
Integrated Parallel Simulations and Visualization for
Large-scale Weather Applications

A Thesis

Submitted For the Degree of

Doctor of Philosophy

in the Faculty of Engineering

by

Preeti Malakar

Computer Science and Automation

Indian Institute of Science

BANGALORE – 560 012

JULY 2013



i

c©Preeti Malakar

JULY 2013

All rights reserved



To Ma, Dida and in loving memory of Dadu.



Acknowledgements

I thank everyone who has helped me during the last few years. My advisors Prof.

Sathish Vadiyar and Prof. Vijay Natarajan have been extremely helpful, supportive and

always approachable. Prof. Sathish always ensured that I set clear goals and complete

them on time. Prof. Vijay provided crucial feedback on my research. I am inspired

by their disciplined and organized style of working. It is because of the several brain-

storming sessions with them that this thesis has taken a good shape. I am truly blessed

to have such wonderful advisors. Not only did they provide guidance on identifying

important research problems and devise effective solutions, but they also gave useful

advice on presentation skills. I am thankful to them for their valuable suggestions on

how to clearly communicate. I have tried to learn from them how to write effectively

and express clearly, and am still learning.

I express my deep gratitude to Prof. Ravi Nanjundiah for valuable discussions on

weather and climate research topics. I am grateful to Yogish, Thomas and other col-

leagues of IBM Research for many useful discussions and suggestions.

I thank system administrator Mr. Pushparaj of CSA for his help. I owe many thanks

to Mr. Kiran for helping me with job allocations on IISc’s Blue Gene/L on several

occasions. I would also like to thank him and Mr. Shankar of SERC for help with

the National Knowledge Network between IISc and CDAC. Many thanks to the SERC

system administrators for keeping the network up and the clusters running 24x7. I would

like to thank Innovative Computing Laboratory of University of Tennessee, Knoxville for

providing me access to their cluster. I am also thankful to Teragrid (now XSEDE) and

CDAC for letting me run experiments on their supercomputers. I thank Prof. Uday for

i



ii

his help with job execution on the CSA fist cluster.

I enjoyed two wonderfully-taught courses – Computer Architecture by Prof. Matthew

Jacob and Linear Algebra by Prof. R. Vittal Rao. I extend my sincere thanks to Prof.

R. Govindarajan and Prof. Y. Narahari, the charimen of SERC and CSA respectively,

for creating a wonderful environment for research in these departments. I would also

like to thank CSA and SERC staff. Mrs. Lalitha of CSA has been always very helpful.

Vaidyaji of CSA deserves thanks for his ever-cheerful disposition. I would also like to

thank IISc staff for preserving IISc’s serene atmosphere.

I am fortunate to be supported by MHRD scholarship initially and TCS Research Fel-

lowship later. I would also like to take this opportunity to thank my funding sources for

travel – Asian Technology Information Program (ATIP), SAP Labs, Microsoft Research,

IISc GARP, Tata Consultancy Servies, and IEEE Technical Committee on Parallel Pro-

cessing.

I thank Meghana and Arnab for their kind help during my initial days at IISc. I

enjoyed the several technical and non-technical discussions with several of my labmates

– Anurag, Cijo, Dilip, Hari, Nithin, Rajath, Vidya ... I thank GARL and VGL members

who gave useful suggestions during my practice presentations. I also thank Pradeesha,

Abhijit, Anshuman, Jyotsna, Sujata, Yamini and others for making my stay at IISc

enjoyable. Erstwhile Tea-board, Faculty club canteen, CEDT tea outlet and Prakruthi

owners deserve thanks for the innumerable cups of coffee. I received constant support

from my old friends in Bangalore – Jaya, Kaustav, Ria, Sanjoy, Soumyajit, Trupti ... I

thank Pramod for his relentless support and encouraging words and Roshni for being a

good friend.

Finally, I would like to thank my family members for their love and blessings. My

mother has been my constant source of inspiration in life. I thank her for her love, care

and blessings.



Publications

• “An Adaptive Framework for Simulation and Online Remote Visualization of Crit-

ical Climate Applications in Resource-constrained Environments”, P. Malakar, V.

Natarajan, and S. Vadhiyar, in Proceedings of the 2010 ACM/IEEE conference on

Supercomputing, November 2010, New Orleans, LA.

• “InSt: An Integrated Steering Framework for Critical Weather Applications”, P.

Malakar, V. Natarajan, and S. Vadhiyar, in ICCS 2011: Proceedings of the Inter-

national Conference on Computational Science, June 2011, Singapore.

• “A Divide and Conquer Strategy for Scaling Weather Simulations with Multiple

Regions of Interest”, P. Malakar, T. George, S. Kumar, R. Mittal, V. Natarajan,

Y. Sabharwal, V. Saxena, and S. Vadhiyar, in Proceedings of the 2012 ACM/IEEE

conference on Supercomputing, November 2012, Salt Lake City, UT.

(Best Student Paper Finalist)

• “A Diffusion-Based Processor Reallocation Strategy for Tracking Multiple Dynam-

ically Varying Weather Phenomena”, P. Malakar, V. Natarajan, S. Vadhiyar and

R. Nanjundiah, in Proceedings of the 42nd International Conference on Parallel

Processing, October 2013, Lyon, France.

• “End-to-end Adaptive Framework for Efficient Online Visualization of Critical

Weather Applications”, P. Malakar, V. Natarajan, and S. Vadhiyar.

To be submitted

• “An Integrated Simulation and Visualization Framework for Tracking Cyclone

iii



iv

Aila”, P. Malakar, V. Natarajan, and S. Vadhiyar and R. Nanjundiah, Work-

shop on HPC in India held in conjunction with 2009 IEEE/ACM conference on

Supercomputing, November 2009, Portland OR.

• “An Integrated Simulation and Visualization Framework for Tracking Cyclone

Aila”, P. Malakar, V. Natarajan, and S. Vadhiyar and R. Nanjundiah, Student

Research Symposium, International Conference on High Performance Computing

(HiPC 2009), December 2009, Kochi, India.

(TCPP Best paper award).

• “A Coupled Framework for Parallel Simulation and Visualization”, P. Malakar, V.

Natarajan, and S. Vadhiyar, Grace Hopper Celebration of Women in Computing

INDIA (GHC India 2010), December 2010, Bangalore, India.

• “Integrated Parallelization of Computations and Visualization for Large-scale Ap-

plications”, P. Malakar, V. Natarajan, and S. Vadhiyar, IPDPS 2012 PhD Forum,

May 2012, Shanghai.

• “Integrated Parallelization of Computations and Visualization for Large-scale Ap-

plications”, P. Malakar, V. Natarajan, and S. Vadhiyar, SC Doctoral Dissertation

Research Showcase, 2012 ACM/IEEE conference on Supercomputing, November

2012, Salt Lake City, UT.



Abstract

The emergence of the exascale era necessitates development of new techniques to effi-

ciently perform high-performance scientific simulations, online data analysis and on-the-

fly visualization. Critical applications like cyclone tracking and earthquake modeling re-

quire high-fidelity and high-performance simulations involving large-scale computations

and generate huge amounts of data. Faster simulations and simultaneous online data

analysis and visualization enable scientists provide real-time guidance to policy makers.

In this thesis, we present a set of techniques for efficient high-fidelity simulations,

online data analysis and visualization in environments with varying resource configura-

tions. First, we present a strategy for improving throughput of weather simulations with

multiple regions of interest. We propose parallel execution of these nested simulations

based on partitioning the 2D process grid into disjoint rectangular regions associated

with each subdomain. The process grid partitioning is obtained from a Huffman tree

which is constructed from the relative execution times of the subdomains. We pro-

pose a novel combination of performance prediction, processor allocation methods and

topology-aware mapping of the regions on torus interconnects. We observe up to 33%

gain over the default strategy in weather models.

Second, we propose a processor reallocation heuristic that minimizes data redistribu-

tion cost while reallocating processors in the case of dynamic regions of interest. This

algorithm is based on hierarchical diffusion approach that uses a novel tree reorganiza-

tion strategy. We have also developed a parallel data analysis algorithm to detect regions

of interest within a domain. This helps improve performance of detailed simulations of

multiple weather phenomena like depressions and clouds, thereby increasing the lead

v



vi

time to severe weather phenomena like tornadoes and storm surges. Our method is able

to reduce the redistribution time by 25% over a simple partition from scratch method.

We also show that it is important to consider resource constraints like I/O bandwidth,

disk space and network bandwidth for continuous simulation and smooth visualization.

High simulation rates on modern-day processors combined with high I/O bandwidth

can lead to rapid accumulation of data at the simulation site and eventual stalling of

simulations. We show that formulating the problem as an optimization problem can de-

termine optimal execution parameters for enabling smooth simulation and visualization.

This approach proves beneficial for resource-constrained environments, whereas a naive

greedy strategy leads to stalling and disk overflow. Our optimization method provides

about 30% higher simulation rate and consumes about 25-50% lesser storage space than

a naive greedy approach.

We have then developed an integrated adaptive steering framework, InSt, that an-

alyzes the combined effect of user-driven steering with automatic tuning of application

parameters based on resource constraints and the criticality needs of the application to

determine the final parameters for the simulations. It is important to allow the climate

scientists to steer the ongoing simulation, specially in the case of critical applications.

InSt takes into account both the steering inputs of the scientists and the criticality needs

of the application.

Finally, we have developed algorithms to minimize the lag between the time when

the simulation produces an output frame and the time when the frame is visualized.

It is important to reduce the lag so that the scientists can get on-the-fly view of the

simulation, and concurrently visualize important events in the simulation. We present

most-recent, auto-clustering and adaptive algorithms for reducing lag. The lag-reduction

algorithms adapt to the available resource parameters and the number of pending frames

to be sent to the visualization site by transferring a representative subset of frames. Our

adaptive algorithm reduces lag by 72% and provides 37% larger representativeness than

the most-recent for slow networks.



Keywords

Weather simulation; Online visualization; Remote visualization; Adaptivity; Scheduling;

Computational steering; Regions of interest; Performance modeling; Processor allocation;

Processor reallocation; Redistribution; Topology-aware mapping; Data analysis; Cyclone

tracking; Cloud tracking; Representative frame selection

vii



Contents

Acknowledgements i

Publications iii

Abstract v

Keywords vii

1 Introduction 1
1.1 Simulation, Data Analysis, and Visualization . . . . . . . . . . . . . . . . 1

1.1.1 High-performance Simulation . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Online Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Weather Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Weather Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Weather Research and Forecasting Model . . . . . . . . . . . . . . 9
1.5.2 Regions of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Adaptive Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Computational Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Representative Frame Selection . . . . . . . . . . . . . . . . . . . . . . . 12
1.9 Processor Allocation and Reallocation . . . . . . . . . . . . . . . . . . . 13
1.10 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Related Work 16
2.1 In-situ Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Framework for Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Computational Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Selection of Representative Frames . . . . . . . . . . . . . . . . . . . . . 22
2.5 Performance Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Mesh Repartitioning and Load Balancing . . . . . . . . . . . . . . . . . . 25
2.7 Topology-aware Task Mapping . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Performance Analysis of WRF . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



CONTENTS ix

3 Improving Throughput of Nested Simulations 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Results and Contributions . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Parallel Execution of Subdomains . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Performance Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Processor Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Topology-oblivious mapping . . . . . . . . . . . . . . . . . . . . . 43
3.5.2 Topology-aware mapping . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Resource Allocation and Mapping . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7.1 Domain Configurations . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7.3 Improvement in execution time . . . . . . . . . . . . . . . . . . . 50
3.7.4 Improvement with topology-aware mapping . . . . . . . . . . . . 54
3.7.5 Effect on high-frequency output simulations . . . . . . . . . . . . 58
3.7.6 Efficiency of our processor allocation and partitioning strategy . . 59
3.7.7 Scalability and speedup . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Diffusion-based Repartitioning Strategies 62
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Tracking Cloud Systems via Parallel Data Analysis . . . . . . . . . . . . 65
4.3 Processor Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Partition from scratch . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Tree-based hierarchical diffusion . . . . . . . . . . . . . . . . . . . 74
4.3.3 Dynamic Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.1 Data analysis algorithm . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Domain Configurations . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.4 Improvement in redistribution time . . . . . . . . . . . . . . . . . 84
4.4.5 Distance between senders and receivers . . . . . . . . . . . . . . . 85
4.4.6 Dynamic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.1 Use of our Techniques for Other Applications . . . . . . . . . . . 88
4.5.2 Use of our Techniques for Other Platforms and Interconnects . . . 89

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



CONTENTS x

5 Simultaneous Simulation and Visualization 92
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Adaptive Integrated Framework . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.1 Application Manager . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2 Job Handler and Simulation Process . . . . . . . . . . . . . . . . 98
5.2.3 Frame Sender and Receiver, and Visualization Process . . . . . . 99
5.2.4 Decision Algorithm for the Application Manager . . . . . . . . . . 99

5.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.1 Weather Application: Tracking Cyclone Aila . . . . . . . . . . . . 109
5.3.2 Framework Implementation . . . . . . . . . . . . . . . . . . . . . 111
5.3.3 Resource Configuration . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Integrated Algorithmic and User-driven Steering 132
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 InSt Steering Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2.1 User Interface, SimDaemon and VisDaemon . . . . . . . . . . . . 136
6.2.2 Application Manager . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 Reconciling User-driven and Algorithmic Steering . . . . . . . . . . . . . 137
6.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4.1 Resource Configuration . . . . . . . . . . . . . . . . . . . . . . . . 141
6.4.2 Weather Model and Cyclone Tracking . . . . . . . . . . . . . . . . 142
6.4.3 Framework Implementation . . . . . . . . . . . . . . . . . . . . . 142
6.4.4 Computational Steering Results . . . . . . . . . . . . . . . . . . . 143

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 Reducing Simulation-Visualization Lag on Constrained Networks 150
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2 Simulation-Visualization Lag . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3 Reduction of Simulation-Visualization Lag . . . . . . . . . . . . . . . . . 156

7.3.1 Requirements for Online Visualization . . . . . . . . . . . . . . . 156
7.3.2 Frame Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.3.3 Strategies for Selection of Time steps to Reduce the Lag . . . . . 158



CONTENTS xi

7.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.4.1 Evaluation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.4.2 High-bandwidth Configuration . . . . . . . . . . . . . . . . . . . . 167
7.4.3 Medium-bandwidth Configuration . . . . . . . . . . . . . . . . . . 172
7.4.4 Low-bandwidth Configuration . . . . . . . . . . . . . . . . . . . . 174

7.5 Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8 Conclusions and Future Work 182
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



List of Tables

3.1 Average and maximum improvement in MPI Wait times on BG/L and
BG/P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Sibling configurations for four siblings on BG/L . . . . . . . . . . . . . . 52
3.3 Sibling configurations and performance improvement for varying nest sizes

on up to 8192 BG/P cores. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Execution times (sec) for default, topology-oblivious and topology-aware

mappings for various sibling configurations on BG/L. . . . . . . . . . . . 54
3.5 Execution times (sec) for default, topology-oblivious and topology-aware

mappings on 4096 BG/P cores . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Processor allocation on 1024 cores . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Processor allocation on 1024 cores . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Simulation Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Average improvement in redistribution times for synthetic test cases . . . 84

5.1 Illustration of Disk Space Limitation. Weather simulation of grid size
4486× 4486 points, 10 km resolution, execution on 16,384 cores with 1.2
seconds of execution time per time step, and I/O bandwidth of about 5
GBps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Problem Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Resolutions for different Pressure Values . . . . . . . . . . . . . . . . . . 110
5.4 Simulation and Visualization Configurations . . . . . . . . . . . . . . . . 113

