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Abstract Voids and pockets in a protein, collectively called as cavities, refer to
empty spaces that are enclosed by the protein molecule. Existing methods to com-
pute, measure, and visualize the cavities in a protein molecule are sensitive to inac-
curacies in the empirically determined atomic radii. This paper presents a topologi-
cal framework that enables robust computation and visualization of these structures.
Given a fixed set of atoms, cavities are represented as subsets of the weighted De-
launay triangulation of atom centres. A novel notion of (ε,π)-stable cavities helps
identify cavities that are stable even after perturbing the atom radii by a small value.
An efficient method is described to compute these stable cavities for a given input
pair of values (ε,π). This approach is used to identify potential pockets and chan-
nels in protein structures.

1 Introduction

A cavity in a protein molecule refers to both voids (without openings) and pock-
ets (with openings). These cavities play a key role in determining the stability and
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function of proteins. From the biologist’s point of view, obtaining a stable protein is
the starting point of many applications, from in-vitro studies of binding and interac-
tions, to using the protein as an antigen or vaccine. Whereas surface pockets often
form part of the active site of enzymes or interacting sites for other proteins, internal
voids are often relevant structurally as features that affect the overall thermodynamic
stability of the protein. It is established that filling up internal voids improves the
packing of the protein thus increasing stability. In this respect, detecting and visu-
alizing structurally robust cavities inside the protein informs the biologist on which
mutations to perform to improve internal packing and get a stable protein.

Related work. Several methods have been proposed to locate cavities in protein
molecules. In this paper, we focus our attention on geometric methods. Edelsbrun-
ner et al. [11, 13] and Liang et al. [21, 22] proposed a definition that is based on
the theory of alpha shapes and discrete flows in Delaunay triangulations. Kim et
al. [16, 18] proposes a definition of cavities based on an alternate representation of
a set of atoms called beta shapes that faithfully captures proximity. Tools based on
the above approach are available and widely used [6, 17, 19]. Till and Ullmann [32]
employed a graph theoretic algorithm to identify cavities and compute their volume.
Parulek et al. [28] used graph based methods on the implicit representation of molec-
ular surfaces to identify pockets and potential binding sites. Varadarajan et al. [3]
employed a Monte Carlo procedure to position water molecules together with a
Voronoi region-based method to locate empty space. They discussed the importance
of accurate identification of cavities for the study of protein structure and stabil-
ity. Novel Voronoi diagram-based techniques for the extraction and visualization of
cavities have also been developed from the viewpoint of studying and interactively
exploring access paths to active sites [23, 24, 29, 30]. Krone et al. [20] presented a
visualization tool for interactive exploration of protein cavities in dynamic data.

Motivation. The input in the above-mentioned methods are protein structures deter-
mined from x-ray crystallography data or other lower resolution data. These cavity
detection methods are sensitive to inaccuracies that are inherent in the crystallo-
graphic measurements. While the measurements may guarantee high resolution, it is
important to note that even small inaccuracies may cause a difference in the reported
number of cavities. Inaccuracies may also arise due to fundamental limitations such
as the notion of radii of atoms, which is determined empirically. For example, as il-
lustrated in Figure 1, presence of such inaccuracies may result in a cavity detection
method to report two distinct but large cavities in place of one, or report very small
volume cavities. Figure 2 illustrates the problem as it occurs in a lyzosyme protein.

Contributions. In this work, we aim to develop an interactive method to compute
robust cavities in proteins. Our goal is to enable the user to reduce, if not completely
eliminate, the inaccuracies mentioned earlier. In order to achieve this, we first pro-
vide a novel definition for robustness in the presence of inaccuracies in the measured
radii.
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Fig. 1 Left: Two cavities that are apparently very near to each other may be a single cavity.
Right: A very small cavity may be reported whereas no such cavity may exist.

Fig. 2 Left: Two cavities that appear very near to each other in a lyzozyme protein (PDB ID:
200L). The solid surface represents cavities while the protein is shown as cartoon for context.
Right: The two cavities may be a single cavity.

We then propose a method for computing robust and stable cavities in proteins1.
This is accomplished through the use of a simple and succinct structure called the
alpha complex to represent protein molecules. The alpha complex is a simplicial
complex that can be stored as a filtration, a series of simplicial complexes Ki with
Ki ⊂Ki+1. In order to identify the set of cavities that are stable with respect to small
perturbations in the atom radii, our method symbolically modifies the radii of a se-
lect set of atoms by systematically processing and modifying the filtration. We show
that this modification results in controlled changes in the number and properties of
cavities and does not violate key properties of the filtration. The method is efficient
in terms of running time performance and also supports the elimination of very small
or insignificant voids as measured by the notion of topological persistence [14].

