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Relation-aware Isosurface Extraction in
Multi-field Data
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Abstract—We introduce a variation density function that profiles the relationship between multiple scalar fields over isosurfaces of
a given scalar field. This profile serves as a valuable tool for multi-field data exploration because it provides the user with cues to
identify interesting isovalues of scalar fields. Existing isosurface-based techniques for scalar data exploration like Reeb graphs, contour
spectra, isosurface statistics, etc., study a scalar field in isolation. We argue that the identification of interesting isovalues in a multi-field
data set should necessarily be based on the interaction between the different fields. We demonstrate the effectiveness of our approach
by applying it to explore data from a wide variety of applications.

Index Terms—isosurface statistics, isocontours, variation density profile, persistence, multi-field data.
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1 INTRODUCTION
The design of interactive and useful techniques for multi-field
data remains a challenging problem. Scientists hope to under-
stand the underlying phenomena by studying the relationship
between several quantities measured or computed over a
domain of interest. Therefore, multi-field data is ubiquitous
to all scientific studies.
Naturally, the design of analysis and visualization tech-

niques for multi-field data will benefit by studying the relation-
ship between fields as opposed to a focused study of inherent
properties of individual fields. We follow this principle to
develop a relation-aware method for exploring scalar multi-
field data.
Identification of important isovalues of scalar fields is a

well studied problem. Current approaches focus on individual
scalar fields and study geometric properties of the isosurface
like surface area or enclosed volume, or study the topological
properties abstracted into a Reeb graph or contour tree. We
study this problem in the context of multi-field data. Specifi-
cally, we introduce a variation density function, whose profile
is a good indicator of interesting isovalues of individual scalar
fields in a multi-field dataset.
There is no unique definition for the relationship between

functions in the literature. The alignment of gradients is
widely used within the visualization community to quantify
relationship between scalar fields [1], [2], [3]. We follow
this approach and use the comparison measure proposed by
Edelsbrunner et al. [1] to measure the relationship between
different scalar fields.
For a given scalar field f and a sub-collection A of scalar

fields from the multi-field data, the variation density function
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measures the relationship between scalar fields in A over iso-
surfaces of f . Similar to Edelsbrunner et al. [1], the variation
density function quantifies the relationship between multiple
scalar fields by comparing their gradients. Our hypothesis is
that extrema and regions of rapid changes in the profile of the
variation density function are indicative of interesting features
or events in the data. Experiments on data from different
applications indicate that our hypothesis is indeed true for
these data sets.

1.1 Results
Our contributions include a relation-aware approach to identi-
fication of interesting isovalues of a scalar field in a multi-field
data set, a successful application of this approach to explore
data from diverse application domains and a demonstration
of the advantages over analyzing scalar fields in isolation.
Central to the data exploration process is a variation density
function that measures the relationship between scalar fields
in the data. We derive links between the variation density
and well understood measures like topological persistence and
isosurface area statistics. We also describe a simple algorithm
to compute an approximate profile of the variation density
function, which provably converges to the true profile with
increasing sample size. Finally, we show that our approach
can be used for effective exploration of both simulation and
measurement data from a wide variety of application domains.

1.2 Related Work
Bajaj et al. [4] introduced the popular contour spectrum as
a method for exploring scalar fields by studying distributions
of metric properties like area, volume, and their derivatives
and integrals. Early approaches to identification of interesting
isovalues study the histogram of the scalar field [5], [6].
Carr et al. [7] showed that histograms suffered from many

deficiencies because they were equivalent to nearest neighbor
interpolant and suggest the use of isosurface statistics com-
puted with higher quality interpolation. Scheidegger et al. [8]
proposed an improved formulation of isosurface statistics
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by weighting it with the inverse gradient magnitude. This
essentially means that the value of the statistic reaches infinity
if the gradient vanishes. We fill this minor gap in the definition
of the variation density function by excluding critical values.
However, this does not affect the utility of the variation
density function because we include the critical values while
computing the variation density profile for piecewise linear
input functions. Both Carr et al. and Scheidegger et al. men-
tion an application of isosurface statistics to identification of
interesting isovalues. Isosurface statistics considers geometric
properties of an isosurface to determine its importance. For
multi-field data, the importance of an isovalue additionally
depends on the interaction between the different fields. In this
regard, our method can be considered a generalization of their
work to multi-field data. Section 5 describes this generalization
in detail.
Structures like contour trees [9], and more generically Reeb

