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Figure 1: Pipeline for ensemble exploration of molecular electronic transitions: It takes an ensemble of simulations of molecule-light
interactions as input, and combines automatic and explorative components to support an in-depth analysis.

Abstract
We present a pipeline for the interactive visual analysis and exploration of molecular electronic transition ensembles. Each
ensemble member is specified by a molecular configuration, the charge transfer between two molecular states, and a set of
physical properties. The pipeline is targeted towards theoretical chemists, supporting them in comparing and characterizing
electronic transitions by combining automatic and interactive visual analysis. A quantitative feature vector characterizing the
electron charge transfer serves as the basis for hierarchical clustering as well as for the visual representations. The interface for
the visual exploration consists of four components. A dendrogram provides an overview of the ensemble. It is augmented with a
level of detail glyph for each cluster. A scatterplot using dimensionality reduction provides a second visualization, highlighting
ensemble outliers. Parallel coordinates show the correlation with physical parameters. A spatial representation of selected
ensemble members supports an in-depth inspection of transitions in a form that is familiar to chemists. All views are linked and
can be used to filter and select ensemble members. The usefulness of the pipeline is shown in three different case studies.

1. Introduction
Designing novel materials with specific properties and behavior is
an important task in many applications. Theoretical chemists study
materials at an atomic scale and try to understand the relation to
macroscopic properties. In this paper, we are interested in the inter-
action between matter and light, which is linked to the change of
charge distributions in molecules. Light-matter interactions are used

for material characterization and have applications, for example in
medicine. Aside from experiments, calculations of the electronic
structure of molecules are widely used for this purpose. With cur-
rent computational capabilities and efficient simulation software,
it is possible to conduct such simulations at atomic scale for var-
ious molecular configurations and conformations, resulting in a
collection of a large number of data sets called an ensemble. Each
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Figure 2: Spatial representations and member transition diagram
for two transitions in a molecule with two subgroups, G1 (purple)
and G2 (green). Top: LE type transition where the charge stays on
the G1. Bottom: CT type transition showing strong transfer from G1
to G2. These transitions belong to the ensemble studied in Sec 7.1

individual data set is called an ensemble member and consists of a
molecular specification, two scalar fields, and physical properties.
In this paper, we present a pipeline for efficient exploration, summa-
rization, and visualization of this data to support easy navigation
through the ensemble, forming and testing hypothesis, and finding
patterns and correlations.

Molecules can either absorb light and electrons will be excited
from occupied to unoccupied orbitals, or emit light when the excited
electrons relax to the occupied orbitals. This is called a molecular
electronic transition. To find molecular configurations with specific
physical properties it is important to understand these electronic tran-
sitions in detail. This entails classifying transitions and identifying
correlations to physical properties, as the wavelength of the emit-
ted light. In our context, an electronic transition is a pair of scalar
fields, corresponding to the electronic density distribution before
and after absorption. These scalar fields are traditionally visualized
using an isosurface representation, similar to the hole and particle
in Fig 2. The usual practice in the theoretical chemistry community
is to analyze electronic transitions by visually estimating how the
electron density distribution changes by comparing the isosurfaces
before and after the transition. This process is highly subjective, as
it depends on the choice of the isovalue and guessing the amount of
charge concentrated on each subgroup. Also, such a technique does
not scale for the analysis of large ensembles. Recently, Masood et
al. [MTL∗21] introduced a measure, a charge transfer matrix, which
quantifies the charges that are transferred between molecular sub-
groups. They also presented a visual representation of an electronic
transition called transition diagram which provides a more efficient
and accurate way to visually compare electronic transitions.

In this work, we address the next logical question, how to com-
pare an ensemble of electronic transitions. We define a feature vector
encoding the electronic transition derived from the charge transfer
matrix [MTL∗21]. This feature vector is used for automatic analysis
and can at the same time be understood by the chemists since it
builds on their previous knowledge about the charge in subgroups,
which is essential. The analysis results can be verified in an ex-
ploratory setting, including an augmented dendrogram providing a
hierarchical visual representation of the whole ensemble; a parallel
coordinates plot to verify cluster properties, and spatial represen-

tations of selected ensemble members. We also introduce a level
of detail representation of a cluster transition diagram character-
izing the ensemble clusters. Using filtering and selection, one can
compare individual ensemble members and clusters. Distinguish-
ing different types of transitions and investigating correlations to
physical properties is also supported. Our key contributions include:
• A novel feature vector to describe molecular electronic transitions

and a derived quantitative measure of locality for distinguishing
between transitions of different nature.

• A visual pipeline for ensemble analysis of molecular electronic
transitions combining automatic and explorative methods.

• A level of detail representation for an ensemble of electronic
transitions which summarizes and conveys the mean behavior
along with the variations.

• Introduction of augmented dendrograms to provide a hierarchical
visual representation of ensemble data.

Pipeline overview and structure of the paper — The design of
the pipeline (Fig 1) is guided by a set of visualization and analy-
sis tasks derived from the domain problem (Sec 4). The input to
our pipeline is an ensemble representing the electronic transitions
for different configurations of molecules. A detailed description of
the data is given in Sec 2. A quantitative feature vector, derived in
Sec 5.1, is computed in a preprocessing step. It is used to generate
the ensemble statistics using hierarchical clustering (Sec 5.2) and
cluster summarization (Sec 5.3). The results of this analysis estab-
lish the basis for a set of visual representations (Sec 6). This entails
visualization of the clusters (Sec 6.1), and a level of detail visual-
ization for augmenting a dendrogram to provide an overview over
the entire ensemble (Sec 6.2), a projection of the feature vectors in
the 2D plane for outlier detection, parallel coordinates showing the
feature vector and the physical properties to verify the clustering re-
sults and to highlight correlations (Sec 6.3), and spatial visualization
of selected ensemble members for detailed analysis (Sec 6.4). All
visualizations are linked and can be used for filtration and selection.