We develop software to visualize the stable cavities together with the molecule,
and to calculate cavity volumes and surface areas. This software provides an inter-
active framework that a biologist can use to decide which cavities are more relevant
and what mutations to perform. The software also supports exporting the detected
cavities with the relevant biochemical context to enable their visualization in Py-
MOL [5].

Finally, we use this software to demonstrate the applicability of the notion of
robust voids and pockets and apply it to detect potential channels and pockets in
several proteins.

2 Geometry representation of biomolecules

In this section, we briefly introduce the mathematical background required to define
and represent the structure of biomolecules [8, 9, 27].

1 A preliminary version of this work appeared as a short paper in the Proceedings of Eurographics
Conference on Visualization [31].
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Simplicial complex. A k-simplex σ is the convex hull of k+1 affinely independent
points. A vertex, edge, triangle, and tetrahedron are k-simplices of dimension 0−3.
A simplex τ is a face of σ , τ ≤ σ , if it is the convex hull of a non-empty subset
of the k+1 points. A simplicial complex K is used to represent a topological space
and is a finite collection of simplices such that (a) σ ∈ K and τ ≤ σ implies τ ∈ K,
and (b) σ1,σ2 ∈ K implies σ1

⋂
σ2 is either empty or a face of both σ1 and σ2. A

subcomplex of K is a simplicial complex L⊆ K.

Voronoi diagram and Delaunay triangulation. Let S⊆Rd be a finite set of points.
The Voronoi cell Vp, of a point p ∈ S, is the set of points in Rd whose Euclidean
distance to p is smaller than or equal to any other point in S. The collection of
Voronoi cells of all the points in S partitions Rd , and is called the Voronoi diagram
(Figure 3(a)). The Delaunay triangulation D of S is the dual of the Voronoi diagram
and partitions the convex hull of S, see Figure 3(b). The weighted Voronoi diagram
and weighted Delaunay triangulation are similarly defined for a set of balls, which
is considered as a set of weighted points. The weight is equal to the square of the
radius of the ball, and the distance between a weighted point p with weight wp and
a point x ∈ Rd is given by the power distance ‖x− p‖2−wp.

Alpha complex. Molecules are often represented using a space-filling model such
as a union of balls. The weighted Voronoi diagram helps represent the contribution
from each atom to the union of balls. Consider an atom p. Define Bp as an open ball
having the radius of the atom p. Let Vp be the weighted Voronoi cell correspond-

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 (a) Voronoi diagram of a weighted point set in R2, Voronoi edges are in green. (b) The
Delaunay complex is the dual of the Voronoi diagram. (c) Intersection of the weighted Voronoi
diagram and the union of balls. (d) The dual complex is the dual of this partition of the union of
balls that captures the incidence relationship. In this particular case, α = 0. (e) Void and pocket in
a collection of 2D balls. Void is shown in yellow and pocket is shown in blue. (f) Void and Pocket
shown as the connected components of the complement of alpha complex i.e., D−K. (g) The dual
complex shown for some α > 0 where the void has been filled up and original pocket has become
a void. (h) The new void is highlighted using blue, Delaunay edges (in black) and alpha complex
(in red) are also shown to provide context.
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ing to p. The contribution from each atom p is equal to Bp ∩Vp, the intersection
between the ball corresponding to the atom and the weighted Voronoi cell of p,
see Figure 3(c). The corresponding dual structure is a subcomplex of the weighted
Delaunay triangulation and called the dual complex, see Figure 3(d).

Edelsbrunner et al. [7, 12, 15] consider a growth model, where the ball weights
grow, and track the changes in the dual complex. The growth parameter, α , corre-
sponds to a radius

√
r2

p±α2 for a ball centered at p with radius rp. Positive values
of α correspond to growing the balls and negative values correspond to shrinking the
balls. The weight of the point w(p) increases or decreases by α2 and hence ranges
between −∞ and ∞. A negative weight corresponds to imaginary radius. Note that
α = 0 corresponds to no growth. The dual complex corresponding to a set of balls
after they are grown by α is called the alpha complex.

Given a simplicial complex K, a finite sequence /0 = K0,K1, . . . ,Km = K of sub-
complexes of K is a filtration if K0 ⊂ K1 ⊂ ·· · ⊂ Km. Figures 3(d) and 3(g) show
two subcomplexes (in red) which are part of a filtration. The rank of a subcomplex
refers to its position in the filtration. The set of alpha complexes obtained by vary-
ing α from −∞ to ∞ is a filtration of the Delaunay triangulation. In particular, we
consider the filtration that is generated by inserting the simplices one at a time and if
more than one simplex appear at the same value of α , we order them based on their
dimension (0 < 1 < 2 < 3). A vertex is inserted into the filtration when the weight
of the ball becomes positive.