graphs [10], provide an abstract representation of topological
changes in isosurfaces of a scalar field as we sweep the domain
in the direction of increasing / decreasing scalar value. The
Reeb graph has been used as an interface for flexible extraction
of individual components of interesting isosurfaces [11].
All the above methods are oblivious to other scalar fields

in the data and hence do not consider relationships between
fields. So, these methods may not be effective in the study of
multi-field data.
Gosink et al. [2] present a method that allows visualization

of interaction between three scalar fields by studying the
correlation between two fields over isosurfaces of the third
field. Their approach allows the classification of isosurfaces
into two classes, primary and secondary, but does not provide
further information to allow the identification of a smaller set
of interesting isovalues. They design the method to be used
within the framework of Query-Driven Visualization, which
benefits from user queries.

1.3 Outline
Section 2 reviews the necessary background on comparison
measure, defines the variation density function, and describes
its properties. Section 3 describes an algorithm to compute
the variation density profile. Section 4 reports results of
experiments on 2D, 3D, and time-varying multi-field data.
Section 5 discusses some properties of the variation density
function and an interesting variant. Section 6 concludes the
paper.

2 VARIATION DENSITY FUNCTION
The variation density function measures the relationship be-
tween multiple scalar fields over isosurfaces of one of the input
scalar fields. The relationship is quantified by the comparison
measure introduced by Edelsbrunner et al. [1].

2.1 Comparison Measure
Let M be a smooth compact n-dimensional Riemannian man-
ifold. Let F = { f1, f2, . . . , fk} be a set of k ≤ n smooth real-
valued functions defined on M, fi :M → R. The comparison
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Fig. 1: Isosurfaces shown at f−1(r) and f−1(r+ # r) when
n = 3. It is always possible to choose a local orthonormal
coordinate system such that one tangent vector "

"x3
is aligned

with the gradient of f . From the definition of gradients, it
follows that dr = ‖! f (x)‖dx3.

measure, for F , over a domain D ⊆ M, is defined as the
normalized integral

$D(F) =
1

vol(D)

∫

x∈D

‖d f1∧d f2∧ . . .∧d fk‖,

where vol(D) is the volume of D and d f1 ∧ d f2 ∧ . . .∧ d fk
is the wedge product of the k derivatives. $M(F) is called
the global comparison measure. When D shrinks to a point
x ∈ M, we get the local comparison measure, $x(F), in the
limit. The product, $D(F) · vol(D), can be used to quantify
the relationship between the different functions in F . When
k= n= 2 andM is smoothly embedded in R3 with the standard
Euclidean metric, $x(F) is the length of the cross product of
the two gradients at x:

$x({ f1, f2}) = ‖! f1(x)×! f2(x)‖.

2.2 The Definition
For a smooth function f :M→R, a real number c is a critical
value if for some x∈M,‖! f (x)‖= 0 and c= f (x). Let P⊆R
denote the set of non-critical, or regular, values of f .
Define a scalar function % : F×2F ×P → R as

%( f ,A,r) =
∫

x∈ f−1(r)

$x(A)
‖! f (x)‖dSx,

where dSx is the n− 1 dimensional isosurface area element.
We assume that all the functions in F have a finite number
of critical values. Given a regular value r, we can therefore
choose an interval I : [r,r+# r] that contains no critical values.
We claim that

∫

I

%( f ,A,r)dr =
∫

x∈ f−1(I)

$x(A)dVx

= $ f−1(I)(A) · vol( f−1(I)). (1)
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Fig. 2: Isocontours of f when n = 2 and F = { f ,g}. The
isocontour f−1(r) shown in green, has critical points of the
restricted function g∗, at the points shown in red (maxima)
and blue (minima). The % function is the sum of persistence
values of the critical points. It also captures the total variation
of g∗ on the isocontour.

