
The Visual Computer manuscript No.
(will be inserted by the editor)

Ichitaro Yamazaki · Vijay Natarajan · Zhaojun Bai · Bernd Hamann

Segmenting Point-sampled Surfaces

Abstract Extracting features from point-based repre-
sentations of geometric surface models is becoming in-
creasingly important for purposes such as model classi-
fication, matching, and exploration. In an earlier paper,
we proposed a multiphase segmentation process to iden-
tify elongated features in point-sampled surface mod-
els without the explicit construction of a mesh or other
surface representation. The preliminary results demon-
strated the strengths and potential of the segmentation
process, but the resulting segmentations were still of low-
quality, and the segmentation process could be slow. In
this paper, we describe several algorithmic improvements
to overcome the shortcomings of the segmentation pro-
cess. To demonstrate the improved quality of the seg-
mentation and the superior time efficiency of the new
segmentation process, we present segmentation results
obtained for various point-sampled surface models. We
also discuss an application of our segmentation process
to extract ridge-separated features in point-sampled sur-
faces of CAD models.

Keywords point sets · sampling · features · geodesic
distance · normalized cut · topological methods ·
spectral analysis · multiphase segmentation · hierarchical
segmentation

1 Introduction

Point primitives support both simple and flexible mod-
eling of complex shapes and have been widely used to
represent various surface models [1,2]. In recent years,

I. Yamazaki · Z. Bai · B. Hamann
Department of Computer Science, University of California,
One Shields Avenue, Davis, CA 95616, U.S.A.
E-mail: {yamazaki, bai, hamann}@cs.ucdavis.edu

V. Natarajan
Department of Computer Science and Automation,
Supercomputer Education and Research Centre,
Indian Institute of Science, Bangalore, 560012, India
E-mail: vijayn@csa.iisc.ernet.in

the number and usage of high-resolution point-sampled
surface models have been rapidly increasing due to im-
provements in digital scanning technology. In order to
classify, match, and explore such a large number of high-
resolution point-sampled surface models, an efficient method
to extract features that distinguish the surface mod-
els is becoming increasingly important. In fact, point-
set segmentation to extract features of such surfaces in
the absence of connectivity information has been studied
extensively in the graphics community, and its motiva-
tions are well-established [3–5]. In addition, the study of
point-set segmentation has been extended to higher di-
mensions [6], which further motivates the development
of an efficient segmentation process. In this paper, we
present a process to identify two types of geometric fea-
tures from pointed-sampled surfaces, namely, elongated
features such as the legs of a horse and fingers of a hand,
and ridge-separated features such as the faces of a CAD
model. These features are natural choices for applications
such as model classification, matching, and exploration.

In an earlier paper [7], we introduced a multiphase
segmentation process to extract elongated features in
point-sampled surfaces without the explicit construction
of a mesh or other surface representation. The prelimi-
nary results demonstrated the potential of the segmenta-
tion process, but the resulting segmentation was still of
low-quality, and the segmentation process could be slow.
In this paper, we describe several algorithmic improve-
ments to overcome the shortcomings of the segmenta-
tion process. The segmentation results of various point-
sampled surface models are presented to demonstrate
that the new algorithm not only leads to significantly
improved quality of the segmentation, but also reduces
the time to compute the segmentation by a factor of
up to five. We also discuss an application of our seg-
mentation process to identify ridge-separated features in
point-sampled surfaces of CAD models.

The rest of this paper is organized as follows; In Sec-
tion 2, we first review the previously developed and pub-
lished methods, besides the one proposed in [7], which
are closely related to ours. In Section 3, we review the
shortcomings of the earlier segmentation process [7] and

2 Ichitaro Yamazaki et al.

summarize the algorithmic improvements that are pre-
sented in this paper. After discussing the details of the
algorithmic improvements in Sections 4 and 5, we present
in Section 6 a detailed analysis of the storage and run
time requirements of the new algorithm. In Section 7,
we discuss an application of our segmentation process to
CAD models. In Section 8, we conclude the paper.

2 Related work

Segmenting a surface model into its distinct parts is cru-
cial for several applications, such as modeling [8], meta-
morphosis [9,10], compression [11], simplification [12],
retrieval [13,14], collision detection [15], texture map-
ping [16], and skeleton extraction [17,18]. Besides our
earlier work [7], numerous surface segmentation methods
have been developed based on techniques from computer
vision [19], load partitioning in finite element methods
(FEM) [20], point set clustering in statistics [21], and
machine learning [22]. In this section, we review some
of the segmentation methods that are closely related to
ours, and point out the differences.

Based on their objectives, segmentation methods can
be broadly classified into two categories: patch-type and
part-type methods [23]. Patch-type methods obtain seg-
ments that are topological disks [12,24–26], whereas part-
type methods partition a surface into segments that cor-
respond to features [15,18,27–34]. Our methods compute
part-type segmentations.

Zhang et al. [33] proposed a feature-based approach
for computing a patch-type mesh segmentation for sur-
face parameterization. Their approach identifies a fea-
ture by growing a region from a local maximum of the
average geodesic distance function and searching for a
feature boundary which results in an abrupt increase in
size of the surrounded region. Another effective patch-
type segmentation method, called multi-chart image ge-
ometry method (MCIGM), was proposed by Sander et
al. [35]. It is based on a k-means algorithm to minimize
the global cost of segmentation, where the cost of as-
signing a face to a segment is measured by the angle
between the normal of the face and average normal of all
the faces assigned to the segment. Yamauchi et al. [36]
showed that using mean-shift to cluster faces before ap-
plying MCIGM makes the method robust against the
noise in the input and results in a high-quality segmen-
tation.

Katz and Tal [18] proposed a part-type mesh segmen-
tation method that is based on a k-means algorithm.
The cost of assigning a face to a segment is measured
by the geodesic distance to the representative face of
the segment. The local distance between two connected
faces is computed as a weighted sum of their Euclidean
and angular distances. Several other successful part-type
segmentation methods have been developed based on a
watershed technique [30,37]. This technique locates the

negative curvature minima that correspond to segmen-
tation boundaries by simulating the accumulation of wa-
ter into basins. Even though the segmentation methods
discussed so far share some similarity with ours, they
all assume that a surface is explicitly represented by
meshes. Hence, they cannot be applied directly to the
point-sampled surface models, in which the connectiv-
ity information is not available. On the other hand, our
methods operate directly on the input points. For ex-
ample, the first phase of our segmentation approach to
identify features is similar to the watershed technique,
but we explicitly identify the saddle points of a discrete
function defined over the input points, and assign each
point to a segment based on the gradient flow induced
by the discrete function

Dey et al. [38] proposed a region-growing part-type
approach to segment point-sampled surfaces. Their method
first identifies the local maxima of a discrete function
defined over explicitly-computed 3D meshes. These local
maxima represent distinct features, and input points are
assigned to a feature based on the flows induced over the
meshes. The first phase of our segmentation process is
similar to this region-growing approach, but we operate
directly on the input points. An advantage to working
in the lower dimension (of the surface, in comparison to
that of the 3D meshes) is that our segmentation process
is efficient. As a result, our method is between two and
eleven times as fast as theirs, while generating segmen-
tations that are highly similar to those of Dey et al. in
terms of quality

Spectral analysis of an affinity matrix has been used
to segment images [19] and meshes [29,39]. We extend
these ideas to collect points that together describe a fea-
ture on a surface model.

