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ABSTRACT

A new method for identifying Rossby wave packets (RWPs) using 6-hourly data from the ERA-Interim is

presented. The method operates entirely in the spatial domain and relies on the geometric and topological

properties of the meridional wind field to identify RWPs. The method represents RWPs as nodes and edges

of a dual graph instead of themore common envelope representation. This novel representation allows access

to both RWP phase and amplitude information. Local maxima and minima of the meridional wind field are

collected into groups. Each group, called a y-max cluster or y-min cluster of the meridional wind field,

represents a potential wave component. Nodes of the dual graph represent a y-max cluster or y-min cluster.

Alternating y-max clusters and y-min clusters are linked by edges of the dual graph, called the RWP asso-

ciation graph. Amplitude and discrete gradient-based filtering applied on the association graph helps identify

RWPs of interest. The method is inherently robust against noise and does not require smoothing of the input

data. The main parameters that control the performance of the method and their impact on the identified

RWPs are discussed. All filtering and RWP identification operations are performed on the association graph

as opposed to directly on the wind field, leading to computational efficiency. Advantages and limitations of

the method are discussed and are compared against (transform-based) envelope methods in a series of

experiments.

1. Introduction

Rossby wave packets (RWPs) are localized contigu-

ous regions of significant meridional flow with alter-

nating signs that have a maximum near the tropopause

(Wirth et al. 2018). RWPs have a group velocity that is

larger than the phase velocity of an individual wave

component. The faster propagation of energy generates

new wave components at the leading (eastern) edge

of the wave packet, resulting in the phenomenon of

‘‘downstream development’’ (Simmons and Hoskins 1979;

Chang and Orlanski 1993; Hakim 2003). Eddy variance

generated in localized baroclinically active regions

(predominantly over the oceans) is transported over

long distances in the form of RWPs, affecting weather

and climate at planetary scales. Observational analyses

show that RWPs preferentially propagate in the zonal

direction. This preferential zonal propagation is attrib-

uted to the focusing of these RWPs by baroclinic

waveguides, whose location correlates strongly with the

seasonally varying location of the subtropical and polar

jets (Wallace et al. 1988; Chang and Yu 1999; Chang

1999; Martius et al. 2010).

There has been an increasing interest in the dy-

namics of RWPs due to their role in the variability of

midlatitude weather by the chaotic mixing of air in

regions adjacent to the baroclinic waveguides (see, e.g.,

Swanson and Pierrehumbert 1997; Schneider et al. 2015).
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The anomalous advection of water vapor, potential vor-

ticity, and temperature bywinds associatedwith theRWPs

can result in a dynamic and thermodynamic environment

favorable to extreme weather events (Schubert et al. 2011;

Parker et al. 2014; Dimri et al. 2015; Ratnam et al. 2016;

Hunt et al. 2018; Fragkoulidis et al. 2018; Monteiro and

Caballero 2019). Therefore, understanding the dynamics

of RWPs and their predictability is essential to predict

these extremes and how they might evolve in a changing

climate.

a. Related work

A first step in such an analysis of RWPs is to identify

and track them in gridded data. Due to the difficulty in

providing a precise algorithmic description of RWPs,

their identification and tracking has proved to be a

challenging and interesting aspect of RWP research.

Initial attempts used time–longitudemaps that averaged

the geopotential field over a certain latitude band

(Hovmöller 1949) or used one-point correlation maps

derived from the geopotential field at different levels

(Wallace et al. 1988). While these approaches are ideal

for case studies, attempts were made to find a more

‘‘objective’’ method to aid in automated identification of

RWPs in large datasets. Toward this end, Fourier-

transform-based methods such as complex demodula-

tion (Lee and Held 1993), Hilbert transforms (Zimin

et al. 2003, 2006) and filtered local finite-amplitude wave

activity (LWA) (Ghinassi et al. 2018) have been devel-

oped. These algorithms use the meridional wind field as

input and provide as output the envelope of the RWP,

which is referred to as an RWP object. Combining this

identification step with a tracking algorithm (Souders

et al. 2014b) allows for an automated way to extract

information about RWPs in large datasets.

The above algorithms provide a concise description of

RWPs from noisy data (usually the upper-tropospheric

meridional winds) at the expense of losing phase infor-

mation. However, the phase information is often impor-

tant for characterizing the local synoptic situation at a

location. For example, we have observed that extreme

wet-bulb temperature events in south-west Pakistan are

associated with northerly winds at 300hPa to the north

of the Indus valley (Monteiro and Caballero 2019). An

algorithm that is capable of objectively identifying RWPs

while still providing access to the phase information is

essential to automate the identification and prediction

of such extreme events. Furthermore, there is evidence

that transform-based methods that analyze the me-

ridional wind struggle to capture the full nonlinear

evolution of RWPs, and that the LWA field might

be a better way to track RWPs through their entire

life cycle (Ghinassi et al. 2018). However, the LWA

field is not readily available from either reanalysis

data or model output.

b. Contributions

In this paper, we describe a method to identify RWPs

from the meridional wind field y in the spatial domain

without the use of Fourier transforms. We instead use

the topology of the y field to obtain a concise description

of RWPs in the form of a graph. A node of this graph

represents an individual wave component, called a

y-max cluster or y-min cluster. A y-max cluster (y-min

cluster) is a cluster of maxima (minima) of the wind

field. An edge of the graph represents the spatial ad-

jacency between a y-max cluster and y-min cluster. The

use of topological features (defined by local maxima

and minima of y) helps avoid making assumptions

about the wavelike behavior of RWPs.

The simplicity of the graph representation enables fast

recomputation of RWPs for different values of param-

eter thresholds. Furthermore, the graph representation

allows a global description of the RWP field (entire

graph) without loss of phase information (individu-

al nodes). Finally, tracking methods that work with

graph-based representations (e.g., Valsangkar et al.

2019) could be used to follow the evolution of RWPs

over time.

Table 1 lists various features and characteristics of

the proposed method and compares the proposed

method’s relative strengths and weaknesses against

previous approaches.