2. Background and data
In studying the interaction between light and matter, chemists are
interested in molecules that either absorb light where electrons will
be excited from occupied to unoccupied orbitals, or emit light when
the excited electrons relax to the occupied orbital. This change in the
molecule is called an electronic transition. To find molecular config-
urations with specific physical properties as excitation wavelengths,
it is important to understand these electronic transitions in detail.
In a data analysis context, an electronic transition is a pair of scalar
fields. A compact version of these scalar fields are called the natural
transition orbitals (NTOs) [Mar03], the hole NTO which indicates
from where and the particle NTO indicating to where the electrons
are excited. Typically, the chemist is not interested in how the elec-
tron density distribution changes on an atomic level but a molecular
subgroup level, which can be divided into donors or acceptors. For
donors, the subgroup charge in the hole is larger than in the particle,
which means the subgroup donates charge to other subgroups in the
transition to the particle. For acceptors, it is the other way round,
the charge is larger in the particle compared to the hole. Therefore,
a common task is to distinguish between two different types of
electronic transitions: Local Excitation (LE), when the electronic
density distribution stays roughly the same within each subgroup,
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and Charge Transfer (CT), when the electronic density distribution
changes and the charge is being transferred from one subgroup to
another. An example of an LE type and a CT type of transition can
be seen in Fig 2. Currently, such data is analyzed by comparing
isosurfaces of the hole and particle NTO. Few methods exist to per-
form a quantitative analysis. In practice, however, not one but many
simulations are performed to explore the parameter space defining
the molecular configurations and the analysis tasks become even
more challenging. There is a need to investigate multiple electronic
transitions simultaneously in a comparative manner.

The data — The ensemble is a set of several data sets (the ensemble
members) which consist of the following parts:
• Molecular specification: A set of atoms A = {a1, . . . ,aN} where

each atom ai is a sphere centered at pi ∈R3 with radius ri. And a
partitioning of the atoms into M subgroups, S = {s1,s2, . . . ,sM},
where s j ⊆ A, ∪s j∈S = A and si ∩ s j = /0 for i ̸= j, and optionally
additional paramters like dihedral angle or subgroup type.

• A pair of scalar fields: Φh : R3 → R and Φp : R3 → R (hole and
particle NTOs) describing the electronic transition.

• Additional physical properties from the simulation, such as oscil-
latory strength, rotatory strength, energy, and wavelength.
We make the following assumptions: (i) All members in the

ensemble have the same number of subgroups. (ii) A consistent
mapping between the subgroups of ensemble members is available.

The charge transfer matrix — To describe the transition of charge
between different subgroups in a molecule, Masood et al. [MTL∗21]
introduced a charge transfer matrix. They used a spatial partitioning
of the domain at atomic scale which was then used for accumulating
charges at the subgroup scale resulting in an estimate of the hole and
particle charge at the subgroup. The following output is computed
using their segmentation and optimization approach:
• The hole charge Qh

j for each subgroup s j and the corresponding
particle charge Qp

j .
• The amount of charge transfer Q̃ jk between all pairs of subgroups

s j and sk. All these charge transfer values can be represented
concisely as a M×M matrix denoted by Q̃M×M .

The resulting charge transfer matrix, containing transfer between
all subgroups. The diagonal elements of the matrix represent the
charge that stays within each subgroup. It can be written as:

Q̃M×M =

 Q̃11 . . . Q̃1M
...

. . .
...

Q̃M1 . . . Q̃MM

 (1)

where element Q̃i j corresponds to the charge transfer from subgroup
i to subgroup j, all elements being non-negative. The sum of each
row gives the hole subgroup charges, and the sum of each column
gives the particle subgroup charges: ∑

M
j=1 Q̃i j = Qh

i ,∑
M
i=1 Q̃i j = Qp

j .
The set of subgroups charges represents a probability distribution
summing up to one ∑

M
i=1 Qh

i = 1,∑M
j=1 Qp

j = 1.

3. Related work
We will first summarize related work within the theoretical chemistry
domain, which does not emphasize systematic analysis of ensemble
data and is rather focused on the interpretation and analysis of

individual ensemble members using simple visualization methods.
Next, we discuss methods described in the visualization literature
on ensemble visualization and data summarization.

Charge transfer analysis — Analyzing charge distributions and
their changes in molecules is a frequently appearing topic in theo-
retical chemistry. Visualization plays an important role in enabling
such analysis. Popular approaches combine isosurface rendering
of the charge distribution together with a molecular representation
such as ball-and-stick model or van der Waals surface [KKF∗17]
or complex-valued molecular orbitals [ASSK19]. VMD is a widely
used visualization software that supports efficient rendering of these
representations [SSH∗09, SHS∗11]. Haranczyk et al. [HG08] pro-
pose to define orbital-specific isovalues that contain a given fraction
of the total charge. Extending from the analysis of charge distribu-
tions in individual molecules towards charge transitions, popular
approaches include side-by-side visualization (similar to Fig 2) and
density difference isosurface plots augmented with arrows that in-
dicate charge transitions [JBAC12]. To support the visual analysis
of electronic transitions, Sharma et al. [SMT∗21] introduced a peel-
ing operation for continuous scatter plots that help identify donor
and acceptor groups in the molecule. The above methods do not
typically support quantitative analysis, and further do not scale well
when comparing transitions in an ensemble. A quantitative analy-
sis of the charge density field relies on a portioning of the space,
assigning charges to molecular subgroups [HZAV∗18, AMFH21].
One such approach is using atom-centered Voronoi partitioning that
associates charges to individual atoms [REL17]. Quantification of
changes in the distribution during molecular excitation either builds
on these partitioning or a point-wise difference density field and can
be computed using standard quantum chemical codes such as Gaus-
sian [FTS∗16]. The method proposed by Masood et al. [MTL∗21]
solves an optimization problem to establish a charge transition ma-
trix, which is the foundation of this work. There has not been much
work on the analysis of charge transitions for ensemble data.