6.1 Simulation and Visualization Configurations . . . . . . . . . . . . . . . . 141

7.1 Simulation and Visualization Configurations . . . . . . . . . . . . . . . . 166
7.2 Statistics for rms distance between successive frames for high-bandwidth

configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.3 Volume between All and Frame Selection Algorithms for high-bandwidth

configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.4 Statistics for rms distance between successive frames for low-bandwidth

configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.5 Volume between All and Frame Selection Algorithms for low-bandwidth

configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xii



LIST OF TABLES xiii

7.6 Volume and Lag between All and Frame Selection Algorithms for emulated
low-bandwidth configuration . . . . . . . . . . . . . . . . . . . . . . . . . 179



List of Figures

1.1 Volume rendering of perturbation pressure on 25th May at 20:00 hours
(Latitude extents: 10◦S - 40◦N; Longitude extents: 60◦E - 120◦E.) . . . . 4

1.2 Nest domains within a parent domain. . . . . . . . . . . . . . . . . . . . 8

3.1 Visualization of multiple depressions in August 2010 on Pacific Ocean. . 31
3.2 Execution times of nested weather simulations over a 107 sq. km. domain

on upto 1024 Blue Gene/L cores. . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Delaunay Triangulation of points representing known execution times. . . 36
3.4 Partitions of processor space in the ratio of execution times of nested

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Partitions for k = 3 when the first partition is along the longer dimension

(a) and when it is along the shorter dimension (b). . . . . . . . . . . . . 41
3.6 Communication times in WRF simulations on 1024 Blue Gene/L cores. . 42
3.7 2D to 3D mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Topology-aware mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.9 Multi-level mapping for the 3-sibling configuration in Figure 3.5(a). . . . 46
3.10 Sample domain in South East Asia with four sibling nests at 1.5 km res-

olution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.11 Performance improvement of execution time on up to 4096 BG/P cores

including and excluding I/O times. . . . . . . . . . . . . . . . . . . . . . 50
3.12 Sibling execution times on 1024 processors on BG/L for four siblings. . . 52
3.13 Sibling execution times on up to 8192 BG/P cores. The legends on the

rightmost side show the number of cores. . . . . . . . . . . . . . . . . . . 53
3.14 Percentage improvement in execution times with and without topology-

aware mapping on 1024 BG/L cores. . . . . . . . . . . . . . . . . . . . . 55
3.15 Percentage improvement in MPI Wait times with and without topology-

aware mapping on 1024 BG/L cores. . . . . . . . . . . . . . . . . . . . . 56
3.16 Percentage reduction in MPI Wait times with and without topology-aware

mapping on 4096 BG/P cores. . . . . . . . . . . . . . . . . . . . . . . . . 57
3.17 Reduction in average number of hops with and without topology-aware

mapping on 4096 BG/P cores. . . . . . . . . . . . . . . . . . . . . . . . . 57
3.18 Variation of integration, I/O, and total per iteration times with number

of processors on BG/P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xiv



LIST OF FIGURES xv

3.19 Variation of fraction of integration and I/O times averaged over all the
different configurations vs. number of processors on BG/P. . . . . . . . . 60

3.20 Scalability and speedup of default sequential strategy and our concurrent
execution approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Tall clouds over the Indian region during the 2005 monsoon season. Image
generated from WRF simulation. Darker regions correspond to regions
with higher cloud water mixing ratios. . . . . . . . . . . . . . . . . . . . 63

4.2 Illustration of processor allocation for nests. . . . . . . . . . . . . . . . . 71
4.3 Data redistribution from old to new set of processors assigned to a nest. . 72
4.4 Processor allocation for nests using partition from scratch. . . . . . . . . 73
4.5 (a) Existing and (b) new processor allocation in the hierarchical diffusion

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 (a) Existing and (b) new trees in the hierarchical diffusion approach. Pre-

dicted execution time ratios of the nests are the weights in the leaf nodes. 75
4.7 Skewed rectangle due to large difference in weights of the two nodes. . . . 76
4.8 Steps of the tree-based hierarchical diffusion algorithm for deleting nests

1, 2, 4, retaining nests 3, 5 and adding new nest 6. . . . . . . . . . . . . . 79
4.9 Nearest neighbour clustering for our parallel data analysis algorithm. . . 82
4.10 Average hop-bytes for partition from scratch method and tree-based hier-

archical approach. X-axis denotes the test case number and Y-axis denotes
the hop-bytes. Tree-based hierarchical approach incurs lesser hop-bytes
than scratch method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.11 Percentage overlap between senders and receivers for partition from scratch
method and tree-based hierarchical approach. X-axis denotes the test case
number and Y-axis denotes the percentage overlap. Tree-based hierarchi-
cal approach has more overlap than scratch method. . . . . . . . . . . . . 86

4.12 Execution and redistribution times. . . . . . . . . . . . . . . . . . . . . . 88

5.1 Illustration of simultaneous simulation and remote visualization using sta-
ble storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Adaptive framework for continuous simulations and online visualization. . 97
5.3 Output Interval and integration time step. . . . . . . . . . . . . . . . . . 108
5.4 Windspeed visualization in finer resolution nest inside parent domain. . . 110
5.5 Visualization (volume rendering) of Perturbation Pressure at 18:00 hours

on 23rd, 24th and 25th May, 2009. . . . . . . . . . . . . . . . . . . . . . 111
5.6 Simulation times with progress in executions for inter-department con-

figuration. The graphs show faster rate of simulation for Optimization-
based approach. Greedy-Threshold (red) and Optimization-based Ap-
proach (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7 Progress of Greedy-Threshold (red) and Optimization-based Approach
(blue) at the visualization end for inter-department configuration. Op-
timization approach shows faster visualization progress. . . . . . . . . . . 116



LIST OF FIGURES xvi

5.8 Free disk space with progress in executions for inter-department configu-
ration. The graphs show the decrease in available disk space as simulation
progresses in time. Greedy-Threshold (red) and Optimization-based Ap-
proach (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.9 Adaptivity of the framework showing variation in number of processors
(Left y-axis) and output interval (Right y-axis) for inter-department con-
figuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.10 Simulation times with progress in executions for intra-country configura-
tion. The graphs show faster rate of simulation for Optimization-based ap-
proach. Greedy-Threshold (red) and Optimization-based Approach (blue). 119

5.11 Progress of Greedy-Threshold (red) and Optimization-based Approach
(blue) at the visualization end for intra-country configuration. Optimiza-
tion approach shows faster visualization progress. . . . . . . . . . . . . . 119

5.12 Free disk space with progress in executions for intra-country configura-
tion. The graphs show the decrease in available disk space as simulation
progresses in time. Greedy-Threshold (red) and Optimization-based Ap-
proach (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.13 Adaptivity of the framework showing variation in the number of processors
(red, left y-axis) and output interval (green, right y-axis) for intra-country
configuration. Decision algorithm computes the optimal number of pro-
cessors and output interval. MPR = 5. . . . . . . . . . . . . . . . . . . . 121

5.14 Simulation throughput for cross-continent moria configuration. Greedy-
Threshold approach leads to stalling. Optimization approach is able
to complete simulation without stalling. Greedy-Threshold (red) and
Optimization-based Approach (blue). . . . . . . . . . . . . . . . . . . . . 122

5.15 Progress of Greedy-Threshold (red) and Optimization-based Approach
(blue) at the visualization end for cross-continent moria configuration.
Optimization approach shows faster visualization progress. . . . . . . . . 123

5.16 Free disk space with progress in executions for cross-continent moria con-
figuration. The graphs show the decrease in available disk space as simula-
tion progresses in time. Greedy-Threshold (red) and Optimization-based
Approach (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.17 Adaptivity of the framework showing variation in number of processors
(Left y-axis) and output interval (Right y-axis) for cross-continent moria
configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.18 Simulation throughput for cross-continent Abe configuration. . . . . . . . 126
5.19 Visualization progress for cross-continent Abe configuration. . . . . . . . 127
5.20 Disk Consumption for cross-continent Abe configuration. . . . . . . . . . 127
5.21 Change in number of processors and output interval for cross-continent

Abe configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.22 Actual rates of simulations for cross-continent Abe configuration. The

rate constraint of our decision algorithm ensures higher simulation values
than the MPR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



LIST OF FIGURES xvii

6.1 InSt: Integrated Steering Framework . . . . . . . . . . . . . . . . . . . . 135
6.2 Flowchart depicting reconciliation . . . . . . . . . . . . . . . . . . . . . . 139
6.3 Simulation (blue) and Visualization (red) progress, and Disk Consump-

tion (green) for intra-country configuration with computational steering.
Initial WRF resolution = 24 km, MPR = 5. Events E1 − E6 affect the
simulation throughput and the visualization progress as reflected in the
graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4 Simulation progress for inter-country configuration with computational
steering. Initial WRF resolution = 18 km, MPR = 3. Both algorithmic
and user-driven steering events (E1−E4) affect the simulation throughput
as reflected in the graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1 Simulation times (blue) and visualization times (red) showing the simulation-
visualization lag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.2 Simulation and visualization progress. . . . . . . . . . . . . . . . . . . . . 155
7.3 Frame Selector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.4 Auto-clustering Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.5 Simulation and visualization times for high-bandwidth configuration. Vi-

sualization curves (except for all) are very close to the simulation curve. . 168
7.6 Histogram for all for high-bandwidth configuration. . . . . . . . . . . . . 170
7.7 Histogram for the auto-clustering algorithm for high-bandwidth configu-

ration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.8 Histogram for the most-recent algorithm for high-bandwidth configuration. 170
7.9 Histogram for the adaptive algorithm with lag bound of 30 minutes for

high-bandwidth configuration. . . . . . . . . . . . . . . . . . . . . . . . . 171
7.10 Histogram for the adaptive algorithm with lag bound of 20 minutes for

high-bandwidth configuration. . . . . . . . . . . . . . . . . . . . . . . . . 171
7.11 Nest position changes for high-bandwidth configuration. . . . . . . . . . . 173
7.12 Simulation and visualization times for medium-bandwidth configuration. 174
7.13 Simulation and visualization times for low-bandwidth configuration. . . . 175
7.14 Rms between successively visualized frames. . . . . . . . . . . . . . . . . 176
7.15 Histogram for all for low-bandwidth configuration for the variable pertur-

bation pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.16 Histogram for the auto-clustering algorithm for low-bandwidth configura-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.17 Histogram for the most-recent algorithm for the low-bandwidth configu-

ration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.18 Histogram for the adaptive algorithm with lag bound of 45 minutes for

the low-bandwidth configuration. . . . . . . . . . . . . . . . . . . . . . . 177
7.19 Nest position changes for low-bandwidth configuration. . . . . . . . . . . 180



Chapter 1

Introduction

Computational science complements experimentation and theory, the two traditional

modes of scientific discovery. It integrates computing, mathematics and science to solve

large and complex real world problems. Computational science helps us tackle fun-

damental problems in science in areas such as climate modeling, weather forecasting,

tsunami prediction, drug discovery, genomic research, aircraft design, automotive design

and many others. The complexity of the mathematics and the large number of calcu-

lations involved in the modeling of these real world scientific problems necessitate the

use of high-performance computing. Increased computational power over the last decade

empowers us with unprecedented potential for scientific discovery at unforeseen scale and

accelerated throughput.

1.1 Simulation, Data Analysis, and Visualization

Simulation and visualization are the two necessary tools for computational scientists.

It is time-consuming and sometimes infeasible to conduct real experiments to validate

and verify scientific theories. Furthermore, it is difficult to predict and test the outcome

of changing a multitude of experimental parameters. Therefore, computer simulation

has emerged as an important tool in understanding scientific phenomena. Visualization

is an effective tool to comprehend the simulation output. Online visualization enables

on-the-fly view of the simulation and hence enables early comprehension of simulation

1



Chapter 1. Introduction 2

output by the scientists. The exponential growth in the amount of data produced by the

simulations demands runtime data analysis. On-the-fly data analysis can detect impor-

tant regions in the simulation domain, which enables automatic refinement of domain

for high resolution simulation. This can improve accuracy of the simulation and hence

enhance the quality of the simulation. Runtime data analysis can also reduce redundancy

in the simulation output by pruning unimportant data. Presenting only significant data

to the computational scientists is not only practical but it will also enhance their visual

experience. In this thesis we explore the challenges involved in simultaneous simulation,

data analysis, and online visualization for weather applications.

1.1.1 High-performance Simulation

Simulation is the numerical evaluation of mathematical models of complex real-world

phenomena, often representing a complex and large system. Simulation is an integral part

of scientific discovery, and can be applied to various scientific disciplines. For example,

molecular dynamics simulations are used to enhance the process of drug discovery [53].

Computational fluid dynamics simulations are used in aerospace applications such as

aircraft wing design. Crack propagation simulations are used for prediction of growth

and propagation of cracks in structures [143]. In many cases, simulations are required to

be done in real time to decide upon the future course of action. For example, air-traffic

control system simulates several hours of air traffic to decide in real time the best way

to reroute the traffic [67]. Simulations that can give real time predictions of the wake

vortices created during the take-off and landing are required in order for the air-traffic

control to take appropriate actions [83].

1.1.2 Data Analysis

The increasingly large scale of problems tackled by the present-day simulations generate

terabytes of data routinely. Future exascale systems will enable simulations to produce

exabytes of data. On-the-fly data analysis can help reduce the data for visualization and

provide faster insight [132]. Efficient data analysis techniques can also detect interesting



Chapter 1. Introduction 3

patterns in the simulation output and recommend high-quality simulations. For exam-

ple, simulation-time analysis of weather simulations may reveal decrease in atmospheric

pressure over certain regions. Early detection of low pressure areas can be beneficial in

improving the fidelity of the simulations by increasing simulation resolution over those

areas. Furthermore, data analysis can prove useful for selection of important frames1 for

visualization. For example, fewer frames may be sufficient for comprehending the output

of weather simulation of a relatively calm day, whereas more number of significant frames

will be required for analysis and visualization of turbulent weather conditions. Runtime

data analysis can help in adaptive selection of significant frames for visualization.

1.1.3 Online Visualization

Visualization is an effective medium of communicating voluminous information to the

human mind [113]. It assists in comprehending the simulation output. Visualization

helps in perception of unknown patterns in the data and also facilitates hypothesis for-

mulation. Figure 1.1 shows the visualization of pressure in the Indian subcontinent. The

low pressure area (blue-coloured) above the Bay of Bengal prominently conveys the oc-

currence of a cyclone. Online visualization gives the scientists an on-the-fly view of the

simulation. This is very important for real time simulations because the scientists can

get real time visualizations of the simulations and hence decision-making process can be

expedited.

1.2 Weather Simulations

Weather simulations are important for weather forecasting. Computers have been playing

an important role in weather forecasting since the inception of weather modeling. A

weather model is a mathematical representation of the atmospheric processes based on

physical, biological and chemical principles. The physical processes are described by

ordinary and partial differential equations, which are solved numerically using methods

1A frame corresponds to the output of a simulation time step.



Chapter 1. Introduction 4

Figure 1.1: Volume rendering of perturbation pressure on 25th May at 20:00 hours (Latitude

extents: 10◦S - 40◦N; Longitude extents: 60◦E - 120◦E.)

like finite-difference approximations. Various meteorological organizations around the

world develop regional-to-global-scale weather models to understand the scientific basis

of weather phenomena, potential impacts of climate change and options for mitigation.

