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Abstract
The alpha complex, a subset of the Delaunay triangulation, has been extensively used as the
underlying representation for biomolecular structures. We propose a GPU-based parallel algorithm
for the computation of the alpha complex, which exploits the knowledge of typical spatial distribution
and sizes of atoms in a biomolecule. Unlike existing methods, this algorithm does not require prior
construction of the Delaunay triangulation. The algorithm computes the alpha complex in two
stages. The first stage proceeds in a bottom-up fashion and computes a superset of the edges,
triangles, and tetrahedra belonging to the alpha complex. The false positives from this estimation
stage are removed in a subsequent pruning stage to obtain the correct alpha complex. Computational
experiments on several biomolecules demonstrate the superior performance of the algorithm, up to a
factor of 50 when compared to existing methods that are optimized for biomolecules.
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1 Introduction

The alpha complex of a set of points in R3 is a subset of the Delaunay triangulation. A size
parameter α determines the set of simplices (tetrahedra, triangles, edges, and vertices) of the
Delaunay triangulation that are included in the alpha complex. It is an elegant representation
of the shape of the set of points [16, 18, 14] and has found various applications, particularly
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in molecular modeling and molecular graphics. The atoms in a biomolecule are represented
by weighted points in R3, and the region occupied by the molecule is represented by the
union of balls centered at these points. The geometric shape of a biomolecule determines its
function, namely how it interacts with other biomolecules. The alpha complex represents
the geometric shape of the molecule very efficiently. It has been widely used for computing
and studying geometric features such as cavities and channels [25, 26, 10, 30, 33, 28, 23].
Further, an alpha complex based representation is also crucial for accurate computation of
geometric properties like volume and surface area [24, 12, 27].

Advances in imaging technology have resulted in a significant increase in the size of
molecular structure data. This necessitates the development of efficient methods for storing,
processing, and querying these structures. In this paper, we study the problem of efficient
construction of the alpha complex with particular focus on point distributions that are
typical of biomolecules. In particular, we present a parallel algorithm for computing the
alpha complex and an efficient GPU implementation that outperforms existing methods. In
contrast to existing algorithms, our algorithm does not require the explicit construction of
the Delaunay triangulation.

1.1 Related work
The Delaunay triangulation has been studied within the field of computational geometry for
several decades and numerous algorithms have been proposed for its construction [1]. Below,
we describe only a few methods that are most relevant to this paper.

A tetrahedron belongs to the Delaunay triangulation of a set of points in R3 if and only
if it satisfies the empty circumsphere property, namely no point is contained within the
circumsphere of the tetrahedron. The Bowyer-Watson algorithm [4, 34] and the incremental
insertion algorithm by Guibas et al. [21] are based on the above characterization of the Delau-
nay triangulation. In both methods, points are inserted incrementally and the triangulation is
locally updated to ensure that the Delaunay property is satisfied. The incremental insertion
method followed by bi-stellar flipping works in higher dimensions also [20] and can construct
the Delaunay triangulation in O(n logn + ndd/2e) time in the worst case, where n is the
number of input points in Rd. A second approach for constructing the Delaunay triangulation
is based on its equivalence to the convex hull of the points lifted onto a (d+ 1)-dimensional
paraboloid [19].

A third divide-and-conquer approach partitions the inputs points into two or generally
multiple subsets, constructs the Delaunay triangulation for each partition, and merges the
pieces of the triangulation finally. The merge procedure depends on the ability to order the
edges incident on a vertex and hence works only in R2. The extension to R3 requires that the
merge procedure be executed first [6]. The divide-and-conquer strategy directly extends to a
parallel algorithm [31, 5]. The DeWall algorithm [6] partitions the input point set into two
halves and first constructs the triangulation of points lying within the boundary region of the
two partitions. The Delaunay triangulation of the two halves is then constructed in parallel.
The process is repeated recursively resulting in increased parallelism. Cao et al. [5] have
developed a GPU parallel algorithm, gDel3D, that constructs the Delaunay triangulation in
two stages. In the first stage, points are inserted in parallel followed by flipping to obtain an
approximate Delaunay triangulation. In the second stage, a star splaying procedure works
locally to convert non-Delaunay tetrahedra into Delaunay tetrahedra. The algorithm can be
extended to construct the weighted Delaunay triangulation for points with weights. Cao et al.
report a speed up of up to a factor of 10 over a sequential implementation for constructing
the weighted Delaunay triangulation of 3 million weighted points.
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Existing algorithms for constructing the alpha complex [11, 18, 27, 9] often require that
the Delaunay triangulation be computed in a first step, with the exception of a recent method
that guarantees output sensitive construction under mild assumptions on weights [32] or a
possible construction from Čech complexes [2]. Simplices that belong to the alpha complex
are identified using a size filtration in a second step. Simplices that belong to the alpha
complex are identified using a size filtration in a second step. In the case of biomolecules, only
small values of the size parameter are of interest and the number of simplices in the alpha
complex is a small fraction of those contained in the Delaunay triangulation. Hence, the
Delaunay triangulation construction is often the bottleneck in the alpha complex computation.
The key difficulty lies in the absence of a direct characterization of simplices that belong to
the alpha complex.