2. RWP identification

In this section, we describe our proposed approach to

RWP identification, representation, and interactive vi-

sual analysis. The method operates on the meridional

wind field defined on a 2D grid with a fixed resolution.

For the current study, we use the 300 hPa meridional

winds from ERA-Interim, which has a spatial resolution

of 0.758 in latitude and longitude space and a temporal

resolution of 6 h (Dee et al. 2011). The method does not

make any assumptions on the resolution or the projec-

tion of the input data. Further, the method provides

inherent support for controlled noise removal and does

not require prior smoothing of the meridional wind field

y in space or time (see, e.g., Souders et al. 2014b).

a. Method overview

We utilize the geometric and topological properties of

the meridional wind field y to extract RWPs. We define

an RWP as alternating clusters of maxima and minima

of the meridional wind field. These high-intensity clus-

ters of maxima and minima in the meridional wind field
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are henceforth referred to as wave components. Figure 1

presents an overview of the different steps toward RWP

computation. Figure 2 provides a visual representation

of various terms and illustrates the algorithm by showing

the output of different steps. The method first computes

local maxima and minima of y and uses them to identify

wave components of RWPs. The collection of local

maxima and minima is partitioned into clusters. Each

cluster represents a potential wave component and is

called a y-max cluster or y-min cluster, respectively.

Next, the method searches for coherent associations

between the identified y-max clusters and y-min clusters.

Spatial adjacencies between the clusters are stored as

edges in an association graph. Nodes of this graph rep-

resent the individual y-max clusters and y-min clusters.

We associate a cost or weight with each edge of the

graph that depends on the value of y at the nodes that

the edge connects and the distance between these no-

des. The specific formulation of the edge weights is

presented later in this section. These weights are used

to identify and prune irrelevant edges, thereby reduc-

ing the graph to a collection of paths. A path is an or-

dered sequence of alternating nodes and edges, where

each edge connects its predecessor and successor node.

Finally, each connected component in this collection of

paths is processed to extract representative paths to

display the identified RWPs.

We now describe the four steps of the RWP iden-

tification pipeline. First, we introduce the data struc-

tures used to store and efficiently access the input and

intermediate objects computed by the algorithm.

b. Data structure and representation

The y field is stored as a fixed resolution grid, samples

are available at each grid point and we assume linear

interpolation along each axis in all computations.

Maxima and minima of the y field are stored as a list of

n-tuples, each containing the point coordinates, value

of the y field, and cluster ID tag for the point. The

association graph constructed in the process of com-

puting the RWPs is stored as a list of line segments

(edges) with associated weights. We use the Python

library NetworkX (Hagberg et al. 2008) for storing

and processing the graph. The spatial region associ-

ated with a y-max cluster and y-min cluster is stored

as a list of vertices and edges that bounds the region.

c. Extract critical points

Critical points of a scalar field together with the as-

sociated gradient field can be used to infer important

TABLE 1. A summary of the features of the envelope method (Zimin et al. 2003, 2006), the LWA method (Ghinassi et al. 2018), and the

proposed method. The terms u, y, and T in the table have their usual meaning.

Feature Envelope method LWA

Geometric 1 topological method

(proposed)

Detection algorithm Hilbert transform (along

latitude or streamlines)

Filtered LWA Identification and clustering of maxima

and minima of the y field

Input data y on one pressure level u, y, T on one isentrope y on one pressure level

Smoothing of input data Yes Yes (LWA is filtered) No

Output data Envelope field Filtered LWA field A graph representing the RWP and its

phase information

Noise sensitivity Yes, so the method requires

filtering of input in a

preprocessing step

Yes, so the method requires filtering

of input in a preprocessing step

Yes, so the method filters low-amplitude

extrema before clustering but does not

filter input data

RWP life cycle Works best in the linear and

wavelike stages of the

RWP life cycle

Works in all stages of RWP life

cycle, including the finite-amplitude

stage of the life cycle

Works in all stages of RWP life cycle,

including the finite-amplitude stage

of the life cycle

Dependence of output

size (M) on input

size (N)

M 5 N; envelope field is

sampled on same grid as

input y

M 5 N; filtered LWA field is

sampled on same grid as input y

M ’ constant, M � N; the nodes in the

output graph corresponds to the RWP

phase; number of nodes is much smaller

than the input y

Phase information Not available; further

nontrivial processing may

be required to extract

phase information

Not available (filtered out from

LWA); further nontrivial

processing may be required to

extract phase information

Directly available in output graph

Ease of computation Simple Complicated (even when isentropic

data are available)

Moderate

Separation of field into

different RWPs

Simple (thresholding) Simple (thresholding) Involved (calculating importance of edges

by estimating curvature vorticity)

Visualization of

RWP field

Direct plotting of

envelope field

Direct plotting of filtered LWA Calculation of graph representation of

RWP from association graph
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structural information. Topological analysis based on

critical points and their interrelationships have been

successfully used for feature identification, analysis,

and tracking (Heine et al. 2016), specifically for extra-

tropical cyclone identification and tracking (Valsangkar

et al. 2019), visualization of cloud system movement

(Doraiswamy et al. 2013), and tracking pressure per-

turbations (Widanagamaachchi et al. 2017).

An important characteristic of these methods is that

they do not require numerical computations of the

gradient, instead the critical points are computed based

on combinatorial characterizations. Here, we are inter-

ested in capturing y-max cluster and y-min cluster like

behavior in the meridional wind velocity field. High-

valued local maxima (minima) serve as starting points

for capturing y-max clusters (y-min clusters).

A local maximum is located at a grid point whose

scalar value is higher than neighboring grid points.

Similarly, a local minimum is located at a grid point

whose scalar value is lower than neighboring grid

points. A large number of low-amplitude, structurally

irrelevant local maxima and minima are reported by a

method that is directly based on this definition. Since

the focus is on identifying relevant starting points for

significant y-max clusters and y-min clusters, we remove

all local minima and maxima with a value of y smaller

than 5m s21.