So, %( f ,A,r) can be considered as the density of the variation
between functions in the set A. Hence, we call % the variation
density function. We now prove (1) from first principles.
Consider a local coordinate system (x1,x2, . . . ,xn) at x such

that the unit tangent vectors ( "
"x1

, . . . , "
"xn ) form an orthonor-

mal basis. The volume element dVx equals dx= dx1dx2 . . .dxn.
Assume, without loss of generality, that the first n− 1 basis
vectors lie on the tangent plane of f−1(r) at x and the last
tangent vector is aligned with ! f (x) (see Figure 1). We
transform the coordinate system at x to (x1,x2, . . . ,xn−1, f (x)).
The volume element in the new coordinate system is obtained
by multiplying with the Jacobian determinant, which is equal
to the length of the gradient ‖! f (x)‖. Therefore

dVx =
dx1dx2 . . .dxn−1dr

‖! f (x)‖ .

Now,
∫

I

%( f ,A,r)dr =
∫

I

∫

x∈ f−1(r)

$x(A)
‖! f (x)‖dSxdr

=
∫

I

∫

x∈ f−1(r)

$x(A)
‖! f (x)‖dx1dx2 . . .dxn−1dr.

Rewriting the double integral as a single integral over f−1(I)
and using the above expression for dVx, we get the desired
equality in (1).

2.3 Variation Density and Total Variation
In this section, we motivate the use of variation density by
showing that it captures the total “variation” of a function
restricted to an isosurface of the other. Specifically, we show
that, for the special case of smooth functions f and g defined
on a 2-manifold, the variation density is equal to the difference
between the sum of values at maxima and minima of g
restricted to an isocontour f−1(r). However, it is not clear
how to extend this result to the case of multiple functions
defined on a higher dimensional manifold.

Let r be a regular value of f . The isocontour f−1(r) is a
smooth curve embedded in M. So, we have

%( f ,{ f ,g},r) =
∫

x∈ f−1(r)

‖! f (x)×!g(x)‖
‖! f (x)‖ dlx

=
∫

x∈ f−1(r)

‖!gt(x)‖dlx, (2)

where !gt(x) is the component of !g(x) along the tangent
to f−1(r) at x, and dlx is the length element of f−1(r) at x
(see Figure 2). Let g∗ be the function obtained by restricting
the domain of g to f−1(r). The derivative of g∗ vanishes at
a critical point. Critical points are either maxima or minima
assuming the second derivative of g∗ does not vanish at such
points. Applying the fundamental theorem of calculus to each
region of f−1(r) where g∗ is monotone, we rewrite the integral
of ‖!gt(x)‖ over the isocontour f−1(r) as the difference
between the sum of function values at maxima and minima
of g∗. In other words, if C is the set of critical points of g∗,
then

∫

x∈ f−1(r)

‖!gt(x)‖dlx = 2&
v∈C

sign(v)g∗(v), (3)

where sign(v) is either +1 or −1 depending on whether v is a
maximum or minimum, respectively. Thus, % is equal to the
total variation of g∗ over the isocontour f−1(r).
The sub-level set of a real value s is the union of pre-

images of all real values less than or equal to s. Consider
the sub-level sets of g∗ as we sweep f−1(r) in the direction
of increasing value of g∗. New components are created at
local minima of g∗. Components of the sub-level set merge
at all maxima except for the global maximum where the sub-
level set is equal to f−1(r). We represent each sub-level set
component by its oldest minimum. When a merge happens at a
maximum, we pair the maximum with the younger of the two
minima representing the two merging components. The global
maximum is paired with the global minimum. The persistence
of a critical point is equal to the absolute difference in function
values between the critical point and its pair. Persistence of
a critical point pair represents the lifetime of a feature, i.e.,
the time between the creation and destruction of a component
in f−1(r) during the sweep process. Long-living components
that have higher persistence values are considered to be more
important.
In recent years, the notion of persistence has been used

to measure, order, and simplify features [12], [13], [14], [15],
[16]. This measure has been shown to be stable in the presence
of noise assuming a bottleneck metric and the functions are
tame [17]. From Equation (2) and Equation (3), we know that