3 Contributions

We first outline the multiphase segmentation process
proposed in [7] to extract elongated features in a point-
sampled surface:

1. Supernode extraction. Based on the topology of the
input points, we first identify sets of points that be-
long to a common feature. This step is done by con-
structing a discrete function and an associated gradi-
ent flow field over the input points. Points that flow
into a common local maximum of the discrete func-
tion belong to a common feature and are represented
by a supernode. For efficiency, the discrete function
is computed from uniformly-sampled surface points.
This phase sets the stage for performing hierarchi-
cal segmentation in an efficient manner by coarsen-
ing the input points into supernodes. In this initial
phase, we work with an intrinsic dimension (i.e., a
two-dimensional surface) of the point set, which is
typically lower than the dimension of the embedding
space (i.e., three in the case of scanned surfaces in

Segmenting Point-sampled Surfaces 3

three-dimensional space). An advantage to working
in the lower dimension is that our segmentation pro-
cess is efficient.

2. Hierarchical segmentation. We bisect the set of the
supernodes while ensuring that supernodes belong-
ing to a common feature remain together. A near-
optimal bisection is computed using a spectral anal-
ysis of a weighted graph that represents the relation
between supernodes. This second phase can be ap-
plied directly to the input points, but computing a
near-optimal bisection is significantly faster when it
is applied to the smaller set of supernodes. Repeated
application of this bisection results in a hierarchical
segmentation of the supernodes.

3. Surface segmentation. We construct a segmentation
of the input points from the segmentation of the su-
pernodes. Previous phases ensure that features lie in
individual segments.

We now summarize the properties and shortcomings
of the segmentation process using the criteria proposed
by Attene et al. [40]. Some of the relevant properties are:

– Type of segmentation. A segmentation of a point-
sampled surface model is computed to extract elon-
gated features without the explicit construction of a
mesh or other surface representation.

– Hierarchy. A hierarchical segmentation of supernodes
supports multiple views of the input surface at vari-
ous levels of detail.

– Sensitivity to pose. Segmentation results are indepen-
dent of the poses of surface models since the segmen-
tation process is based on geodesic distances and uni-
form sampling of points.

Shortcomings of the method described above include:

– Extracting correct segments. The method failed to
identify significant features that were captured by a
single supernode in some models.

– Segment boundaries. Leakage of segments beyond the
feature boundaries was observed.

– Control parameters. The quality of segmentation de-
pended strongly on the number of sample points. To
obtain a good segmentation, this parameter needed
to be tuned for each model. A large number of sample
points were required for some models.

– Asymptotic complexity. The multiphase segmentation
process works directly on the point primitives that
represent a surface. This can lead to an efficient use
of storage and computing resources. Specifically, the
memory complexity is O(n), and the run time com-
plexity is O(un log(n)), where u and n are the num-
bers of sample and input points, respectively. Unfor-
tunately, for some models, a large number of sample
points, u, may be needed, leading to a slow segmen-
tation process.

In this paper, we describe several algorithmic im-
provements to address the shortcomings of the previous

segmentation process. We list below our contributions
that lead to significant improvements:

– Extracting correct segments. We describe a new weighted
graph of supernodes that captures the connectivity
within each supernode. This leads to a significant im-
provement in the quality of segmentation, where all
elongated features can be extracted. An extension of
the method to extract ridge-separated features is also
discussed.

– Segment boundaries. We show that the growth of
supernodes beyond their feature boundaries can be
avoided by creating supernodes at saddle points and
using local refinement techniques. Since the leakage of
segments beyond feature boundaries was greatly re-
duced, a point-wise refinement technique [41,42] can
be applied in a post-processing phase to obtain desir-
able geometric properties for the segment boundaries.

– Control parameters. Even though additional control
parameters must be used, the user may have to ad-
just only two parameters to improve the quality of the
segmentation for each model. The remaining control
parameters are pre-determined to ensure high seg-
mentation quality.

– Asymptotic complexity. The new algorithm is much
less affected by the presence of noise in the input
and requires a significantly smaller number of sam-
ple points. As a result, even though the asymptotic
complexity of the new algorithm is the same as that
of the previous algorithm, the time to compute the
segmentation is greatly reduced.

In the following sections, we discuss all phases of the
segmentation process in detail. In particular, we describe
the shortcomings of the previous segmentation process,
and the proposed algorithmic improvements. We also
provide segmentation results of various point-sampled
surfaces to demonstrate that the new algorithm greatly
improves the quality of segmentation results, and reduces
the time to compute the segmentation by a factor of up
to five.

4 Supernode extraction

In the first phase of the segmentation process, we use
ideas from Morse Theory to identify features in the un-
derlying surface of an input point set. Morse Theory was
originally developed to study the relationship between
the shape of a space and critical points of smooth func-
tions defined over the space [43,44]. Recently, it has been
used to construct multi-resolution structures for the vi-
sualization of scalar data [45–47] and to remove noise
from 2-manifolds [48]. In contrast to these approaches
based on Morse Theory for smooth functions, we con-
struct and analyze characteristics of a discrete function
defined over the input point set.

4 Ichitaro Yamazaki et al.

4.1 Feature-identifying function

We construct the discrete function over the input points
based on the concept of centrality, which was first intro-
duced in the context of social networks to identify central
people for transporting information within a network [49,
50]. The notion of centrality was used more recently by
Hilaga et al. [51] in the context of shape matching to cap-
ture the skeletal and topological structures of 3D shapes,
where the centrality of a point is defined as the average
geodesic distance from the point to all points over the
surface model.