Voids and pockets. Let the alpha complex K represent a molecule at a given value
α and D be the Delaunay complex of the weighted point set. A cavity is a maximally
connected component of the complement D−K. Voids and pockets are cavities that
are, respectively, bounded and not bounded by the union of balls [10]. Figures 3(e)
and 3(f) illustrate a void and a pocket in 2D. Figures 3(g) and 3(h) show how they
are affected by the growth model.

Fig. 4 A filtration generated by inserting simplices in a particular order. A k-simplex corresponds
to an overlap of k+ 1 balls. For each simplex, the box in the bottom left shows the rank/arrival
time of the simplex, the box in the bottom right shows the simplex along with it’s behaviour. The
‘+’ implies that it is a positive simplex (creator) and the ‘-’ implies that it is a negative simplex
(destroyer). For example, the triangle ‘tuv+’ creates a void and tetrahedron ‘stuv−’ destroys it.
The persistence of this void is therefore 1.
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Topological persistence. The boundary of a triangle consists of its edge faces. The
boundary of a collection of triangles is the formal sum of boundary edges of the indi-
vidual triangles, where addition is performed modulo 2. A 2-cycle (two-dimensional
cycle) is a collection of triangles whose boundary is empty. Cycles of other dimen-
sions are defined similarly. A void is represented by a 2-cycle. The alpha complex K
helps represent and track voids via the growth process. A void is said to be created
when the last triangle in the 2-cycle is inserted into the filtration and it is destroyed
when the volume that it occupies is filled by the last tetrahedron. Topological per-
sistence of a 2-cycle measures its lifetime (k ≥ 0) in a filtration [14]. It is equal to
the difference between the α-values when the cycle is created and destroyed. Given
a filtration, the persistence of cycles can be computed efficiently [14]. The insertion
of every simplex either creates a cycle or destroys a lower dimensional cycle. The
persistence value associated with a simplex is equal to the topological persistence
of the corresponding cycle. Figure 4 illustrates creation and destruction of cycles in
a filtration of a small simplicial complex.

A void is represented by a 2-cycle and hence it has a well-defined creator and
destroyer. However, this is not the case for a pocket, which may not necessarily
be created as a result of a simplex insertion. This is because, initially K = /0 and
hence D−K = D is a single connected component. This component corresponds to
a pocket and has no creator. Hence, we cannot directly apply the notion of persis-
tence to measure pockets. The notion of persistence of a void intuitively captures the
volume of the void in terms of the range of α-values. To be consistent, we use a sim-
ilar notion for pockets as well. We fix a value of α = α0 and define the birth time of
a pocket that has no creator to be equal to α0. The α-value when the pocket interior
is filled corresponds to its destruction time. Thus, similar to voids, the persistence of
a pocket is equal to its lifetime and approximates the volume of the pocket in terms
of the range of α-values.

3 Robust cavities and their computation

We introduce a notion of robust cavities based on two parameters, one local and
another global. The local parameter is referred to as stability and the global param-
eter is specified by topological persistence. In order to simplify the description, we
assume that the cavities are computed for the α-complex corresponding to α = 0.
However, the proposed definitions, methods, and subsequent analysis are valid for
all values of α .

3.1 ε-stable and π-persistent cavities

Consider the interval [−ε,ε] of α values, where ε ≥ 0. A cavity is called an ε-stable
cavity if it remains a single connected cavity within all α-complexes for α values
in the range [−ε,ε]. In other words, using the lifetime terminology, the cavity is
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born, possibly split into multiple components, and destroyed at α-values that lie
strictly outside of this interval. A cavity is π-persistent if its topological persistence
is greater than π i.e., the cavity size measured in terms of its lifetime is greater than
π . The persistence of pockets is defined in this case by setting α0 =−ε . Combining
the two notions of robustness, we call a cavity to be (ε,π)-stable if it is both ε-stable
and π-persistent.

The above definitions help measure the stability of the cavities when the atom
radii are perturbed by a small value. The local parameter considers perturbation
within a small interval centered at the α-value of interest whereas the global param-
eter measures the size of the cavity in terms of its lifetime in the filtration. Cavities
of interest may often not be stable with respect to both notions. For example, a large
sized cavity (π-persistent for some large π) may be born within the interval [−ε,ε].
However, note that a small perturbation in the radii of atoms that line the surface
of the cavity could result in an earlier birth time, hence making the cavity to be ε-
stable. We aim to extract all cavities that are either stable as is or can be made stable
via a small perturbation.