1.2 Summary of results

We propose an algorithm that avoids the expensive Delaunay triangulation computation and
instead directly computes the alpha complex for biomolecules. The key contributions of this
paper are summarized below:

A new characterization of the alpha complex – a set of conditions necessary and sufficient
for a simplex to be a part of the alpha complex.
A new algorithm for computing the alpha complex of a set of weighted points in R3.
The algorithm identifies simplices of the alpha complex in decreasing order of dimension
without computing the complete weighted Delaunay triangulation.
An efficient CUDA-based parallel implementation of this algorithm for biomolecular data
that can compute the alpha complex for a 10 million point dataset in approximately 10
seconds.
A proof of correctness of the algorithm and comprehensive experimental validation to
demonstrate that it outperforms existing methods.

While the experimental results presented here focus on biomolecular data, the algorithm is
applicable to data from other application domains as well. In particular, the efficient GPU
implementation may be used for points that arise in smoothed particle hydrodynamics (SPH)
simulations, atomistic simulations in material science, and particle systems that appear in
computational fluid dynamics (CFD).

2 Background

In this section, we review the necessary background on Delaunay triangulations required
to describe the algorithm and also establish a new characterization of the alpha complex
that does not require the Delaunay triangulation. For a detailed description of Delaunay
triangulations, alpha complexes, and related structures, we refer the reader to various books
on the topic [1, 13, 15].

Let B = {bi} denote a set of balls or weighted points, where bi = (pi, ri) represents a ball
centered at pi with radius ri. We limit our discussion to balls in R3, so pi = (xi, yi, zi) ∈ R3.
Further, we assume that the points in B are in general position, i.e., no two points have the
same location, no three points are collinear, no four points are coplanar, and no subset of
five points are equidistant from a point in R3. Such configurations are called degeneracies.
In practice, a degenerate input can be handled via symbolic perturbation [17].

SoCG 2020
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(a) (b)

(c) (d)

(e)

Figure 1 2D weighted Delaunay triangulation and alpha complex. (a) A set of weighted points
B in R2 shown as disks. (b) The weighted Voronoi diagram of B. Voronoi edges and vertices
are highlighted in green. (c) The weighted Delaunay complex is the dual of the weighted Voronoi
diagram. (d) The alpha complex Kα for α = 0 is shown in red. This is the dual of the intersection
of the weighted Voronoi diagram and union of balls. (e) The alpha complex shown for an α > 0.
It is the dual of the intersection of the weighted Voronoi diagram and union of balls after growing
them to have radius

√
r2
i + α.

2.1 Simplex and simplicial complex

A d-dimensional simplex σd is defined as the convex hull of d+ 1 affinely independent points.
Assuming the centres of balls in B are in general position, all (d+ 1) sized subsets of B form
a simplex σd = (pσ0 , pσ1 , · · · , pσd ). For simplicity, we sometimes use bi instead of the center pi
to refer to points incident on a simplex. For example, we may write σd = (bσ0 , bσ1 , · · · , bσd ).

A non-empty strict subset of σd is also a simplex but with dimension smaller than d.
Such a simplex is called a face of σd. Specifically, a (d− 1)-dimensional face of σd is referred
to as a facet of σd. A set of simplices K is called a simplicial complex if: 1) a simplex σ ∈ K
implies that all faces of σ also belong to K, and 2) for two simplices σ1, σ2 ∈ K, either
σ1 ∩ σ2 ∈ K or σ1 ∩ σ2 = ∅.
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2.2 Power distance and weighted Voronoi diagram
The power distance π(p, bi) between a point p ∈ R3 and a ball bi = (pi, ri) ∈ B is defined as

π(p, bi) = ‖p− pi‖2 − r2
i .

The weighted Voronoi diagram is an extension of the Voronoi diagram to weighted points. It
is a partition of R3 based on proximity to input balls bi in terms of the power distance. Points
p ∈ R3 that are closer to the ball bi compared to all other balls bj ∈ B (j 6= i) constitute the
Voronoi region of bi. Points equidistant from two balls bi, bj ∈ B and closer to these two
balls compared to other balls constitute a Voronoi face. Similarly, points equidistant from
three balls and fours balls constitute Voronoi edges and Voronoi vertices of the weighted
Voronoi diagram, respectively. Figure 1b shows the weighted Voronoi diagram for a set of 2D
weighted points or disks on the plane. Similar to the unweighted case, the Voronoi regions
of the weighted Voronoi diagram are convex and linear. However, the weights may lead to
a configuration where the Voronoi region of bi is disjoint from bi. This occurs when bi is
contained within another ball bj . Further, the Voronoi region of bi may even be empty.