Assuming that a sufficiently dense point-sampled sur-
face is provided, the geodesic distance between two points
on the surface can be approximated by their shortest
path in a graph that connects all k-nearest points [6]. For
example, we assume that our point set is dense enough
for the k-nearest neighbor graph to identify two fingers
of a hand model (Fig. 1), which are close to each other.
This also implies that points that are associated with
the same feature belong to a connected component of
the graph. The disconnected components that belong to
different features are identified in our hierarchical seg-
mentation phase (Section 5). Based on this assumption,
the centrality f̄(p) of a point p can be approximated as

f̄(p) ≈ 1

|P |
∑

q∈P

g(p, q),

where |P | is the number of points in the input set P (i.e.,
|P | = n), g(p, q) measures the shortest path between two
points p and q in the k-nearest neighbor graph G, and if
p and q are k-nearest neighbors of each other in G, then
g(p, q) is equal to their Euclidean distance d(p, q).

To avoid the expensive computation of all-pair short-
est path distances, we compute an approximate central-
ity value f(p) as the average shortest path distance from
the point p to uniformly distributed sample points U over
the graph G, i.e.,

f(p) =
1

|U |
∑

q∈U

g(p, q), (1)

where |U | is the number of the sample points. Clearly,
as |U | approaches |P |, f(p) approaches f̄(p).

In order to sample the points U uniformly over the
graph G, we repeatedly sample a point p in the input
set P that is furthest away from the points that are al-
ready in U . Specifically, for each point p in P , we first
compute h(p), which is the shortest path distance be-
tween the point p and its nearest point q already in U ,
i.e.,

h(p) = min
q∈U

g(p, q).

Then, we repeatedly sample a point p with the largest
value h(p) in the input set P .

handc horsec santac

Fig. 1 Discrete function measuring approximate centrality
values of points. Bluer colors correspond to larger function
values. Red dots are the local maxima of the function and
black dots are the local minima. Elongated features such as
fingers, arms, and legs are represented by the local maxima
that are located at the extremal points on the surface. In-
significant local maxima that do not represent any features
are removed by a local refinement process (Section 4.3). For
each model, we have a coarse and fine point set, which we
denote with the subscripts c and f , respectively. Our seg-
mentation approach obtains similar results for both sets.

To summarize, given the k-nearest neighbor graph G
of the input point set P , we construct the discrete func-
tion f over P as follows1:

1. Initialize h(p) = ∞ and f(p) = 0 for all points p ∈ P .
2. Create a set U to store uniformly-sampled points

from P , and initialize U = {}.2
3. Repeat steps 4-6 until |U | becomes greater than

√
n.

4. Pick a point p ∈ P with the largest value h(p), break-
ing ties arbitrarily.

5. For all points q ∈ P ,
(a) compute the shortest path distance g(p, q) in G,
(b) update f(q) ← f(q) + g(p, q), and
(c) update h(q) ← min{h(q), g(p, q)}.

6. Update U ← U ∪ {p}.
7. Compute the average geodesic distance

f(p) ← f(p)/|U | for all p ∈ P .

After the completion of the above steps, f(p) contains a
value that approximates the centrality f̄(p). Fig. 1 shows
the distribution of f for different surface models. We ob-
served that the tip of an elongated feature is represented
by a local maximum of f . Since our method computes a
uniform sample of the input and approximate geodesic
distance, our final segmentation results are sensitive to
neither the uniformity of the input point distribution
nor the pose of the surface model, which will be demon-
strated later in Fig. 7.

We note that not all local maximum represent fea-
tures in the underlying surface; in the presence of noise
in the input, some local maximum may not represent
a feature at all. The previous segmentation process [7]

1 In our numerical experiments, k-nearest neighbors are
computed using a kd-tree [52].

2 The implementation maintains only the number of sample
points.

Segmenting Point-sampled Surfaces 5

is sensitive to the noise, and the quality of segmenta-
tion depends strongly on the number of sample points.
In some models, a large number of sample points are
needed, resulting in a slow segmentation process. The
algorithmic improvements described in the rest of this
paper make the segmentation process much less affected
by the presence of noise in the input, reducing the num-
ber of required sampled points. As a result, the time to
compute the segmentation is reduced by a factor of up
to five (Section 6). We found that

√
n sample points are

sufficient to identify distinct features in all the surface
models used in this paper.

4.2 Supernode extraction

We define discrete gradient ∇̂f(p) at a point p to be the
steepest ascent of the function f from p to its k-nearest
neighbor. Specifically, let û(p, q) be the unit vector point-
ing from p to its neighbor q,

û(p, q) =
q − p

‖q − p‖ ,

and z(p, q) be the discrete gradient magnitude given by

z(p, q) =
f(q) − f(p)

d(p, q)
,

where the function f is given by (1), and d(p, q) measures
the Euclidean distance between the points p and q. Then,

the discrete gradient ∇̂f(p) is given by

∇̂f(p) = z(p, q) · û(p, q),

where

q = argmax
q∈N(p)

z(p, q),

and N(p) is the set of the k-nearest neighbors of p. Each
input point is then assigned to a local maximum of f by

following the gradient flow field induced by ∇̂f . Points
assigned to a common local maximum collectively form
a supernode. However, two shortcomings of the earlier
segmentation process [7] must be resolved to ensure that
the points in a supernode are associated with a common
feature.

First, the discrete gradient field induced by ∇̂f(p)
flows to a local maximum of f all the way from a local
minimum of f . As a result, supernodes grow across the
boundaries of their corresponding features (see Fig. 2).
Note that these feature boundaries are identified by sad-
dle points, where multiple supernodes merge at the largest
centrality value. In order to prevent the growth of su-
pernodes beyond their feature boundaries, we create a
new supernode at a saddle point. All points lying within
supernodes that merge at the same saddle point and
whose approximate centrality values are smaller than
that of the saddle point are assigned to the new supern-
ode. The process of creating new supernodes is recur-
sively applied to the newly-created supernodes. Fig. 3
shows the expanded set of supernodes.

handf horsef santaf

Fig. 2 Discrete gradient fields in surface models: the points
flowing into a common local maximum collectively form a su-
pernode. The surface meshes are added solely for the purpose
of clearer illustration in the above and subsequent figures.
The surface region formed by points in a supernode was gen-
erated by a simple mesh viewer. The surface region formed by
the points in a supernode was generated using a simple mesh
viewer for clearer illustration, and is shown in the same color.
Since the gradient fields flow to a local maximum all the way
from a local minimum, supernodes grow across the bound-
aries of distinct features. This is one of the disadvantages of
our earlier work [7].

handf horsef santaf

Fig. 3 New supernodes are created at saddle points. Growth
of supernodes beyond the feature boundaries, as seen in
Fig. 2, are avoided.