Visual analysis of multi-parameter ensembles — Ensemble data
appear in many scientific applications where simulations with vary-
ing parameter settings or configurations are performed. In a view-
point article in 2014, Obermeaier et al. [OJ14] identified visual
analysis of ensembles as one of the most important new areas of
research in the field of visualization. They distinguish between
feature-based and location-based ensemble visualization. Since then
a significant advancement in the area can be observed as summa-
rized in a recent overview article by Wang et al. [WHLS19]. A direct
spatial comparison of the charge transfer fields does not account for
the main transfer characteristics, so we will focus on feature-based
methods in the following. Several works investigate the variability
of contours or characteristic curves of ensemble data [HCJ∗14]. In
the context of scalar field visualization, Pöthkow et al. [PH11] have
analyzed the uncertainty of isocontours for ensembles. Ferstl et
al. [FBW16] proposed streamline variability plots for characterizing
the uncertainty in vector field ensembles.

To cope with multi-parameter aspects of ensemble data, ex-
ploratory frameworks with multiple linked views are frequently used.
An overview of related methods can be found in the state-of-the-art
report on coordinated multiple views by Roberts et al. [Rob07]. An
example for the analysis of ocean simulation ensembles is the inte-
grated visual analytics system by Höllt et al. [HMZ∗14]. In a similar
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application, Friederici et al. [FFH21] have published a framework
to explore eddy transport in oceans using parallel coordinates of
aggregated characteristic eddy measures together with spatial rep-
resentations. Nested Parallel Coordinates Plots for multi-resolution
climate ensemble parameter analysis has been proposed by Wang
et al. [WLSL17]. They combine heat maps and dendrograms to
explore intra- and inter-resolution correlations. Recently, Kumpf
et al. [KSHW21] have presented a visual analytics technique for
multi-parameter ensembles that supports selecting and analyzing
parameter distributions using parallel coordinates plots linked to a
side-by-side view of per-member violin plots. Some of these tech-
niques have similarities to our work. However, the structure of our
data is very specific, and the general methods developed for multi-
parameter data are only partially transferable.

Dimensionality reduction and clustering — A complementary
approach to cope with higher dimensional data and reduce its com-
plexity is to facilitate statistical tools to summarize data [WH20].
Dimensionality reduction methods organize points from a high-
dimensional space into a low-dimensional (typically 2D) space
while preserving select data characteristics. The widely used princi-
pal component analysis (PCA) method projects the data onto a linear
subspace spanned by the eigenvectors corresponding to the k-largest
eigenvalues of the correlation matrix. Other methods attempt to pre-
serve the distance matrix containing the distance between all pairs
of data points (multidimensional scaling (MDS) [SNHMS18]). Al-
ternatives aim to preserve the point density, a neighborhood relation
(t-sne [vdMH08]) or its topological structure [YZR∗18]. Modeling
high-dimensional data in lower dimensions, using curved surfaces,
results in the manifold learning problem, which can be solved by
approaches such as isomap [TDSL00, SGM04]. Clustering aims to
form groups of data points based on inter-point similarity or dis-
tance. Its success crucially depends on two ingredients: the similarity
measure and the clustering strategy [Jai10].

4. Analysis and visualization tasks
Our overall goal is to design a visual analysis pipeline to quantita-
tively explore an ensemble of electronic transitions. Together with
the chemist, we derived several tasks to support this goal following
a participatory design process, which went through many iterations.
We divided our tasks into analysis and visualization tasks, where the
analysis tasks serve as the basis for the visualization tasks.

A1 Quantitative measure for transition type: Derive a measure that
can help to distinguish between different types of transitions, LE
and CT (as described in Sec. 2).

A2 Efficient grouping of transitions: Find subsets of similar transi-
tions in the ensemble.

A3 Summarization of a subset of transitions: Design quantitative
measures descibing the subset.

We divided our visualization tasks into different levels of detail:
from a holistic level giving an overview to a detailed level of inspect-
ing individual members. We also realized the need of interaction
capabilities, to support the exploration.

V1 Overview of all transitions: Find a visual representation to gain
an overview of the whole ensemble.

V2 Inspecting a subset of transitions: Find a visual representation
that highlights important information about a subset of transitions
within the whole ensemble.

V3 Identifying individual transitions: Find a way to identify and
relate selected transitions back to the chemistry domain.

V4 Interactive exploration of the transitions: The pipeline should
support an exploration of the whole ensemble, to find transitions
with similar behavior and support to filter on multiple parameters.

5. Analysis methods
In this section, we develop methods that address the analysis tasks
identified in the problem specification (A1-A3 Sec 4). To obtain
an efficient grouping of the ensemble of electronic transitions, we
first find a quantitative way of expressing the transition as a feature
vector together with a measure for the transition type. Using the
feature vectors as input to a hierarchical clustering method, we create
the grouping of transitions. Further, we develop summarization
measures for describing the groups.