Figure 2a shows the distribution of local maxima and

minima within a small region in the Northern Hemisphere

at 0600 UTC 6 January 2007. We can see how they can

be potentially used as markers for the different y-max

clusters and y-min clusters in the scalar field. While at

least one local maximum is guaranteed per y-max cluster

(one local minimum per y-min cluster), we observe a

total of 18 local maxima and 21 local minima spread over

5 y-max clusters and 4 y-min clusters, with at least 4 local

maxima (minima) belonging to the same y-max cluster

(y-min cluster).

d. Compute y-max clusters and y-min clusters

The collection of local maxima and minima identified

in the previous step is partitioned into clusters. A y-max

cluster consists of a collection of local maxima that

are not separated by a region of negative y values.

Additionally, we require two local maxima that are

spatially distant to belong to distinct y-max clusters.

Similarly, a y-min cluster consists of a collection of local

minima that are not separated by a region of positive

y values. The aim is to obtain a partition where each

y-max cluster and y-min cluster contains a collection of

proximal maxima and minima, respectively. This parti-

tion is computed by clustering the local maxima/minima

using a suitable measure of similarity that is described

later in this section.

We need a flexible clustering algorithm with a

geometry- and topology-aware similarity measure to

compute such a partition. We choose the affinity prop-

agation clustering algorithm (Frey and Dueck 2007)

because of its ability to automatically select the num-

ber of clusters and its support for different similarity

measures.

The affinity propagation algorithm takes as input the

similarity measures between points. It treats all input

points as part of a network, exchanging real valued

messages between the points iteratively. It aims to iden-

tify one exemplar per cluster. The similarity between a

pair of points is used to compute how well one point

represents the other. The exemplar is a point that is the

FIG. 1. RWP identification pipeline. The meridional wind field is processed to identify y-max clusters and y-min clusters. Spatial

adjacencies between the y-max clusters and y-min clusters is captured by constructing an association graph. In the final step, this graph is

processed to identify RWPs and to compute a representative path for each RWP.

3142 MONTHLY WEATHER REV IEW VOLUME 148

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/8/3139/4965454/m
w

rd200014.pdf by guest on 14 July 2020



best representative of other points within the cluster. The

messages sent in each iteration of the algorithm contain

information about the suitability of a point to be an

exemplar. These iterations continue similar to a voting

process, until a set of stable exemplars and their corre-

sponding clusters emerge.

We formulate a similarity measure that assumes

high values for local maxima (minima) that belong

to a common y-max cluster (y-min cluster) and low

values if they belong to different y-max clusters (y-min

clusters).

To understand the similarity measure, we first define a

superlevel set and sublevel set for a given scalar value.

Given a scalar function f defined over a domain D, a

superlevel set for a value c consists of all x 2 D for

which f(x) $ c. Similarly, a sublevel set would consist

of all x 2D for which f(x)# c. Intuitively, a superlevel

set is obtained by clipping the scalar field using a

scalar value and including all points in the domain

above the clip. Similarly, a sublevel set is obtained by

including all points below the clip. In the following dis-

cussion, we use a clipping parameter value of 0 to sim-

plify the exposition. We discuss parameter selection in

the following section.

The dissimilarity between two local maxima and

minima xi and xj is defined as

FIG. 2. The result of various steps of the algorithm applied to the meridional wind field at 0600 UTC 6 Jan 2007.

(a) Identification of local maxima and minima. Local maxima are represented by unfilled squares and local minima by filled

squares. (b) Clustering local maxima and minima into distinct y-max clusters and y-min clusters. Local maxima and minima

belonging to different clusters are represented by different markers. (c) Choosing a representative local maximum and minimum

per cluster. (d) Computing the association graph between different clusters. (e) Processing the association graph to obtain the

RWP paths. (f) The RWP path overlaid on the RWP envelope representation (m s21) as a comparison. Using a threshold of

20 m s21 to identify RWP objects, the envelope contours show the RWP object that would be identified using an algorithm such

as Souders et al. (2014b). The envelope method highlights two centers of activity at 1508 and 908W. The RWP path high-

lights centers of activity where the graph nodes are clustered. The centers of activity identified by the RWP path are slightly

displaced when compared to those identified by the envelope method, and this displacement depends on the shape of individual

clusters. (g) A visual representation of various terms: the numbers label edges of the graph. An RWP path is a sequence of edges,

say 1–2–3–4–5 or 1–6–7–8–3–4–9. The weight associated with each edge is called the edge weight, and the sum of weights of

all edges in a path is used in the path optimization step for identifying individual RWPs. The dash–dotted line represents

the zero-isocontour in all panels. The thin black contour represents the 30 m s21 contour and the thin dashed contour represents

the 230 m s21 contour.
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where Dsupl(xi, xj) is the length of the shortest path be-

tween xi and xj that lies within the superlevel set of 0,

Dsubl(xi, xj) is the length of the shortest path between xi
and xj that lies within the sublevel set of 0, ymin(xi, xj) is

the minimum of y within the straight line joining xi and

xj, and ymax(xi, xj) is themaximumof y within the straight

line joining xi and xj.

The similarity between two local maxima and minima

is defined as the negative of the above dissimilarity

measure. Figure 3a shows the path connecting two pairs

of local maxima, the first pair within a common y-max

cluster and second pair from different y-max clusters.

Such an approximate shortest path is computed by

considering the shortest path in a graph whose nodes are

the grid points of the superlevel (sublevel) set and edges

connect all horizontally or vertically adjacent nodes.

The superlevel set consists of multiple regions that are

pairwise disjoint. If two local maxima belong to two

different regions of the superlevel set of 0, there neces-

sarily lies a region of negative y values that separates

them. We therefore assume that they belong to dispa-

rate y-max clusters. Based on this assumption, we run

affinity propagation clustering algorithm individually

within each region of the superlevel set of 0 to identify

y-max clusters. Similarly, we run the clustering algo-

rithm individually within each region of the sublevel set

of 0 to identify y-min clusters.