Second, in the k-nearest neighbor graph G, two points
that lie within different features may be connected by
feature-crossing edges even though their centrality val-
ues are far greater than those of the points near the cor-
responding feature boundaries. Note that these feature-
crossing edges may exist in G even when the input points
are dense enough to identify distinct features in the first
phase of our segmentation process. These feature-crossing
edges result in the creation of a saddle point and a new
supernode instead of the continued propagation of two
supernodes. Fig. 4 shows an example in which the feature-
crossing edges cause an early termination of supernodes
that otherwise would have identified the ring finger and
middle finger. We observed that even if a point p is con-
nected to points in different features by feature-crossing
edges, the number of such edges is a small fraction of
the total number of edges connecting the point p, i.e.,
most of the edges connect to the points within the same
feature. Otherwise, the point p lies on its corresponding
feature boundaries and should be identified as a saddle.

6 Ichitaro Yamazaki et al.

before after

Fig. 4 Effect of feature-crossing edges. In the left figure, the edges in red are identified as the feature-crossing edges in the
k-nearest neighbor graph of the coarse model of the hand. The quality of supernodes is improved by removing these edges
as seen in the middle and right figures, which show the supernodes before and after feature-crossing edges are removed,
respectively.

Therefore, in order to identify the feature-crossing edges
and to efficiently extract correct surface features, we pro-
cess points p in the input set P in descending order of
f(p) as follows:

1. If p is a local maximum, assign p to a new supernode.
2. Otherwise, assign p to a supernode using the follow-

ing steps:
(a) Let M(p) contain all neighbors N(p) of p that

have been processed. In other words, if q ∈ M(p),
then f(q) ≥ f(p).

(b) If the number of points in M(p) from a supern-
ode si is only a small fraction3 of the total number
of points in N(p), then delete all points assigned
to si from M(p).

(c) If the remaining points in M(p) belong to a single
supernode, then assign p to the supernode.

(d) If the remaining points in M(p) belong to multi-
ple supernodes s1, . . . , sk, then declare p a saddle
point and assign p to a new supernode s. Any
point processed in the future and assigned to one
of the supernodes s1, . . . , sk will be assigned to s
instead.

The above procedure successfully identifies a majority
of the feature-crossing edges and dramatically improves
the quality of the supernodes from the previous segmen-
tation process. Fig. 5 shows the resulting supernodes.

4.3 Local refinement

Some of the supernodes computed above do not repre-
sent significant features in the underlying surface. To re-
move these insignificant supernodes, in this section, we
describe a local refinement phase which was absent in
the previous multiphase segmentation process. This ad-
ditional phase not only improves the quality of the seg-
mentation, but also reduces the segmentation time by
reducing the number of supernodes.

3 We use a threshold fraction of 0.3.

We first characterize each supernode s using three
quantities:

1. The feature height fh(s), equal to the maximum dif-
ference in the approximate centrality values f be-
tween all pairs of the points in s, i.e.,

fh(s) = max
p,q∈s

|f(p) − f(q)|. (2)

2. The feature area fa(s), defined as

fa(s) =
∑

p∈s

πr(p)2,

where the radius r(p) is computed as

r(p) =
∑

q∈N(p)

‖p − q‖p

|N(p)| ,

and

‖p − q‖2 =
√

(f(p) − f(q))2 + d(p, q)2. (3)

3. The feature width fw(s), defined as

fw(s) =
fa(s)

fh(s)
. (4)

We observed that insignificant supernodes have either
small feature areas or small feature heights; hence we
merge them with their neighboring supernodes in two
steps:

1. Small supernodes are merged-up. If the feature area
fa(s) is less than a user-specified threshold4 and the
supernode s is created at a saddle point, then merge
s back with supernodes that terminate at the saddle.

2. Skinny supernodes are merged-down. If the feature
height fh(s) is less than a user-specified threshold5

and the supernode s meets with another supernode
at a saddle point, then merge s with the supernode
created at the saddle point. Also, merge-down any
small supernodes that have not been merged-up.

4 Our threshold is 1% of the total feature area.
5 Our threshold is 1% of the maximum feature height.

Segmenting Point-sampled Surfaces 7

handf horsef santaf bunnyf

Fig. 5 Supernodes after local refinement. Insignificant supernodes are merged into connected supernodes.

We note that a supernode created at a saddle point
can have disconnected regions. If a supernode contains
disconnected regions even after the above local refine-
ment steps, each of the disconnected regions is tested
against the above refinement criteria, and then it is ei-
ther merged with a neighboring supernode or becomes a
supernode. Furthermore, after the feature-crossing edges
are processed as described in Section 4.2, a small or
skinny supernode may not be connected to any other
supernode through a saddle point. In such a case, we
merge these insignificant supernodes into a supernode
that is connected point-wise in the k-nearest neighbor
graph. Fig. 5 shows the supernodes after the local re-
finement steps.

5 Hierarchical segmentation

In this section, we first construct a weighted graph Gs(
V,E,W) based on the supernodes identified in Section 4.2;
namely, each vertex in the vertex set V is a collection of
input points that belong to a common feature and the
weight W (v1, v2) is large if two vertices v1 and v2 in V lie
within similar features. We then present an algorithm to
bisect the set of vertices V into two disjoint subsets V1

and V2 by computing a graph cut that minimizes the
normalized cut value

NCut(V1, V2) =
asso(V1, V2)

asso(V1, V)
+

asso(V1, V2)

asso(V2, V)
, (5)

where the association between the subsets V1 and V2 is
given by

asso(V1, V2) =
∑

v1∈Vi, v2∈V2

W (v1, v2). (6)

Minimizing the value NCut results in a bisection in which
vertices within a subset are similar, while those in dif-
ferent subsets are dissimilar. Thus, we avoid the bias
toward small segments that are often favored when the
cut is minimized without normalization. We recursively
apply the bisection until NCut is greater than a specified
threshold. This bisection can be applied directly to the
input points, but computing a near-optimal bisection is

s1

r1

m1

s2

r2

m2

r3

m3

s3

Fig. 6 Weighted graph representing the relation of supern-
odes. Two vertices are created for each supernode si: a repre-
sentative vertex ri and a member vertex mi. There are edges
between ri and mi, and between mi and mj if and only if si

is a supernode created at a saddle point and sj is one of the
supernodes that terminates at the saddle. In the figure, s3 is
created at a saddle, where s1 and s2 merge.

significantly faster when it is applied to the smaller set
of the supernodes.