5.1. Feature vector representation
We seek a feature vector that can express different types of electronic
transitions in a discriminative way, as a basis to address analysis
task A2, Sec 5.2. Furthermore, we want it to be understandable
for the chemists: a simple and clear description of the electronic
transition. With these requirements in mind, we build our feature
vector on the charge transfer matrix (Sec 2). One way would be
to simply take the whole matrix as our feature vector, but the way
the matrix is constructed makes it contain several zero elements,
increasing the dimensions unnecessarily. We instead choose to use
the hole and particle charges, obtained by taking the sum of the rows
and columns in the charge transfer matrix. For M subgroups, our
transition feature vector is defined as:

v = [v1, . . . ,v2M ] = [Qh
1, . . . ,Q

h
M ,Qp

1 , . . . ,Q
p
M ],v ∈ R2M (2)

All elements in the vector are non-negative. This is a condensed way
to describe the transition compared to the matrix, while still contain-
ing important information about the subgroup charges. It is a simple
and straightforward way to create our quantitative representation,
intelligible for the chemists. Most importantly, it is well suited to
capture the difference between a local excitation (LE) type and a
charge transfer (CT) type.

Measure of locality (ML) — To address analysis task A1, we have
developed a measure quantifying the locality of the transition, to
provide a value that suggests whether a transition is of LE or CT
type. The diagonal elements of the charge transfer matrix represent
the charge that stays within each subgroup (i.e. Q̃ii corresponds to
the charge staying at subgroup i). Consequently, the trace of the
matrix serves as a measure of how much charge stays within the
subgroups, the higher this value is the more local the transition. The
ML value for each transition is simply the trace of the corresponding
charge transfer matrix (for a system with M subgroups):

ML = tr(Q̃M×M) =
M

∑
i=1

Q̃ii = Q̃11 + · · ·+ Q̃MM (3)

This value is between zero and one. A high value indicates a LE
type of transition, and a low value indicates a CT type of transition.
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5.2. Hierarchical clustering of transitions
To further address analysis task A2, a clustering method is needed
that allows us to adjust the level of clusters during the exploration
process without fixing the number of clusters beforehand. Further,
the chemist expressed a need to understand the clustering process
and the similarity of transitions in the sense of their behavior. These
aspects made a hierarchical clustering method a natural choice. The
result from a hierarchical clustering method can be visualized in
a dendrogram, giving an idea about the relationship between all
members, both how they cluster and their proximity. We use the
transition feature vectors, Eqn 2, as input.

Hierarchical clustering methods build a tree representation of
an ensemble based on the distances between the ensemble mem-
bers. It is either done by using a top-down approach or a bottom-up
approach [SPG∗17], the latter is also known as agglomerative clus-
tering. It begins with the single ensemble members and successively
groups them together into larger and larger clusters. We use this
approach in our implementation. We visualize the resulting tree as a
dendrogram, see Fig 5 (left), which is a binary tree, showing the hi-
erarchical relationship between the ensemble members represented
in the leaves. They merge together at different heights, creating
hierarchical subtrees. The dendrogram thus provides an overview
of the ensemble of electronic transitions and the different levels of
clusters, as well as a possibility to inspect their closeness.

There are several options to define the distance between groups
of ensemble members in hierarchical clustering. Commonly used
are single-linkage, complete linkage, average linkage, and Ward
linkage [Nie16]. The appearance of the dendrogram depends on the
chosen linkage. In our pipeline, all the before mentioned linkage
functions are implemented. For simplicity, we use only one linkage
in this paper: the Ward linkage criterion. The Ward linkage criterion
uses the difference between the centroids of the subsets to decide if
these subsets should be merged, a variance minimization process.

5.3. Cluster summary statistics
To address analysis task A3, we derive measures providing the
overall transition characteristics — the summary of a cluster.

Mean — To get the overall transition characteristic for a group
or cluster of transitions, we use the mean of the ML value and the
mean of all transition feature vectors. For a cluster with k transitions,
the mean ML value is 1

k ∑
k
i=1 MLi and the element-wise mean of all

transition feature vectors v̄ can be described by the vector

v̄ = [v̄1, . . . , v̄2M ] = [
∑

k
i=1 Qh

1i
k

, . . . ,
∑

k
i=1 Qp

Mi
k

]. (4)

It provides the mean charge for each subgroup, both for hole and
particle. For v̄ to be a valid transition feature vector, all elements
must be non-negative, and since the sum of all subgroup charges are
1, both for hole and particle, the sum of all elements in a transition
feature vector must equal 2. It is easy to see that the non-negativity
constraint still holds for v̄. And the sum of all elements is

2M

∑
i=1

v̄i =
M

∑
i=1

k

∑
j=1

Qh
i j

1
k
+

M

∑
i=1

k

∑
j=1

Qp
i j

1
k
=

k

∑
j=1

1
k
+

k

∑
j=1

1
k
= 2. (5)

Hence, the mean v̄ is a valid transition feature vector.

Standard deviation — The standard deviation of all transition
feature vectors in a cluster shows additional information about the
variational spread within the cluster

σ = [

√
∑

k
i=1(v1i − v̄1)2

k
, . . . ,

√
∑

k
i=1(v2Mi − v̄2M)2

k
]. (6)

This vector gives the standard deviation of the charge for each
subgroup, both for hole and particle.