2.3 Weighted Delaunay triangulation
The weighted Delaunay triangulation is the dual of the weighted Voronoi diagram, see
Figure 1c. It is a simplicial complex consisting of simplices that are dual to the cells of the
weighted Voronoi diagram. The following equivalent definition characterizes a simplex σd
belonging to a Delaunay triangulation D.

I Definition 1 (Weighted Delaunay Triangulation). A simplex σd = (pσ0 , pσ1 , · · · , pσd ), 0 ≤ d ≤
3, belongs to the weighted Delaunay triangulation D of B if and only if there exists a point
p ∈ R3 such that
DT1: π(p, bσ0 ) = π(p, bσ1 ) = · · · = π(p, bσd ), and
DT2: π(p, bσ0 ) ≤ π(p, bi) for bi ∈ B − σd.

A point p that satisfies the above two conditions, DT1 and DT2, is called a witness for
σd. We call a point that minimizes the distance π(p, bσ0 ) and satisfies both conditions as
the closest witness, denoted by pσmin. This minimum distance π(pσmin, b

σ
0 ) is called the Size

of the simplex σd. A point that minimizes the distance π(p, bσ0 ) and satisfies DT1 is called
the ortho-center pσortho of simplex σd. The distance π(pσortho, b

σ
0 ) is called the OrthoSize of the

simplex σd. Clearly, the Size of a simplex is lower bounded by its OrthoSize. Figure 2 shows
the two possible scenarios, namely when OrthoSize = Size and OrthoSize < Size.

2.4 Alpha complex
Given a parameter α ∈ R, we can construct a subset of the weighted Delaunay triangulation
by filtering simplices whose Size is less than or equal to α, see Figures 1d and 1e. The
resulting subset, called the alpha complex, is a subcomplex of the Delaunay complex and is
denoted Kα:

Kα = {σd ∈ D such that Size(σd) ≤ α}.

The following equivalent definition characterizes simplices of the alpha complex without
explicitly referring to the Delaunay triangulation.

I Definition 2 (Alpha complex). A d-dimensional simplex σd = (pσ0 , pσ1 , · · · , pσd ), 0 ≤ d ≤ 3,
belongs to the alpha complex Kα of B if and only if there exists a point p ∈ R3 such that the
following three conditions are satisfied:

SoCG 2020
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AC1: π(p, bσ0 ) = π(p, bσ1 ) = · · · = π(p, bσd ),

AC2: π(p, bσ0 ) ≤ π(p, bi) for bi ∈ B − σd, and

AC3: π(p, bσ0 ) ≤ α or equivalently, the Size of σd is at most α.

3 Algorithm

We now describe an algorithm to compute the alpha complex and prove its correctness.
The algorithm utilizes the characterizing conditions introduced above. It first identifies the
tetrahedra that belong to the alpha complex, followed by the set of triangles, edges and
vertices. Figure 3 illustrates the algorithm as applied to disks on the plane.

(a)

(b) (c)

Figure 2 Size and OrthoSize of a simplex. (a) A set B of weighted points. Two edges (bold)
belong to the Delaunay triangulation. (b) The Size of edge b1b2 is equal to its OrthoSize. Points p,
p′, pmin and portho are witnesses. Each one is equidistant from b1 and b2 and farther away from other
disks in B. The distance is proportional to the length of the tangent to the disk that represents the
weighted point. The next closest disk from these points is b3. In this case, pmin and portho coincide
and hence Size = OrthoSize. (c) b4b5 is also a Delaunay edge. The location of a neighboring disk b6

could lead to a different configuration. The point portho is closest to b4 and b5 among all the points
that are equidistant from both. However portho is closer to b6 as compared to b4 and b5. The closest
point pmin that satisfies DT1 and DT2 is farther away, hence for b4b5 Size is greater than OrthoSize.
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3.1 Outline
The alpha complex of a point set in R3 consists of simplices of dimensions 0–3, Kα =
K0
α ∪ K1

α ∪ K2
α ∪ K3

α, where Kd
α ⊂ Kα is the set of d-dimensional simplices in Kα. We

initialize Kd
α = ∅ and construct Kα in five steps described below:

Step 1: For 0 ≤ d ≤ 3, compute the set of all simplices σd such that OrthoSize(σd) ≤ α. Let
this set be denoted by Σortho = Σ0

ortho ∪ Σ1
ortho ∪ Σ2

ortho ∪ Σ3
ortho.

Step 2: For all tetrahedra σ3 ∈ Σ3
ortho, check condition AC2 using p = pσortho. If σ3 satisfies

AC2 then insert it into K3
α.