5.1 Weighted graph construction

In the previous segmentation process [7], the weighted
graph Gs is constructed such that the supernodes are
the vertices in the graph. However, with this weighted
graph, some significant features could not be segmented
out. This is because a feature in a point-sampled sur-
face may be represented by a single supernode si (e.g.,
a finger in the model of the hand in Fig. 5). In such a
case, this feature cannot be segmented out by minimiz-
ing NCut because if V1 = {si} and V2 = V \ {si}, then
asso(V1, V2) is equal to asso(V1, V) and NCut(V1, V2)
becomes its maximum value, i.e., NCut = 2. To avoid
this problem, we propose a new weighted graph Gs that
captures the connectivity within each supernode. In this
new graph Gs, the vertex set V contains two vertices
corresponding to each supernode si: a representative ver-
tex ri and a member vertex mi. We then create two types
of edges in Gs: between ri and mi, and between mi and
mj . There are edges between all pairs ri and mi, but an
edge between two member vertices mi and mj is added

8 Ichitaro Yamazaki et al.

handf handn horsef santaf bunnyf

Fig. 7 Segmentation results after computing normalized cut for supernodes. The point distribution in handn is skewed such
that it is dense over the wrist and the little finger. This non-uniform distribution does not, however, affect the results.

to Gs if and only if si is a supernode created at a saddle
point and sj is one of the supernodes that terminates at
the saddle. Fig. 6 shows an example of the graph Gs.

The weight of the edge between ri and mi measures
the importance of the feature identified by si:

W (ri,mi) = e
− 1

βfw(si)

(
1−

conn(si,si)

maxsj∈V conn(sj,sj)

)

, (7)

where β is a user-specified scalar, the feature width fw(si)
is given by (4), the connectivity between two supernodes
si and sj is defined as

conn(si, sj) =
∑

p∈si,q∈sj∩N(p)

‖p − q‖2, (8)

and the norm ‖ · ‖2 is given by (3). Subsequently, even if
a feature is represented by a single supernode, it can be
extracted when its corresponding W (ri,mi) is large.

The weight of an edge between mi and mj measures
the similarity between the corresponding supernodes,

W (mi,mj) = e
−

d1(mi,mj)

α1
−

d2(mi,mj)

αij , (9)

where α1 and αij are scalars,

d1(mi,mj) =
|fh(si) − fh(sj)|

maxs1,s2∈V |fh(s1) − fh(s2)|
,

d2(mi,mj) = 1 − conn(si, sj)

maxs1,s2∈V conn(s1, s2)
,

the feature height fh(s1) is given by (2), and the con-
nectivity conn(si, sj) is given by (8). The first compo-
nent d1 measures the relative significance of the supern-
odes. When si and sj have similar feature heights, i.e.,
fh(si) ≈ fh(sj), then W (mi,mj) is large, which, in turn,
facilitates the merging of the two supernodes. The second
component d2 measures how closely the two supernodes
are connected to each other. The value for αij is chosen
to be proportional to the ratio of the feature widths of
the corresponding supernodes, namely

αij = α2
min{fw(si), fw(sj)}
max{fw(si), fw(sj)}

,

so that small yet significant supernodes in the neighbor-
hood of a wide supernode maintain their identity. The
values of α1 and α2 are specified by a user. We note that,
in the previous segmentation process, the similarity be-
tween the supernodes is measured simply by their ap-
proximated geodesic distance g(si, sj). With this simple
similarity measure, a skinny feature may be connected
to a large supernode with a small weight, and may be
segmented out (e.g., the skinny features around the palm
of the hand model in Fig. 5). The new similarity measure
ensures that these supernodes have a small d2 and are
connected with a large weight, hence ensuring that they
merge together.

5.2 Graph cut

Shi and Malik [19] showed that an approximate solution
to minimize NCut can be computed based on a spectral
analysis of the Laplacian matrix L = D − W , where W
is a matrix storing the edge weights in the graph Gs, and
D is a diagonal matrix whose ith diagonal entry dii is
given as

dii =
∑

j 6=i

W (vi, vj).

Specifically, if y is the eigenvector corresponding to the
second smallest eigenvalue λ of the generalized eigen-
value problem,

(D − W)y = λDy, (10)

then NCut is approximately minimized by clustering all
points pi with approximately the same values yi into a
common subset:

vi ∈
{

V1 if yi < γ,
V2 otherwise.

We identify the split value γ that minimizes NCut from
uniform samples of values that range between the small-
est and largest elements in the eigenvector y. The re-
cursive bisection of each subset results in a hierarchical
segmentation of the vertex set V . The recursion termi-
nates when NCut is greater than a specified threshold.

Segmenting Point-sampled Surfaces 9

Data size Run time (sec)
Dataset n m l t kNN Cen Snod LRef HSeg PSeg Total Dey et al.
handc 4, 000 39 12 7 0.00 0.09 0.02 0.20 0.01 0.00 0.32 2.23
horsec 4, 002 59 18 5 0.02 0.08 0.03 0.15 0.02 0.01 0.31 2.86
bunnyc 4, 088 41 13 5 0.00 0.01 0.03 0.18 0.01 0.01 0.24 2.64
santac 5, 002 55 15 9 0.01 0.12 0.03 0.20 0.03 0.00 0.39 2.64
handf 30, 000 101 16 7 0.15 2.38 0.24 2.47 0.03 0.00 5.27 26.17
bunnyf 34, 834 89 18 4 0.19 3.95 0.29 1.70 0.01 0.01 6.15 37.27
horsef 40, 002 237 19 6 0.17 3.96 0.66 12.30 0.01 0.01 17.11 42.18
santaf 50, 002 183 19 9 0.25 7.61 0.58 11.28 0.04 0.01 19.77 60.48
cube 9, 602 21 6 6 0.20 0.39 0.04 0.20 0.02 0.01 0.68 −−
prism 28, 674 146 8 8 0.14 3.09 0.31 2.48 0.04 0.01 6.07 −−
block 180, 926 423 11 8 0.25 85.41 6.99 101.63 0.93 0.03 195.24 −−

Table 1 Performance data for each step of the segmentation process: kNN: k-nearest neighbor computation, Cen: approxi-
mate centrality computation, Snod: supernode identification, LRef: local refinement of supernodes, Hseg: similarity measure
computation and hierarchical segmentation, and Pseg: construction of surface segmentation. Here, n is the number of input
points, m is the number of supernodes, l is the number of supernodes after refinement, and t is the number of segments after
hierarchical segmentation. For the segmentation of CAD models, kNN includes the computation of approximate normals and
model transformation. k-nearest neighbors are computed using a kd-tree [52]. The first three steps as well as the last step,
all of which work with point primitives, were implemented in C. All other steps were implemented in MATLAB. The last
column of the table shows the time required by Dey et al.’s method [38] to compute segmentations of similar quality using
default parameters. We do not provide the timing results of their method for the CAD models since it was not possible to
compute a correct segmentation. We used a laptop PC with a 1.7GHz Intel Pentium M processor and 1GB RAM for our
experiments.