6. Visual abstractions
In this section, we describe the design of our visual abstractions for
electronic transitions, addressing the visualization tasks, Sec 4. First,
we explain the ensemble overview visualization and a cluster visual-
ization, using the result from our analysis methods in Sec 5. Then,
we develop a level of detail visualization to augment a dendrogram
with additional information. Finally, we describe an exploration
approach to give the possibility to inspect the ensemble of tran-
sitions and filter based on multiple parameters. We would like to
note that the design of all visual representation has been developed
in close collaboration with a theoretical chemist (being co-author
of this paper), and the prototype implementation has been done in
Inviwo [JSS∗20].

6.1. Cluster visualization
For each ensemble member, the electronic transition is visualized
using a member transition diagram (MD) [MTL∗21]. It shows the
amount of charge for each subgroup in both hole and particle, as
well as the charge transfer between the subgroups. The transition
diagram is a version of a Sankey diagram [RHF05], where the width
of the bars are proportional to the amount of charge. The upper
bars correspond to the particle subgroup charges, and the bottom
bars correspond to the hole subgroup charges. The width of the
connectors is proportional to the amount of charge transfer (Fig 2).

Cluster transition diagram (CD) — For supporting inspection
of a subset of transitions and addressing task V2, we introduce a
transition diagram combining the mean transition with a traditional
box plot. As before, the bar width corresponds to the subgroup
charge, here the mean of the subgroup (Eqn 4), and the whiskers
sticking out from the boxes show the subgroup charge standard
deviation (Eqn 6). The connectors are the mean of the transition.
Fig 3 level 3 shows an example of the CD. The colors for the
subgroups are chosen to be different grayscale values to reserve
color for the representation of other properties.

6.2. Level of detail visualization
The dendrogram provides information about the hierarchy and simi-
larity between transitions in the ensemble. We address task V1 by
using the dendrogram and augment it with additional information
about the clusters, at each clustering level. This gives an overview
of the whole ensemble together with valuable cluster characteristics.
To cope with the limited space in the dendrogram, we propose a

level of detail glyph visualization of the cluster transition diagrams.
We store the cluster statistics at each node in the dendrogram, and
show the cluster transition as a glyph on the edges. We suggest
three level of detail glyphs of the cluster transition diagram together
with a color indicating the LE vs CT character for visualizing the
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Figure 3: (a) Level of detail visualization for the CD and (b) using
colored disks to summarize the transition in the ML value.

transition (Fig 3(a)). The level 1 glyph shows the single most domi-
nant subgroup involved in the charge transfer, for hole and particle.
This gives an indication of the most important subgroups. At the
next level of detail, the level 2 glyph, we show the cluster transi-
tion diagram without the standard deviation for the cluster. Thus, at
this level, the complete information about the mean behavior of the
charge distributions in hole and particle including the charge transfer
between subgroups is available. Lastly, the level 3 glyph corresponds
to the full cluster transition diagram for a cluster. Therefore, it also
provides the information about the variability in the transitions in a
given cluster. At each internal node in the dendrogram, the cluster
of transitions is represented by a single number, which captures the
LE vs CT character of the transitions. In our case, we chose the ML
value (Eqn 3), and use the mean for all transitions to measure the
overall amount of charge transfer. The single number can then be
mapped to a color using an appropriate diverging color map such
that the transitions with LE character are clearly distinguishable
from those with CT character (Fig 3(b)). The ML value (for a single
transition) or the mean of the ML values (for a group of transitions)
is shown as a colored disk at each node, using three different sizes.

Figure 4: Design example of a dendogram augmented with the level
of detail glyphs of the CD, and the ML values as colors (size of
glyphs and colored disks are chosen depending on available space).

The levels and the sizes of the ML disks depend on the available
space in the dendrogram. The minimum of the width and height
available at a specific node decides which of them should be chosen.
To have consistent visualization, we chose to have the same size
for all the glyphs in the dendrogram belonging to the same level
of detail, even if there is a bit more space available at some nodes
than others. These sizes of glyphs were determined in an iterative
manner with user feedback. An example of the combination of the
dendrogram and the level of detail visualization can be seen in Fig 4.
For the leaves, only the smallest ML disk is shown. Following the
branches up in the tree, more space is available and other levels are
chosen.

6.3. Filtering and selection of transitions
We address task V4 by using several interactive elements, described
in this section.

Parallel coordinates plot (PCP) — To allow the user to filter on
multiple parameters of the ensemble and to be able to distinguish
correlations between the different parameters, we use a parallel
coordinates plot [ID90]. In this plot, each parameter is represented
by a vertical axis and each ensemble member is represented with a
line segment, intersecting the axis at the corresponding value. The
selected range of the axes can be changed to filter the data. It is
also possible to highlight one or multiple data points by selection.
For each transition, we show both the derived parameters relating
to the feature vector: the difference in charge between hole and
particle, for each subgroup ∆Qi; the measure of locality (ML); the
cluster id from the hierarchical clustering; and additional parameters
including the name of the conformation or molecule, the state, and
other physical properties like oscillatory strength, rotatory strength,
and energy.

The user can adjust which parameters should be shown. The axes
in the parallel coordinates plot are traditionally scaled between the
max and min value of the data, but to make it easier to compare,
we rescale the ∆Qi axes to be the range from -1 to 1 and the ML
value axis to be the range from 0 to 1. A negative value on the ∆Qi
axis means the subgroup donates charge, a positive value means
that the subgroup accepts charge from other subgroups. The parallel
coordinates plot serves as a tool to inspect correlations between
the derived parameters and the additional parameters, but also as
a tool to understand the clustering results and refine them. Parallel
coordinates can mainly show correlations of neighbouring axes, in
our implementation however, it is possible to interactively adjust the
order of the axes. Further, one can also highlight multiple members
to show correlation using brushing.