3.2 Computing (ε,π)-cavities

The location of the atoms that constitute a protein molecule together with their van
der Waals radii is obtained from the protein data bank in pdb format. Given ε and
π , we compute the set of (ε,π)-stable cavities as follows.

1. Compute the weighted Delaunay triangulation of the input [19]. The atom centres
form the set of points that are weighted using their van der Waals radii.

2. Build the alpha complex [7], which is a filtration of the weighted Delaunay tri-
angulation.

3. Modify the filtration based on the value of ε .
4. Compute the set of (ε,π)-stable cavities by identifying all cavities [10, 21] of

the modified filtration at α = 0, and retaining only those cavities that have per-
sistence greater than π .

The key idea in our proposed method is a modification of the filtration (Step 3)
in order to compute the set of stable cavities. The filtration of the weighted De-
launay triangulation as defined by the α-value provides an explicit representation
of the birth / death times of each cavity and its evolution. We propose to alter the
birth / death times of the cavities by modifying the filtration instead of directly mod-
ifying the radii of atoms that line the surface of the cavity. While the latter approach
follows directly from the definition, it is cumbersome and computationally ineffi-
cient. For example, varying the radii without explicit control may lead to changes
in the triangulation and the alpha complex. These changes need to be explicitly
tracked, else they may lead to inconsistencies between the alpha complex that rep-
resents the molecule and the space-fill model. Resolving such inconsistencies would
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necessitate the re-computation of all representations. On the other hand, the former
approach is simpler and computationally efficient.

Modifying the filtration. We now describe this step in detail. One or more sim-
plices are inserted to obtain a rank i+1 simplicial complex from a rank i simplicial
complex in the filtration. Higher ranks correspond to higher values of α . The topol-
ogy of voids and pockets may change when the simplices are inserted. In particular,
consider a triangle whose insertion changes the topology of a cavity. When this cav-
ity is a void, the triangle splits the void into two voids (C1). In case of pockets, the
insertion of the triangle could cause one of the following:

(C2) split the pocket into two pockets,
(C3) close one mouth of the pocket (for pockets with more than one mouth),
(C4) split the pocket into a pocket and a void, or
(C5) destroy the pocket and create a new void.

On the other hand, the insertion of a tetrahedron always destroys a void. These
topology changes may be avoided by delaying the insertion of the simplices that
cause a change in the topology of the cavities.

Let K j and Kl be the alpha complexes corresponding to α = −ε and α = ε

respectively. Consider the set of simplices, Σ , inserted into the filtration for values
of α in the range [−ε,ε]. Let Σt ⊂ Σ be a subset of the set of triangles that modifies
the topology of a cavity and ΣT ⊂ Σ be the set of all tetrahedra in Σ . As mentioned
earlier, our goal is to selectively alter the radii of atoms by altering the birth / death
times of a cavity. In order to accomplish this, we delay the insertion of a select
few simplices σi ∈ Σt and all simplices in ΣT such that σi /∈ K j but σi ∈ Kl , where
K j ⊂ Kl ⊂D. This delay corresponds to change in radii of the corresponding atoms
enclosing the cavity.

Identifying the set Σt . The set Σt consists of all triangles that satisfies conditions
C1, C2 and C3, while triangles that satisfy conditions C4 or C5 are optionally in-
serted into Σt . This is because a triangle that satisfies condition C4 or C5 creates
a new void destroying the existing pocket. Depending on whether the perturbation
decreases or increases the radii of the corresponding atoms, both the original pocket
and the new void can be considered to be stable respectively.

Delayed simplex insertion. Simplicial complexes in the filtration of the weighted
Delaunay triangulation and the order of simplices that are inserted to generate the fil-
tration satisfy several containment and incidence properties. These properties should
be satisfied for the modified filtration as well. Towards this, we propose a conserva-
tive but computationally efficient approach to modify the filtration:

1. Move all tetrahedra in ΣT to the end of the filtration. All such tetrahedra are
present in D but not in any Ki ⊂ D.

2. For each triangle in Σt , find its incident tetrahedra τ1, τ2.
3. Delay the insertion of the triangle and the two tetrahedra, τ1 and τ2, to the end of

the filtration.