%( f ,{ f ,g},r) = 2&
v∈C

sign(v)g∗(v). (4)

Since every critical point is counted twice in the above
expression, %( f ,{ f ,g},r) is equal to the sum of persistence
values of all critical points of g∗. The variation density function
% , therefore, represents the total importance of all sub-level set
components of g∗ in f−1(r). This equality also suggests that
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Fig. 3: (a) Color map of function f2. Blue and red regions indicate low and high function values respectively. (b) The variation
density profile of f0, %( f0,{ f0, f1},r) with f1(x) = ‖x−2‖. The jagged boundary of the shaded region is an artifact of using
a discrete domain for computation. (c) The variation density profile of f0, %( f0,{ f0, f2},r), showing peaks at depressions of
f2.

we can expect the variation density function to be insensitive
to small perturbations in g. This is because a small perturbation
applied to the function implies a small perturbation applied to
the restriction of g∗. Now, g∗ and its perturbed versions are
close to each oher under the L' metric, which implies that the
persistence values of their critical points, and hence their sum,
are close to each other. Note that the function is tame because
we assume that it has a finite number of critical values.
Finally, note that the integral of the expression in Equa-

tion (4) over all isovalues of f is equal to the global compar-
ison measure as shown previously by Edelsbrunner et al [1].

2.4 Variation Density Profile
We are interested in the plot of variation density for a given
scalar field f and a subset A of scalar fields. The observation
that the integral of the variation density over all isovalues is
the global comparison measure motivates us to study the plot
of variation density against isovalues. We can consider the
profile of the variation density as a plot of the contribution to
the global comparison measure from the level sets of the scalar
field. Given k scalar fields, only a few of the k2k possible plots
are interesting. This choice of A and f is typically determined
by the application. Prior knowledge of potential interaction
between the scalar fields can help us make an informed choice.
Each plot can provide cues that help in identifying interesting
isovalues. The following examples are aimed at providing
intuition behind the use of the variation density profile.
Consider the following analytic functions defined on R2.

f0(x) = ‖x‖,
f1(x) = ‖x−a‖,
f2(x) = −(Ga1(x)+Ga2(x)+Ga3(x)).

Where x,a,a1,a2,a3 ∈ R2 and Gai(x) is a Gaussian with a
low standard deviation centered at ai. The isocontours of
f0 and f1 are circles centered at origin and the point a
respectively. Consider an isovalue r < ‖a‖ of f0. The value
of %( f0,{ f0, f1},r) can be calculated from using Equation (4)
to be 4r. If r ≥ ‖a‖, we have %( f0,{ f0, f1},r) = 4‖a‖. The

function % , therefore, increases linearly with r till the isovalue
‖a‖ and then becomes constant.
If we consider f0 to be elevation and f1 to be atmospheric

pressure, % would tell us that the variation in pressure at all
points with the same elevation increases linearly till height
‖a‖ and remains constant for higher elevations. The pressure
depression at elevation ‖a‖ is captured by a knee in the
graph of % , see Figure 3b. Note that the corrected isocontour
perimeter statistic [8] would assign the same value in the
statistic graph for each isovalue of f0. This follows from the
fact that the ratio of the perimeter of an isocontour to the
length of the gradient of f0 on the isocontour is the same for
all isocontours.
The function f2 has three depressions at distances ‖a1‖,

‖a2‖ and ‖a3‖ from the origin. Figure 3a shows a color map
of f2 with depressions (blue regions) centered at distances 1,2
and 3 from the origin. The function f2 is nearly constant at all
points far away from the depressions. The variation of f2 on an
isocontour of f0 is nearly zero if the isocontour does not pass
through any of the depressions. The variation is maximum on
isocontours of f0 passing through the depressions. This results
in peaks in the variation density profile (see Figure 3b). In both
the examples, select isovalues of f0 are found to be interesting
only after studying the relationship between functions.