Step 3: Insert all triangles that are incident on tetrahedra in K3
α into K2

α. Let Σ2
free =

Σ2
ortho − Facets(K3

α), where Facets(K3
α) denotes the set of facets of tetrahedra in K3

α. For
all triangles σ2 ∈ Σ2

free, check condition AC2 using p = pσortho. If σ2 satisfies AC2 then
insert it into K2

α.
Step 4: Insert all edges incident on triangles in K2

α into K1
α. Let Σ1

free = Σ1
ortho−Facets(K2

α),
where Facets(K2

α) denotes the set of facets of triangles in K2
α. For all edges σ1 ∈ Σ1

free,
check condition AC2 using p = pσortho. If σ1 satisfies AC2 then insert it into K1

α.
Step 5: Insert all endpoints of edges in K1

α into K0
α. Let Σ0

free = Σ0
ortho − Facets(K1

α), where
Facets(K1

α) denotes the set of balls incident on edges in K1
α. For all balls bi = (pi, ri) ∈

Σ0
free, check condition AC2 using p = pi. If pi satisfies AC2 then insert it into K0

α.

Step 1 selects simplices that satisfy AC3. Step 2 recognizes tetrahedra that belong to
the alpha complex by checking AC2 using p = pσortho. Triangle faces of these tetrahedra also
belong to Kα. The other “free” triangles belong to K2

α if they satisfy AC2. Step 4 identify
edges similarly. First all edge faces of triangles in K2

α are inserted followed by those “free”
edges that satisfy AC2. Vertices are identified similarly in Step 5.

A notion related to free simplices, called unattached simplices, was introduced by Edels-
brunner [11]. However, the characterization of unattached simplices depends on the fact that
they belong to the Delaunay complex.

3.2 Proof of correctness
We now prove that that the algorithm described above correctly computes the alpha complex
of the given set of weighted points by proving the following four claims. Each claim states
that the set of simplices computed in Steps 2, 3, 4 and 5 are exactly the simplices belonging
to the alpha complex. We assume that the input is non-degenerate.

B Claim 3. Step 2 computes K3
α correctly.

Proof. For a tetrahedron σ3, pσortho is the only point that satisfies condition AC1. In Step 2
of the proposed algorithm, we check if AC2 holds for pσortho. If yes, then pσortho is a witness
for σ3, i.e., pσortho = pσmin. Further, since OrthoSize(σ3) ≤ α and pσortho = pσmin, we have
Size(σ3) ≤ α thereby satisfying AC3. Therefore, σ3 belongs to K3

α because it satisfies all
three conditions. J

We now prove that the algorithm correctly identifies the triangles of the alpha complex.

I Lemma 4. A triangle σ2 ∈ Σ2
free belongs to K2

α if and only if it satisfies AC2 with p = pσortho.

Proof. We first prove the backward implication, namely if σ2 ∈ Σ2
free satisfies AC2 with

p = pσortho, then σ2 ∈ K2
α. Note that pσortho satisfies AC1 by definition. Further, it satisfies

AC2 by assumption and hence Size(σ2) = OrthoSize(σ2). We also have OrthoSize(σ2) ≤ α

SoCG 2020
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(a) (b)

(c) (d)

(e) (f)

Figure 3 Illustration of the proposed algorithm in 2D. (a) The set of disks B grown by the
parameter α. (b) First, compute the set of edges Σ1

ortho whose OrthoSize ≤ α (red). The triangles
Σ2

ortho that satisfy this condition are also computed but they are not shown here. (c) Next, identify
the triangles that satisfy AC2 (red). (d) Collect edges in Σ1

ortho that are not incident on triangles in
K2
α into Σ1

free. Check if these edges satisfy AC2 with p = pσortho. For example, the edge b1b2 does not
satisfy this condition because b3 is closer to portho than b1 and b2. (e) One edge survives the AC2
check and thus belongs to Kα. (f) The alpha complex is obtained as the union of K2

α, K1
α and K0

α.

because σ1 ∈ Σ2
free ⊆ Σ2

ortho. So, Size(σ2) ≤ α thereby satisfying AC3. The triangle σ2 with
p = pσortho satisfies all three conditions and hence belongs to K2

α.
We will now prove the forward implication via contradiction. Suppose there exists a

triangle σ2 ∈ Σ2
free that belongs to K2

α but does not satisfy AC2 with p = pσortho. In other
words, there exists a ball bi ∈ B−σ2 for which π(pσortho, bi) < π(pσortho, b