The above modification is illustrated using a 2D analogue in Figure 5. Consider
a void split into two as shown in Figure 5(a). Assume that the highlighted edge
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(a) (b)

Fig. 5 2D illustration of simplex insertion causing a void to split. (a) Voids occur near to each
other and the edge that splits the single void into two. (b) The two voids merge into one if the
simplex insertion is delayed. The modified radii corresponding to the delay is highlighted in red.

(triangle in 3D) is inserted into the alpha complex for α lying in the interval [−ε,ε].
Further, it also satisfies the criterion that it bounds two different voids. So it becomes
a candidate for delayed insertion. We move the edge to the end of the filtration,
which means that it does not belong to the alpha complex as shown in Figure 5(b).
Also the radii of atoms centered at the end points of the edge (triangle in 3D) are
decreased accordingly. Selective modification of the radii of a specific set of atoms
is hence achieved in a controlled manner.

After the filtration is modified, we recompute the set of cavities at α = 0, which
correspond to the set of ε-stable cavities. From this set, we retain cavities having
persistence greater than π to obtain the set of (ε,π)-stable cavities. Note that the
persistence is computed with respect to the original filtration.

Discussion. While computing stable cavities, our technique creates a single large
stable cavity from two nearby smaller cavities. Larger cavities are more relevant for
the study of stability of the molecules than smaller cavities. Biologists are therefore
interested in identifying such structures in order to fill them. Therefore, in the pres-
ence of uncertainty, we choose to create a single large cavity instead of retaining the
two smaller cavities.

Time complexity. Let m be the number of simplices in the Delaunay triangulation
of the input protein having n atoms, m = O(n2). Computing the set of cavities takes
O(mα(m)) time using the union-find data structure. Here, α is the inverse Acker-
mann function. Given ε , Σt and ΣT are computed in O(m) time using a sequential
search over the filtration. Identifying the set of tetrahedra incident on triangles in Σt ,
and moving all the simplices to the end of the filtration takes O(m) time. Thus the
time required to modify the filtration is O(mα(m)).

3.3 Implementation notes

The filtration obtained from the alpha complex (Step 2) is stored as a list. The index
of each simplex in this list represents the rank of that simplex. For each triangle,
we additionally store the indices of the incident tetrahedra. For a given ε , we first
compute the ranks k1 and k2 of the alpha complex at α =−ε and α = ε , respectively,
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and then we compute the set of pockets at rank k2 [10]. Each pocket is stored as a set
of tetrahedra and each tetrahedron has an entry that stores its parent pocket index.

Next, the set Σt and ΣT are computed. The set ΣT is simply the set of all tetrahedra
σk having rank k1 ≤ k ≤ k2. In order to identify triangles that splits a void into
two, it is sufficient to track the connected components of the complement of the α-
complex. This is however not true for triangles that modify the topology of a pocket.
The addition of such a triangle may not change the number of components present in
the complement of the α-complex. In order to identify such triangles, starting from
the set of pockets computed at rank k2, we traverse the filtration in reverse from
rank k2 to rank k1, and explicitly track the change in topology of the set of pockets.
We also create and store the set Σ

′
T , which consists of the incident tetrahedra of all

triangles present in Σt .
Let ΣS = Σt

⋃
ΣT

⋃
Σ
′
T . The simplices in ΣS are sorted in the increasing order of

their ranks. Instead of explicitly moving these simplices to the end of the filtration,
we perform an implicit move. These simplicies are marked as invalid within the list
that represents the original filtration. The new filtration is obtained by traversing
the original filtration, ignoring the invalid simplicies, followed by traversing the
simplices in ΣS. An advantage of using this approach is that, when the value of ε is
changed, it is easy to revert to the original filtration and recompute the new filtration.

4 Experimental results

We have developed a software tool ROBUSTCAVITIES that interactively computes
the set of stable cavities. The values of ε and π can be specified interactively by the
user using a slider widget present in the tool. Following is a brief list of features
supported in ROBUSTCAVITIES :

• Computation of stable cavities in a protein for specified values of ε , π and α .
• Computation of volume and surface area of cavities.
• Visualization and interactive exploration of cavities with support for multiple

rendering modes and colormaps.
• Export cavities with the relevant biochemical context in order to be used in Py-

MOL [5]. In particular, we support skin mesh [4], union of balls, and tetrahedral
representation of the detected cavities. We also provide Python scripts which al-
low users to load these representations using different colormaps in PyMOL.

We first report experimental results that demonstrate the efficiency of our tech-
nique. We then present various examples of stable cavities present in different pro-
tein molecules. Finally, we demonstrate the utility of our technique in identifying
potential channels and pockets in protein molecules. All experiments were per-
formed on a workstation with a 8-core 2GHz Intel Xeon processor, 16 GB RAM,
and an NVidia GTX 600Ti graphics card.
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Fig. 6 (a) Graph showing variations in the interaction time with respect to varying number of
atoms. (b) Graph showing variations in the total time with respect to varying number of atoms.