3 COMPUTATION
In this section, we describe the computation of % when F is
a set of piecewise-linear functions and M is represented by an
n-dimensional simplicial complex.
For 0≤ k≤ n, a k-simplex in Rn is the convex hull of k+1

affinely independent points. The interior of a simplex is the set
of points in the simplex that do not lie on the boundary. Define
the interior of a 0-simplex to be itself. A simplicial complex
K is a collection of simplices such that all faces of simplices
in the simplicial complex also belong to the complex and the
intersection of any two simplices is empty or a face common to
both. The dimension of K is the dimension of the simplex in K
with the highest dimension. Let f̄ : vertices(K) → R be a real
valued function defined on the vertices of K. We construct a
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Fig. 4: Computation of % for a two dimensional simplicial
complex. The shaded region indicates the area corresponding
to a bin [r,r+ # r]. This region is a small strip if the bin is
contained within the range of f restricted to the triangle. The
entire triangle is shaded if the bin contains the range of f
restricted to the triangle or if the triangle is degenerate. If the
bin and the range of f have a non-empty intersection but do
not contain each other, then the shaded region contains one or
two vertices of the triangle.

piecewise-linear function fp : K→ R as follows. The position
of any point x in the interior of a k-simplex can be written
uniquely as a convex sum of the positions of vertices of the
simplex, i.e, x = &k+11 (ivi with &k+11 (i = 1. Define fp(x) =
&k+11 (i f̄ (vi). The function fp is continuous, linear within each
simplex, and agrees with f̄ at the vertices of K.
The gradient of fp is well defined in the interior of a simplex

and is a constant vector because fp is linear within the simplex.
The gradient vanishes inside a simplex iff the function values
at all vertices of the simplex are equal. Note that a constant
gradient implies that the local comparison measure is also
constant in the interior of a simplex.
For a smooth function f , we first divide the range of f

into a fixed number of intervals called bins. For an interval
I = [r,r+# r], define

%̄( f ,A, I) =

∫

f−1(I)
$x(A)dx

|I| , (5)

where |I| is the length of the interval I. The function %̄( f ,A, I)
is well defined even if I contains a critical value. Note that

%( f ,A,r) = lim
# r→0

r+# r∫

r
%( f ,A,r)dr

# r

= lim
# r→0

∫

f−1(I)
$x(A)dVx

# r

Therefore, in the limit, when |I|→ 0, %̄ converges to %( f ,A,r)
at a regular value r.
For a piecewise-linear function fp, we compute the integral

in Equation (5) as a summation:

%̄( fp,A, I) =
1
|I| &)∈K

$) ∗ vol(interior())∩ f−1p (I)),

where $) is the value of $x for any x ∈ interior()) (see
Figure 4). Note that for piecewise-linear functions, the local
comparison measure is a piecewise-constant function. There-
fore, $x is the same for any x ∈ interior()). The procedure
COMPUTEPSI computes the variation density profile for a
given bin width h. The procedure is easily parallelizable
because the computation for each simplex is independent of
other simplices. The time required for a simplex inside the
outer loop depends on the range of the function restricted to it
and h. The worst case complexity is therefore O(mn), where
m and n are the number of bins and simplices respectively.
Procedure COMPUTEPSI( fp,A,h)

Initialize %̄( fp,A, I) ← 0 for all bins I
for each simplex ) ∈ K do
R← range of fp restricted to )
for each bin I such that R∩ I -= * do
%̄( fp,A, I) ← %̄( fp,A, I)

+
$) ∗ vol( f−1p (R∩ I)∩ interior()))

h
end for

end for

4 APPLICATIONS
We study a variety of data using the variation density function.
Our implementation works directly on simplicial complexes.
If the input domain is available as a rectilinear grid, we first
subdivide it into simplices by inserting diagonals and analyze
the corresponding piecewise linear function. Area and volume
are computed using the QHull library.
We use a fixed number of bins (100 or 200) in all our

experiments. We focus on local maxima, minima and regions
of steep gradients in the profile in order to identify poten-
tially interesting isosurfaces. In all experiments, we compare
our result with the isosurfaces identified using the corrected
isosurface area statistic [8].