σ
0 ). Let Bv denote the

set of all such balls bi. The set of points that are equidistant from the three balls (bσ0 , bσ1 , bσ2 )
corresponding to σ2 form a line perpendicular to the plane containing σ2 called the radical
axis. Each ball bi ∈ Bv partitions the radical axis into two half-intervals based on whether
the point on radical axis is closer to bi or to bσ0 , see Figure 4. Let I+(bi) denote the half
interval consisting of points that are closer to bσ0 compared to bi. Let I+(Bv) denote the
intersection of all such half intervals I+(bi). We have assumed that σ2 ∈ K2

α, so there must
exist a closest witness pσmin, and it lies within I+(Bv). Thus, I+(Bv) is non-empty. In fact,
I+(Bv) = I+(bj) for some bj ∈ Bv and pσmin is exactly the end point of I+(bj). This implies
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Figure 4 The radical axis of a triangle σ2 is drawn such that pσortho is at the origin. A ball
bi ∈ B − σ2 divides the radical axis into two half intervals. Points in the half interval I+(bi) are
closer to bσ0 as compared to bi, i.e. for all p ∈ I+(bi), π(p, bσ0 ) < π(p, bi). Consider the set Bv of
balls that are closer to pσortho as compared to bσ0 So, I+(bi) does not contain pσortho. The intersection of
these intervals, denoted by I+(Bv), is equal to one of the intervals I+(bi). Here, I+(Bv) = I+(b3).
The end point of the interval I+(b3) is the closest witness for the tetrahedron σ2 ∪ b3.

that pσmin is also a closest witness for the tetrahedron σ3 = (bσ0 , bσ1 , bσ2 , bj). So, σ3 belongs to
K3
α and its Size is equal to Size(σ2). However, this means that σ2 /∈ Σ2

free, a contradiction.
So, the forward implication in the lemma is true. J

B Claim 5. Step 3 computes K2
α correctly.

Proof. If a simplex σ3 belongs to Kα then naturally all of its faces also belong to Kα. The
algorithm includes such triangles into K2

α and remove them from Σ2
ortho to obtain the set of

free triangles Σ2
free. It follows directly from Lemma 4 that AC2 is a necessary and sufficient

condition for a triangle in Σ2
free to belong to K2

α. Hence, Step 3 correctly computes the
triangles belonging to K2

α. J

The above arguments need to be extended to prove that the edges of the alpha complex
are also correctly identified.

I Lemma 6. An edge σ1 ∈ Σ1
free belongs to K1

α if and only if it satisfies the condition AC2
with p = pσortho.

The proof is similar to that of Lemma 4 and appears in the full version [29]. A general
result is likely true for d-dimensional simplices in Σdfree. However, given the focus on alpha
complexes in R3, we prefer to state and prove these results specific to lower dimensions.
We also prefer to provide individual proofs for edges and triangles because it simplifies
the exposition and could also potentially help in the design of improved data structures to
accelerate computation of different steps of the algorithm.

B Claim 7. Step 4 computes K1
α correctly.

Proof. All edge faces of triangles in K2
α naturally belong to K1

α. Step 4 inserts all edges
incident on triangles in K2

α into K1
α as valid edges and removes them from Σ1

ortho to obtain
the set of free edges Σ1

free. It follows directly from Lemma 6 that AC2 is a necessary and
sufficient condition for an edge σ1 ∈ Σ1

free to belong to K1
α. Therefore, Step 4 correctly

computes the edges belonging to K1
α. J

SoCG 2020
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B Claim 8. Step 5 computes K0
α correctly.

Proof. All vertices incident on K1
α naturally belong to K0

α. Step 5 inserts all such vertices
in K0

α as valid vertices and removes them from Σ0
ortho to obtain the set of free vertices Σ0

free.
Next, the vertices in Σ0

free for which the center of the ball bi = (pi, ri) satisfies AC2 are also
inserted into K0

α. Clearly, these vertices also satisfy AC3 because they belong to Σ0
ortho. The

condition AC1 is not relevant for 0-dimensional simplices. Therefore, these vertices clearly
belong to the alpha complex. Similar to Lemmas 4 and 6, it is easy to prove that checking
for AC2 for p = pi is necessary and sufficient condition to decide whether a vertex in Σ0

free
belongs to the alpha complex. That is, it is possible to show that vertices in alpha complex
that have non-empty Voronoi regions but do not satisfy AC2 for p = pi would be incident on
some edge in K1

α, and therefore must have been already detected by Step 4 and hence can
not belong to Σ0

free. Therefore, Step 5 correctly computes the vertices belonging to K0
α. J

4 Parallel algorithm for biomolecules

Although the algorithm as described above is provably correct, a straightforward imple-
mentation will be extremely inefficient with a worst-case running time of O(n5), where
n is the number of weighted points in B. This is because Step 1 requires O(n4) time to
generate all possible tetrahedra. In later steps, we need O(n) effort per simplex to check AC2.
However, the input corresponds to atoms in a biomolecule. We show how certain properties
of biomolecules can be leveraged to develop a fast parallel implementation.