4.1 Performance and validation

Efficiency. In order to test the efficiency of our technique, we computed the set of
robust cavities of over 200 proteins having number of atoms ranging from 184 to
40,026. The value of α = 0, ε = 1 and π = 0.01 was used in these experiments.

We first measure the interaction time, which is equal to the time taken to modify
the filtration and to identify the set of cavities from this modified filtration.This is
essentially the time taken to update the set of cavities once the user changes the
parameter values. Figure 6(a) plots the interaction time against the number of atoms
in the protein. Note that even for very large proteins having 40,000 atoms, the set of
robust cavities are computed within a second. Also note the near-linear behaviour
of the interaction time.

Next, we measure the total time taken to compute the set of robust cavities. This
includes time to compute the original filtration in addition to the interaction time.
Figure 6(b) plots the variation of total time taken against the number of atoms in
the protein. Even though the total time is significantly greater than the interaction
time, it still requires only around 50 seconds for a protein with 40,000 atoms. Also,
this performance is acceptable since the computation of the original filtration is a
one-time operation done when loading the protein. Among the pre-processing steps,
computing alpha complex is the most time consuming step, which can be improved
further by employing the method proposed by Mach and Koehl [25].

Validation of computed volumes. As mentioned earlier, ROBUSTCAVITIES also
reports the volume and surface area of the cavities identified. Proteins adopt a variety
of structures and it is known that the extent of packing of protein chain differs within
the same structure as well as between different structures. Because of this reason the
volume of the cavity which is created by converting a large residue to a small residue
may not always be the same in different protein structures. To mitigate this problem
we only examine completely buried cavities where it is known that proteins take up
a close packed structure.
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Fig. 7 (a) Plot of the computed and actual volumes of the artificial voids that were generated using
mutant models. (b) Comparison of normalized volumes computed using ROBUSTCAVITIES and
MCCAVITY.

Different cavity volume computation methods may employ different molecular
models resulting in a variation in the volumes that they report. We perform an addi-
tional normalization of the computed volumes using model mutants [3] to eliminate
such variations. We use 28 different model mutants to create a set of artificial voids.
We use the resulting volumes to compute a linear normalization function, as shown
in Figure 7(a). The volumes computed using our computation are normalized as
follows:

Volume = 0.8×ComputedVolume+32.4.

The expected volume against which we compare our observed volume is the Voronoi
volume of the cavity, which is created on a large to small residue substitution, aver-
aged over many examples. Since we compare a specific large to small substitution
in a protein with an averaged ideal value, there is a difference in the volumes, which
is reflected as the constant in the above linear transformation.

In order to verify the correctness of the volumes computed by our software, we
compare volume for some of these mutants to the volumes computed using MC-
CAVITY [3], see Figure 7(b). The graph shows normalized volumes and we observe
that there is high correlation between the two sets of volumes. In the absence of
an ideal normalizing function, the correlation coefficient helps determine if the vol-
umes computed are consistent with data available from other methods.

4.2 Stable cavities and their properties

We now illustrate different examples of robust cavities identified using our software.
Unless otherwise specified, we use values α = 0, ε = 1 and π = 0.01 in following
examples. Note that a value of ε = 1 is equivalent to a change of the radius of an
atom by at most 0.2Å, which is within the resolution at which the input data is
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(a) (b) (c) (d)

Fig. 8 Visualization of cavities in the protein 2CI2. (a) Cavities in the protein. (b) The set of
(1.0,0.01)-stable cavities. (c) Two of the nearby voids in the protein. (d) These cavities merge
together resulting in a single stable void. Figures (c) and (d) are zoomed in for better context.

(a) (b)

(c) (d)

Fig. 9 Visualization of cavities in the protein 4B87. The molecular surface is shown for context.
(a) The set of cavities in the protein. Number of cavities = 72. (b) The set of (1.0,0.01)-stable
cavities. Number of stable cavities = 70. (c) Two of the nearby pockets in the protein. (d) These
pockets merge together resulting in a single stable pocket.

available and hence within the tolerance threshold. In the following, we refer to a
protein by specifying its PDB ID from the Protein Data Bank [2].

Figure 8 shows protein 2CI2, which has three cavities. Two of the cavities
are voids, and are quite close as can be seen in the Figure 8(a). After modifica-
tion, these two voids are detected as a single void as shown in Figure 8(b). Fig-
ures 8(c) and 8(d) show a close-up view of the two merging voids. Similarly, Fig-
ures 9 and 10 show stable cavities for proteins 4B87 and 1DKF, respectively. In
both these proteins, we observe two significant pockets merging into a single stable
pocket after filtration modification.

