains. The domain
is subdivided successively along each axis till sub-domains
of manageable size are obtained. Then, we compute the MS
complex within each sub-domain using the algorithm dis-
cussed in Section 4. To eliminate noisy critical cells early, we
perform critical cell pair cancellations within sub-domains
directed by topological persistence [ELZ02]. To ensure com-
binatorial consistency of the MS complex after merging, we
allow cancellation of a pair of critical cells only if (a) nei-
ther of the two cells belongs to a gradient pair that crosses a
shared boundary, (b) neither of the two cells lie on a shared
boundary, and (c) at most one of the two cells is connected
to a gradient pair that crosses a shared boundary. Next, we
merge the MS complexes of sub-domains in reverse order of
the subdivision to create the combined MS complex, simi-
lar to [SMN11]. The validity and equivalence of the result-
ing MS complex is a consequence of the ORDER INDEPEN-
DENT CANCELLATION lemma [SMN11]. After each merge
we again perform cancellations directed by persistence to re-
move low persistent pairs that may have been created. Merge
history traversal and extracting geometry are described in the
Appendix.

6. Implementation

We implemented the above discussed techniques to leverage
both GPU computing, and multi-core CPU architectures. We
used the OpenCL framework to implement the gradient al-
gorithm discussed in Section 4.1 on the GPU. We imple-
mented the Algorithm 3 to process individual 2-saddles in
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parallel on the CPU. We use the Boost threading [Boo] li-
brary to manage multiple threads. We now discuss various
implementation and optimization issues with respect to the
five stages.

Gradient pairing and MS complex. The gradient pairs and
MS-complex are computed within each sub-domain. The
gradient pairs are computed in two passes using Algorithm 1
and Algorithm 2. A three-dimensional array of bytes is used
to store information per cell. Three bits are used to represent
the six possible directions of the pair. Three bits are used
to represent the six possible directions of the highest facet.
One bit is used to mark cells as critical or not. The 3D array
is created on the GPU and transferred to the CPU once the
gradient computation is completed.

Next, the decomposition of the domain into descend-
ing/ascending manifolds of maxima / minima are computed
on the GPU. This is done similar to the the algorithm de-
scribed in Section 3. Simultaneously, the CPU executes Al-
gorithm 3 to determine connections between 2-saddles and
1-saddles. This step is optimized to traverse only those paths
that reach 1-saddles by executing a single breadth first search
traversal that begins from all 1-saddles and marking all (1,2)
pairs that are reached when traversing the gradient field
upwards. While processing paths that descend from the 2-
saddles, only pairs that are marked reachable from a 1-saddle
are inserted into the priority queue PQ. One bit of the 3D ar-
ray, which records per cell information, is used to represent
visited or not visited state of a cell.

The Morse-Smale complex is represented as a graph with
nodes as critical cells. Adjacencies are represented as list of
associative arrays, one for each critical point and the mul-
tiplicity of paths associated with each adjacency. Hence the
complexity to access a particular adjacency of critical cell
is log(n), n being the maximum number of adjacent critical
cells.

Merging proceeds by cancellation of gradient pairs that
cross a shared boundary. So, the descending connections of
lower index critical cell of the pair and the ascending con-
nections of the higher index critical cell are discarded by the
cancellation. We further optimize by not recording such con-
nections in the MS complex and not launching Algorithm 3
from 2-saddles that are paired with maxima.

Merging sub-domains. The merging procedure proceeds
in the reverse order of subdivision of the domain. Two sub-
domains are merged into a single MS complex while ensur-
ing that gradient pairs that cross the shared boundary are
identified. Then these pairs are canceled out. This procedure
ensures that there is no duplication of critical cells (and their
combinatorial connections) that lie on the shared boundary.
Similar to the previous step, a persistence based simplifica-
tion is performed on the combined MS complex after each
merge.

Traversing merge history and extracting geometry. The
traversal of merge histories computes paths from critical
cells that enter a sub-domain through a shared bound-
ary. Since we simultaneously perform simplification during
merging, we consider critical cells within a sub-domain that
are paired with other critical cells, possibly outside the sub
domain, as entry points of gradient flow from surviving crit-
ical cells.

For extracting geometry, we require the original gradient
field information. To obtain this, we reload the original func-
tion and recompute the gradient field, since the time taken to
store and load this information is significantly higher than re-
computing it. The partition of the domain based on gradient
paths from extrema is computed on the GPU and the ascend-
ing/descending manifolds of saddles are computed using the
modified version of Algorithm 3.

7. Experiments

We performed experiments on two different classes of
datasets. First, we evaluated our algorithm with synthetic
datasets to analyze its efficiency and scaling behavior with
varying parameters such as regions of near flat-gradient and
large numbers or gradients crossing shared boundaries. Sec-
ond, we evaluated our algorithm’s performance on various
volume datasets available from http.://www.volvis.org and a
dataset obtained from the simulation of a 3D Taylor-Green
vortex flow on a Cartesian grid. All experiments were per-
formed on an Intel-Xeon 2 GHz CPU with 4 cores and
16 GB of RAM and an NVidia GeForce GTX 460 GPU
with 336 cores and 1GB of memory. Data was split into
256 x 256 x 256 sized sub-domains that fit in memory.