4.1 Biomolecular data characteristics
Atoms in a biomolecule are well distributed. The following three properties of biomolecules
are most relevant:

The radius of an atom is bounded. The typical radius of an atom in a protein molecule
ranges between 1Å to 2Å [3]. Further, a protein molecule contains upwards of thousand
atoms. So, the radius is small compared to the total size of the molecule.
There is a lower bound on the distance between the centres of two atoms. This is called the
van der Waals contact distance, beyond which the two atoms start repelling each other. In
the case of atoms in protein molecules, this distance is at least 1Å. This property together
with the upper bound on atomic radii ensures that no atom is completely contained inside
another. This means that the weighted Voronoi regions corresponding to the atoms in a
biomolecule can be always be assumed to be non-empty.
Structural biologists are interested in small values of α. The two crucial values are 0Å and
1.4Å. The former corresponds to using van der Waals radius and the latter corresponds
to the radius of water molecule, which acts as the solvent.

In the light of the above three properties, we can say that the number of simplices of the
alpha complex that are incident on a weighted point (atom) is independent of the total
number of input atoms and hence bounded by a constant [22].

4.2 Acceleration data structure
The algorithm will benefit from an efficient method for accessing points of B that belong to
a local neighborhood of a given weighted point. We store the weighted points in a grid-based
data structure. Let rmax denote the radius of the largest atom and assume that the value of
the parameter α is available as input. First, we construct a grid with cells of side length
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√
r2
max + α and then bin the input atoms into the grid cells. In our implementation, we do

not store the grid explicitly because it may contain several empty cells. Instead, we compute
the cell index for each input atom and sort the list of atoms by cell index to ensure that
atoms that belong to a particular cell are stored at consecutive locations. The cell index
is determined based on a row-major or column-major order. Alternatively, a space-filling
curves like the Hilbert curve could also be used to order the cells.

After the atoms are stored in grid cells, the alpha complex is computed in two stages. In
the first stage, we employ a bottom-up approach to obtain a conservative estimate of the
edges, triangles, and tetrahedra belonging to the alpha complex. The false positives from the
first stage are removed in a subsequent pruning stage resulting in the correct alpha complex.
We describe these two stages in the following subsections.

4.3 Potential simplices

The first stage essentially corresponds to Step 1 of the algorithm described in the previous
section. We compute the set Σortho of potential simplices for which OrthoSize(σd) ≤ α.
However, for efficiency reasons we process the simplices in the order of increasing dimension.
First, we identify edges that satisfy the AC3 condition as described below. Given the size of
the grid cell, endpoints of edges that satisfy the condition either lie within the same grid cell
or in adjacent cells. So, the grid data structure substantially reduces the time required to
compute the list of potential edges Σ1

ortho. Beginning from this set of edges, we construct
the set of all possible triangles and retain the triangles whose OrthoSize is no greater than
α, resulting in the set Σ2

ortho. Finally, we use the triangles in Σ2
ortho to construct the list of

tetrahedra that satisfy the OrthoSize ≤ α condition. The above procedure works because
the OrthoSize of a simplex is always greater than or equal to the OrthoSize of its faces. The
set of simplices identified in this stage contains all simplices of the alpha complex. False
positives are pruned in the second stage described below.

4.4 Pruning

The second stage corresponds to Steps 2-5 of the algorithm and processes the potential
simplices in the decreasing order of dimension. This stage checks the characterizing condition
AC2 to prune Σortho into Kα. The tetrahedra are processed by checking if any of the input
balls are closer to the ortho-center than the balls incident on the tetrahedron. If yes, the
tetrahedron is pruned away. Else, the tetrahedron is recognized as belonging to the alpha
complex and inserted into K3

α. Triangles incident on these tetrahedra also belong to the alpha
complex and are inserted into K2

α after they are removed from the list of potential triangles
Σ2

ortho. Next, the triangles in Σ2
ortho are processed by checking if they satisfy AC2. If yes,

they are inserted into K2
α. Otherwise, they are pruned away. All edges incident on triangles

belonging to K2
α are inserted into K1

α and removed from the set Σ1
ortho. Next, the edges in

Σ1
ortho are processed by checking if they satisfy AC2. Edges that satisfy AC2 are inserted

into K1
α and the others are pruned away. All the vertices in Σ0

ortho are directly inserted into
K0
α without the AC2 check because for biomolecular data we assume that Voronoi regions of

all the atoms are non-empty. The check for condition AC2 for each simplex is again made
efficient by the use of the grid data structure. Atoms that may violate AC2 lie within the
same cell as that containing the ortho-center or within the adjacent cells. Atoms that lie
within other cells may be safely ignored.
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4.5 CUDA implementation

We use the CUDA framework [7] and the thrust library [8] within CUDA to develop a
parallel implementation of the algorithm that executes on the many cores of the GPU. The
grid computation is implemented as a CUDA kernel where all atoms are processed in parallel.
The computation of potential simplices and pruning stages are broken down into multiple
CUDA kernels and parallelized differently in order to increase efficiency. We now describe
the parallelization strategy in brief.