Figure 2b shows the typical output of the clustering

step. Each y-max cluster (y-min cluster) has an associ-

ated region, namely, the interior of the zero-isocontour

that bounds all it constituent maxima (minima). We

observe that the clustering effectively segments the

y field into y-max clusters and y-min clusters.

e. Compute association graph

The y-max clusters and y-min clusters identified in the

previous step could together form a wave packet. In this

step, the method identifies pairwise associations be-

tween y-max clusters and y-min clusters if there is evi-

dence in the form of a shared boundary between them.

The zero-isocontour of the y field is a natural boundary

between y-max clusters and y-min clusters, since any

path from a y-max cluster to a y-min cluster would

necessarily pass through this zero-isocontour. We de-

clare that a y-max cluster and y-min cluster share a

common boundary when we find a point on the zero-

isocontour whose closest local maximum and closest

local minimum belong to the two clusters that represent

the y-max cluster and y-min cluster, respectively.

Figure 3b shows how the representative maximum

within a y-max cluster and minimum within a y-min

cluster necessarily lie on either side of the shared

boundary, which is a segment of the zero-isocontour.

A path between them has to pass through the shared

boundary, and therefore the zero-isocontour.

We compute a graph that stores all such associations

by iterating through every point on the zero-isocontour

and inserting an edge between the closest y-max cluster

and y-min cluster. If a y-max cluster has more than one

y-min cluster as a neighbor, then the corresponding node

in the association graph has two edges associated with it.

This situation is illustrated in Fig. 2d. To layout this

graph within the spatial domain, we use the point with

the highest magnitude of y within each cluster as the

representative node.

Figure 2c illustrates the representative points for each

y-max cluster and y-min cluster. Figure 2d shows the full

association graph. The association graph acts as a suc-

cinct representation of the segmentation of the field and

connectivity between segments.

f. Prune association graph

The association graph may contain many unwanted

edges between y-max clusters and y-min clusters that are

weakly associated and belong to separate RWPs. We

therefore subject the association graph to a further

pruning step to ensure the separation of the individual

RWPs and validity of each identified connection.

To prune the graph, each edge of the association

graph is assigned two weights. The scalar weight, that

depends on themeridional windwithin the y-max cluster

and y-min cluster that it connects, and an estimated

gradient, computed based on the maximum two-point

gradient across all local maxima and minima pairs

between a given y-max cluster and y-min cluster. More

specifically, if ei,j is the edge between the ith and jth

cluster,

Scalar Weight(e
i,j
)5min(jy

i
j, jy

j
j),

where yi and yj are the highest absolute values of the

meridional wind within the ith and jth clusters, respec-

tively; and

Estimated Gradient(e
i,j
)5 max

mi2Mi,mj2Mj

jy
mi
j1 jy

mj
j

dist(m
i
,m

j
)
,
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where Mi and Mj are the set of all maxima or minima

belonging to the ith and jth clusters, respectively; ymi
and

ymj
are the meridional wind speeds for the maximum mi

and minimum mj, respectively; and dist(mi, mj) are the

haversine distance between the points mi and mj.

Since RWPs are typically associated with high values

of y, the clusters that belong to anRWP can be identified

by choosing a high threshold for the scalar weights while

pruning the graph. While the scalar-weight threshold

only uses geometric information to prune the graph,

the use of the gradient weight is physically motivated.

The gradient of y provides an estimate of the curvature

vorticity associated with a y-max cluster–y-min cluster

pair. Pruning edges based on a threshold gradient weight

works on the assumption that RWPs are separated by

regions of low curvature vorticity.

The intensity of meridional wind along with the es-

timated curvature vorticity act as good pruning mea-

sures to separate the association graph into connected

components representing individual regions of RWP

activity given the large number of associations found

in the initial graph.

g. Extract and display RWPs

While the connected components of the pruned

association graph represent regions of RWP activity,

further processing is required to identify and display

clear representative RWPs for each such region. We

emphasize that choosing representative nodes for

RWPs is purely for visualization, and the information

about all maxima and minima in a cluster is retained

for scientific analysis. The use of information contained

in a cluster is illustrated in one of the subsequent case

studies.

Nodes in a connected component represent clusters of

local maxima and minima while edges represent their

spatial connections. Therefore, in extracting an optimal

representative RWP, we are not only faced with a choice

over the set of clusters but also a choice of representa-

tivemaxima orminima for these clusters.We thusmodel

this decision as an optimization problem across all sim-

ple paths between the connected clusters constructed

using all possible representative critical points for each

cluster. First, we filter and retain only those paths where

the longitudes form an increasing sequence. This pre-

vents backward connections. Next, we compute path

scores as the sum of edge weights of the path’s constit-

uent edges. The edge weights are calculated using the

estimated gradient described previously. This weight

penalizes meridional associations by scaling latitude

coordinates by a constant factor of 2 for the distance

computation. Finally, the path with the highest score

within each connected component is extracted and dis-

played as the representative RWP. Figure 2e shows the

extracted RWP and Fig. 2f presents a visual comparison

with the envelope representation.

Our final representation for an identified RWP is

therefore in the form of a graph. However, it is im-

portant to note that each node in the graph represents

the cluster of local maxima or minima belonging to

the corresponding y-max cluster or y-min cluster. This

collection of critical points facilitates access to the

geometric properties of the y-max clusters or y-min

clusters, like the spatial extent (computed based on

the spatial distribution of local maxima and minima),

amplitude (computed as the mean or median value of

the amplitude of the local maxima and minima), and

orientation (computed as a weighted least squares

fit to the local maxima and minima). The geometric

properties support further analysis of the identified

RWPs. We plan to elaborate on the visualization and

interaction aspects of our framework in a companion

FIG. 3. (a) The shortest path between local maxima lying within

the superlevel set of 0. One shortest path connects two local

maxima that lie within the same y-max cluster. Another shortest

path connects two local maxima that lie in two different y-max

clusters. Note that neither path crosses the zero-isocontour

(dot–dashed line); that is, they lie within the superlevel set of 0.