4.1 2D Combustion
We first experiment on a 2D combustion simulation data.
Hydrogen fuel at 300K is mixed with an oxidizer (21%
oxygen) at 1200K. The goal of the simulation is to study the
influence of turbulence on the different phases of combustion.
When compressed, the fuel ignites at multiple spots because
of the inhomogenity in the air-fuel ratio. Depending on the air-
fuel ratio, the flame either propagates in an outward direction
from the ignition spot or burns out [18], [19]. The combustion
is simulated on a plane over 67 time steps. The input data
comprises of three scalar fields defined on a 600 x 600 grid for
67 time steps. The value of the first field at each point indicates
the progress of combustion at the point. The concentrations of
oxygen (O2) and hydrogen (H2) are the other fields.
The concentrations of H2 and O2 are constant away from the

front of combustion. The comparison measure is therefore zero
in these regions. The variation density of oxygen or hydrogen
will therefore have non-zero values only for isocontours pass-
ing through the front.
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Fig. 5: Profiling isocontours of oxygen during a combustion simulation. (a) % computed with f = O2 and A = {O2,H2 }.
(b) Isocontour statistics of O2 do not help identify the isovalue corresponding to the front of combustion. (c) Isocontour of
O2 at 1010, the global maximum of % . Isocontours of oxygen in the range (800,1400) belong to the front of combustion.
(d) Color map of oxygen with red and blue areas indicating high and low concentrations respectively.

For this experiment, we consider the 64th time step as our
input domain. The combustion is in its later stages in this
time step. We profile the iscontours of oxygen considering its
relationship with the fuel (hydrogen). This is accomplished by
choosing A= {O2,H2}. The variation density profile is shown
in Figure 5(a).
We observe from the profile that it increases to a maximum

when the oxygen level is approximately 800 and remains
high till the oxygen level is approximately 1400. We notice
a gradual decline for higher isovalues. The isocontours of
oxygen in this range (800,1400) belong to the front of the
combustion. However, this information cannot be directly
inferred from the isosurface statistic. Figure 5(c) shows the
isocontour of O2 at the value 1010, the global maximum of
% . The front is the region where the fuel is actively burning.
The scientists who designed the simulation commented

that the isocontour based segmentation of the ignition region
or a burned out/extinction hole is useful in studying and
understanding the nonlinear coupling that governs ignition and
extinction. The shape and size of the segmented region and the
correlation between the multitude of scalar fields computed

within the segment play an important role in the study.

4.2 Time Varying Combustion
Next, we show the application of the variation density function
to time-varying data. We consider the time varying combus-
tion data described in the previous experiment as a three-
dimensional data with time t defined as an additional scalar
field. The fuel consumption rate at a point in a time step can
be used to measure the progress of combustion at the point.
This information is available as a scalar function prog.
The goal of this experiment is to identify important time

phases of the combustion process. The relationship that O2
has with time changes during the important phases of com-
bustion. For example, on every time slice before ignition, the
concentration of oxygen is nearly constant everywhere and on
ignition, oxygen begins to be consumed at regions of ignition.
We therefore profile the isosurfaces of time with A= {t,O2}
(see Figure 6(a)). The profile successfully captures the ignition
and the burning phases of the combustion process. The time
steps t = 27 to t = 35 in the data correspond to the ignition
process. This is captured as a trough in the profile. The burning
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Fig. 6: Time varying combustion. (a) Variation density profile with f = t, A= {t,O2}. (b) Profile of % with f = t, A= {H2,O2}.
(c) Ignition: color-mapped image of the scalar field prog, which measures the completion of combustion. Red regions indicate
high values and blue regions indicate low values. The distribution of prog in the 28th time step indicates the regions where
the fuel is ignited. (d) Burning: The distribution of prog in the 52nd time step.

phase (t=50 to t=55) is also captured by a maximum in the
plot. Ignition and burning are indeed considered to be the two
important phases of this combustion process [19].
The interaction between O2 and H2 can also be considered

to determine the different phases. There is no real interac-
tion between O2 and H2 before ignition. We plot % with
A = {O2,H2} hoping to find more information (see Figure
6(b)). The information extracted from this profile is essentially
the same compared to the profile % with A = {t,O2}. The
profile begins to increase from zero during the ignition phase
and reaches a global maximum during the burning phase.
Isosurface statistics considers only geometric properties of

a time slice and hence would not be able to detect any of the
above phases. For example, the corrected area statistic would
give equal importance to each isovalue and hence the plot
would be a horizontal line.
The developers of the combustion simulation noted that it

is desirable to identify and track transient and intermittent
events like auto-ignition and extinction. They comment that
our approach of studying the relationship between the air-
fuel mixture over the non-local geometry of the flame front
is a new idea and could help attain further insights into flame

interactions.