For computing the set of potential edges, the initial enumeration of possible edges incident
on an atom is done using the atoms in the corresponding grid cell and its neighbouring cells.
This is done per atom in parallel, the thread corresponding to the atom i being responsible for
generating the edges ij, j > i to ensure no duplicate edges are generated. Subsequently, the
AC3 condition is checked for the edges in parallel to finally generate the list of potential edges
Σ1

ortho. For computing potential triangles Σ2
ortho, the potential edge list is used as a starting

point for the initial enumeration of all possible triangles. This step is also parallelized per
atom, the thread i being responsible for generation of triangles of the type ijk; j, k > i if all
three edges ij, ik and jk are potential edges. The AC3 condition for the triangle is checked
next within a separate kernel and parallelized per triangle to generate the potential triangles
Σ2

ortho. A similar strategy is used for computing the set of potential tetrahedra Σ3
ortho.

The pruning stage is parallelized per tetrahedron, triangle, and edge as required. So,
computation of pσortho is done in parallel. The grid data structure is again useful in checking
for potential violators of the AC2 condition. Only the atoms belonging to the grid cell
corresponding to pσortho or the those in neighbouring grid cells can violate the AC2 condition.

4.6 Handling large data sizes

Typical protein structures consist of up to 100,000 atoms. Our implementation can handle
datasets of this size easily for reasonable values of α. However, the size of datasets is ever
increasing. Protein complexes that are available nowadays may consist of millions of atoms,
necessitating smart management of GPU memory while handling such data sets.

We propose two strategies and implement one of them. The first strategy is to partition
the grid by constructing an octree data structure and choosing an appropriate level in the
octree to create partitions. Each partition together with its border cells can be processed
independently of other partitions. So, we can copy one partition and its border to the GPU
memory, compute its alpha complex, and copy the results back from GPU to CPU memory.
After all the partitions are processed, the list of simplices can be concatenated followed by
duplicate removal to generate the final alpha complex.

The second strategy is to partition the sorted list of atoms into chunks of equal sizes and to
process each chunk independently. Here, we assume that the complete list of atoms together
with the grid data structure fits in the GPU memory. This is a reasonable assumption
considering that datasets containing several million atoms can easily fit on modern GPUs,
which typically have at least 2GB video memory. Also, the main difficulty in handling large
protein structures is managing the large lists of simplices generated within the intermediate
steps of the algorithm, when compared to handling the input list of atoms or the output list
of simplices. We compute the alpha complex by executing the algorithm in multiple passes.
Each pass computes the alpha complex for a single chunk and copies it back to the CPU
memory. We have implemented this second strategy and can handle data sizes of up to 16
million atoms on a GPU with 2GB of memory. Results are reported in the next section.
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5 Experimental results

We now present results of computational experiments, which demonstrate that the parallel
algorithm is fast in practice and significantly better than the state-of-the-art. We also
performed runtime profiling to better understand the bottlenecks and effect of the parameter
α on the runtime. We present results for α in the range 0.0 to 2.0. This range is important
for structural analysis of biomolecules as it corresponds to solvent accessible surface of the
biomolecule for typical solvent molecules like water (van der Waals radius = 1.4Å). The value
α = 0 corresponds to the van der Waals surface of the biomolecule. All experiments, unless
stated otherwise, were performed on a Linux system with an nVidia GTX 660 Ti graphics
card running CUDA 8.0 and a 2.0GHz Intel Xeon octa core processor with 16 GB of main
memory. The default number of threads per block was set at 512 for all the CUDA kernels.

Mach and Koehl describe two techniques for computing alpha complex of biomolecules
called AlphaVol and UnionBall in their paper [27]. Both approaches construct the weighted
Delaunay triangulation of input atoms first followed by a filtering step to obtain the alpha
complex.UnionBall is the state-of-the-art technique for alpha complex computation for
biomolecules on multi-core CPU. It uses heuristics and optimizations specific to biomolecular
data to improve upon AlphaVol. For biomolecules containing 5 million atoms, AlphaVol
takes approximately 8600 seconds for computing the alpha complex, while UnionBall takes
approximately 150 seconds. Our method computes the alpha complex in less than 3 seconds
for similar sized data, see Table 1.