Figure 5: Design example of a dendrogram, parallel coordinates
plot, and a 2D scatter plot. Views are linked and colored by cluster.

2D scatter plot — To give the user a complementary type of
overview of the ensemble and the possibility to select single or
multiple transitions, we use a 2D scatter plot with the feature vector
representations projected to two dimensions. This also indicates
closeness of transitions. In our implementation, the user can choose
between multiple options for dimensionality reduction (such as t-sne,
MDS and PCA). For this paper, we chose to use principal compo-
nent analysis (PCA) [AW10], since it is a simple and robust method.
The scatter plot is linked with the parallel coordinates plot, and both
are affected by filtering and selection.

Dendrogram — The clustering of transitions is shown visually in
the dendrogram. Here, we also use it as a way to select a level of
clusters by cutting it at a desirable height: the distance threshold.
The subtrees created below this threshold correspond to the different
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clusters. In Fig 5, a design example of a dendrogram is shown to-
gether with a parallel coordinates plot and a 2D scatter plot. The line
in the dendrogram corresponds to the distance threshold deciding
which cluster level is in focus. The coloring is based on clusters and
used in all linked views. Here, we use a categorical color map.

6.4. Spatial representations
To meet the need to identify individual transitions, addressing task
V3, we suggest using spatial representations of the scalar fields, a
visualization the chemists are used to, but also with the possibility to
color by subgroup. Having visual abstractions makes it possible for
the chemists to explore the ensemble of transitions. However, they
are used to working mostly with the spatial views of the electron
density, often shown with isosurfaces over a ball and stick model.
We support showing such spatial representations on demand (the
hole and particle distributions for an electronic transition), with the
aim to give the chemist a familiar view to aid in understanding.
In addition to isosurface visualization, we also support segmented
volume rendering to show electron density distribution more clearly
on each subgroup in a molecule. See Fig 2 for an example.

7. Case studies
In this section, we illustrate different uses of the proposed pipeline
with three case studies. The first case study demonstrates a top-down
cluster exploration using the augmented dendrogram. The second
case study explores the nature of electronic transitions in metal com-
plexes and demonstrates the utility of the proposed cluster transition
diagrams in showing summary statistics of a group of transitions.
It also shows how multiple filtering can be used in PCP to reveal
interesting transitions. The last case study puts special focus on
investigation of the link between the charge transfer characteristics
of the transitions and the associated physical and spectral properties.

7.1. Top-down ensemble exploration
As a first case study, we chose a simple molecule formed of three
rings, as shown in Fig 6(a). The ring on the left, shown on the dark
grey plane, is called thiophene while the two rings on the right are
together called quinoxaline. (poly)thiophene is commonly used as
a donor molecule in organic field effect transistors and solar cells
[DHW11], while quinoxaline is an acceptor group also widely used
in such applications. The relative conformation of these two groups
(i.e. the dihedral angle between them) is an important parameter
when it comes to electronic delocalization and excitation energy
[YLK∗03]. Here, we consider a set of 13 different conformations
with varying dihedral angles from 0◦ to 180◦, and calculate the
first nine excited states resulting in an ensemble containing 117
transitions. Fig 6(a) shows how the angle can vary between the
subgroups. For this dataset, we naturally consider thiophene and
quinoxaline as the two subgroups of interest. For the rest of this
section, we will use the symbols G1 and G2 to refer to the thiophene
and quinoxaline subgroups, respectively.

We start the exploration of this ensemble with no specific tran-
sitions in mind, we rather seek to gain an initial overview of this
ensemble and see where a further exploration would be interesting.
The augmented dendrogram is ideal for this purpose as it reveals
clusters in a top-down fashion at various levels of detail, see Fig 6(b).
We observe on the top of the augmented dendrogram a clear division

into two large clusters with very different characteristics evident
from their glyph representation; cluster C1 is representing LE type
of transfer with charge largely concentrated on group G2 and cluster
C2 is mainly CT type with charge transfer from group G1 to G2. As
we go down the hierarchy, C1 splits further into clusters C3 and C4
with C3 being purely LE type while C4 shows small charge transfer
from G1 to G2. This difference in the amount of locality can also
be seen in the colors of the leaves: the leaves under C3 are mainly
red denoting high ML whereas the leaves under C4 are yellow or
orange denoting smaller values of ML.

Going back up the hierarchy, we focus on cluster C2. We observe
that the majority of transitions in this cluster are indeed of CT type as
evident from most of the leaves being blue denoting very low values
of ML. However, within this cluster we can also distuish an atypical
sub-cluster labelled C5 with LE type as evident from mostly red
leaves. From the glyph representation of this sub-cluster, it is clear
that the charge is mainly concentrated on G1, unlike the cluster C1
where the charge is concentrated on G2. This initial overview now
provides us with sufficient information to investigate the ensemble
further. We are specially investigating cluster C5 in greater detail.