The Intergovernmental Panel on Climate Change [45] reviews social and economic impact

of climate change based on current knowledge of the science of climate change, and

recommends possible response strategies. Weather models are important and are being

continuously improved for better prediction of extreme events like hurricanes, typhoons,

flash floods and tornadoes.

Weather simulations that can predict catastrophic events well in advance can save

lives and prevent damages. Rapid variations in seasonal weather patterns, mainly due

to change in atmospheric composition, have been recently observed, and are capable of

affecting the surface climate of the earth [45]. Drastic changes in the weather can re-

sult in unexpected phenomena at unusual times and so it is important to have accurate

weather forecasting models and efficient online visualization of the model output. Ef-

ficient data analysis techniques can detect abnormal weather patterns and recommend



Chapter 1. Introduction 5

finer resolution simulations for more accurate weather simulations. Faster output from

the weather simulation models are highly desirable because early forecasts of calamities

such as hurricanes, cyclones and tornadoes can give sufficient lead time to policy makers

so that thousands of lives can be saved.

1.3 Motivation

In this thesis, we address important challenges associated with high performance simu-

lations, data analysis, and online visualization for weather modeling applications. Accu-

rate and timely weather predictions regarding strong cloud cover, heavy rainfall, severe

depressions, cyclones, and hurricanes can benefit us tremendously. Weather simula-

tions mainly comprise of solving non-linear higher order partial differential equations

numerically. Ongoing research efforts in the climate science and weather community

continuously improve the fidelity of weather models by employing higher order numer-

ical methods suitable for solving model equations at high resolution discrete elements.

This makes the weather simulations highly compute-intensive.

The sheer amount of simulation output renders traditional methods of data analysis

and visualization less useful. As we move forward to the exascale era, challenges in

visualization and data analysis of large scale simulation data will increase manifold.

New approaches are required for coupling simulation, analysis and visualization of large

datasets [25]. Weather simulations can be highly dynamic in nature due to the sudden

severe and extreme weather patterns in some areas. The computational requirements

of the simulations and the I/O and communication requirements for online visualization

of interesting weather patterns evolve dynamically. Hence, an adaptive framework, that

can continuously simulate at required resolutions and perform efficient data analysis

and online visualization, is of importance. Such a weather simulation and visualization

framework should have the following desirable characteristics.

• Perform online visualization so that timely actions can be taken in case of hazards.

• Determine the frequency of visualization and important frames for visualization.



Chapter 1. Introduction 6

• Analyze simulation output for occurrence of severe events.

• Refine resolution adaptively for greater accuracy.

• Consider resource parameters and application parameters during adaptation.

• Maximize simulation throughput despite many refinement levels to provide high-

fidelity simulation.

• Improve performance of simulations executed on diverse supercomputing platforms

with different processor interconnection topologies.

The objective of this thesis is to explore some of these challenges. Critical weather

applications like cyclone tracking and severe depressions require high-performance sim-

ulations and simultaneous online visualization for timely collaborative analysis by a

geographically distributed climate science community. An adaptive framework that can

alter simulation and resource parameters based on the criticality of the application is

necessary for continuous simulation. It is also highly desirable to have efficient online

remote visualization, where the output of the simulation is visualized as soon as it is

produced. Remote visualization of critical weather events enables joint analysis by geo-

graphically distributed climate science community. A steering framework for the weather

simulation to enable the climate scientist interact with an ongoing simulation helps re-

duce the turnaround time for viewing the effect of the interaction. The dynamic nature

of weather simulations and the possibility of occurrence of multiple uncertain weather

events simultaneously necessitate adaptive refinement of the simulations. Data analysis

can highlight possible regions of interest in the simulation, which may require further

detailed simulations. It is essential to maximize the throughput of these high-resolution

weather simulations so that precautionary actions can be advocated faster.

1.4 Problem Statement

The objective of this thesis is to present a unified framework for simultaneous simulation,

data analysis and visualization for weather applications. We have developed techniques



Chapter 1. Introduction 7

for improving throughput of weather simulations while performing on-the-fly data anal-

ysis and visualization. This thesis aims to integrate strategies for high-performance

simulations with adaptive refinement and efficient online visualization for weather appli-

cations in any simulation-visualization environment.

Firstly, we have developed an adaptive framework for continuous simulation and on-

line remote visualization of critical weather events in resource-constrained environments.

The framework recommends optimal simulation and visualization parameters under con-

straints imposed by the application and resource dynamics like network bandwidth and

storage space. The framework attempts to maximize the rate of simulation based on the

resource characteristics of the simulation-visualization environment. Secondly, we have

developed an integrated user-driven and algorithmic steering framework InSt for crit-

ical weather applications that can integrate steering inputs of the scientists, criticality

of the application and resource constraints to decide the optimal simulation parameters

for steady simulation and online visualization. Such an integrated framework allows the

scientists to alter simulation parameters while the framework reconciles between the user

inputs and the algorithmic recommendations for continuous and faster simulation and

visualization. Thirdly, we devised algorithms for selection of important frames from the

simulation output that are representative of the entire output. Representative frame se-

lection enables efficient online visualization of the simulation output. In the next part of

the thesis, we propose methodologies for high performance simulation of multiple events.

We propose simultaneous simulations of the multiple events, and performance modeling

and processor allocation strategies for the same. We also propose novel topology-aware

mapping heuristics for the processes executing the multiple simulations. Additionally,

we present rescheduling algorithms for dynamic weather events that occur concurrently.

The rescheduling algorithms consider the existing processor allocation and recommend

new subset of processors for the multiple simultaneous simulations so that the data

redistribution cost is minimized.

We have demonstrated these techniques for simulations, data analysis and visualiza-

tion for critical weather applications like tracking cyclones and cumulonimbus clouds in



Chapter 1. Introduction 8

the Indian region and multiple depressions over the Pacific and South East Asian regions.

Thus, the thesis comprehensively considers resource characteristics and application

dynamics to adaptively refine simulations and continuously perform high-throughput

simulations and on-the-fly visualization. The following sections describe some of the key

concepts used in this thesis and give an overview of our work.

1.5 Weather Models

Weather simulation models involve a domain of simulation which represents the chosen

geographical area at a certain horizontal and vertical resolution. The horizontal and

vertical dimensions of the domain represent the number of discrete grid cells in the do-

main. Model resolution is defined as the distance between grid points in the model. The

parent domain is generally simulated at a coarser resolution because finer (i.e., higher)

resolution implies more number of grid cells and hence more number of computations. A

nest is a finer resolution model run embedded within a coarser resolution parent domain.

Nested simulation is typically spawned over a smaller area representing the region of

interest. There can be many nested domains, called siblings within a parent domain as

shown in Figure 1.2.

Sibling 1

Sibling 2

Sibling 3

Figure 1.2: Nest domains within a parent domain.



Chapter 1. Introduction 9

1.5.1 Weather Research and Forecasting Model

In our work, we have used a popular open source weather forecasting tool called Weather

Research and Forecast Model (WRF) version 3.3.1 [80, 121]. It is a regional and mesoscale

numerical weather prediction model and is used by weather agencies all over the world.

The WRF-ARW solves the fully-compressible, non-hydrostatic Euler equations using a

finite-difference scheme on an Arakawa C-grid staggering in the horizontal plane and

a terrain following, dry hydrostatic pressure vertical coordinate. Integration in time is

performed using a time-split method with a 2nd or 3rd-order Runge-Kutta scheme with

a smaller time step for acoustic and gravity-wave modes. The model supports static and

moving nested grid configurations. Various options like periodic, open, symmetric and

specified are available for the lateral boundary conditions [79, 121].

WRF has been designed and written to perform well on massively parallel comput-

ers. It is written in Fortran90 and can be built in serial, parallel (MPI) and mixed-mode

(OpenMP and MPI) forms, simply by choosing the appropriate option during the con-

figure process. The model code has been analyzed extensively for a number of HPC

platforms in the past but the study has been mostly restricted to a simple single do-

main model configuration [80, 114, 140]. However, for most practical applications, the

weather community can immensely benefit from high-resolution nested domains. Nested

simulations enable simulations of smaller regions of the parent domain at greater depth

and hence higher fidelity. For example, high-resolution nested simulation can be spawned

over the lowest pressure region in the domain in the case of hurricanes and cyclones. The

data for the finer resolution nested domains are generally interpolated from the coarser

domain by a process called forcing. In a two-way nest integration, the finer grid solution

overwrites the coarser grid solution for the coarse grid points that lie inside the finer grid

by a process called feedback in WRF [81, 121].

WRF outputs data in the form of NetCDF [100] files. Each NetCDF file contains the

values of various meteorological variables for each of the grid points in the domain for a

specified number of simulation time steps.



Chapter 1. Introduction 10

1.5.2 Regions of Interest

Finer resolution run can result in high-fidelity weather simulations. However, higher

resolution model run requires smaller time step and more number of grid points and

hence increases the amount of computation. Nesting [81] enables finer resolution runs

over smaller regions of interest in order to avoid expensive computation across the entire

parent domain. There can be multiple nests formed over multiple regions of interest,

either dynamically or statically. There can be a single region of interest as in the case of

tracking cyclones or hurricanes. In this case, a single nested simulation is spawned over

the cyclone or hurricane. This will typically be a moving nest because of the moving

cyclone. There can be multiple regions of interest like in the case of depressions or cloud

formations. In this case, a nested simulation is spawned for each region of interest. The

first part of this thesis deals with single region of interest and in the later part of the

thesis, we extend to multiple regions of interest.

1.6 Adaptive Framework

Critical weather applications like cyclone tracking and earthquake modeling require high-

performance simulations and online visualization simultaneously performed with the sim-

ulations for timely analysis. In-situ visualization directly uses the simulation data from

physical memory for visualization, without requiring any intermediate storage of the

data. However, users often require the entire simulation data for further analysis. In-

situ visualization allows limited interaction with the full mesh. So, we transfer the entire

simulation data to a remote visualization site. Here remote implies that the simulation

and visualization processors do not share physical memory and can be connected by very

high to very low bandwidth networks. Remote visualization of critical weather events

enables joint analysis by geographically distributed climate science community.

In remote online visualization, resource constraints like limited storage space, low

network bandwidth and low I/O bandwidth can limit the effectiveness of online visu-

alization. In our work, we have developed an adaptive framework that simultaneously



Chapter 1. Introduction 11

performs numerical simulations and online remote visualization of critical weather ap-

plications in resource-constrained environments. Considering application dynamics like

intensity of the weather phenomenon and resource dynamics like available storage space

and network bandwidth, the framework adapts various application parameters like sim-

ulation resolution, progress rate of simulation and amount of data for visualization and

resource parameters like number of processors to be allocated. Such an adaptive frame-

work is highly essential for optimizing the rate of simulation and the rate of visualization

considering the resource characteristics of the simulation-visualization environment. Our

framework, that continuously adapts to the application dynamics, is integral to weather

simulations, where occurrence of sudden events require spawning of nested simulations

and dynamic nature of the events require alteration in application parameters.

We present two algorithms for the decision making process in the framework. These

algorithms output the processor allocation for simulation and the frequency of data for

visualization based on the resource and application parameters. The first algorithm is

based on a näıve greedy approach. It initially tries to maximize the throughput of sim-

ulation and the number of frames for visualization. It reactively responds to resource

constraints and hence sometimes leads to stalling of the simulation. The second algo-

rithm solves a linear optimization problem to recommend optimal parameters for the

simulation and visualization. This is a proactive approach and tries to optimize the

execution parameters during the entire simulation. We have experimented with varying

network bandwidths between the simulation and visualization sites. Specifically, we have

conducted inter-department, intra-country and cross-country simulation-visualization ex-

periments. We show that our optimization method is able to provide about 30% higher

simulation rate and consumes about 25-50% lesser storage space than the greedy ap-

proach.

1.7 Computational Steering

Computational steering is a process by which the user can interactively explore a simula-

tion during execution based on the visualization of the current results. It is a well-studied



Chapter 1. Introduction 12

approach that allows the user to give feedback to the simulation based on the visual-

ization [33, 59, 95, 131]. Algorithmic steering uses an algorithm to decide application

parameters to improve system and application performance [131]. User-driven steering

takes inputs from the user to steer the simulation.

Steering of weather simulations is essential for effective and timely analysis by climate

scientists. Steering enables the climate scientists to refine the ongoing simulation and

see the effects of refinement immediately. A weather simulation steering framework

can also enable scientists to modify other execution parameters like location of nested

simulation and frequency of visualization. However, in remote online visualization, it is

also important to consider the resource constraints along with the inputs of the scientists.

We have developed an integrated user-driven and automated steering framework InSt for

simulations, online remote visualization, and analysis for critical weather applications.

InSt provides the user control over various application parameters including region of

interest, resolution of simulation, and frequency of data for visualization.

InSt reconciles between the parameters decided by the framework algorithm and

the input parameters of the scientists. The scientists may specify high progress rate

of simulation, high resolution and high output frequency of visualization. However,

depending on the resource characteristics like I/O bandwidth, speed of computation,

available storage space and network bandwidth, it may not be feasible to satisfy all

requirements of the user. In this scenario, our framework can give options to the user

or override some of the user inputs in order to maximize most important simulation

parameters like the rate of simulation.

1.8 Representative Frame Selection

In online weather simulations, it is important to visualize the simulation output as soon

as it is produced. However, the output interval is decided by our framework depending

on resource constraints like storage space and network bandwidth. Very high frequency

of output can lead to substantial delay between the simulation time and the visualiza-

tion time if the simulation-visualization network bandwidth is low. The challenge in



Chapter 1. Introduction 13

online remote visualization is to minimize the lag between the time when the simulation

produces an output frame and the time when the frame is visualized. It is important

to reduce the lag so that the scientists can get on-the-fly view of the simulation. We

have developed algorithms to minimize the simulation-visualization lag and concurrently

visualize important events in the simulation.

We present algorithms for online data analysis to decide representative frames to be

sent to the visualization site. There may be redundancy in frames when the interval

between two consecutive frames output by the simulation is low. For example, if the

simulation outputs frames every 3 minutes of simulation, there may not be significant

difference between two consecutive frames. In such cases, we transfer the most represen-

tative frames for visualization and drop the lesser important frames. This also reduces

the simulation-visualization lag.

The number of pending frames at the simulation site depends on the application

and resource parameters. Our algorithms transfer a subset of significant frames to the

visualization site depending on the lag at the simulation site. The most-recent algorithm

transfers the most recently simulated frame for maximum reduction in the simulation-

visualization lag. The auto-clustering frame selection algorithm clusters the pending

frames based on modified k-means algorithm for temporal clustering. Additionally, the

adaptive algorithm dynamically decides the information content in the frames to be

transferred, depending on the user-specified lag bound.

1.9 Processor Allocation and Reallocation

Accurate and timely prediction of weather phenomena, such as hurricanes and flash

floods, require high-fidelity compute-intensive simulations of multiple finer regions of

interest within a coarse simulation domain. The high-resolution nested simulations im-

prove accuracy of the simulation output at the cost of more number of computations.

Current weather simulation models execute these nested simulations sequentially using

all the available processors. This may lead to sub-optimal performance depending on

the size of the nest and the number of available processors, due to sub-linear scalability



Chapter 1. Introduction 14

of the weather models. We present a strategy for parallel execution of multiple nested

domain simulations to improve the overall performance.