5.1 Comparison with gReg3D
We are not aware of any available software that can compute the alpha complex directly
without first constructing the complete Delaunay triangulation. In order to compare the
performance, we chose the state-of-the-art parallel algorithm for computing the weighted
Delaunay triangulation in 3D, gReg3D [5]. The CUDA implementation of gReg3D is available
in the public domain. Table 1 compares the running times of our proposed algorithm with
that of gReg3D for twelve different biomolecules at α = 0 and α = 1. As evident from the
table, we consistently observe significant speedup over gReg3D. The observed speedup is as
high as a factor of 22 for the biomolecule 1X9P at α = 0, one of the largest molecules in our
dataset. Clearly, the speedup goes down for α = 1 when compared to α = 0 because of the
increased number of simplices in the output alpha complex. We also report the number of
simplices in the alpha complex compared to the total number of simplices in the Delaunay
triangulation under the column ‘%Simplex’. This makes it clear why the speedup decreases as
α is increased from 0 to 1. For example, for the protein 1AON, the fraction of alpha complex
simplices increases from 15.9% to 30% as α is increased from 0 to 1. Correspondingly, the
speedup decreases from a factor of 13.5 to 5.5. We repeated the experiment on a MS Windows
system with an nVidia GTX 980 Ti card running CUDA 8.0 and observed similar speedups.
However, the individual runtimes both for our algorithm and for gReg3D were higher on the
GTX 980 Ti.

The starred entries in Table 1 are results for execution using the data partitioning
approach. This is necessitated because these four large molecules generate large intermediate
simplex lists that can not fit into the GPU memory if all the atoms in the molecule are
processed at once. We observe that gReg3D is able to successfully compute the Delaunay
complex for only one out of these four large molecules and runs out of GPU memory for the
remaining three molecules.

We discuss the run time profiling, the effect of the value of α and numerical issues in
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Table 1 Runtime comparison of the proposed algorithm with gReg3D on an nVidia GTX 660
Ti graphics card. Timings are reported in milliseconds. %Simplex refers to the size of the alpha
complex as a percentage of the size of the weighted Delaunay triangulation. The last column shows
the speedup in runtime of our algorithm over gReg3D. ‘*’ indicates the data was partitioned and
processed in chunks. ‘–’ indicates that the code could not execute due to insufficient memory.

α PDB id #Atoms Kα gReg3D %Simplex Speed up
#Simplices Time(ms) #Simplices Time(ms)

0.0

1GRM 260 932 13 6295 117 14.8 9.0
1U71 1505 5696 13 40878 115 13.9 11.1
3N0H 1509 5739 14 41244 137 13.9 10.0
4HHB 4384 38796 29 150141 193 25.8 6.6
2J1N 8142 29642 18 227719 229 13.0 12.7
1K4C 16068 62851 27 446383 347 14.1 12.9
2OAU 16647 123175 56 466586 344 26.4 6.2
1AON 58674 262244 65 1650841 879 15.9 13.5
1X9P* 217920 924086 113 6142811 2555 15.0 22.6
1IHM* 677040 2713083 277 – – – –
4CWU* 5905140 23450403 2709 – – – –
3IYN* 5975700 24188892 2874 – – – –

1.0

1GRM 260 1598 15 6295 117 25.4 7.9
1U71 1505 10828 17 40878 115 26.5 8.5
3N0H 1509 10965 30 41244 137 26.6 4.6
4HHB 4384 65987 86 150141 193 44.0 2.2
2J1N 8142 58205 30 227719 229 25.6 7.6
1K4C 16068 118467 52 446383 347 26.5 6.7
2OAU 16647 199101 159 466586 344 42.7 2.2
1AON 58674 495683 160 1650841 879 30.0 5.5
1X9P* 217920 1653778 196 6142811 2555 26.9 13.0
1IHM* 677040 5058507 605 – – – –
4CWU* 5905140 44411353 5118 – – – –
3IYN* 5975700 45790463 5501 – – – –

more detail in the full version of the paper [29].

6 Conclusions

We proposed a novel parallel algorithm to compute the alpha complex for biomolecular
data that does not require prior computation of the complete Delaunay triangulation. The
useful characterization of simplices that belong to the alpha complex may be of independent
interest. The algorithm was implemented using CUDA, which exploits the characteristics of
the atom distribution in biomolecules to achieve speedups of up to a factor of 22 compared
to the state-of-the-art parallel algorithm for computing the weighted Delaunay triangulation,
and up to a factor of 50 speedup over the state-of-the-art implementation that is optimized
for biomolecules. In future work, we plan to further improve the runtime efficiency of the
parallel implementation and to resolve the numerical issues using real arithmetic.

Applications of alpha complex outside the domain of biomolecular analysis often require
the complete filtration of Delaunay complex. The algorithm as presented here is not best
suited for such cases. However, the algorithm may be modified to utilize a previously
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computed alpha complex to efficiently compute the alpha complex for higher values of α.
We plan to investigate this extension in future work.
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