Using a threshold value indicated by dashed horizontal line in
Fig 6(b), we partition the ensemble into three clusters: C1, C5 and
C6. We then plot the parallel coordinate plot as shown in Fig 6(c)
and also the 2D scatter plot as shown in Fig 6(d). In both these
figures, transitions in cluster C5 are highlighted in green, while the
other ensemble members are greyed out. The ∆Q1 and ∆Q2 axes of
the parallel coordinates plot are very interesting. As highlighted by
boxes marked 1 and 2 in the plot, it is clear that ∆Q1 has negative
values for most ensemble members while ∆Q2 is positive. This
means group G1 is a donor and group G2 is an acceptor. Also
note that for the highlighted green cluster C5, the ML value is
high for all members, confirming what we saw in the augmented
dendrogram that these transitions have LE character. The scatter
plot shows additional information about the spread of ensemble
members, where the green cluster is the most spread out. When
selecting the most extreme outlier in the scatter plot within this
cluster, highlighted in yellow, we can inspect which transition this
corresponds to in the parallel coordinates plot. We find that the
selected electronic transition is for a conformation having an angle
of 90◦ between the groups, state 8. This transition is a very strong
LE type, since it takes values close to zero on the ∆Q axes and the
ML value is high. This confirms what is known chemically about this
conformation: the 90◦ angle makes the transfer very low between
the two subgroups. We show the spatial representations together
with the member transition diagram for this individual electronic
transition in Fig 2 (top row).

7.2. Exploring the nature of transitions in metal complexes
The second case study focuses on a dataset consisting of metallic
complexes used for light emission with application in Light Electro-
chemical cell [ESDM∗16]. Each complex contains one single metal
atom (copper, silver or gold) and two additional ligands. The first
ligand, phenanthroline (PHE), is the same for every complex. The
second ligand varies with subsituted phenanthroline (PHE-Me, PHE-
oMe, PHE-phe) and two other types with a very different chemical
nature: a carbene (ipr) and a biphosphine. We consider the metal as
one subgroup and the ligands as individual subgroups, giving three

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Signe Sidwall Thygesen et al. / Level of Detail Exploration of Electronic Transition Ensembles using Hierarchical Clustering

Figure 6: Top-down level of detail exploration of a Thiophene-Quinoxaline conformer ensemble using augmented dendrogram. (a) The
molecule is composed of two groups, here available in 13 different conformations with dihedral angles varying from 0◦ to 180◦. (b) The
augmented dedrogram for the 117 transitions within this ensemble. Notice how the transitions group into two bigger clusters, each exhibiting
different charge transfer characteristics. (c) The parallel coordinates plot shows an overview of the complete ensemble and highlights cluster
C5 which is of interest. (d) The projection of ensemble in 2D using PCA. One outlier is identified using this scatter plot, highlighted in yellow.

subgroups in total for this ensemble (resulting in 6 dimensional
feature vectors). The ensemble contains 180 transitions in total, see
Fig 7(d1-d3) for examples.

Since metal is a known to be a strong donor, it is expected that
most of the transitions in this ensemble will exhibit high charge
transfer from it to the other two subgroups. However, exploring
the similarities and differences in charge transfer characteristics
among the transitions in this ensemble, including finding outliers,
is of particular interest. Similar to the previous case study, we start
the exploration with the augmented dendrogram and through in-
teractive exploration identify a cut-off threshold which results in
six clusters, see Fig 7(a) for the 2D scatter plot of the ensemble
where the six clusters are shown in different colors. Now, we use
our cluster transition diagram to examine the charge transfer trends
within each cluster. This is shown in Fig 7(b). Note how the cluster
transition diagrams of the six clusters looks fundamentally different.
We immediately observe four of the six clusters (CD1, CD3, CD5,
CD6) are of strong CT type while two clusters (CD2 and CD4) are
more of LE type. Within Fig 7(b) we have indicated the key charge
transfer behavior at the top of each cluster transition diagram. Firstly,
it is interesting to observe that even with a metal subgroup which
is a strong donor, there are two LE clusters within this ensemble.
However, these two clusters are LE types on PHE and Lig2, respec-

tively. There is no Metal→Metal LE cluster. Secondly, among the
CT clusters, CD3 is particularly interesting as it exhibits roughly
equal charge transfer from metal to the other subgroups, unlike the
other three clusters where one ligand acts as a sole acceptor.

CD6 shows slightly atypical charge transfer character as instead
of metal being the donor, the majority of the charge is transferred
from Lig2 to PHE. We decided to investigate this behavior further.
We use the parallel coordinates plot shown in Fig 7(c) with two
filters for this purpose. First we filtered on the ML axis to select
the transitions which have very low ML values, thus limiting to
transitions of CT type. Next, we filtered on the ∆Q1 axis which
corresponds to a change in charge on the metal subgroup to further
select only the transitions where the metal is not acting as a donor.
Using this filtration, we identified three transitions in the ensemble
where the majority of the charge moves from Lig2 to PHE. They
are au-phe-ipr, ag-phe-pheome and ag-phe-ipr, all in state 10. These
findings can be confirmed by examining the individual transition
diagrams and the spatial embedding of the hole and particle NTOs
as shown in Fig 7(d1-d3). An important observation here is that
these three transitions all happen for State 10, they are very high
energy transitions and therefore more unlikely.
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Figure 7: Using CDs to explore the nature of transitions in metal complexes consisting of a metal atom surrounded by two ligands (PHE and
Lig2). (a) 2D projection of all the transitions in the ensemble, colored according to six identified clusters. (b) CDs for the six clusters, with
subgroup order from left to right: metal, PHE, Lig2. Note the clear differences in charge transfer characteristics of the transitions in these
clusters, and how the CDs convey this concisely and effectively. (c) Exploring the charge transfer character shown by CD6 in more detail,
filtering the PCP reveals three similar transitions. (d1-d3) The spatial data from which the transitions were computed confirms our findings.