(b) Shared boundary between two clusters (bold black). The shared

boundary is a segment of the zero-isocontour (dot–dashed line).

Points within this segment are such that their closest local maxima

and minima belong to the respective clusters that define the y-max

cluster and y-min cluster. All notations are as in Fig. 2.
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paper, which documents the open-source software package

that we have developed.

3. Sensitivity to tunable parameters

Our RWP identification algorithm has three tunable

parameters:

d The scalar-weight threshold (ST), which determines

which of the identified local maxima or minima are

included in the RWP computation.
d The gradient-weight threshold (GT), which is used to

prune edges from the association graph to identify

the RWPs.
d The clipping parameter, which controls the spatial

extent of each y-max cluster and y-min cluster.

A clustering parameter is also available. However, our

analysis suggests that varying the clipping parameter

results in physically more intuitive results. Hence the

clustering parameter is fixed to a constant value for all

our sensitivity tests.

To find appropriate values for ST and GT, we used

6-hourly meridional winds at 300 hPa during winter

(December–February) for four arbitrarily chosen years

(1990, 1995, 2000, and 2005) and calculated the statistics

of the identified RWPs for a range of values of ST and

GT. Each time step was considered independently and

RWPs were not tracked across time steps. While this

method implies multiple counting of RWPs, this is not

directly relevant to the question of choice of thresholds

since we are more interested in the spatial structure of

the RWPs than their lifetime characteristics.

The summary statistics obtained by varying GT and

ST is presented in Fig. 4. The number of time steps in

Figs. 4d and 4h containing RWPs displays a weak de-

pendence on GT and ST until a certain value (up to

0.04 s21 for GT and up to 40m s21 for ST), then reduces

rapidly. Thus, there appears to be an upper bound on

the gradient and amplitude of the meridional wind

in the chosen months. We observed similar behavior

during the other seasons. The rapid reduction in num-

ber of time steps containing RWPs begins at lower

values of GT (0.03 s21) and ST (35m s21) in the sum-

mer (see Figs. S1–S3 in the online supplemental ma-

terial). This difference suggests that there exist RWPs

of relatively lower amplitude in the summer as com-

pared with the other seasons. Furthermore, at a given

value of the scalar threshold, there exist RWPs with a

lower value of the estimated curvature vorticity in the

summer as compared with other seasons. This ob-

servation is consistent with lower RWP activity and

less intense RWPs observed in the summer in Souders

et al. (2014a, their Figs. 4 and 5). It would be interesting

to see if such behavior is exhibited in longer-term

datasets.

Spatially, low values of GT tend to merge multiple

RWPs (observed visually) whereas high values tend to

identify only intense dipole structures—see changes in

identified RWPs between 1408 and 2408E in Fig. S4. The

merging of distant RWPs is also evidenced by the fact

that the median edge length is shorter than the mean

edge length in Fig. 4b for values of GT lower than 0.03.

For values of GT higher 0.05 this behavior is observed

again, but is likely due to the very small edge lengths

associated with the intense dipole structures. The

shorter median length implies the presence of longer-

than-average edges in the pruned association graph.

Figure 4f shows that the difference between mean and

median values of edge lengths is also seen as ST de-

creases, suggesting that decreasing ST (keeping GT

fixed) connects distant RWPs. A high value of GT can

be used if the requirement is to identify regions of

intense RWP activity.

Figures 4a and 4e shows that increasing GT and

ST decreases the number of edges in each pruned

association graph almost monotonically. This is be-

cause increasing values of ST results in the rejection

of lower-amplitude maxima and minima, and increas-

ing values of GT prunes edges associated with a lower

gradient. Since the mean extent of the RWPs is simply

the sum of the length of the edges in the pruned as-

sociation graph, this metric decreases monotonically

with increasing GT and ST as well, as seen in Figs. 4c

and 4g.

The following analysis and case studies focus on the

range of ST andGTwhere the number of identifiedRWPs

is relatively constant: 0.1–0.4 for GT and 30–40 for ST.

Specifically, we use a GT of 0.3 and ST of 30. For these

values of the thresholds, the algorithm produces RWPs

that have two edges (three y-max clusters or y-min

clusters) on average and have an average wavelength

(equal to twice the edge length, Fig. 4) of around

4000 km, a value supported by other methods as well

(Chang 1999).

We performed a sensitivity analysis to determine the

effect of the clipping parameter. The RWP statistics are

not very sensitive to different clip values except for low-

amplitude RWPs. For low-amplitude RWPs, increasing

the clipping parameter results in smaller edge lengths

since we no longer connect clusters that are far apart.

This is seen in Fig. S5. Furthermore, low-amplitude

clusters are correctly separated from the high-amplitude

ones, whereas high-amplitude clusters are largely in-

sensitive to the choice of the clip value (see Fig. S6).

Based on this analysis, the framework uses a con-

stant 2m s21 as the clip value to ensure fidelity with the
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FIG. 4. The spatial statistics of the identified RWPs when (a)–(d) the gradient weight threshold GT is varied

and (e)–(h) the scalar-weight threshold ST is varied. The edge length is calculated as the haversine distance

between the end-point nodes. The mean extent of the RWP is calculated by adding the lengths of all edges in

the pruned association graph. In (b) and (f) the median value is represented by stars and the mean value by

circles. The total number of time steps in the data is 1440.
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geometric intuition behind the clustering analysis, while

obtaining physically appropriate clusters.