4.3 Hurricane Isabel
Hurricane Isabel was a strong hurricane that struck the west
Atlantic region in September 2003. We consider a simulation
of this event [20]. The domain is a 3D rectilinear grid of
size 500× 500× 100 corresponding to a physical scale of
2139km× 2004km× 19.8km. Eight scalar fields are defined
over this domain. This data is defined for 48 time steps
corresponding to an actual time of 48 hours. For experimental
purposes, we look at only pressure (Pf) and temperature (TCf).
We study the isosurfaces of pressure at the first time step

with A= {Pf,TCf}. During the initial phase of the hurricane,
the eye of the storm was located in the ocean. The swirling
motion around the eye corresponded to a low pressure region
(-100 pascals, 20 pascals). Temperature and pressure have low
correlation in this region [3]. The variation density profile
shows an exponential increase for the isobars corresponding
to low pressure (Figure 7(a)).
A natural question to ask is “Under what conditions do the

isosurface statistics and the variation density function produce
similar results?”. In areas of low correlation, we observe
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Fig. 7: Hurricane Isabel. In regions of low correlation between the fields (-100 pascals, 20 pascals) (a) the variation density
function and (b) isosurface statistics behave similarly. The two values are nearly equal at isovalue 7 pascals. (c) Isobar of the
hurricane at 7 pascals.

that the isosurface statistics plot (see Figure 7(b)) behaves
similarly. Both exhibit an exponential increase in the region
of low pressure. In fact, at approximately 7 pascals pressure,
we observe that the two plots have nearly equal values.
These experimental observations lead us to believe that when
the input fields have a low correlation, the variation density
function has no added advantage over isosurface statistics.

4.4 Universe Simulation
In the fourth experiment, we consider the simulation of ion-
ization front instability in the universe [21]. The input domain
is a 600×248×248 rectilinear grid which is equivalent to a
physical volume of 0.6parsec×0.25parsec×0.25parsec. The
simulation is done over 200 time steps corresponding to 25.37
thousand years. The data has ten different simulated scalar
fields: particle density, temperature (TCf), and eight chemical
species including gaseous hydrogen (H2), ionized hydrogen
(H+) and ionized helium (He+).
The ultraviolet radiations from stars ionize hydrogen and

oxygen present in space. This ionization process slows down
the photons, which now proceed at a much slower pace behind
a radiation wall known as the ionization front. This front
separates the hot gases (> 20000K ), which are in an ionized
state, from the ambient space at 72 K.
We study the impact of each of the chemical species on

the importance of isotherms. We first study the effect of H+.
Since hydrogen is in the ionized state, we expect to find the
relevant isotherms at high temperatures. This is indeed the
case (see Figure 8(b)). The profile peaks in the temperature
range 14000-16000K, which is the temperature range in which
hydrogen is ionized. We get similar results ionized helium
(A = {TCf,He+}). In fact, we get a sharper spike in the
range 14000-15000K (Figure 8(c)). The temperatures relevant
for gaseous hydrogen (H2) (Figure 8(d)) were found to be
2000-15000K, after which the plot goes to zero. This is in
accord with the known fact that hydrogen is typically in
the ambient state (>72K) or shocked state (>2000K). Above

15000K, hydrogen is primarily in the ionized state. Isotherms
in Figures 8(e-f) correspond to isovalues identified from the
variation density profile. These isovalues belong to ranges
where hydrogen is in a shocked state (Figure 8e), hydrogen and
helium are ionized (Figure 8f), and where there is no specific
interaction between temperature and the different elements
(Figure 8g). The geometry of the isotherm has no particular
interpretation to the best of our knowledge.