Properties of stable cavities. Figures 11 and 12 plot the number and volume of
(ε,π)-stable cavities for various values of ε . Note that increasing the value of ε

implies that cavities from a wider range of α-values are considered. This could
potentially increase the number of ε-stable cavities. However, such cavities usually
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(a) (b)

(c) (d)

Fig. 10 Visualization of cavities in the protein 1DKF. A cartoon representation of the secondary
structure is shown for context. (a) All cavities in the protein. Number of cavities = 56. (b) The set
of (1.0,0.01)-stable cavities. Number of stable cavities = 39. (c) Two of the nearby pockets in the
protein. (d) These pockets merge together resulting in a single stable pocket.

have low persistence and are therefore not (ε,π)-stable. The total volume of all
stable cavities increases marginally (< 1%) with increasing ε . The merging of two
nearby cavities into a single stable cavity does not effect the total volume. However,
volumes of individual cavities could change drastically. We have observed that the
volume of a stable void is approximately equal to the sum of the volumes of the
original voids.
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(c) Protein 4B87

Fig. 11 Graphs showing the variation of the number of cavities with varying ε . Note that there is
an increase in the number of ε-stable cavities as we consider a larger interval. But, the number of
(ε,π) cavities is less than or equal to the original number of cavities.
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(c) Protein 4B87

Fig. 12 Graphs showing the variation of the total volume of cavities with varying ε . The increase
in total volume is insignificant.
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Fig. 13 Graphs showing the variation of the number of cavities for constant ε and varying α . The
number of (ε,π)-stable cavities does not vary much but there is significant variation in the number
of π-persistent cavities.

Robustness of (ε,π)-stable cavities. Figure 13 plots the number of (ε,π)-stable
cavities and π-persistent cavities for various values of α for ε = 1.0 in case of 4HHB
and 4B87 and ε = 0.3 in case of 2CI2. Note that the number of (ε,π)-stable cavities
is mostly constant, while there is a significant variation in the the number of π-
persistent cavities. This is because, when using only persistence, even though small
(noisy) voids are removed, a small change in the radius could change the number
of voids. On the other hand, since our method adds in the additional constraint of
stability, only the robust voids are retained.

4.3 Detecting potential channels and pockets in proteins

Due to experimental errors or changed protein conformation, a true pocket could be
labelled as a void, or a pore (also referred to as through-channels) may be labelled
as a disconnected pocket by a cavity detection algorithm. Existing software used
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(a) 2OAR - Before (b) 2OAR - After

Fig. 14 Detection of potential channel in trans-membrane protein 2OAR. (a) At α = 0, two pockets
and a small void is detected. (b) After modification, these cavities merge together revealing the pore
present in this trans-membrane protein.

for finding cavities in proteins fail to identify such cavities. However, since our
technique is robust to errors (specified using ε), it is possible to detect such potential
pockets and pores.

While the case of identifying potential pores (or potential channels) is taken care
of by conditions C2 and C3 (refer Section 3.2), in order to identify pockets that
appear as voids, we additionally delay insertion of triangles satisfying conditions
C4 and C5. Thus stability of pockets is given preference over stability of voids,
since pockets usually correspond to functionally important regions of proteins as
they are accessible from the outside environment.

Figure 14 illustrates an example where we detect a potential channel in protein
2OAR. This is a trans-membrane protein with a known ion-channel going though
it. By default, two pockets and a small void are detected instead of the ion-channel.
Using ROBUSTCAVITIES with ε = 1.4 (which corresponds to maximum change of
0.41Å in atomic radius), the void merges together with the two pockets to correctly
identify this channel.

We now demostrate the utility of our potential channel detection technique using
the example of translocase SecY protein [1]. We consider three of its structures –
1RHZ, 2YXQ and 2YXR. This unique transporter protein has its transmembrane
channel plugged in its wild type conformation (1RHZ). This plug only opens when
specific molecules need to be transported. We tried detecting a channel through the
wild type 1RHZ structure. Even after modifying the filtration, all cavities remained
stably disconnected as shown in Figure 15(b). To probe the mechanics and regula-
tion of this transporter, researchers created a half and full plug deletion mutants of
the same protein, labelled as 2YXQ and 2YXR respectively [26]. In 2YXQ, half
of the plug region was deleted while in 2YXR the plug was deleted completely.
Even after plug deletions, the protein compensates for the deletion and attains a
tightly packed structure due to its dynamic nature; other methods still fail to de-
tect a channel in this plug deletion mutant. However, after using ROBUSTCAVITIES
with ε = 1.5 (which corresponds to maximum change of 0.48Å in atomic radius) to
modify filtration, we are able to identify the potential channels in these mutants as
is shown in Figures 15(d) and 15(f). In summary, we find that the trans-membrane
pore is not present in the wild type structure but becomes progressively larger in
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(a) 1RHZ - Before (b) 1RHZ - After