Fig. 7 shows segmentation results obtained using the
repeated application of the normalized cut. The segmen-
tation results are similar to those obtained by the method
of Dey et al. [38] shown in Fig. 9. For the models of the
hand and santa, we used the choice of the scalars β = 2.0,
α1 = 2.0, and α2 = 0.5. For the models of the horse and
bunny, we found that decreasing the value of α2 to 0.2
results in better segmentations. This can be explained
by the fact that the models of the horse and bunny have
features (i.e., the head and tail, respectively), which are
not as elongated as the other features.6 The thresholds
used for the normalized cut were 0.07, 0.05, 0.23, and
1.2 for the models of the hand, horse, santa, and bunny,
respectively. These two parameters (i.e., α2 and the nor-
malized cut threshold) are the only parameters that had
to be adjusted.

6 Analysis

Memory requirement plays a crucial role in determining
the efficiency of a segmentation method when the input
point set is large. Our method requires the memory for
storing Euclidean and geodesic distances between points
for the computation of the approximate centrality val-
ues f in (1). However, only distances between certain
pairs of points need to be stored. For example, comput-
ing geodesic distances requires the Euclidean distances
between the neighboring points only. Thus, the memory

6 It is possible for the representative vertex ri and member
vertex mi of a same supernode si to be assigned to different
segments. In this case, a simple local refinement can be ap-
plied to ensure that ri belongs to the same segment as mi.
However in all of our experiments, we did not observe this
event.

requirement to store the Euclidean distances is Θ(kn),
where k is the number of nearest neighbors considered for
each point, and n is the number of input points. Geodesic
distances between a point and

√
n sample points are used

to compute the approximate centrality values. However,
only those geodesic distances from the current sample
point to the rest of the points need to be stored, which
results in Θ(n) storage complexity.

The computational complexities of the various steps
of our method are:

k-nearest neighbor computation: O(kn log(n))
Approximate centrality computation: O(n3/2 log(n))
Feature identification: O(kn)
Local supernode refinement: O(kmn)
Hierarchical segmentation: O(tl2)
Construction of surface segmentation: O(n)

Here, n is the number of input points, m is the number
of supernodes, l is the number of supernodes after refine-
ment, and t is the number of segments after hierarchi-
cal segmentation. Approximate centrality computation
is clearly a computational bottleneck. However, our new
algorithm uses

√
n sample points, as opposed to the c

√
n

sample points used in our earlier one [7]. Since c can be
as large as 60, the computational bottleneck of the seg-
mentation process is, in practice, significantly reduced in
the new method. Speed-ups of up to five were achieved
for the models used in this paper. Table 1 summarizes
our timing results. Local supernode refinement processes
the input points, and it is currently implemented using
simple arrays in MATLAB, which results in slow running
time. The remaining computations process the set of su-
pernodes, which is much smaller in size. As a result, our
method is between two and eleven times faster than Dey

10 Ichitaro Yamazaki et al.

cube prism block

Fig. 8 Segmentation of CAD models. Edge lengths in the
k-nearest neighbor graph and in the graph of supernodes are
modified before applying the multiphase segmentation pro-
cess.

et al.’s method [38] to compute segmentations of similar
quality, as seen in the last column of Table 1 and Fig. 9.

7 Point-sampled CAD models

Our multiphase segmentation process can be applied to
identify faces in point-sampled surfaces of CAD models.
We incorporated two modifications to the segmentation
process described in Sections 4 and 5: we modified edge
lengths in the k-nearest neighbor graph G over the in-
put points and those in the graph Gs representing the
relation between supernodes.

Edge lengths in the graph G are modified to simu-
late a transformation of a CAD model that maps faces
to elongated features and ridges to feature boundaries.
Specifically, we shrink the lengths of edges connecting
points that are equidistant from a ridge, especially the
ones close to a ridge, and expand the lengths of remaining
edges. This is done based on Laplacian smoothing of ap-
proximate normals of each input point. The new discrete
function over the input points is constructed based on
the centrality of the points in the transformed graph G.
Supernodes that identify faces in the CAD model are ex-
tracted by applying the methods described in Section 4.

Following the ideas from Section 5.1, a weighted graph
is constructed, where the vertex set contains two vertices
representing each supernode. Similarity between supern-
odes is measured by comparing the orientation of the
faces they represent. Supernodes that belong to a com-
mon face are identified by applying the normalized cut
recursively to the weighted graph. Fig. 8 shows our seg-
mentation results.

8 Conclusions

In this paper, we have described several algorithmic im-
provements for the multiphase segmentation process pro-
posed in [7] to extract elongated features in a point-
sampled surface without the explicit construction of a
mesh or other surface representation. In comparison to
the previous algorithm, both time efficiency and segmen-
tation quality have been improved. The improvements in

the quality of segmentation were achieved mainly by in-
troducing the concept of saddle points of the discrete
function defined over the input point set and by con-
structing a weighted graph of supernodes that better
captures their relations. The time efficiency is improved
primarily because the new algorithm is much less affected
by the presence of noise in the input, which is typically
the case for scanned surface models, reducing the number
of sample points required to construct the discrete func-
tion. Since the leakage of segments beyond the feature
boundaries was greatly reduced, point-wise refinement
techniques [41,42] can be applied to obtain desirable ge-
ometric properties for segment boundaries. Some addi-
tional features of our segmentation process include the
following: Surfaces with or without boundaries can be
segmented correctly (e.g. the hand model has a bound-
ary at the wrist). The segmentation results are indepen-
dent of the poses of surface models because our methods
are based on geodesic distances and uniform sampling
of points. Even though there are several new control pa-
rameters, default values can be used for most of them
to achieve good segmentation results. For all the surface
models used in this paper, only two control parameters,
namely the weights in the similarity measures and stop-
ping threshold for the normalized cut, were adjusted. We
also discussed an application of the segmentation process
to identify ridge-separated features in point-sampled sur-
faces of CAD models.

Since we operate only on point primitives, all phases
of the segmentation process can be applied to higher-
dimensional data. Moreover, the embedding space is not
restricted to being Euclidean. We merely require the
points to be embedded in a metric space. Our method
can potentially be used to segment point sets lying on a
sub-manifold within a high-dimensional space in which
each point is represented by a fixed-length feature vec-
tor [6]. Examples of such data sets include protein shapes
[53] and hand-written characters [6]. It is therefore pos-
sible to extend our method to construct meaningful seg-
mentations of such high-dimensional data sets.