4. Case studies

We present a series of case studies that demonstrate

the use of the proposed graph-based representation of

RWPs and the visualization framework for interactive

exploration and visual analysis. We also present com-

parisons with previous approaches to identify and rep-

resent RWPs and discuss strengths and shortcomings of

the integrated geometric and topological approach.

a. RWP genesis

We use the same cases used by Souders et al. (2014b,

their Figs. 6 and 7) to illustrate the genesis of RWPs,

with and without previous RWP activity. The first case

study tracks the evolution of the RWP field between

21 and 23 January 2007. The second case study focuses

on the time period 6–10 January 2007. In the first case,

an RWP is forced locally to the east of Japan by a

deepening cyclone. As seen in Fig. 5, there is no RWP

activity visible (as indicated by the lack of nodes/edges)

over the western part of the Pacific basin (1208–1808E) at
0600UTC 21 January 2007. The following day, the RWP

is visible over the eastern Pacific and amplifies down-

stream on 23 January. The sequence of development is

captured satisfactorily when compared with the de-

scription in Souders et al. (2014b). Our method also

suggests an equatorward extension of the merging

RWPs over the Pacific (between 1708E and 1208W),

which is not captured by the envelope approach (Souders

et al. 2014b, their Fig. 6c).

In the second genesis case study, the development of

the RWP seems to be shifted in time compared to the

description in Souders et al. (2014b).1 There is the gen-

esis of an RWP associated with a cutoff low in Fig. 6 on

6 January at 1208E. This weak RWP amplifies down-

stream on 8 January and merges with an existing RWP

over the Pacific near 1808. This merged, amplifying

RWP then merges with another RWP present over

North America on 10 January, forming a contiguous

RWP field that extends from the Pacific to Europe. The

pruned association graph again represents the devel-

opment satisfactorily, although a y-max cluster and

FIG. 5. The development of a locally forced RWP captured using the y field. The filled

contours represent y, with blue-filled contours representing negative values. The brown

contours represent the 300-hPa geopotential height (870, 900, and 930 dam). The pruned

association graph representing the RWP is shown using black nodes and edges. The panels

show y at 0600 UTC.

1Analyzing the NCEP data used by Souders et al. (2014b), their

sequence of figures appears to start around 4 January.

3148 MONTHLY WEATHER REV IEW VOLUME 148

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/8/3139/4965454/m
w

rd200014.pdf by guest on 14 July 2020



y-min cluster connected around 1208E on 10 January

do not seem to be part of the same RWP.

Overall, the representation of RWP development

using our algorithm seems to be comparable to the

envelope-based method in these case studies. Since

our method is not constrained to envelopes along

streamlines, it is able to capture the meridional ex-

tension of RWPs into the tropics as seen in the first

case study, which may be important for studies of

tropical–extratropical interactions.

b. Identifying nonwavelike RWPs

Identifying RWPs throughout their life cycle is de-

sirable, especially during the finite amplitude evolution

when the RWP no longer resembles a wave. Ghinassi

et al. (2018) show that the Hilbert transform-based

method fails to capture some parts of the evolution of

the RWP involved in the ‘‘forecast bust’’ in April 2011.2

This forecast bust was associated with a significant

drop in forecast skill over Europe for both ECMWF

and Met Office forecasts (see Ghinassi et al. (2018)

and references therein). We analyze the same event

using our approach to investigate the reasons why the

latter method fails in tracking the complete evolution.

Figure 7 traces the evolution of the y field and the

corresponding RWP field between 12 and 17 April 2011.

The algorithm initially identifies four RWPs, one over

Europe (08–608E), one over Russia (1208E), a weaker

one in the Pacific (1808–2108E), and one in the Atlantic

Ocean (308–1008W). This is in contrast to both the en-

velope method and the method in Ghinassi et al. (2018,

their Figs. 4a and 4g), which show three centers of RWP

activity. The first three RWPs propagate eastward on

13 April, whereas the RWP in the Atlantic Ocean

evolves into a non-wavelike configuration as suggested

by the zig–zag node-edge configuration of the pruned

association graph (Ghinassi et al. 2018, their Figs. 4b

and 4h). As pointed out in Ghinassi et al. (2018), even

though there is a strong wave activity flux signal over the

Atlantic Ocean, the Hilbert transform-based method

does not capture the RWP probably due to the com-

plicated spatial structure.

The RWP over Russia seems to grow in situ over the

rest of the period before merging with the RWP over

Europe on 15 April. The amplitude of this RWP reduces

dramatically between 16 and 17 April, suggesting that it

FIG. 6. The development of an RWP forced by a decaying RWP. Filled contours represent

y, with blue corresponding to negative, and red/orange corresponding to positive values. The

dark brown contours represent the 300-hPa geopotential height (870, 900, and 930 dam), and

the graph representation of the RWP is shown using black nodes and edges. The panels show

y at 0000 UTC.

2 It is unclear if this picture changes if the Hilbert transform is

defined along streamlines as described in Zimin et al. (2006).
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is dissipating around 17 April. The RWP in the Atlantic

seems to amplify and ‘‘reorganize’’ into amore wavelike

pattern on 14 April. The RWP over the Pacific propa-

gates toward and merges with the RWP over the Atlantic

on 16 April, and leads to a reenergizing of RWP activity

over the Atlantic on 17 April. Interestingly, the structure

of this reenergized Atlantic RWP on 17 April is captured

better by the envelope method rather than the LWA

field (Ghinassi et al. 2018, compare Figs. 4f and 4l).

Our method seems to capture both the wavelike and

non-wavelike parts of the evolution of the RWP field

satisfactorily. However, the algorithm seems to miss

connecting the Atlantic and Eurasian RWPs (via the

y-min cluster over Scandinavia) on 15 April.

An important property of our algorithm is that the

phase information is preserved and the amplitude and

location of theRWP is represented directly in the spatial

domain without any undesirable shifts that might occur

FIG. 7. The evolution of themeridional wind field between 0000UTC12Apr and 0000UTC

17 Apr 2011. The graph representation of RWPs identified by our method are shown using

black nodes and edges. Negative values of y are denoted by blue-filled contours and positive

values by red-/orange-filled contours.
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due to filtering. This property allows us to capture

complicated RWP configurations while maintaining a

direct correspondence to the raw data.

c. RWP driven wet-bulb temperature extremes in
southwest Pakistan

The pruned association graph representing the RWPs

can also be used for more statistically oriented studies.