Simultaneous executions of nested simulations imply allocating a disjoint subset of the

maximum number of processors for each nested simulation. We partition the 2D process

grid into disjoint rectangular regions associated with each nested domain. The processor

allocation is based on the estimated execution time of the nested simulation. For this, we

present our strategy of performance modeling the nested simulations. We also present a

rectangular subdivision algorithm for allocating a sub-rectangle of the 2D process grid

to a nested simulation. The nested simulations are executed on a subset of the process

grid and the parent simulation is executed on the entire process grid. To optimize the

communication times for both nested and parent simulations, we propose topology-aware

mapping of processes to the processor cores on the network topology. This helps reduce

the overall communication times and improves the overall performance.

Many meteorological phenomena occur at different locations simultaneously. These

phenomena vary temporally and spatially. Hence nested simulations for these phenomena

are dynamically spawned and dissolved. Dynamic variation in the number of these

nests require efficient processor reallocation strategies. We have developed strategies

for efficient partitioning and repartitioning of the nests among the processors. As a case

study, we consider an application of tracking multiple organized cloud clusters in tropical

weather systems. We present a parallel data analysis algorithm to detect such clouds.

We have developed a novel tree reorganization based hierarchical diffusion algorithm that

reallocates processors for the nests such that the redistribution cost is less.

1.10 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we review prior work re-

lated to simultaneous simulation and visualization, computational steering, performance

modeling, load balancing, repartitioning, and topology-aware mapping. In Chapter 3,

we describe techniques for performance modeling, processor allocation and topology-

aware mapping for providing high throughput for nested simulations. In Chapter 4, we



Chapter 1. Introduction 15

introduce diffusion-based repartitioning strategies to reallocate processors for dynamic

nests. In Chapter 5, we discuss simultaneous simulation and online remote visualization

for critical weather applications in resource-constrained environments. In Chapter 6,

we describe an integrated steering framework for weather simulations. In Chapter 7,

we discuss algorithms for efficient online visualization. In Chapter 8, we provide some

concluding remarks and directions on future work.



Chapter 2

Related Work

In this chapter, we first describe some earlier work related to simultaneous simulation

and visualization. Next, we describe related work in computational steering of large-

scale simulations and visualizations of scientific data. The next section describes prior

work on selection of representative frames. We then review prior work on performance

modeling, load balancing and partitioning, and topology-aware mapping. Finally, we

present an overview of earlier work on performance analysis of WRF.

2.1 In-situ Visualization

The analysis and study of time-varying output data, obtained from numerical simula-

tions, is integral to scientific discovery. The conventional approach of visualizing simula-

tion output is an offline “post-processing” step after the simulation is completed. There

have been strategies on offline visualization for earthquake simulations [146]. However,

for critical applications like weather forecasting, online visualization strategies play an

important role.

Simulation-time analysis and visualization using the same resources as the simu-

lation is called in-situ visualization. It has been extensively studied in the recent

times [28, 30, 75, 76, 123, 129, 136]. Tu et al. [129] and Ma et al. [75, 76] proposed

tightly-coupled execution of the simulation and visualization components where a sim-

ulation time step is followed by its visualization on the same set of processors. The

16



Chapter 2. Related Work 17

authors use a common data structure for both simulation and visualization. A drawback

of this approach is that a single data structure is often not efficient for both simulation

and visualization. Additionally, all algorithms in the visualization pipeline may not scale

as efficiently as the simulation, which limits the effectiveness of tight coupling [30]. They

have considered the simulation of earthquake ground motion. The simulation and visu-

alization cycles alternate executions on the same set of processors using the same shared

data, minimizing the cost of communication from the simulation to the visualization

component. Due to alternate executions, the simulation component is stalled while the

visualization is performed. Since high-fidelity simulations demand more computations

and more resources than visualization, it is undesirable to stall the simulation. Stalling

simulation while the visualization component runs would cause the subsequent output

of simulation to be produced after a considerable delay.

Another approach to in-situ visualization is to use shared physical memory [28, 32] or

network [147] by the simulation and visualization phases. This alleviates the time taken

to write data onto the secondary memory but requires huge amount of physical memory

for accurate simulations. In [28], the authors use 1 TB of shared memory in their exper-

imental setup. They have conducted weather simulation of the 2005 Hurricane season

using a global climate model. Though this approach decouples the set of processors on

which each component runs, it requires large amount of shared memory. A long-running

high-resolution simulation with high output frequency executed on modern-era petaflop

supercomputers is highly likely to suffer from unavailability of memory to store the sim-

ulation output. Also, the longer the scientist interacts with the current time step data,

the lesser will be the time taken to overflow the physical memory.

All the above efforts consider critical weather applications in tightly-coupled envi-

ronments. An important drawback of all the above approaches is that the visualization

expert cannot interact with the full mesh, going back and forth in time. In our model of

continuous simulation and remote visualization, we aim to perform online visualization

without the requirement of a huge expensive physical memory and giving full flexibil-

ity to the scientist to interact with the full mesh, going back and forth in time. Ours



Chapter 2. Related Work 18

is the first work that adaptively performs simultaneous simulations and online remote

visualization for these applications.

Though the transfer time can vary from seconds to minutes depending on the amount

of data sent and the network bandwidth, our approach of transferring the simulation out-

put to another site for visualization is a viable option for petascale applications because of

limited physical memory at the simulation site. Current supercomputers like Kraken [60]

have 16 GB physical memory per node whereas the requirements for a coupled simulation

and in-situ visualization for a high-fidelity weather application can exceed the available

physical memory per process. Additionally, the simulation time increases with the fidelity

of the simulation. The option of stalling the simulation to perform in-situ visualization

is not considered in our work.

Another approach is to perform visualization calculations at the site of the simulations

and send the visualization results (images) to a different site for visualization by the

scientist. The images are typically much smaller than the compressed raw data, and

hence result in smaller costs due to data transfers to the visualization site. This can also

help in avoid using data reduction techniques discussed in this thesis. However, sending

only the images will allow the user to receive only a predecided view of the data and not

interact with the full data. If the user wants to modify the visualization pipeline, the

request has to be sent to the simulation site, which in turn will increase the interaction

time of the scientist.

2.2 Framework for Visualization

Whitlock et al. [136] introduced a simulation library Libsim to enable in-situ analysis

and visualization using VisIt. Libsim reads simulation data from physical memory when

required by the VisIt server. Once the user creates a plot and VisIt executes the plot’s

data flow network, the data access functions of the simulation are invoked to retrieve

the required data. The simulation code needs to be modified to incorporate these data

access functions. Fabian et al. [30] introduces the ParaView coprocessing library to

integrate visualization with simulation codes. The temporal frequency at which the



Chapter 2. Related Work 19

simulation data is passed for visualization and the visualization pipeline configuration

like orientation of slice plane is predecided before the current simulation time step output

is processed by the library. In our work, the user can perform the full analysis on-the-fly.

This is helpful because the analysis scenarios are often not known a priori, especially in

critical weather applications.

Wu et al. [141] have proposed a framework for remote visualization to self-adapt

according to visualization needs and time-varying network and node conditions. They

group the modules that implement visualization and networking subtasks, and map them

onto computing nodes with disparate computing capabilities and network connections.

Using estimates for communication and processing times of subtasks, they have presented

a polynomial-time algorithm to compute a decomposition and mapping to achieve min-

imum end-to-end delay of the visualization pipeline. Moad et al. [82] use parallel VTK

to visualize WRF data sets at an interactive rate from the storage. In our work, we

aim to achieve minimum end-to-end delay of the entire simulation-visualization pipeline.

Our framework considers both application and resource dynamics to adapt various sim-

ulation and visualization parameters like simulation resolution and amount of data for

visualization.

2.3 Computational Steering

Computational steering enables scientists to interact with a running simulation and pro-

vide feedback or change simulation parameters. Computational steering has been exten-

sively studied over the past several years [33, 36, 37, 47, 71, 92, 94, 95, 102, 103, 116,

131, 150]. A variety of steering systems have emerged like SCIRun [93], CUMULVS [33],

Discover [71], VASE [47] etc. A taxonomy of steering systems and tools can be found

in [37, 95]. Different kinds of steering have been used. Exploratory steering allows the

scientists to control the execution of long-running, resource-intensive applications for

application exploration. For example, in the work by Shenfield et al. [116], they propose

a steering system that allows the user to monitor or alter execution parameters of multi-

objective evolutionary algorithm for engineering design. Performance steering allows



Chapter 2. Related Work 20

scientists to change application parameters to improve application performance. Algo-

rithmic steering uses an algorithm to decide application parameters to improve system

and application performance [131]. For example, the work by Ribler et al. [101] proposes

using fuzzy logic to adapt to changing application resource demands and system resource

availability.

Computational steering has been applied to different kinds of applications like molec-

ular dynamics simulation, biological applications, astrophysics, atmospheric simulations,

computational fluid dynamics etc. [10, 42, 44, 50, 52, 83, 134]. These frameworks were

mainly developed for exploratory steering in order to change simulation parameters in-

teractively and thereafter, visualizing the simulation output with the new parameters.

Johnson et al. have applied their steering model to cardiac defibrillation simulation and

defibrillation electrode design [52]. They allow designing of bioelectric devices in an in-

teractive graphical environment. Beazley et al. [10] have presented a lightweight steering

tool based on scripting languages for large-scale molecular dynamics simulations. Jean

et al. [50] have used Falcon [36] to develop an integrated approach for online monitor-

ing, steering, visualization of atmospheric simulations. The work in [134] describes an

exploratory simulation environment for Smoothed Particle Hydrodynamics simulation

of astrophysical phenomena in areas such as star formation and evolution. We have

also built an user interface for exploratory steering by climate scientists. The interface

allows scientists to input simulation parameters like resolution and output frequency as

described in Chapter 6.

There are some steering systems which do performance steering [26, 33, 36, 59, 99,

101, 102, 125]. CUMULVS [33, 59] provides the user with a viewer and steering inter-

face for modifying the application’s computational parameters and improving application

performance. Falcon [36] is a system for online monitoring and steering of large-scale

parallel programs with the goal of improving the application’s performance or affect

its execution behaviour. Autopilot [101, 102] is about dynamically adapting to chang-

ing application resource demands and system resource availability. They use real-time



Chapter 2. Related Work 21

performance data to steer the system. In [116], the authors show that steering of multi-

objective evolutionary algorithm improves quality of the solutions. In [26], the authors

have built a tuning framework for automatic reconfiguration of the application through

tunable parameters. Their work on performance steering is about automatic mechanisms

for adapting parallel programs for better performance. The runtime system is adaptable

since it can dynamically reconfigure the tunable parameters. We have worked on au-

tomatic tuning for smooth and continuous simulation and visualization. In Chapter 5,

we have shown dynamic adaptation of application and system parameters based on the

resource constraints for critical weather applications. Various resource constraints in-

cluding available storage space, network bandwidth and I/O bandwidth are considered

to be able to do continuous visualization with maximum simulation rate.

Pablo [99] performance analysis environment is a system for real-time adaptive control

system that configures resources based on observed application behavior. This dynamic

performance instrumentation of applications is advantageous over the traditional post-

analysis of poor performance of applications. Their framework can adapt to temporally

varying application resource demands. Active Harmony [125] deals with automated per-

formance tuning. It allows runtime tuning of application parameters like read-ahead

parameter, switching of algorithms etc. They have developed runtime tuning algorithms

to intelligently set the parameters at runtime to tune the application performance. The

most common performance metrics considered are CPU time or memory space used.

The main objective of our algorithmic steering framework is to perform on-the-fly re-

mote visualization simultaneously with the simulations adapting to changing resource

configurations.

There have been some efforts on remote computational steering [15, 142]. Wu et

al. [142] focus on computational steering in distributed environments. They formulate

visualization pipeline configuration problems with the objective of maximizing the frame

rate. They show that these problems are NP-complete and propose heuristics based

on a dynamic programming approach. In the work by Brooke et al. [15], the authors

show how geographically distributed teams can view simultaneously a visualization of a



Chapter 2. Related Work 22

running simulation and can steer the application.

Jean et al. [50] have developed an integrated approach for online monitoring, steering

and visualization of atmospheric simulations using Falcon [36]. To our knowledge, this

is the only work on steering of climate applications prior to our work. They have done

simulation of physical and chemical interactions in the ocean and atmosphere. In order to

evaluate different parameter settings by the user, they have built a steering interface to let

the user dynamically modify the application execution. We have worked on algorithmic

steering and user-driven steering of weather simulations. In Chapter 6 we describe our

efforts on reconciliation of algorithmic and user-driven steering. Our work differs from

the above efforts because we not only let the user interactively steer the application, but

we also let the system override the user decision in order to meet resource constraints

and application performance of critical weather applications.

2.4 Selection of Representative Frames

Selection of frames to visualize important events may appear similar to keyframe selec-

tion, which has been widely studied for video summarization [72, 73, 149]. However, it is

not directly applicable to selection of simulation output for online visualization of critical

applications because in this case we want to select the best set of representative frames

taking into account the current lag. In real-time video transmission, each frame may be

encoded using different bit rate depending on the importance of the frame or on the per-

ceptual quality required for that frame [90]. Varying number of bits are used on different

parts of the video sequence to maximize the quality delivered to the end user. Often these

videos are pre-analyzed to allocate the right number of bits to each frame, depending on

the frame content. In our application, capturing the key events is more preferable unlike

video transmission, where continuity of the video clip is a constraint. Frame skipping

may lead to perceptual disturbance in on-demand video transmission [91], whereas for

our application skipping a frame may be acceptable.

In [115], the authors exploit data coherency between consecutive simulation time

steps. They calculate the differential information among a sequence of simulation data.



Chapter 2. Related Work 23

At each time step the differential information is used to compute the locations of pixels

that need updating. They have found that when the percentage of changed elements is

over 50%, the performance of their differential volume rendering method is worse than

the regular ray casting method. This method is useful when a large percentage of values

remain constant from one time step to the next time step. In our case, we found that

there are more than 80% changed elements between successive time steps. Hence sending

differential information will lead to diminishing returns in our case. Since the differential

information is more, it will not result in saving time by sending differential frames and

hence will not reduce the lag.

In [135], Wang et al. derive an importance measure for each spatial block in the joint

feature-temporal space of the data based on the formulation of conditional entropy. They

use this importance measure to identify the most essential aspects of time-varying data.

Based on the clustering of the importance curves of all the volume blocks, they suggest

effective visualization techniques to reveal the important aspects of time-varying data. To

calculate entropy, they form multidimensional histograms from the data block statistics.

Their results show that the histogram calculation takes 19 hours for a 960 × 660 × 360

volume for 222 time steps with block size of 48×33×18. Such a large amount of time for

selection of important frames from a running simulation is clearly unsuitable for efficient

online visualization.

Patro et al. [96] have presented a method to measure saliency in molecular dynamics

simulation data. They use the saliency function to guide the selection of representative

and anomalous time steps for summarization of simulations. Their keyframe selection

method for molecular dynamics simulations considers the atom positions to determine

saliency of the atoms in a time step and then aggregate information to find saliency

of the time step. Their saliency function for keyframe selection is specific to molecular

dynamic simulations where the changes in atomic positions between consecutive time

steps of a simulation are dominated by Brownian motion and interesting and purposeful

molecular conformational changes occur only over larger time scales.

Kendall et al. [51, 57] demonstrate optimized analysis techniques for multivariate



Chapter 2. Related Work 24

pattern discovery from terascale climate data stored on disk in NetCDF format. There

are also other works [56, 105] which demonstrate offline approach of analyzing climate

data, we perform online weather data analysis in our work.