Acknowledgments

The point sets used for our experiments were downloaded
from on-line 3D scan repositories [54,55]. We used qs-

lim [56] to generate coarse point sets. Yamazaki and Bai
were supported in part by the National Science Founda-
tion grants 0313390 and 0611548. Natarajan and Hamann
were supported in part by the National Science Foun-
dation grant under contracts ACI 9624034 (CAREER
Award) and a large Information Technology Research
(ITR) grant. Natarajan was also supported by a faculty
startup grant from the Indian Institute of Science. We
thank the members of the Visualization and Computer
Graphics Research Group at the Institute for Data Anal-

Segmenting Point-sampled Surfaces 11

handf horsef santaf bunnyf

Fig. 9 Segmentation results from Dey et al’s approach. The quality of the segmentation is similar to that in Fig. 7, which
was computed by our method. Our method computed the segmentation 2 to 11 times faster.

ysis and Visualization (IDAV) at the University of Cali-
fornia, Davis for helpful discussions.

References

1. M. Pauly, R. Keiser, L. P. Kobbelt, M. Gross, Shape mod-
eling with point-sampled geometry, in: SIGGRAPH ’03:
ACM SIGGRAPH 2003 Papers, ACM Press, New York,
NY, USA, 2003, pp. 641–650.

2. M. Zwicker, M. Pauly, O. Knoll, M. Gross, Pointshop 3D:
an interactive system for point-based surface editing, in:
SIGGRAPH ’02: Proceedings of the 29th annual confer-
ence on Computer graphics and interactive techniques,
ACM Press, New York, NY, USA, 2002, pp. 322–329.

3. H. Pfister, M. Gross, Point-based computer graphics,
IEEE Computer Graphics and Applications 24 (4) (2004)
22–23.

4. M. H. Gross, Getting to the point...?, IEEE Computer
Graphics and Applications 26 (5) (2006) 96–99.

5. M. Sainz, R. Pajarola, R. Lario, Points reloaded: Point-
based rendering revisited, in: Proceedings Symposium on
Point-Based Graphics, Eurographics Association, 2004,
pp. 121–128.

6. J. B. Tenebaum, V. de Silva, J. C. Langford, A global
geometric framework for nonlinear dimensionality reduc-
tion, Science 190 (5500) (2000) 2319–2323.

7. I. Yamazaki, V. Natarajan, Z. Bai, B. Hamann, Segment-
ing point sets, in: SMI ’06: Proceedings of the IEEE In-
ternational Conference on Shape Modeling and Applica-
tions 2006 (SMI’06), IEEE Computer Society, Washing-
ton, DC, USA, 2006, pp. 4–13.

8. T. Funkhouser, M. Kazhdan, P. Shilane, P. Min,
W. Kiefer, A. Tal, S. Rusinkiewicz, D. Dobkin, Model-
ing by example, in: SIGGRAPH ’04: ACM SIGGRAPH
2004 Papers, ACM Press, New York, NY, USA, 2004, pp.
652–663.

9. A. Gregory, A. State, M. Lin, D. Manocha, M. Liv-
ingston, Interactive surface decomposition for polyhedral
morphing, Vis. Comput. 15 (9) (1999) 453–470.

10. M. Zockler, D. Stalling, H.-C. Hege, Fast and intuitive
generation of geometric shape transitions, Vis. Comput.
16 (5) (2004) 241–253.

11. Z. Karni, C. Gotsman, Spectral compression of mesh ge-
ometry, in: SIGGRAPH ’00: Proceedings of the 27th an-
nual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 2000, pp. 279–286.

12. D. Cohen-Steiner, P. Alliez, M. Desbrun, Variational
shape approximation, in: SIGGRAPH ’04: ACM SIG-
GRAPH 2004 Papers, ACM Press, New York, NY, USA,
2004, pp. 905–914.

13. M. Attene, B. Falcidieno, M. Spagnuolo, Hierarchical
mesh segmentation based on fitting primitives, Vis. Com-
put. 22 (3) (2006) 181–193.

14. E. Zuckerberger, A. Tal, S. Shlafman, Polyhedral surface
decomposition with applications, Computer and Graph-
ics 25 (5) (2002) 733–743.

15. X. Li, T. Toon, T. Tan, Z. Huang, Decomposing polygon
meshes for interactive applications, in: I3D ’01: Proceed-
ings of the 2001 symposium on Interactive 3D graphics,
ACM Press, New York, NY, USA, 2001, pp. 35–42.

16. B. Lévy, S. Petitjean, N. Ray, J. Maillot, Least squares
conformal maps for automatic texture atlas generation,
ACM Trans. Graph. 21 (3) (2002) 362–371.

17. S. Biasotti, S. Marini, M. Mortara, G. Patané, An
overview on properties and efficacy of topological skele-
tons in shape modelling, in: SMI ’03: Proceedings of the
Shape Modeling International 2003, IEEE Computer So-
ciety, Washington, DC, USA, 2003, p. 245.

18. S. Katz, A. Tal, Hierarchical mesh decomposition using
fuzzy clustering and cuts, in: SIGGRAPH ’03: ACM SIG-
GRAPH 2003 Papers, ACM Press, New York, NY, USA,
2003, pp. 954–961.

19. J. Shi, J. Malik, Normalized cuts and image segmen-
tation, IEEE Trans. Pattern Anal. Mach. Intell. 22 (8)
(2000) 888–905.

20. K. Schloegel, G. Karypis, V. Kumar, Graph partitioning
for high performance scientific simulations, in: Source-
book of parallel computing, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2003, pp. 491–541.

21. A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a
review, ACM Comput. Surv. 31 (3) (1999) 264–323.

22. V. Vapnik, The Nature of Statistical Learning Theory,
Springer-Verlag New York, Inc., New York, NY, USA,
1995.

23. A. Shamir, A formulation of boundary mesh segmenta-
tion, in: 3DPVT ’04: Proceedings of the 3D Data Process-
ing, Visualization, and Transmission, 2nd International
Symposium, IEEE Computer Society, Washington, DC,
USA, 2004, pp. 82–89.

24. M. Garland, A. Willmott, P. S. Heckbert, Hierarchical
face clustering on polygonal surfaces, in: I3D ’01: Pro-
ceedings of the 2001 symposium on Interactive 3D graph-
ics, ACM Press, New York, NY, USA, 2001, pp. 49–58.

25. P. Sander, J. Snyder, S. Gortler, H. Hoppe, Texture map-
ping progressive meshes, in: SIGGRAPH ’01: Proceed-
ings of the 28th annual conference on Computer graphics
and interactive techniques, ACM Press, New York, NY,
USA, 2001, pp. 409–416.