5 DISCUSSION
The derivation of isosurface statistics by Scheidegger et al. [8]
may also be extended to develop a relation-aware statistic. In
the case of three dimensional domains, isosurface statistics
considers the volume enclosed by the isosurfaces f−1(r) and
f−1(r+# r) as # r approaches zero. Normalizing this volume
by the volume of the manifold, we get a probability density
function that measures the probability that the scalar field
assumes values between r and r+# r as # r approaches zero.
Clearly, the profile of this probability density function is the
same as the isosurface statistic. However, the notion of a
probability density function can be extended to two fields.
When two fields are available, we may consider the joint

probability density (JPD). Rajwade et al. [22] use the JPD
for two scalar fields in the context of computing mutual
information and solving the image registration problem. The
scalar fields are essentially grayscales of the two images that
are to be registered. They show that the JPD equals

p(+1,+2) =
∫

{x| f (x)=+1}∩{x|g(x)=+2}

dx
‖! f (x)×!g(x)‖ ,

where f and g are the scalar fields, and +1 and +2 are
isovalues of f and g respectively. The JPD is essentially the
continuous scatterplot recently introduced by Bachthaler and
Weiskopf [23]. Note that this integrand is equal to the inverse
of the local comparison measure $x, which suggests a direct
extension to multiple fields.
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Fig. 8: Universe Simulation. (a) Isotherm statistics. (b) The profile of % plotted with A= {TCf,H+}. Most of the area under
the curve is centered around the ionization temperature of hydrogen. Similar results are seen in (c) when A = {TCf,He+}.
(d) The profile of % with A = {TCf,H2}. Hydrogen in the temperature range 72-14000K is in either cool or shocked states.
(e) Isotherm of universe at 3000K which lies in the range where hydrogen is in shocked state. (f) Isotherm of universe at
14500K which lies in the range where hydrogen and helium are ionized. (g) Isotherm of universe at 19500K which lies in the
range where hydrogen is already ionized and there is no other significant event.
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We also observe that the isosurface area statistic [7] and
the corrected statistic [8] can be derived as special cases of
the variation density function. If the set A contains a single
element f , the scalar field under consideration, then the local
comparison measure $x({ f}) = ‖! f (x)‖. This implies that the
variation density function

%( f ,{ f},r) =
∫

x∈ f−1(r)

dSx,

which is exactly the isosurface area statistic derived by Carr
et al. Now, consider the case when $x is a constant function,
which essentially means that we have no additional infor-
mation on the relationship between the scalar fields. In this
case, the variation density function reduces to the corrected
isosurface statistic.
The derivation in Section 2.3 indicates that the variation

density function is not likely to be susceptible to noise,
especially when the dimension of the domain is less than three.
The derivation, however, extensively utilizes the property that
regions in an isocontour can be broken into monotone paths of
the restricted function g∗ resulting in a closed form expression
for the integrals. It is unclear if such an approach can be
extended to higher dimensional domains.

6 CONCLUSIONS AND FUTURE WORK
We have introduced a variation density function % to profile
isosurfaces based on relationships between different scalar
fields in multi-field data. We also described an algorithm to
compute the profile. The fact that % captures significant in-
formation that is typically not captured by isosurface statistics
is evident from our experiments with several data sets from
diverse real-world applications. We also conjecture that for
fields with low correlation, % may be no better than isosurface
statistics.
We list the following problems as future work:
• Characterizing the link between persistence and variation
density in higher dimensions.

• Extension of our results to arbitrary number of scalar
fields. Currently, the number of fields that can be com-
pared (i.e. the size of the set A) is bounded by the
dimension of the domain. This is primarily because the
comparison measure considers the alignment of gradients
of the fields to determine relationships. If the number
of fields is greater than the dimension of the domain,
the gradients become linearly dependent and hence the
comparison measure is zero everywhere. One solution is
to consider only a subset of fields at a time and then
collect the different statistics together in a well defined
way. In future, we would like to apply our techniques to
arbitrary number of fields.

• Extending the definition of the variation density function
to vector fields will be a challenging task.

• It would be interesting to see if single scalar fields can be
studied more effectively using our approach. This would
involve identifying suitable derived fields that can be used
to profile the input scalar field.
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