2.5 Performance Modeling

There has been a lot of research on performance modeling and prediction of applica-

tion execution times on HPC systems. Allan et al. [5] compare tools for predicting

performance on a range of architectures and applications. Dimemas [6, 104] predicts

performance of MPI applications on distributed and grid environments. It requires real

execution of the application to capture CPU bursts and communication pattern, and the

system parameters. PACE [16, 49, 86] is a tool for performance prediction of applica-

tions running on parallel systems. Application model is generated using static source

code analysis to infer the control flow and communication pattern of the application.

PACE takes as input the application model and the hardware configuration of the re-

source on which the application will run, and predicts the application performance on

the given resources.

PHANTOM [148] uses deterministic replay techniques to measure sequential compu-

tation time of an application by executing each process one by one on a single node of

target architecture. They show results for up to 1024 cores. This approach does not

effectively capture the effect of network topology on communication times. It is also not

easily scalable to higher number of processors because of replaying every process. Barnes

et al. [8] use a second-order polynomial regression model to fit execution time on large

number of processors collected from many instrumented runs for different input config-

urations on fewer processors. This requires many training runs and does not capture

the non-linearity in many applications. Dinda et al. [24] describe a system that predicts

running time of compute-bound tasks on different hosts to enable real-time scheduling

decisions. They use linear time series models for host load predictions. Many existing

works [7, 130] develop analytical models of applications to predict their performance.



Chapter 2. Related Work 25

Barker et al. [7] present an analytical performance model for a hydrodynamics appli-

cation. They model the computation times and various communication times of the

application. Such analytical modeling requires detailed knowledge of the application.

There exists some prior work on weather forecasting applications. Kerbyson et al. [58]

describe an analytical performance model parameterized in terms of WRF application in-

puts (grid size, computation load per grid point, etc.) and system parameters (processor

count, network topology, latencies and bandwidth, etc.). This model was developed via

a careful manual inspection of the dynamic execution behavior of the WRF application

and was subsequently validated using performance measurements on two systems - an

AMD Opteron cluster and IBM Blue Gene/L. Delgado et al. [23] (extending their earlier

work in [109]) describe a regression-based approach for modeling WRF performance on

systems with less than 256 processors, but their primary focus is on capturing the system

related factors such as clock speed, network bandwidth, which they do via a multiplica-

tive effects model. Unlike previous efforts, our performance prediction model uses linear

interpolation based on the grid size and aspect ratio of the grid using actual simulation

times obtained from a small set of profiling WRF runs. Our prediction approach does

not explicitly incorporate system related factors. Further, [58] and [23] only focus on

predicting performance for single domain configurations whereas we use performance

prediction results for partitioning the available processor space into different sizes for

concurrent executions of multiple nested domains.

2.6 Mesh Repartitioning and Load Balancing

Many of the existing efforts in mesh adaptation and repartitioning have been in the

domain of Adaptive Mesh Refinement (AMR) applications [87, 118], in which reparti-

tioning and dynamic load balancing are critical components. Schloegel et al. present a

multilevel diffusion scheme for repartitioning adaptive meshes [112]. A commonly used

strategy for mesh repartitioning is to map the problem to graph partitioning and at-

tempt to minimize the edge-cut representing the amount of communication between the

partitions [55, 87, 112]. There also exists approaches such as recursive bisection [117]



Chapter 2. Related Work 26

that cater to both regular and irregular domains. Recent work [84] addresses scenar-

ios involving processors with heterogeneous computational capacity and communication

bandwidth that requires partitioning the domain of interest into multiple subdomains in

proportion to the computational capacity of the processors. In our case, the partitions

are the nests and there is no communication between the nests. Hence the graph par-

titioning heuristics are not directly applicable in our case. In contrast to earlier work,

the application-specific constraints in our work require that a single nested domain is

assigned to a rectangular processor grid with constraints on the aspect ratio of the rect-

angle to achieve optimal performance. We partition the processor space into multiple

disjoint rectangular grids that are assigned to the individual nested domains so that the

computational capacity is proportional to the domain workload.

Moreover, existing efforts in AMR [65, 87] and irregular mesh applications [112]

perform repartitioning of adaptively refined meshes primarily to achieve dynamic load

balancing. Diffusion methods have been used earlier [41, 54, 74, 78] to achieve dynamic

load balancing. In our work, load balancing is implicitly achieved by partitioning the

processor space into multiple disjoint rectangular grids that are assigned to the individual

nested domains in proportion to the domain workloads. The primary focus of our work

is repartitioning the rectangular processor grid into sub-rectangles while minimizing the

data redistribution cost when nests dynamically appear and disappear. In our case, a

rectangular process grid needs to be allocated for each nested domain and one processor

executes a region of a nested domain. The new processor allocation after the redistri-

bution is also a sub-rectangle of the rectangular process grid for the parent simulation.

Thus we require to reform the existing rectangles such that there is maximum overlap

between the old and new process grids (sub-rectangles) for the same nest in consecutive

adaptation points.

Furthermore, in AMR applications, a grid is refined multiple times and inter-grid

operations between the refinement levels are considered while repartitioning using Space

Filling Curve (SFC) strategies like Hilbert ordering [110]. In our case the multiple high-

resolution nests are formed at different locations in the simulation domain and there is



Chapter 2. Related Work 27

no communication between these nests. We focus on minimizing the data redistribution

and maximizing the overlap between the old and new rectangular process grids for the

same nest. Hence SFC based repartitioning is not applicable for our domain.

Sinha et al. [118] presented an adaptive system sensitive partitioning of AMR appli-

cations that tune the partitioning parameters to improve overall performance. In these

efforts, the virtual 2D process topology is not considered to make redistribution decisions.

However, in our work we need to allocate a sub-rectangle of the 2D process grid to each

nest. This requires us to consider the virtual 2D process topology in our redistribution

algorithm for the selection of sub-rectangles.

2.7 Topology-aware Task Mapping

Application scheduling is integral to performance of applications [11]. There exists lot of

work on task scheduling [27, 106, 120, 133], some on communication-aware task schedul-

ing [63, 88, 89, 119]. Past work [12–14, 19, 29, 39] shows various techniques to map

parallel applications to communication networks. The techniques vary with the dif-

ferent network topologies. Specifically, mapping optimizations for Blue Gene torus net-

works [12, 19] take the application communication logs as an input and generate mapfiles

for future application runs to optimize the hop-byte metric. Bhatele et al. [12] also show

benefits in a single domain WRF run with their techniques. These techniques in litera-

ture are oblivious to the exact data flow in the application, though they can be tuned

to map certain critical phases of the application. While they may be sufficient for single

domain WRF simulations, multiple sibling domains running simultaneously present a

harder problem. This is because we need to optimize the communications in the main

domain as well as the multiple nested domains. In Chapter 3, we present mapping op-

timizations for WRF that selectively map each subdomain to a part of the torus, while

also keeping the number of hops minimal for the subdomain and the parent domain

processes. None of the existing work address this problem of topology-aware mapping

for multiple dependant subtasks of an application.



Chapter 2. Related Work 28

2.8 Performance Analysis of WRF

Porter et al. [97] consider various aspects of WRF performance using three nested do-

main configuration. They present various compiler optimizations for PathScale and PGI

compilers and mixed-mode executions for improving WRF performance. They report

performance improvements of up to 10% for WRFv3.1.1 as a result of altering PGI

compiler flags. They also present results to show that executing WRF on fewer cores

per node in dm-mode reduces the time spent in MPI communication. Additionally,

they report improvement in WRF performance upon changing the default x-y processor

decomposition.

In [140], Wright et al. examine the scalability of WRF (version 2.1.2) on a single

domain across different architectures using Integrated Performance Monitoring (IPM)

tool [46] to analyze the performance. They show that for most of the architectures,

WRF exhibits a sublinear speedup of both computation and communication times with

increasing number of cores. Their results also show that MPI Wait predominates the

MPI communication times in WRF owing to the large number of point-to-point commu-

nications. Their experiments demonstrate the absence of significant contention for the

on-node network resources between cores on the same node when fewer cores are used

per node. They also report that the load imbalance in WRF increases with more number

of cores and impacts the communication and computation time scalabilities.

Shainer et al. [114] analyze WRF performance on HPC clusters using a single domain

WRF configuration. They show that the performance and scalability of WRF is better

on Infiniband than gigabit Ethernet. Their results show that the productivity of WRF

increases by executing multiple jobs per node. Using message size distribution profiling,

they demonstrate the importance of high interconnect throughput to improve efficiency

of WRF with increasing number of cores. From their experiments, they conclude that

latency for 0–64B messages and throughput for 16K–64K messages are critical. They

observe that MVAPICH and OpenMPI have higher throughput than HP-MPI for 16K–

64K messages and hence the performance of WRF degrades when HP-MPI is used.



Chapter 2. Related Work 29

However, these message sizes are specific to their domain because the size of messages

changes with the domain size.

In this thesis, we have worked on improving overall WRF performance for simulations

with multiple sibling subdomains.



Chapter 3

Improving Throughput of Nested Simulations

High resolution nested simulations improve accuracy of the simulation output. How-

ever higher resolution and smaller time step increases the computation cost of nested

simulations. The simulations are more expensive than the visualization, which can be

performed fast on present day hardware accelerators. Hence, we focus on improving the

throughput of simulations. In this chapter, we present a strategy to improve the perfor-

mance of nested simulations by parallel execution of multiple nested domain simulations.

3.1 Introduction

Accurate and timely prediction of catastrophic events such as hurricanes, heat waves,

and thunderstorms enables policy makers to take quick preventive actions. Such pre-

dictions require high-fidelity weather simulations and simultaneous online visualization

to comprehend the simulation output on-the-fly. Multiple similar weather phenomena

may occur simultaneously in different locations of the parent domain. Simulating and

tracking the multiple regions of interest at fine resolutions is important in understanding

the interplay between multiple weather phenomena and for comprehensive predictions.

For example, Figure 3.1 illustrates the phenomena of two depressions occurring simulta-

neously in the Pacific Ocean. Here, it is necessary to track both depressions to forecast

the possibility of a typhoon or heavy rainfall. In such scenarios, multiple simulations

need to be spawned within the main parent simulation to track these phenomena. The

30



Chapter 3. Improving Throughput of Nested Simulations 31

high resolution simulations are generally executed as subtasks within the coarser-level

parent simulation.

Figure 3.1: Visualization of multiple depressions in August 2010 on Pacific Ocean.

In weather simulations involving multiple regions of interest, the nested child simula-

tions are solved r number of times for each parent integration step, where r is the ratio

of the resolution of the parent simulation to the nested simulation. At the beginning

of each nested simulation, data for each finer resolution smaller region is interpolated

from the overlapping parent region. At the end of r integration steps, data from the

finer region is communicated to the parent region. The nested simulations demand large

amounts of computation due to their fine resolutions. Hence, optimizing the executions

of nested simulations can lead to a significant overall performance gain. Additionally, the

need for simultaneous visualization of the fine-grained weather predictions also entails

high frequency output of weather forecast, which in turn results in huge I/O costs. Thus,

reducing the I/O costs can also improve the overall performance.

3.1.1 Motivation

Existing weather applications employ a default strategy of executing the nested simula-

tions corresponding to a single parent domain sequentially one after the other using all

the available processors. However, these applications typically exhibit sub-linear scala-

bility resulting in diminishing returns as the problem size becomes smaller relative to the

number of available cores. For example, we observed that WRF is scalable up to large



Chapter 3. Improving Throughput of Nested Simulations 32

number of cores [80] when executed without a subdomain, but exhibits poor scalability

when executed with subdomains. Figure 3.2 shows the scalability of WRF on 1024 cores

of IBM Blue Gene/L. The figure shows the execution times of WRF simulations with

different configurations, each involving a parent domain of size 286×307 and a child

domain. We experimented with various sizes of subdomains from 415×445 to 166×199

(nest sizes are shown in the figure). Note that the performance of WRF involving a

subdomain saturates at about 512 processors. Hence in a WRF simulation with two

subdomains executed on a total of 1024 cores, the performance of a subdomain executed

on 512 cores will be about the same as when executed on all the 1024 cores. Thus, parti-

tioning the 1024 cores proportionally among the subdomains for simultaneous execution

will give better performance than serial execution on all the 1024 cores.

3264 128 196 256 324 512 784 900 1024
Number of processors

0

1000

2000

3000

4000

5000

6000

7000

To
ta

l t
im

e 
(s

ec
on

ds
)

415x445
328x349
301x343
277x286
205x253
181x232
166x199

Figure 3.2: Execution times of nested weather simulations over a 107 sq. km. domain on upto

1024 Blue Gene/L cores.

3.1.2 Problem Statement

We focus on optimizing the parallel execution of high-resolution nested simulations to

improve the overall performance of weather simulations pertaining to multiple regions

of interest. The simultaneous execution of independent and non-homogeneous nested

simulations, with different subdomain sizes, requires an efficient partitioning of the entire



Chapter 3. Improving Throughput of Nested Simulations 33

processor space into multiple disjoint rectangular processor grids that can be assigned

to the different nested simulations. This can minimize the parallel execution time if the

number of processors are allocated in proportion to the work load associated with each

nested simulation. Proportional processor allocation ensures that the time spent in the

r integration steps of the different nested simulations is nearly equal, and the nested

domains reach the synchronization step with the parent simulation together. There are

also additional constraints on the aspect ratio of the sub-communicators that need to

be handled in order to ensure that communication costs are minimized. We propose an

efficient processor allocation strategy based on recursive bisection that takes into account

the above requirements, and also uses estimates of relative execution times of the nests.

The relative execution times of nests are estimated using a performance prediction model

based on linear interpolation in a 2D domain from a small set of actual simulation times

obtained from profiling runs. Our experiments show that our prediction model is highly

accurate and exhibits less than 6% prediction error for most configurations.

We also propose topology-aware mapping of the nested subdomains on torus inter-

connects. Torus networks are widely prevalent in modern supercomputers, with 11 of the

top 25 supercomputers in the November 2012 list based on torus network topology [128].

Topology-aware mapping has proved beneficial for applications on architectures with

torus networks[12]. In this work, we consider architectures with 3D torus network topol-

ogy viz. IBM’s Blue Gene/L and Blue Gene/P. We have developed heuristics for mapping

the 2D virtual process topology involved in the nested simulations to the 3D torus such

that the neighbouring processes in the virtual topology are mapped onto neighbouring

nodes of the torus. We propose mapping heuristics that minimize the communication for

nested simulations and the parent simulation. Our approach for parallelization of mul-

tiple nested domain simulations also results in better scalability of the I/O operations.

3.1.3 Results and Contributions

Experiments on IBM Blue Gene systems show that the proposed performance modeling,

partitioning and processor allocation strategies can improve simulation performance over



Chapter 3. Improving Throughput of Nested Simulations 34

the default strategy of employing the maximum number of processors for all the nested

simulations by up to 33% with topology-oblivious mapping and up to an additional 7%

with topology-aware mapping. We also achieve up to 66% reduction in MPI Wait times.

Our approach for parallelization of multiple nested simulations also results in better I/O

scalability. We explain the following primary contributions in this chapter.

1. A performance model for nested simulations based on linear interpolation that can

predict execution times with less than 6% error.

2. Efficient method for processor allocation that result in 8% improvement over a

näıve proportional allocation policy.

3. Topology-aware 2D to 3D mapping that result in 7% improvement over topology-

oblivious mapping.

Section 3.2 presents our performance model, processor allocation, and mapping strate-

gies. Section 3.6 briefly highlights the significance of our processor allocation and map-

ping strategies. Section 3.7 presents experimental results to illustrate the performance

improvement achieved. We summarize in Section 3.8 and briefly highlight the generality

of this work.