Synthetic data. We use a synthetic dataset WGAUSS to
stress test the algorithm. The function is defined as the prod-
uct of a cosine wave with the 3D Gaussian i.e. f(x,y,z) =
cos(2mvde) X Geg(x,y,2), where v is the frequency of the
cosine wave, d. is the distance of the point from the cen-
ter, G¢,c is the 3D Gaussian centered at ¢ with variance o,
and the domain is the unit cube. The function is sampled at
various grid resolutions to study scalability. This dataset is
challenging since it contains multiple flat-regions at concen-
tric spheres, where the cosine wave achieves its maximum
or minimum.

We use two variants of this function to study our algo-
rithm. First, we place the Gaussian at the center of the do-
main with variance 0.5 in all directions and set v = 5. The
function contains concentric flat regions distributed across
sub-domains resulting in several insignificant critical points.
Experiments with this dataset helps study the scalability of
the algorithm in the presence of noise and flat regions. Sec-
ond, we distribute eight Gaussians, such that each one is cen-
tered in each octant of the domain. This variant does not pos-
sess as many flat regions because the multiple cosine waves

(© 2019 The Author(s)
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Figure 8: (left) Scaling behavior with varying sizes of the
WGAUSS dataset simplified using a threshold of 1%. (right)
Computation times for stages 2-5 for the 10247 datasets. The
persistence threshold for each run is shown above the bar-
plots. Time taken to split the data into sub-domains is ap-
proximately 3 minutes.

Dataset size #crits. time (a) (b)
Silicium 98 x 34 | 1375 0.1s | 3s -
Fuel 643 773 02s | 5s -
Neghip 643 5663 03s | 16s | 7s
Hydrogen | 128° 26725 1.5s | 69s | 47s
Anuerism | 256> 95865 15s 118m | 5m
WG 10243 13531699 | 42m | - -
WG_M 10243 4599 20m | - -
VORTEX_yu | 10243 1266976 | 32m | - -
WG 2048> 54141119 | 464m | - -
WG_M 2048> 4575 370m | - -

Table 1: Timings for datasets available from volvis.org com-
pared with timings to compute the MS complex as reported
in (a) [GRWHI11] and (b) [GBPHOS] .

superpose and break up the flat regions. This causes sev-
eral gradients to cross common boundaries thus stressing the
scalability of the merge and merge history traversal.

Figure 8 shows the computation time for large data sizes.
As can be seen from the figures, our algorithm performs
better on the WGAUSS_MULTI dataset which contains fewer
flat regions. The time to cancel the gradient pairs that cross
shared boundaries is lesser than the time taken to perform
a persistence based simplification of the MS complex. This
is reflected in the time taken to merge the sub-domains of
the WGAUSS dataset. Figure 8 also plots running time for
increasing data sizes of the WGAUSS dataset. The scaling
results are similar for various values of persistence thresh-
old. We note that the curves deviate away from linear scaling
with increasing data sizes. On detailed analysis, we observed
that stages two and five scale linearly whereas stages three
and four did not. This is because of the representation of the
combinatorial MS complex as a list of associative arrays.

© 2019 The Author(s)
(© 2019 The Eurographics Association and Blackwell Publishing Ltd.

(@)

(e)
Figure 9: Ascending arcs between 2-saddles and maxima
shown with the volume rendered image for (a) Hydrogen,
(b) Silicium, (c) Fuel and (d) Neghip Datasets. Segmenta-
tion of the WGAUSS dataset into (e) descending manifolds
(f) ascending manifolds.

()

Performance. To verify the benefits of parallelization, we
compare our algorithm against existing methods [GBPHOS,
GRWHI11] on datasets available from volvis.org, and a vor-
tex flow data set, see Table 1. The experimental results indi-
cate orders of magnitude improvement in the running time.
Further, the memory required by our algorithm is less than
2GB even for the larger WGAUSS dataset. Gyulassy et al.
and Giinther et al. [GBPHO8, GRWHI11] report 23h and
5h, respectively, to process data sizes close to 10243, Fig-
ure 9 shows the critical 2- and 3-cells along with the ascend-
ing manifolds of 2-saddles for various datasets as well as
slice visualizations of the WGAUSS dataset along with the
decomposition of one sub-domain into descending / ascend-
ing manifolds of maxima / minima.

8. Conclusions

We have described a parallel algorithm to compute MS com-
plexes of three-dimensional scalar functions. A hybrid multi-
core implementation results in significant speedup and supe-
rior performance as compared to existing approaches. Fur-
ther, the algorithm is also memory efficient. In future, we
plan to extend the algorithm to handle unstructured meshes.
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