26. K. Zhou, J. Synder, B. Guo, H.-Y. Shum, Iso-charts:
Stretch-driven mesh parameterization using spectral
analysis, in: SGP ’04: Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry process-
ing, ACM Press, New York, NY, USA, 2004, pp. 45–54.

12 Ichitaro Yamazaki et al.

27. S. Katz, G. Leifman, A. Tal, Mesh segmentation using
feature points and core extraction, Vis. Comput. 21 (8–
10) (2005) 649–658.

28. Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, H. P. Seidel,
Intelligent mesh scissoring using 3D snakes, in: PG ’04:
Proceedings of the Computer Graphics and Applications,
12th Pacific Conference on (PG’04), IEEE Computer So-
ciety, Washington, DC, USA, 2004, pp. 279–287.

29. R. Liu, H. Zhang, Segmentation of 3D meshes through
spectral clustering, in: PG ’04: Proceedings of the Com-
puter Graphics and Applications, 12th Pacific Confer-
ence (PG’04), IEEE Computer Society, Washington, DC,
USA, 2004, pp. 298–305.

30. A. P. Mangan, R. T. Whitaker, Partitioning 3D surface
meshes using watershed segmentation, IEEE Tran. Vis.
Comput. Graph. 5 (4) (1999) 308–321.

31. G. Patane, M. Spagnuolo, B. Falcidieno, Para-Graph:
Graph-based parameterization of triangle meshes with
arbitrary genus, Computer Graphics Forum 23 (4) (2004)
783–797.

32. S. Shalfman, A. Tal, S. Katz, Metamorphosis of poly-
hedral surfaces using decomposition, Proc. Eurographics
21 (3) (2002) 219–228.

33. E. Zhang, K. Mischaikow, G. Turk, Feature-based sur-
face parameterization and texture mapping, ACM Trans.
Graph. 24 (1) (2005) 1–27.

34. Y. Zhou, Z. Huang, Decomposing polygon meshes by
means of critical points, in: MMM ’04: Proceedings of
the 10th International Multimedia Modelling Conference,
IEEE Computer Society, Washington, DC, USA, 2004, p.
187.

35. P. Sander, Z. Wood, S. Gortler, J. Snyder, H. Hoppe,
Multi-chart geometry images, in: SGP ’03: Proceedings
of the 2003 Eurographics/ACM SIGGRAPH symposium
on Geometry processing, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 2003, pp. 146–155.

36. H. Yamauchi, S. Lee, Y. Lee, Y. Ohtake, A. Belyaev,
H. P. Seidel, Feature sensitive mesh segmentation with
mean shift, in: SMI ’05: Proceedings of the International
Conference on Shape Modeling and Applications 2005
(SMI’ 05), IEEE Computer Society, Washington, DC,
USA, 2005, pp. 238—245.

37. D. L. Page, A. Koschan, M. A. Abidi, Perception-based
3D triangle mesh segmentation using fast marching wa-
tersheds, in: Proc. IEEE Conf. Computer Vision and Pat-
tern Recognition, Vol. 2, 2003, pp. 27–32.

38. T. K. Dey, J. Giesen, S. Goswami, Shape segmentation
and matching with flow discretization, in: Proc. Work-
shop on Algorithms and Data Structure, 2003, pp. 25–36.

39. C. Gotsman, On graph partitioning, spectral analysis,
and digital mesh processing, in: SMI ’03: Proceedings
of the International Conference on Shape Modeling and
Applications 2003 (SMI’ 03), IEEE Computer Society,
Washington, DC, USA, 2003, p. 165.

40. M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagn-
uolo, A. Tal, Mesh segmentation - a comparative study,
in: SMI ’06: Proceedings of the IEEE International
Conference on Shape Modeling and Applications 2006
(SMI’06), IEEE Computer Society, Washington, DC,
USA, 2006, pp. 14–25.

41. C. M. Fiduccia, R. M. Mattheyses, A linear time heuristic
for improving network partitions, in: DAC ’82: Proceed-
ings of the 19th conference on Design automation, IEEE
Press, Piscataway, NJ, USA, 1982, pp. 175–181.

42. B. Kernighan, S. Lin, An efficient heuristic procedure
for partitioning graphs, Bell System Technical Journal
(1970) 291–307.

43. Y. Matsumoto, An Introduction to Morse Theory, Amer.
Math. Soc., 2002, translated from Japanese by K. Hudson
and M. Saito.

44. J. Milnor, Morse Theory, Princeton University Press,
Princeton, NJ, USA, 1963.

45. P. T. Bremer, H. Edelsbrunner, B. Hamann, V. Pascucci,
A topological hierarchy for functions on triangulated sur-
faces, IEEE Transactions on Visualization and Computer
Graphics 10 (4) (2004) 385–396.

46. A. Gyulassy, V. Natarajan, V. Pascucci, P. T. Bremer,
B. Hamann, A topological approach to simplification of
three-dimensional scalar fields, IEEE Transactions on Vi-
sualization and Computer Graphics 12 (4) (2006) 474–
484.

47. V. Natarajan, V. Pascucci, Volumetric data analysis us-
ing Morse-Smale complexes, in: SMI ’05: Proceedings
of the International Conference on Shape Modeling and
Applications 2005 (SMI’ 05), IEEE Computer Society,
Washington, DC, USA, 2005, pp. 322–327.

48. H. Edelsbrunner, D. Morozov, V. Pascucci, Persistence-
sensitive simplification of functions on 2-manifolds, in:
SCG ’06: Proceedings of the twenty-second annual sym-
posium on Computational geometry, ACM Press, New
York, NY, USA, 2006, pp. 127–134.

49. L. C. Freeman, Centrality in social networks: Conceptual
classification, Social networks 1 (3) (1979) 215–239.

50. S. Wasserman, K. Faust, Social Network Analysis: Meth-
ods and Applications, Cambridge University Press, New
York, NY, USA, 1994.

51. M. Hilaga, Y. Shinagawa, T. Komura, T. L. Kunii, Topol-
ogy matching for fully automatic similarity estimation of
3D shapes, in: SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive
techniques, ACM Press, New York, NY, USA, 2001, pp.
203–212.

52. D. M. Mount, S. Arya, ANN: A library
for approximate nearest neighbor searching,
http://www.cs.umd.edu/˜mount/ANN/.

53. P. Roger, H. Bohr, A new family of global protein shape
descriptors, ACM Computing Surveys 182 (2) (2003)
167–181.

54. AIM@SHAPE, http://www.aimatshape.net/.
55. Level of detail for 3D graphics,

http://www.lodbook.com/models/.
56. M. Garland, QSlim simplification software,

http://www.graphics.cs.uiuc.edu/˜garland/software/qslim.html.