3.2 Parallel Execution of Subdomains

In simulations involving nested domains, the simulation of high-resolution nests are

compute-intensive. Thus, the performance of these simulations improves with increasing

number of cores. However, increasing the number of cores often leads to diminishing

returns, especially when applications exhibit sub-linear scalability. The current strat-

egy in many weather models including WRF is to execute these high-resolution nested

simulations sequentially, utilizing all the cores to process one nest at a time. We show

that performance of the overall simulation can be improved by subdividing the processor

space into partitions for simultaneous executions of the nested simulations.



Chapter 3. Improving Throughput of Nested Simulations 35

We concurrently execute the multiple nested simulations on disjoint subsets of pro-

cessors. Estimates of the execution times of the nested simulations are required to decide

the number of processors to be allocated for each nested simulation. We use linear in-

terpolation for performance prediction as described in Section 3.3. The performance

prediction of the simulation times is then used for partitioning the available processor

space for the nested simulations as described in Section 3.4.

High-resolution nested simulations are spawned from the parent domain simulation.

As mentioned above, the default WRF strategy is to spawn the nested simulations on

the full set of available processors; these simulations use the MPI COMM WORLD com-

municator. In our approach, we create sub-communicators for each nested simulation.

Since we use different sub-communicators for different nested simulations, it is beneficial

to map the processes within a sub-communicator onto neighbouring nodes in the net-

work topology. Furthermore, since the parent simulation uses the global communicator,

a universal mapping scheme benefits both the parent and nested simulations. These

topology-aware mapping heuristics are described in Section 3.5.

3.3 Performance Prediction

We propose a performance model that predicts relative execution times of the nested

simulations with low prediction errors. A näıve approach is to assume that execution

times are proportional to the number of points in the domain. However, our experiments

indicate that a simple univariate linear model based on this feature results in more than

19% prediction errors. Our model uses piecewise linear interpolation based on the domain

sizes. For a domain having width nx and height ny, we use the following two features of

the domain for interpolation

1. Total number of points in the domain, given by nx · ny.

2. Aspect ratio of the domain, given by nx/ny.

The näıve approach exhibits higher errors than our model because the total number

of points do not capture the X-communication volume and Y-communication volume



Chapter 3. Improving Throughput of Nested Simulations 36

separately. Hence the prediction for domain size of nx1 × ny1 would be same as the

prediction for domain size of nx2 × ny2 where nx1 · ny1 = nx2 · ny2. The aspect ratio

together with the total number of points capture the X- and Y-dimensions and hence

give better predictions.

We conducted experiments on a fixed number of processors for a small set (size = 13)

of domains with different domain sizes and different aspect ratios. The actual execution

times of these 13 domains are used to interpolate the execution times for other domains

of varying sizes. Each domain can be represented as a point in the XY plane, where the

X-coordinate denotes the aspect ratio and the Y-coordinate denotes the total number of

points in the domain. The convex hull of these 13 points is triangulated using Delaunay

triangulation [22]. Figure 3.3 shows a snapshot of the triangulation. The vertices of

Figure 3.3: Delaunay Triangulation of points representing known execution times.

the triangles represent the known execution times. A domain D, represented as a point

P (x, y) inside the convex hull, will fall inside one of the triangles as marked in Figure 3.3.

P lies inside 4ABC whose vertices are A(x1, y1), B(x2, y2), and C(x3, y3). The barycen-

tric coordinates [21] of P are obtained from A, B, and C using Equations (3.1), (3.2),

and (3.3). The predicted execution time TD of the nest domain D represented as P can

be interpolated from the execution times of the domains represented by the vertices of



Chapter 3. Improving Throughput of Nested Simulations 37

4ABC as shown in Equation (3.4).

λ1 = (y2−y3)∗(x−x3)+(x3−x2)∗(y−y3)
(y2−y3)∗(x1−x3)+(x3−x2)∗(y1−y3)

(3.1)

λ2 = (y3−y1)∗(x−x3)+(x1−x3)∗(y−y3)
(y2−y3)∗(x1−x3)+(x3−x2)∗(y1−y3)

(3.2)

λ3 = 1− λ1 − λ2 (3.3)

TD = λ1 ∗ T(x1,y1) + λ2 ∗ T(x2,y2) + λ3 ∗ T(x3,y3) (3.4)

The 13 domains required for interpolation will have to be carefully chosen for good

predictions. To determine this set, we randomly generated a large number of points with

domain size ranging from 94× 124 to 415× 445 and the aspect ratio ranging from 0.5 –

1.5. From this large set, we manually selected a subset of 13 points that nicely cover the

rectangular region defined by the diagonal between (minimum domain sizes, minimum

aspect ratio) and (maximum domain sizes, maximum aspect ratio). These points were

selected in a way that the region formed by them could be triangulated well.

We note that it suffices to estimate the relative execution times for processor alloca-

tion to the nests. Hence, prediction on a particular processor size is sufficient to deduce

the relative execution times. For larger domains, i.e. for the points lying outside the

basis set of 13 points, we scale down to the region of coverage and then interpolate for

those points. Though this does not accurately predict the execution times of the larger

domains, this approach captures the relative execution times of those larger domains,

and hence suffices as a first order estimate. Therefore, these 13 experiments suffice for

predictions and it is not necessary to obtain the actual execution times for larger domain

sizes. We have tested this approach on test domains with varying sizes and aspect ratios,

and our predictions exhibit less than 6% error. The total number of points in these test

domains lie in the range of 55,900 – 94,990, and the aspect ratio lie in the range of 0.5

– 1.5. We also tested by scaling up the number of points in each sibling, while retaining

the aspect ratio. Section 3.7 shows the results for various nest domain sizes.

Our performance model based on Delaunay triangulation can be useful in modeling

applications where the exact interplay of the parameters used for modeling are unknown.



Chapter 3. Improving Throughput of Nested Simulations 38

In absence of such analytical model, linear interpolation gives a fairly accurate estimate

as shown by our approach. This approach can also be applied for modeling more than

two parameters.

3.4 Processor Allocation

We propose a processor allocation strategy in the context of multiple nested simulations

that results in near-optimal performance. A simple processor allocation strategy is to

equally subdivide the total number of processors among the nested simulations. How-

ever, this results in load imbalance because of the varying domain sizes of the nested

simulations. We therefore use the relative execution times obtained from the perfor-

mance prediction model to decide the number of processors to allocate for each nested

simulation.

The parent simulation domain is solved on the full set of available processors. The

processor space can be considered as a virtual processor grid of size Px · Py. Consider

the parent simulation domain of size nx × ny. Initially, this domain is distributed over

the processors by assigning rectangular regions of size nx/Px × ny/Py to each processor.

The sibling domains are assigned processors as follows. The virtual processor grid is

partitioned into multiple rectangular subgrids. The number of partitions is equal to the

number of nested simulations. The area of a region allocated for a nested simulation is

proportional to the predicted execution time of the nested simulation. This is illustrated

in Figure 3.4 – it shows the subgrids of the processor space allocated to 4 nested sim-

ulations whose predicted execution times (as obtained from our performance prediction

model) are in the ratio of 0.15 : 0.3 : 0.35 : 0.2.

The subdivision of the 2D virtual process topology into k rectangular regions is a

variant of the rectangular partitioning problem, which is known to be NP-hard [70].

We develop some heuristics for this problem. The pseudocode for this is shown in

Algorithm 3.1. This algorithm divides the processor grid into regions that are as square-

like as possible in order to minimize the difference in the communication volume of the

X and Y dimensions.



Chapter 3. Improving Throughput of Nested Simulations 39

Px

Py

15%

20%35%

30%

Figure 3.4: Partitions of processor space in the ratio of execution times of nested simulations.

The algorithm works as follows. We start by constructing a Huffman tree [20] using

the execution time ratios as the weights, as shown in line 1. This gives us a binary tree

such that at every internal node, the left and right children are fairly well-balanced in

terms of the sum of the execution time ratios of the nested domains that belong to the

two subtrees rooted at these two children. We then use this Huffman tree to construct a

balanced split-tree over the virtual processor grid. This is done as follows. Note that all

the nested domains lie at the leaves of the Huffman tree. We traverse the internal nodes

of the Huffman tree in a breadth first (BFS) order, as shown in line 2. For every internal

node, we first determine the longer of the two dimensions in lines 6–10. We then split

the current grid along the longest dimension in the ratio of the total execution times of

the nested domains in the left and right subtrees, as shown in lines 11–13; we then set

the processor grid sizes for the two children (lines 14–18).

The partitioning is always done along the longer dimension to ensure that the rect-

angles are as square-like as possible. Figure 3.5 shows the difference when the first

partitioning is along the longer dimension and when it is along the shorter dimension

for k = 3. As can be seen, rectangle 3 is more square-like in Figure 3.5(a) than in

Figure 3.5(b).



Chapter 3. Improving Throughput of Nested Simulations 40

Input: Nested simulation domains {D1, D2, · · · , Dk}, execution time ratios

R = {R1, R2, · · · , Rk} of k nested simulations, total number of processors P , virtual

processor grid Px × Py

Output: Partition Px(i), Py(i) for each nested simulation domain Di for 1 ≤ i ≤ k

Construct a Huffman tree, H, over the nested domains with execution time ratios as weights ;1

/* Construct a balanced split-tree using the Huffman tree */

for every internal node u of H traversed in BFS order do2

if (u=root) then3

(Px(u), Py(u)) = (Px, Py)4

if (Px(u) ≤ Py(u)) then5

PShortDim = Px(u), PLongDim = Py(u) ;6

else7

PShortDim = Py(u), PLongDim = Px(u) ;8

end9

Let l and r denote the left and right children of u respectively ;10

Let Subtreel and Subtreer denote the nested domains in the subtrees rooted at l and r11

respectively ;

Wl =
∑

j∈Subtreel
Rj , Wr =

∑
j∈Subtreer

Rj ;12

Divide PLongDim into Pl & Pr in the ratio of Wl : Wr;13

if (Px(u) ≤ Py(u)) then14

Set (Px(l), Py(l)) = (PShortDim, Pl) & (Px(r), Py(r)) = (PShortDim, Pr) ;15

else16

Set (Px(l), Py(l)) = (Pl, PShortDim) & (Px(r), Py(r)) = (Pr, PShortDim) ;17

end18

end19

Algorithm 3.1: Partitioning algorithm

3.5 Mapping

Weather simulations are communication intensive applications. For example, in WRF,

each integration time-step involves 144 message exchanges with four neighbouring pro-

cesses [80]. IBM’s HPCT [18] profiling tools show that about 30–40% of the total execu-

tion time in WRF is spent in communication. Figure 3.6 shows the communication times



Chapter 3. Improving Throughput of Nested Simulations 41

25%

50%

25%

1 2

3

(a) Process grid 3 is as square-

like as possible.

25%

50%

25%

1

2

3

(b) Process grid 3 is a skewed

rectangle.

Figure 3.5: Partitions for k = 3 when the first partition is along the longer dimension (a) and

when it is along the shorter dimension (b).

and the total elapsed times for 30 simulation configurations with 0–4 nest domains on

1024 Blue Gene/L cores. The red bars in Figure 3.6(a) show the communication times

and the green bars show the total execution times for 2-hour simulation time. The y-axis

shows the time in seconds and the x-axis shows 30 test cases with different number of

nests and various nest sizes. The execution times and communication times are higher

for simulation configurations with bigger and more number of nests. Figure 3.6(b) shows

the percentage of time spent in communication for the test cases of Figure 3.6(a). It

can be observed that 30–40% of execution time is spent in communications. Therefore

reducing communication times can improve execution times.

Communication times are affected by process-to-processor mapping. Mapping is the

placement of processes in the virtual topology onto the physical network topology. In

our work we consider supercomputers with 3D torus interconnects and hence we address

the problem of 2D to 3D mapping as shown in Figure 3.7. Figure 3.7(a) shows the 2D

virtual process topology for a WRF configuration with 2 sibling domains (sibling 1 and

sibling 2) of identical sizes. This virtual topology is used by the application for MPI

communications. Figure 3.7(b) shows the 3D torus architecture of many modern-day



Chapter 3. Improving Throughput of Nested Simulations 42

0 10 20 30 40 50
Test cases

0

100

200

300

400

500

600

700

800
Ti

m
e 

(s
ec

on
ds

)
communication time
total elapsed time

(a) Communication times and total elapsed times for 2-hour simulations.

0 10 20 30 40 50
Test cases

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
ot

al
 ti

m
e

Percentage of time spent in communication

(b) Percentage of time spent in communication.

Figure 3.6: Communication times in WRF simulations on 1024 Blue Gene/L cores.



Chapter 3. Improving Throughput of Nested Simulations 43

supercomputers. Each process in the 2D grid is mapped to one of the nodes in the 3D

network topology. This placement affects the number of hops in the network between

neighbouring processes in the 2D topology because of the difference in dimensionality.

The fewer the hops between the communicating processes in the torus, the lesser will be

the time required for communication, thereby improving the overall application perfor-

mance. We propose mapping heuristics in the context of nested simulations of multiple

regions of interest. We describe topology-oblivious and topology-aware mapping heuris-

tics in the following sections.

0 1 72 3 4
8

5 6

16
24 31

SIBLING 1 SIBLING 2

PARENT

(a) Virtual process topology for 32 pro-

cesses.

(b) Topology-oblivious map-

ping on 4× 4× 2 torus.

Figure 3.7: 2D to 3D mapping.

3.5.1 Topology-oblivious mapping

The partitioning scheme subdivides the processor space into rectangular regions for si-

multaneous executions of the nested simulations. The case of 2 nested simulations is

shown in Figure 3.7(a). The processes 0–3, 8–11, 16–19, 24–27 are allocated to one

nested simulation and the rest of the processes are allocated to the other nested simu-

lation. The simple mapping scheme is to sequentially map the processes in increasing

order of process numbers to the torus nodes in increasing order of x, y and z coordinates.

This is shown in Figure 3.7(b). In this example, the simple sequential mapping places

processes 0–3 on the topmost row (y = 0) of the first plane (z = 0) of the torus, followed

by processes 4–7 in the second row (y = 1, z = 0), 8–11 in the third row (y = 2, z = 0)



Chapter 3. Improving Throughput of Nested Simulations 44

and so on.

The topology-oblivious mapping in Figure 3.7(b) is sub-optimal for the communica-

tions within each of the nested simulations. This is because the neighbouring rows in

the virtual topology are more than 2 hops apart in the torus, as shown with the help of

green and blue nodes. For example, 0 and 8 are neighbours in the 2D topology whereas

they are 2 hops apart in the torus. Similarly, process 8 is 3 hops away from process

16 in the torus. The topology-aware mapping heuristics discussed in the next section

addresses this problem.

3.5.2 Topology-aware mapping

The general problem of mapping belongs to NP [12]. We describe below two heuristics

for 2D to 3D mapping for multiple nested simulations. The first heuristic maps process

partitions for each nest to contiguous nodes in the processor grid to reduce the commu-

nication times for halo exchanges in the nested simulations. The second heuristic also

considers the neighbouring processes in the parent simulation while mapping processes

to processors. The partitions are folded along one dimension so that communicating

processes in parent simulation and nested simulations are neighbours.