The structure of RWPs over multiple events is often

studied by first averaging themeridional wind over these

events, resulting in a composite field. The graph repre-

sentation of the RWP is unusual but is capable of

providing a more nuanced picture as the following case

study illustrates.

South Asia contains regions with some of the highest

wet-bulb temperatures observed globally (Im et al.

2017). The Sindh region of Pakistan contains a localized

hotspot which is observed to have high wet-bulb temper-

atures in May and June, see Fig. S7 and Fig. 1 in Monteiro

and Caballero (2019). Extreme wet-bulb temperature

events in this region during May and June were identified

by Monteiro and Caballero (2019) using the HadISD sta-

tion data (Dunn et al. 2016). They define extreme events as

time periods of 3 days or more when the mean wet-bulb

temperature in three stations located in the hotspot is

above the 90th percentile, and at least one station has a

wet-bulb temperature that is above the 97th percentile.

We refer the reader to their paper for further details.

The circulation patterns associated with extreme wet-bulb

temperatures suggest that the propagation of a RWP

through this region is responsible for advection of

moist oceanic air into the region, causing elevated

wet-bulb temperatures. Southerly winds advecting oce-

anic air is mostly confined to the boundary layer and is in

the opposite direction to the upper-tropospheric winds

associated with the RWP, which is northerly. Here, we

compare the signature of the RWPs using a composite

field (averaging over all events) and using the pruned

association graphs generated by our method.

The composite meridional winds for all extreme events

(38 in total over the period 1979–2016) is shown in Fig. 8.

We calculate the statistical significance of the meridional

wind composites using a bootstrap test with 5000 samples,

where each sample is the mean of 38 randomly selected

meridional wind fields inMay and June during the period

1980–2016. Regions with an amplitude that is significant

at the p , 0.05 level are considered RWP-related wind

anomalies. There is a weakening of the jet over central

Asia associated with a weak northerly wind anomaly. The

wave packet then develops over the days leading to the

event, displaying a maximum on the day of the event and

dissipates thereafter. The jet seems to weaken early on,

which is puzzling given the weak amplitude of the

northerly winds in the region 4 days prior to the event.

The jet remains weak in the region as the wave packet

strengthens, and recovers a few days after the event. The

amplitude associatedwith thewave packets appears weak

in this composite analysis, with the meridional winds

reaching amaximumof around 7ms21 close to the center

of the weakened jet, ;308N, 808E. The composite cal-

culated here uses y anomalies calculated as the departure

from a smoothed daily climatology. Using the anomalies

was necessary in this case because the composite of the

absolute meridional winds (not shown) is noisier and the

y-max clusters and y-min clusters are not as clearly visible.

FIG. 8. RWP composites during extreme wet-bulb temperature

events in South Asia. The filled contours represent the composite

anomalous y associated with the event at 300 hPa. The contours are

spaced 2m s21 apart starting from 1 and 21m s21 for the positive

and negative values, respectively. The thick gray contour repre-

sents the region where the zonal winds exceed 20m s21 during the

events. The thick black contours enclose regions with statistically

significant meridional winds. The meridional wind anomalies are

calculated using a smoothed daily climatology.
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The association graph-based analysis provides a more

nuanced picture of the event. In this case, using absolute

or anomalous meridional winds does not significantly

affect the results. We therefore present results using the

absolute meridional winds.

The pruned association graph (or RWP paths) were

filtered to retain only those y-max clusters and y-min

clusters lying between 608 and 908E. The immediate

neighbors of these y-max clusters and y-min clusters

were also retained. All paths were grouped in two

groups: One group of paths whose y-max cluster lies

between 608 and 908E, and another whose y-min cluster

lies in the same region. A small number of RWP paths

are oriented meridionally, and have both a y-max

cluster and a y-min cluster between 608 and 908E. These
RWP paths are included in both groups. The resulting

pruned association graphs are shown in Fig. 9. The num-

ber of RWP paths plotted in each of the left panels of

Fig. 9 (top to bottom) are 64, 61, 73, and 53, respectively.

The number of RWP paths plotted in each of the right

panels of Fig. 9 (top to bottom) are 47, 48, 55, and 40,

respectively. The presence of y-max clusters in the

region of interest as seen in Fig. 9 implies that some

events are actually associated with southerly winds, as

opposed to what the composite picture may suggest. In

contrast to the previous case studies, the nodes of the

graph are placed at the ‘‘center of mass’’ of each

cluster, which is defined as the weighted mean of the

location of the local maxima or minima. The weights

used are the value of the meridional wind at the location

of the local maximum orminimum. It is observed that the

RWPs responsible for the event are much weaker in

amplitude as compared to the RWPs typically observed

over the Pacific and Atlantic basins. To preferentially

capture these RWPs, we only identify RWPs whose am-

plitude lies between 10 and 30ms21. Correspondingly,

FIG. 9. Extreme wet-bulb temperature events in South Asia. Those RWPs that have (left) a y-min cluster and

(right) a y-max cluster between 608 and 908E are shown. Blue dots represent minima or winds from the north and

red dots represent maxima or winds from the south. The 20m s21 contour of the zonal winds associated with the

events is plotted for reference. Each panel contains all RWPs in the 2-day period indicated in the label. The region

of interest is represented using a blue box. Out of a total of 38 events, 16 events exhibit predominantly northerly

winds, 8 events exhibit predominantly southerly winds, and 14 events exhibit an equal frequency of northerly and

southerly winds.
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we use a gradient threshold of 0.01 to ensure we retain

edges linking theseweak y-max clusters and y-min clusters.