7.3. Finding correlation with chemical properties
The final case study concerns a recently synthesized cyclic molecule
called [4]cyclonaphthodithiophene diimide (C-NDTI) [ZZQ∗21].
This molecule consists of four NDTI subgroups bonded together
to form a ring or a cylindrical constrained structure as shown in
Fig 8(a). The NDTI subgroup can take two possible orientations
in the ring, denoted as type A and B. The molecule, therefore, has
six possible unique isomers considering permutations of the orien-
tation of NDTI subgroup: AAAA, AAAB, AABB, ABBB, BBBB,
ABAB. These isomers present interesting symmetry relationship,
for instance, AAAA and BBBB are mirror images of each other
and are not superposable. Our goal in this case study is to explore
the relationship between the different isomers and their spectral
properties to establish the possible links between the nature of the
electronic transitions and the observed spectral properties.

The input for this study is the set of hole and particle NTOs for the
first seven electronic transitions for each of the six possible isomers,
giving 42 electronic transitions in total. Additionally, quantitative
values for the spectral properties associated with the transition such
as wavelength, oscillatory strength and rotatory strength are pro-
vided. There are four subgroups in the molecule as shown in Fig 8(a),
which results in 8 dimensional feature vectors. In the 2D scatter
plot, Fig 8(c), we observed a cluster of transitions, colored green,
in the middle, around which all other points are distributed. This

cluster was also successfully obtained using hierarchical clustering
with appropriate threshold indicated by the dashed line in Fig 8(b).
Using the parallel coordinate plot, we immediately observed that
all members of this cluster correspond to the lowest energy transi-
tions (State 1) in the six isomers, and therefore they result in the
longest wavelength of absorbed light as well, see the State and
Wavelength axes of the parallel coordinates plot in Fig 8(d). It is
interesting to observe that transfer characteristics are different in
the lowest energy states compared to higher energy states. We also
noted that these six transitions are of strong LE type. Compare the
four sample member transition diagrams MD1 to MD4 selected
from different regions of the 2D projection in Fig 8(c). Notice how
the charge is equally distributed across the four subgroups in MD3
and MD4 with high LE character, while the distribution in MD1
and MD2 is non-uniform and transitions are of CT type. In general,
we observed a negative correlation between the ML value and the
energy associated with the transition for the whole ensemble.

On closer examination, we further observe that within the identi-
fied cluster consisting of six points, two points highlighted in yellow
in Fig 8(c) are separated from the other four. This is also clear from
the member transition diagrams MD3 and MD4. We selected these
two points in the scatter plot and through the linked parallel coordi-
nates plot in Fig 8(d). We observed that these points correspond to
the AAAA and BBBB isomers and also have the highest absolute
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Figure 8: Finding correlations of charge transfer characteristics with the spectral properties of the transitions in the C-NDTI isomers ensemble.
(a) The molecule consisting of four identical subgroups is shown. Each subgroup can have two orientations resulting in six different isomers
which are explored in this study. (b) The dendrogram is shown along with a cluster highlighted in green which is different than other members
of the ensemble in its charge transfer characteristics. (c) This is also evident from the 2D scatter plot as the green cluster lies in the middle
while other points are distributed away and around it. Two points in this cluster appear separated from the other four and are highlighted in
yellow. Four representative member transition diagram are shown selected from different regions. (d) Finally, the PCP is used for finding
correlations with spectral properties of the transitions in this cluster. All members of the cluster belong to State 1 and have large wavelength.
The two yellow transitions also have the highest absolute rotatory strength within the ensemble.

rotatory strengths among all the ensemble members. The fact these
isomers have the highest rotatory strengths was known to chemists,
however, using our tool it was possible to discover that these two
transitions also have unique distinguishable charge distributions
on the subgroups compared to other transitions in the ensemble.
This suggests a link between the charge transfer characteristics of
the transition with the spectral properties, which provides a unique
insight into this ensemble and opens avenues for future research.

8. Conclusions
The pipeline for the analysis of ensembles of electronic transition
data combines automatic and explorative components. It has been
jointly developed and designed with a domain expert (theoretical
chemist and co-author). We experimented with different analysis
and visualization options until we converged to the current solution.

The complexity of the data requires automatic support going
beyond traditional methods. A first lesson learned during this process
was how essential it is to keep the automatic part transparent and
provide the means to use domain knowledge efficiently during the
analysis. The interaction with the multiple linked representations
serves both requirements. At first, the representation of the feature
vector in the parallel coordinates and the visualization of the cluster
transition diagrams generate trust in the results while allowing for
some adaptations. Secondly, the linked views support an in-depth
analysis of selected configurations and investigation of correlations
to physical properties. This observation could also be confirmed
when presenting the results to a group of theoretical physicists with
slightly different backgrounds. Demonstrating our pipeline to other
groups sparked a lot of interest and gave additional input and ideas

for extensions and future work. The relevance is also manifested in
a master’s student project just started within the chemistry group
based on our work. A second lessons learned was that we realized
the importance of integrating traditional visualization methods in
the pipeline to help familiarize the user with the analysis tools.

Possibilities to extend the work includes strengthening the correla-
tion analysis with other physical properties or extending the feature
vector with this respect. So far, the visualization methods have been
designed for a small number of molecular subgroups involved in the
electronic transition. To cope with higher numbers of groups, some
adaptations in the representation might be necessary. Further, we
see the possibility to apply some concepts of our pipeline in other
domains. This could generally be data where a change in distribution
between two states can be observed. The visual abstractions could
also be used for uncertainty visualization, for example related to un-
certainty in spatial segmentation. The augmented dendrogram could
be useful in many applications dealing with hierarchical guidelines.
Here it would be interesting to think about strategies for automati-
cally choosing a ‘good’ hierarchy level and exploring alternatives to
using the available space more efficiently.
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