Partition mapping - In this algorithm, we map each partition onto contiguous nodes of

the torus. The partition mapping for the 2D process topology of Figure 3.7(a) is shown

in Figure 3.8(a). The neighbouring processes in the virtual topologies of the partitions

are neighbours in the torus. For example, processes 0 and 8 are neighbours in the virtual

topology as well as in the torus. The first plane (z = 0) of the torus retains the 2D

topology of the first partition, as shown by green rectangle in Figure 3.7(a) and green

nodes in Figure 3.8(a). Similarly, the second plane (z = 1) of the torus retains the 2D

topology of the second partition, as shown by blue rectangle in Figure 3.7(a) and blue

nodes in Figure 3.8(a). This mapping also improves the parent domain communication

performance because the neighbouring processes in the smaller rectangles are also neigh-

bouring processes in the bigger rectangle. However, some of the processes in the parent

domain are more than 1 hop away. For example, process 3 is 2 hops away from process



Chapter 3. Improving Throughput of Nested Simulations 45

4 in Figure 3.8(a). To alleviate this problem, we propose another mapping heuristic in

the next section.

(a) Partition mapping. (b) Multi-level mapping.

Figure 3.8: Topology-aware mappings.

Multi-level mapping - This is a modification of the partition mapping such that the neigh-

bouring processes in the nested simulations as well as the neighbouring processes in the

parent simulations are neighbours in the torus. In this mapping, we fold the rectangular

partition in half and curl it across Z-axis. In the above example, the rectangles are curled

across two XY-planes so that half the rectangle is in first plane (z = 0) and the other

half is in the second plane (z = 1). This is illustrated in Figure 3.8(b).

Processes in the first rectangle of Figure 3.7(a) are folded anti-clockwise from the

first plane (z = 0) to the second plane (z = 1). For example, process 0 is mapped

to coordinate (0, 0, 0) in the torus, process 1 is mapped to coordinate (1, 0, 0), process

2 is mapped to (1, 0, 1), process 3 is mapped to (0, 0, 1) and so on. This ensures the

processes in the first rectangle have 1-hop distant neighbours. Processes in the second

rectangle of Figure 3.7(a) are folded anti-clockwise from the second plane (z = 1) to the

first plane (z = 0). For example, process 4 is mapped to coordinate (3, 0, 1) in the torus,

process 5 is mapped to coordinate (2, 0, 1), process 6 is mapped to (2, 0, 0), process 7 is

mapped to (3, 0, 0) and so on. This ensures that the processes in the second rectangle

have 1-hop distant neighbours. Thus, this improves performance of nested simulations.

This mapping also ensures that the processes in the parent domain are 1 hop apart. For



Chapter 3. Improving Throughput of Nested Simulations 46

example, processes 3 and 4 are 1 hop apart and so on1. Thus this universal mapping

scheme benefits both the nested simulations and the parent simulation.

Figure 3.9: Multi-level mapping for the 3-sibling configuration in Figure 3.5(a).

Figure 3.9 shows multi-level mapping for the 3-sibling configuration that was shown

in Figure 3.5(a). Here, the nests 1 (coloured yellow) and 2 (coloured green) are curled

around the Z-axis and mapped from top to bottom, i.e. from row x = 0 to x = 3 as

explained in the previous example. The third nest is mapped onto the planes z = 2

and z = 3, folded [12] from z = 2 to z = 3. The topmost row of the nest 3 and the

bottom-most rows of nests 1 and 2 are neighbours in parent domain. Therefore in the

plane z = 2, the processes are mapped from bottom (x = 3) to top (x = 0); followed by

top (x = 0) to bottom (x = 3) mapping in z = 3 plane. This ensures the parent domain

processes are neighbours on the torus.

We map nests to sub-rectangles where communication is always among near neigh-

bours. This being an optimal mapping, the processes are placed nearby and so the

network contention due to the halo exchanges reduces. Our mapping schemes can be ap-

plicable where there is an overlap between the processors allocated to different dependant

1The links between first and last nodes in a row/column of the torus have not been shown in the
figures.



Chapter 3. Improving Throughput of Nested Simulations 47

subtasks of an application.

3.6 Resource Allocation and Mapping

In our work, the finer grid is overlaid on the coarser grid and both coarser resolution

parent simulation and finer resolution nest simulations are forwarded in time. The pro-

cessors allocated for the parent and nest simulations may have partial or total overlap.

This is significantly different from space-filling curves which are used for load-balancing

adaptive mesh refinement (AMR) applications, where a major step is regridding from

either coarser to finer resolution or vice versa [65, 138]. Space-filling curves like Hilbert

or Morton ordering are used to generate the processor allocations which may result in

non-rectangular partitions. Moreover, the resulting processor mapping from the curves

will incur higher average hop-bytes. This is because even though space-filling curves

move locally and are spatially clustered, yet it is possible that in many regions, the

linear order fails to preserve the neighbourhood between communicating processes in

stencil computations. Our processor allocation, reallocation and mapping strategies not

only gives the required rectangular partitions but also provides communication-aware

mapping for halo exchanges.

3.7 Experiments and results

3.7.1 Domain Configurations

We used WRF for all our experiments. Our WRF simulations involved up to a maximum

of 4 sibling domains and resolution of up to 1.5 km. The minimum and maximum nest

sizes used in the experiments were 178 × 202 and 925 × 820. For empirical evaluation,

we chose the following two regions.

South East Asia – This covers South East Asian countries such as Malaysia, Sin-

gapore, Thailand, Cambodia, Vietnam, Brunei, and Philippines. The innermost nests

were chosen such that the major business centers in this region are well represented.

All these locations are affected by the meteorological features that are developed over



Chapter 3. Improving Throughput of Nested Simulations 48

South China Sea. Thus, it is desirable to assess the meteorological impact on these key

locations within the same modeling framework. Figure 3.10 shows a sample domain con-

figuration that has the parent domain at 4.5 km resolution and the sibling domains at

1.5 km resolution. We experimented with eight different configurations at varying levels

of nesting and different number of sibling domains. Three configurations had sibling

domains at the second level whereas the remaining ones had siblings at the first level of

nesting.

Figure 3.10: Sample domain in South East Asia with four sibling nests at 1.5 km resolution.

Pacific Ocean – The second region extends from 100◦E - 180◦E and 10◦S - 50◦N, covering

the western Pacific Ocean region, where typhoons occur frequently. We experimented

for the July 2010 typhoon season with 85 different configurations of the nest domains.

These configurations were randomly generated with domain size ranging from 94× 124

to 415×445 and the aspect ratio ranging from 0.5 – 1.5. We form multiple nests to track

multiple depressions over the Pacific region. There can be several depressions forming

over the region, which trigger high-resolution nest formation. The parent domain size is

286× 307 at 24 km resolution and the nests have 8 km resolution, with up to 4 siblings

at the first level of nesting.



Chapter 3. Improving Throughput of Nested Simulations 49

3.7.2 Experimental Setup

IBM Blue Gene/L: Blue Gene/L (BG/L) [126] is the first generation of IBM’s Blue

Gene supercomputers. Each node consists of two 700 MHz PPC 440 processor cores with

1 GB of physical memory. The system supports two execution modes for the applications

– coprocessor (CO) mode and virtual node (VN) mode. In the CO mode, one core is

dedicated to communication and other for computation. In the VN mode, both cores are

used for computation. BG/L nodes are connected with three communication networks:

a 3D torus network providing point-to-point communication between compute nodes, a

collective network for global broadcast and integer reduction operations and a global

interrupt network for fast barrier synchronizations. 3D torus network is the primary

communication network in BG/L and handles bulk of all the communication. We have

experimented on maximum of 1024 cores on BG/L in VN mode.

IBM Blue Gene/P: Blue Gene/P (BG/P) [127] is the second generation of Blue Gene

supercomputers. Each node contains four 850 MHz PPC 450 processor cores with 4

GB of physical memory. BG/P supports three different application execution modes –

Symmetric Multi Processing (SMP) mode, Dual mode and the VN mode. SMP mode

supports one process per node with up to four threads per process; Dual mode supports

two processes per node with up to two threads per process and VN mode supports four

single-threaded processes per node. The communication network in BG/P is similar to

BG/L. We experimented on up to 8192 cores on BG/P in VN mode.

WRF Runtime Setup: Parallel netCDF (PnetCDF) [69] was used for performing I/O

on BG/P. The split I/O option of WRF was used on BG/L, where every process writes

its own data onto the disk. WRF was run in the VN mode on BG/P in order to study

the scalability issues while using higher number of MPI ranks. In all the simulations,

Kain-Fritsch convection parameterization, Thompson microphysics scheme, RRTM long

wave radiation, Yonsei University boundary layer scheme, and Noah land surface model

were used. We experimented with both low and high output frequencies for parallel I/O

on BG/P. The output frequency for BG/L simulations was 1 hour.



Chapter 3. Improving Throughput of Nested Simulations 50

3.7.3 Improvement in execution time

In this section, we present the results on the performance improvement on BG/L and

BG/P using WRF domains with varying nest sizes and varying number of siblings.

Improvement in per-iteration time

There was an average of 21.14% and maximum of 33.04% percentage reduction in execu-

tion times. This is the overall improvement in the simulation performance on 1024 cores

(512 nodes in VN mode) on BG/L from 85 configurations with nest sizes varying from

178×202 to 394×418 and number of siblings varying from 2–4. This improvement is due

to the parallel execution of sibling domains on different subsets of processors. However,

it is important to note that the default strategy of using all the processors for solving a

nest, can be beneficial if the application exhibits linear or superlinear speedup.

512 1024 2048 4096
Number of processors

0

5

10

15

20

25

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t

9.49

12.99
10.89

18.97

11.53

17.09

12.69

22.44
Average gain with I/O
Average gain without I/O

Figure 3.11: Performance improvement of execution time on up to 4096 BG/P cores including

and excluding I/O times.

Figure 3.11 shows the percentage improvement in execution time, averaged over 30

different domain configurations. The figure shows that the performance improvement is

higher when the I/O times are also considered. This is because parallel NetCDF does

not scale well with increasing number of processors. In our approach, fewer number of

processors output data for the siblings, thereby the time to output data is lesser than

the default approach. It should be noted that for any practical application, generation of



Chapter 3. Improving Throughput of Nested Simulations 51

output data is important for visualization and perceiving the simulation output. Hence

our approach proves beneficial for practical scenarios.

Improvement in communication time

The average and maximum percentage improvement in MPI Wait time is shown in Ta-

ble 3.1. In WRF, the simulations perform halo exchanges with 4 neighbouring processes.

One of the reasons for the high wait times observed in the default execution is due to

the high average number of hops between neighbouring processes. However, in our case,

since the siblings are solved on smaller subset of processors, the average number of hops

decreases resulting in lesser load on the network. It also leads to lesser congestion and

smaller delay for point-to-point message transfer between neighbouring processes.

Table 3.1: Average and maximum improvement in MPI Wait times on BG/L and BG/P

Number of cores Average (%) Maximum (%)

1024 on BG/L 38.42 66.30

512 on BG/P 30.70 60.92

1024 on BG/P 36.01 60.11

2048 on BG/P 27.02 55.54

4096 on BG/P 28.68 43.86

Improvement in sibling simulation time

WRF solves one parent time step followed by solving r nested time steps. Therefore,

improving the performance of nest solve time steps improves the overall performance of

the application. In our approach we simultaneously execute all the siblings as compared

to sequentially executing them one after the other. We illustrate the benefit of this

approach on the sibling integration times with the help of a domain configuration which

has 4 siblings at the first level. The sibling configurations and the number of processors

allocated to these siblings according to our performance model and partitioning strategy



Chapter 3. Improving Throughput of Nested Simulations 52

are shown in Table 3.2. Figure 3.12 compares the per-iteration nest execution times for

Table 3.2: Sibling configurations for four siblings on BG/L

Sibling 1 Sibling 2 Sibling 3 Sibling 4

Nest size 394× 418 232× 202 232× 256 313× 337

Number of cores 18× 24 18× 8 14× 12 14× 20

this configuration. The first stacked bar shows the sibling times for the default serial

execution. In this case, the siblings take 0.4, 0.2, 0.2 and 0.3 seconds when executed

sequentially on 1024 cores on BG/L. Since the siblings are solved sequentially, their

execution times add up resulting in 1.1 seconds. In our parallel strategy, when the

siblings are solved on subset of processors, the solve times for the four siblings are 0.7,

0.6, 0.6 and 0.7 seconds. The individual sibling solve times have increased due to using

fewer than 1024 processors. However, since these are solved concurrently, the overall time

for per iteration of nest solve step for the four siblings is 0.7 seconds in our approach.

This results in 36% performance gain in execution times for the sibling domains. Our

0.0

0.3

0.6

0.9

1.2

Ex
ec

ut
io

n 
tim

e 
pe

r i
te

ra
tio

n 
(s

ec
on

ds
)

0.7

0.6 0.6

0.7

0.4

0.2

0.2

0.3 Sibling 1 default time
Sibling 2 default time
Sibling 3 default time
Sibling 4 default time
Sibling parallel times

Figure 3.12: Sibling execution times on 1024 processors on BG/L for four siblings.

processor allocation strategy reduces the number of processors per sibling as compared to

the default strategy. Hence if the nest sizes are large, the performance improvement by



Chapter 3. Improving Throughput of Nested Simulations 53

executing the simulation on fewer number of processors will be low. This is because the

scalability of the larger domains reach saturation at higher number of processors. Hence

as we increase the number of processors for the simulation, the performance improvement

will increase. We illustrate this with the help of a simulation configuration with three

large siblings of sizes 586×643, 856×919 and 925×850. The performance improvement

for different number of processors and the nest execution times for default sequential

strategy and our approach are shown in Figure 3.13. The performance improvement on

1024 processors is only 1.33% because of higher saturation limit for larger nests. As

the number of processors is increased for the full simulation, the number of processors

allocated to the nests also increase. Moreover, the larger sibling domains reach saturation

limit much before 8192 processors. Therefore we observe that performance improvement

increases from 4.39% to 15.9% on doubling 2048 cores whereas there is only additional

4.74% improvement on doubling 4096 cores.

0.0

2.4 1.33% 1024

0.0

1.3

Ex
ec

ut
io

n 
tim

e 
pe

r i
te

ra
tio

n 
(s

ec
)

4.39% 2048

0.0

0.7 15.9% 4096

0.0

0.4 20.64% 8192

Figure 3.13: Sibling execution times on up to 8192 BG/P cores. The legends on the rightmost

side show the number of cores.

Effect on varying sibling configurations

In this section we present results for varying number of sibling domains and varying sizes

of sibling domains.



Chapter 3. Improving Throughput of Nested Simulations 54

Varying number of siblings – The more the number of siblings, the longer will be the time

taken per iteration by the default approach because of sequential execution of the nests.

In our approach since we concurrently execute all the siblings, the number of siblings

do not affect the time if the maximum number of processors is sufficiently high for the

nest sizes. Hence we observe that the average performance improvement for experiments

involving two siblings is 19.43% whereas the average improvement in execution time for

experiments involving four siblings is 24.22%.

Varying sibling sizes – The larger the nest sizes, the higher will be the number of pro-

cessors required to improve performance. Hence we observe that with larger nest sizes

the performance improvement decreases as shown in Table 3.3.

Table 3.3: Sibling configurations and performance improvement for varying nest sizes on up to

8192 BG/P cores.

Maximum nest size 205× 223 394× 418 925× 820

Percentage improvement 25.62 21.87 10.11

3.7.4 Improvement with topology-aware mapping

Table 3.4: Execution times (sec) for default, topology-oblivious and topology-aware mappings

for various sibling configurations on BG/L.