(c) 2YXQ - Before (d) 2YXQ - After

(e) 2YXR - Before (f) 2YXR - After

Fig. 15 The case study of protein translocase SecY. We show results for three structures of this pro-
tein viz. 1RHZ, 2YXQ and 2YXR. 1RHZ is the closed structure of this protein, while 2YXQ and
2YXR are mutants with half and full plug deletions respectively. In all the figures the membrane
is shown as blue and red planes, where blue plane corresponds to intra-cellular region while red
plane denotes extra-cellular region. (a) The two pockets in 1RHZ at α = 0. (b) These two pockets
remain disconnected even after modifying filtration. (c) The two pockets of interest in 2YXQ at
α = 0. Please note that these pockets are slightly larger than the pockets in closed structure 1RHZ.
(d) The pockets merge to reveal transmembrane pore in this mutant. (e) The two relevant pockets
of in 2YXR at α = 0. It can be observed that these pockets are larger than the pockets detected
in both 1RHZ and 2YXQ. (f) In this mutant too, the two pockets merge to reveal transmembrane
connection.
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(a) 1HGA - Before (b) 1HGA - After

(c) 1BBB - Before (d) 1BBB - After

Fig. 16 Cavity structures in two states of Hemoglobin. In all the images, central cavity is shown
in blue color, while red, cyan, green and magenta colors are used for heme sites in chains A, B,
C and D, respectively. The first row in the figure is for 1HGA which is low affinity T state, while
second row corresponds to high affinity R state (1BBB) of Hemoglobin. (a) The central cavity and
four heme cavities in low affinity state of Hemoglobin. (b) Even after applying modification, the
heme sites don’t merge with central cavity. (c) The central cavity and four heme cavities in high
affinity state of Hemoglobin. (d) The heme sites in chains B and D merge with the central cavity
after application of ROBUSTCAVITIES .

the half plug and full plug deletions mutants. This is consistent with experimental
data which show that plug deletion leads to increased translocation of proteins with
defective signal sequences as well as small molecules and increase the propensity
for the channel to adopt an open state.

In our final example shown in Figure 16, we study cavity structures in low and
high affinity states of the protein Hemoglobin. As shown in Figures 16(a) and 16(c),
both low and high affinity structures consist of four heme sites surrounding a cen-
tral cavity. Also, all these cavities are disconnected at α = 0 in both the structures.
However, after modifying filtration, while the topology of cavities in low affinity
structure remains unchanged (Figure 16(b)), two heme sites in chains B and D of
high affinity structure merge with central cavity (Figure 16(d)). It is known that Oxy-
gen binding to heme in hemoglobin causes a conformational change in the rest of
the structure which leads to an increase in oxygen binding affinity. The binding re-
sults in the conformation transition from tense form (low affinity T state) to relaxed
form (high affinity R state). This important conformational change is being correctly
captured by the change in topology of the cavities of the R state (Figure 16(d)).
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5 Conclusions

We have defined a novel notion of robust cavities that is insensitive to the perturba-
tion of the atomic radii. Robust cavities are computed via a controlled modification
of the filtration that represents the molecule and its cavities. Identifying robust cavi-
ties is important so that the biologist only targets these cavities in tedious mutation-
based experiments. The method addresses the inaccuracies in the measurements of
the radii by selectively varying the radii for a specific set of atoms. However the
positional uncertainties which arise due to the motion of the molecules is not ad-
dressed.

We show several examples which demonstrates using visual evidence that small
perturbations in the radii results in a larger and robust cavities. The value of ε used
in these experiments is lower than the typical experimental error in crystallographic
measurements. We also show the efficiency of our method which allows for interac-
tive exploration of robust cavities with varying ε . Finally, we use our technique to
identify robust pockets and pores in different trans-membrane proteins.

In future, we plan to further investigate the relationship between the perturbation
in the atom radii corresponding to the delayed simplex insertion and the structural
and functional properties of the protein. Future work also includes generalizing the
framework to use empirically determined intervals of radii for each atom type and
addressing the issue of biological implications of the method.
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