Four days prior to the event, it is seen that the region

over central Asia with the weakened jet has multiple

maxima and minima in the vicinity of the jet, as seen in

both panels in the first row of Fig. 9. These mutually

cancel each other in the composite analysis to suggest a

weak minima. Thus, the composite analysis does not

show us the actual structure of the circulation in this

time step. Since envelope-based methods do not convey

phase information, it is unclear whether they can cap-

ture such information either. However, since envelope-

based methods accurately capture the amplitude of

RWPs, they will be able to convey the fact that the

amplitude of individual RWPs is much larger than what

the composite analysis suggests. To understand the

apparent equatorward amplification of the RWP sig-

nature in Fig. 8, we partition the maxima and minima

based on their location relative to the jet axis. We

choose a nominal latitude of 388N as the location of the

jet axis. The fraction of minima equatorward of this

latitude for the four time periods (left panels in Fig. 9)

are 0.53, 0.67, 0.61, and 0.41, respectively. Similarly,

the fraction of maxima equatorward of this latitude

(right-hand panels) for the four time periods is 0.27,

0.35, 0.3, and 0.25, respectively. These fractional dis-

tributions suggest that in the 2 days leading up to the

event (left panel of second row of Fig. 9), the minima

aggregate equatorward of the jet. This aggregation

corresponds to the equatorward amplification of neg-

ative values of y around 708E as seen in the top two

panels of Fig. 8. This meridionally separated clustering

continues to a lesser extent in the 2 days following the

event. Eventually, the RWP signature dissipates as

evidenced by lower density of y-max clusters and y-min

clusters 2 days after the event.

During the entire period of the analysis, the individual

y-max clusters and y-min clusters have a much higher

amplitude of around 20m s21 (not shown), which is 3

times the value suggested by the composite analysis.

This is because of the phase differences between the

RWPs in each event, which leads to a substantially

weaker signal on averaging.

As Fig. 9 suggests, some extreme events are associated

with northerly winds at 300 hPa between 608 and 908E,
whereas others are associated with a southerly winds.

The graph-based RWP representation makes it easy to

group events based on whether each event is associated

with predominantly northerly or southerly winds (see

Figs. S8 and S10). We define an event to be associated

predominantly with southerly (northerly) winds if the

number of y-min clusters (y-max clusters) identified

between 608 are 908E is 0.6 times the number of y-max

clusters (y-min clusters) over the 8 days of the analysis. If

neither criterion is met, then the event is defined to as-

sociated with an equal frequency of both northerly and

southerly winds. Based on these criteria, 16 events ex-

hibit predominantly northerly winds, 8 exhibit pre-

dominantly southerly winds and 14 exhibit an equal

frequency of both northerly and southerly winds from a

total of 38 events. Though all these events are associated

with a positive wet-bulb temperature anomaly in the

region of interest, the evolution of the surface fields are

quite different between these kinds of events (see

Figs. S9 and S11 for the difference between events as-

sociated with predominantly northerly and southerly

winds, respectively). Furthermore, events which exhibit

northerly winds at 300 hPa are associated with larger

wet-bulb temperature anomalies resulting from a more

coherent advection of oceanic air into the region of in-

terest (see Figs. S9 and S11). While a more detailed

analysis is beyond of the scope of this paper, we note that

the selection of extreme events with different life his-

tories provides a more nuanced picture of the evolution

of these extreme events and the differences between

individual events.

This case study highlights another advantage of the

current method, which is the capability to selectively

identify RWPs within a particular amplitude range,

which is challenging to achieve using other methods.

Furthermore, the graph-based representation provides a

more nuanced picture of the composite RWP structure

since the representation is not affected by phase differ-

ences of RWPs between events.

5. Conclusions

The extraction of meteorologically interesting infor-

mation from noisy observational data has always been a

challenge. As the volume of data available to climate

scientists grows ever larger, there is a further imperative

to formulate algorithms that work with minimal but ef-

fective human supervision. Our paper is a contribution

toward this end.

In the context of RWPs, the question of automated

extraction is tricky since the definition of what consti-

tutes an RWP is ambiguous: the spatial extent, wave-

number and amplitude all vary during the life cycle of an

RWP, which makes it hard to formulate concise algo-

rithms for their extraction. Furthermore, what RWP is

‘‘interesting’’ is also a question that can be answered

only on a case-by-case basis. For instance, in our final

case study the RWPs associated with high wet-bulb

temperatures had amplitudes of around 20m s21,

which would be considered very low for the first and

second case studies.
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Given these challenges, we propose the use of topo-

logical methods as a novel alternative to the transform-

based methods used for identification of RWPs. The

topological description of input data is inherently robust

against noise. This robustness eliminates the need to

smooth the input data which can otherwise result in

undesirable phase shifting of the RWP field.

A concise comparison of the relative strengths and

weaknesses of the current method and other methods is

presented in Table 1. Our algorithm is able to generate

graph-based RWP descriptions that are concise, infor-

mative, and robust in the presence of noisy data.

The values of the tuning parameters in our algorithm

were chosen based on a statistical analysis. The results

for individual case studies based on these chosen values

are satisfactory, which is heartening given that the sta-

tistical analysis was performed on an independent time

period. This independent validation gives us confidence

that these tuning values are valid for the general case.

A weakness of our method currently is that some

y-max clusters or y-min clusters may not be connected

by an edge after pruning the association graph. We have

noticed that such edges are retained in future time steps,

as the y-max cluster or y-min cluster amplitude and

configuration change. Thus, including the time dimen-

sion will allow for more robust identification of RWPs.

Keeping this in mind, a natural extension of our work is

to follow the identified RWPs over time using a tracking

algorithm. Algorithms to track graphs over time do exist

(see, e.g., Doraiswamy et al. 2013; Valsangkar et al.

2019), but it remains to be seen which algorithm is both

efficient and accurate in this context. In particular,

tracking algorithms that work well during RWP splits

and merges would be desirable. We leave this extension

to future work. On the other hand, our method is able

to capture meridional excursions of the RWP quite

naturally since we are not constrained to work along

streamlines.

The development of our new identification scheme

along with a tracking algorithm would also provide an

independent validation of RWP statistics calculated

previously (Souders et al. 2014a; Hunt et al. 2018) and

would pave the way toward a better understanding of

RWPs and their role in shaping the weather and climate.
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