Default Topology-

oblivious

Partition

mapping

Multi-level

mapping

TXYZ mapping

2.77 2.25 2.10 2.07 2.12

3.69 3.08 2.95 2.92 2.95

3.43 2.89 2.72 2.72 2.83

4.98 3.92 3.72 3.72 3.99

4.75 3.53 3.39 3.33 3.44



Chapter 3. Improving Throughput of Nested Simulations 55

In this section, we present the performance improvement achieved by the topology-

aware mappings discussed in Section 3.5.2. Table 3.4 shows the execution times per

iteration for the default strategy, the topology-oblivious and topology-aware mappings

on 1024 BG/L cores. The first three rows correspond to 2-sibling domain configuration,

and the fourth and fifth row correspond to 3-sibling and 4-sibling configurations. We

observe additional improvement of up to 7% over the topology-oblivious mapping. It

can be seen that our mappings outperform the existing TXYZ mapping in Blue Gene.

Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5

10

20

30

%
 im

pr
ov

em
en

t i
n 

ex
ec

ut
io

n 
tim

es Topology-oblivious
Partition mapping
Multi-level mapping
TXYZ mapping

Figure 3.14: Percentage improvement in execution times with and without topology-aware

mapping on 1024 BG/L cores.

The percentage improvement in execution times and MPI Wait times over the de-

fault strategy is illustrated in Figures 3.14 and 3.15 respectively. It can be noted that

the multi-level mapping is slightly better or almost equal in performance as compared

to the partition mapping. This is because even though partition mapping does not op-

timize the parent simulation, as explained in Section 3.5.2, the overall simulation is not

adversely affected because the nested simulations are executed r times more than the

parent simulations.

Table 3.5 shows the execution times per iteration for the default strategy, the topology-

oblivious and topology-aware mappings for various sibling configurations on BG/P. The



Chapter 3. Improving Throughput of Nested Simulations 56

Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5

10

30

50
%

 im
pr

ov
em

en
t i

n 
M

PI
_W

ai
t t

im
es Topology-oblivious

Partition mapping
Multi-level mapping
TXYZ mapping

Figure 3.15: Percentage improvement in MPI Wait times with and without topology-aware

mapping on 1024 BG/L cores.

first two rows correspond to 4-sibling domain configuration and the third row corre-

sponds to 3-sibling configuration. The multi-level mapping performs almost similar to

the partition mapping. This may be due to load imbalance in WRF.

Table 3.5: Execution times (sec) for default, topology-oblivious and topology-aware mappings

on 4096 BG/P cores

Default Topology-oblivious Partition mapping Multi-level mapping

5.43 3.94 3.92 3.93

5.65 4.20 4.1 4.1

5.61 4.39 4.28 4.39

Figure 3.16 illustrates the percentage improvement in the MPI Wait times for 3 con-

figurations. The higher MPI Wait times for the default approach is due to increased

network congestion caused by more halo communications across multiple hops. The

MPI Wait times decrease by more than 50% on average for the topology-oblivious and

topology-aware mappings. The topology-aware mappings further decrease the wait times

due to reduction in the average number of hops. This is due to our efficient mapping



Chapter 3. Improving Throughput of Nested Simulations 57

Configuration 1 Configuration 2 Configuration 3

10

40

70

%
 im

pr
ov

em
en

t i
n 

M
PI

_W
ai

t t
im

es Topology-oblivious
Partition mapping
Multi-level mapping

Figure 3.16: Percentage reduction in MPI Wait times with and without topology-aware map-

ping on 4096 BG/P cores.

Configuration 1 Configuration 2 Configuration 3
0.1

0.5

1.0

Av
er

ag
e 

nu
m

be
r o

f h
op

s

Default strategy
Topology-oblivious
Partition mapping
Multi-level mapping

Figure 3.17: Reduction in average number of hops with and without topology-aware mapping

on 4096 BG/P cores.

heuristics that map the neighbouring processes in the virtual topology to the neigh-

bouring torus nodes. The maximum reduction in MPI Wait times is observed for the

multi-level topology-aware mapping because this mapping strategy maps communicating

processes of both parent simulation and nested simulations onto neighbouring nodes of

the torus. Therefore it results in lower MPI Wait times during the halo exchanges.

Figure 3.17 illustrates the reduction in the average number of hops over the default



Chapter 3. Improving Throughput of Nested Simulations 58

strategy. The average number of hops for the topology-oblivious mapping is the same

as the default execution because in both the cases, the default mapping in BG/P is

used. A 50% reduction in the average number of hops is observed for the topology-

aware mappings, which leads to decrease in the wait times. The reduction in the number

of hops is because of mapping communicating processes to neighbouring nodes in the

processor grid. The neighbouring processes in the virtual topology are a single hop away

in the physical processor grid due to the efficient topology-aware mappings.

3.7.5 Effect on high-frequency output simulations

High resolution operational forecasts typically require forecast output very frequently. In

order to simulate this scenario, we performed experiments with output generated every

10 minutes of a simulation for all the various regions of interest at the innermost level.

We present the results for high-frequency output simulations. Figures 3.18(a-c) show the

variation of per time-step times for integration, I/O operations, and the total time. The

I/O time consists of time for writing output files and processing the boundary conditions.

The per iteration integration time in Figure 3.18(a) shows a steady decreasing trend for

both the default sequential and the parallel versions until 4096 processors. The parallel

sibling version shows slightly better scaling behavior in the range 4096–8192. However,

in the case of I/O performance, the parallel sibling case provides significant reduction

in I/O time. For the sequential version, the per iteration I/O time steadily increases

with increasing number of processors. The effect of I/O performance on the total times

is clearly seen in the relative ratios of integration and I/O times in Figure 3.19. This

observation suggests that PnetCDF has scalability issues as the number of MPI ranks

increases and could be a real bottleneck in scaling high resolution weather forecasting

simulations. In the parallel execution case, only a subset of the MPI ranks take part in

writing out a particular output file and thus, this results in better I/O performance. Since

the I/O times remain a relatively low fraction of the total time, the parallel execution

of sibling nests shows better scalability for the total per iteration time as shown in

Figure 3.18(c).



Chapter 3. Improving Throughput of Nested Simulations 59

Figure 3.18: Variation of integration, I/O, and total per iteration times with number of pro-

cessors on BG/P.

3.7.6 Efficiency of our processor allocation and partitioning strategy

Our performance prediction model coupled with the partitioning algorithm improves the

performance by 8% as compared to a näıve strategy of subdividing the processor space

into consecutive rectangular chunks based on the total number of points in the sibling.

We experimented with a 4-sibling domain configuration, whose default execution time

is 4.49 seconds per iteration. The näıve strategy decreases the execution time to 4.08

seconds, achieving 9% improvement whereas our algorithm decreases the execution time

to 3.72 seconds, thereby obtaining 17% improvement over the default strategy.

3.7.7 Scalability and speedup

We executed a simulation with two sibling nests of 259×229 size for the default sequential

approach and our simultaneous execution approach, varying the number of processors



Chapter 3. Improving Throughput of Nested Simulations 60

Figure 3.19: Variation of fraction of integration and I/O times averaged over all the different

configurations vs. number of processors on BG/P.

from 32 to 1024. Figure 3.20 shows the scalability and speedup curves. Both approaches

0 256 512 768 1024
Number of processors

0

5

10

15

20

Ex
ec

ut
io

n 
tim

e 
pe

r t
im

e 
st

ep
 (s

ec
on

ds
)

2

5

8

Sp
ee

du
p

Scalability (Sequential)
Scalability (Parallel)
Speedup (Sequential)
Speedup (Parallel)

Figure 3.20: Scalability and speedup of default sequential strategy and our concurrent execution

approach.

have similar scalability saturation limits. However, our approach exhibits lower execu-

tion times for all processor sizes. It can be observed that our strategy of simultaneous

executions of siblings shows better speedup than the default sequential strategy at a

higher number of processors. This is because the simulation stops scaling beyond 700

processors. Hence, increasing the number of processors for the siblings proves less use-

ful than solving the siblings simultaneously on smaller subset of processors. For lower



Chapter 3. Improving Throughput of Nested Simulations 61

number of processors, the speedup for both the approaches is almost the same. This is

because the simulation reaches saturation limit at higher number of processors. Hence

solving them sequentially on the full set of processors gives equal performance as solving

them concurrently on subsets of processors.

3.8 Summary

In this chapter, we presented a comprehensive scheme to optimize weather simulations

involving multiple nested regions of interest. We showed that the performance of such

weather simulations can be improved by allocating subsets of processors to each re-

gion of interest instead of the entire processor space. Though we focussed on weather

applications, the algorithms developed in this work can improve the throughput of ap-

plications with multiple simultaneous simulations within a main simulation, for example

crack propagation in a solid using LAMMPS[64]. Multiple cracks can be simultaneously

atomistically simulated within a continuum simulation domain. This methodology can

also be applied to nested high-resolution coastal circulation modeling using ROMS[107].

We proposed a linear interpolation based performance prediction model which pre-

dicts the execution times with low error. Our processor allocation scheme based on

Huffman tree construction and recursive bisection outperforms a näıve proportional allo-

cation by 8% with respect to the total execution time. We developed 2D to 3D mapping

heuristics that take into consideration communications in the nested simulations as well

as the parent simulation. We achieved up to 33% improvement in performance with

up to an additional 7% improvement with our topology-aware mapping heuristics. Our

topology-oblivious and topology-aware mappings reduce the communication times by a

maximum of 66%. To the best of our knowledge, this is the first work that optimizes

parallel execution of weather simulations involving multiple nested regions of interest.

The multiple regions of interest may not be static. For example, the depressions

shown in Figure 3.1 may weaken over time, thereby triggering deletion of the corre-

sponding nest. Hence we need to tackle the temporal variation in the regions of interest.

We describe such an extension to dynamic nests in the next chapter.



Chapter 4

Diffusion-based Repartitioning Strategies

The regions of interest within a simulation may appear and disappear with time. There-

fore the nested simulations spawned over the regions of interest may be also dynamic. In

the previous chapter, we have showed how to efficiently partition the processor space for

a given static nest configuration. In this chapter, we will describe processor reallocation

strategies with minimum data redistribution costs for dynamic nests.

4.1 Introduction

Multiple similar meteorological phenomena may occur at the same time in different re-

gions of a geographical domain. For example, Figure 4.1 illustrates the phenomena of

tall clouds occurring at multiple regions simultaneously in the Indian region. Weather

simulations need to track these clouds at higher resolutions. Simulating and tracking

these multiple regions of interest at high resolutions is important in understanding the

weather phenomena and for accurate weather predictions. These phenomena may vary

temporally as well as spatially. Some of the regions of interest may disappear in subse-

quent time steps while new regions of interest may form in the domain. For example,

some of the cloud systems1 shown in Figure 4.1 may produce severe weather conditions

such as high winds, intense localized rainfall, floods and storm surges over coastal re-

gions, some clouds may move to different regions and cluster with other clouds, and some

1Cloud systems are a hierarchical organization of clouds.

62



Chapter 4. Diffusion-based Repartitioning Strategies 63

Figure 4.1: Tall clouds over the Indian region during the 2005 monsoon season. Image generated

from WRF simulation. Darker regions correspond to regions with higher cloud water mixing

ratios.

may disappear with time.

4.1.1 Challenges

Simulation methods have to efficiently handle simultaneous occurrence of meteorological

phenomena at different locations. Tracking these multiple phenomena incur new chal-

lenges which are more difficult to tackle than the simulation of a single phenomenon. We

list some of the challenges below.

• Simultaneously tracking the appearance, disappearance and merging of the phe-

nomena at various locations requires dynamic representations and efficient data

analysis.

• Simulating multiple events at high resolutions needs efficient processor allocation

schemes for these multiple events.

• The dynamic nature of these events require fast data redistribution strategies.

Nests are spawned within the parent simulation to simultaneously track these multiple

regions of interest. Each nested simulation is executed on disjoint subsets of the total



Chapter 4. Diffusion-based Repartitioning Strategies 64

number of processors for high performance, as explained in Chapter 3. Therefore, with

dynamic appearance and disappearance of regions of interest, we need to modify the

processor allocation for the nests. The processors allocated to the nests in the previous

time step of simulation will have to be freed if the nests do not exist in the current time

step. Similarly, a subset of processors needs to be allocated to the new nests formed in

the current time step. The removal of old nests and addition of new nests may lead to

new processor allocation for the old nests which continue to exist from the previous time

step.

4.1.2 Problem Statement

Reconfiguration of processor allocation implies data redistribution for the old nests. In

this work, we have developed a tree-based hierarchical diffusion algorithm for processor

allocation that reduces data movement by considering the old processor allocation. This

algorithm results in lower redistribution time as compared to a strategy that does not

consider the existing processor allocation.

We have implemented the redistribution algorithm to support resource reconfigu-

rations in an application that detects and tracks organized tropical convective cloud

systems which have widespread occurrence of tall cumulonimbus clouds as a distinct

signature. These clouds are associated with thunderstorms and atmospheric instability,

forming from water vapour carried by powerful upward air currents. They can produce

heavy rain and flash flooding. Hence, it is important to track these clouds. These clouds

may form and disappear with time. We have developed a parallel data analysis algorithm

that detects these clouds from simulation output. We spawn nests over these regions of

interest within the running simulation, and also dynamically remove nests when the old

regions of interest no longer exist.

We performed experiments on Blue Gene/L and Intel Xeon-based clusters using both

real data corresponding to Mumbai rainfall of 2005, and synthetic nest formations and

deletions for the same period. Our results showed that we were able to reduce the

redistribution time by 25% over the scratch method and resulted in 53% lesser hop-bytes



Chapter 4. Diffusion-based Repartitioning Strategies 65

on Blue Gene/L.

While we have used the tracking of tall clouds as a case study, our algorithms for

data analysis and processor allocation are generic and applicable to other scenarios that

involve multiple dynamically varying nested simulations.

4.1.3 Chapter Outline

Section 4.2 presents our parallel data analysis algorithm. Section 4.3 presents our data re-

distribution strategies. Experimental results are presented in Section 4.4 to demonstrate

the performance improvement achieved. Section 4.5 remarks about the applicability of

our work to other scientific applications and on other platforms. Section 4.6 presents

some concluding remarks.

4.2 Tracking Cloud Systems via Parallel Data Analysis

In this section, we describe an algorithm for parallel data analysis of simulation output.

The algorithm analyzes the cloud water mixing ratio (Qcloud) and outgoing long wave

radiation (Olr) in WRF simulation output to detect tall clouds in tropical weather

systems. These clouds are referred to as cumulonimbus clouds. These clouds extend

vertically from 1 km above the surface to more than 10 km. Qcloud is the amount

of liquid water contained in a cloud. Generally, high values of Qcloud correspond

to tall clouds. Olr is the infrared radiation at the top of the atmosphere. Coherent

patterns of low Olr indicate occurrence of organized cloud systems (such as tropical

depressions and cyclones) and would contain tall cumulonimbus clouds. A combination of

Olr and Qcloud better identifies such systems and precludes identification of isolated

cumulonimbus (as Qcloud alone would do) [108]. We use 200 as the upper threshold

for Olr [35].

Each process running WRF generates output for its subdomain and writes into a

split file. These split files are analyzed in parallel as shown in Algorithm 4.1. This

algorithm forms contiguous, non-overlapping, and small clusters whose sizes do not grow



Chapter 4. Diffusion-based Repartitioning Strategies 66

Input: Per-process simulation output of one time step from P processes {F1, F2, · · · , FP },

Number of processes for parallel data analysis N

Output: Rectangles: Rectangular regions with high cloud water mixing ratio

/* Divide P files among N processes */

k = P/N ;1

Let S be the set of k files assigned to each of the N processes;2

/* Begin analysis of Qcloud values in the files in S by each of the N

processes */

count = 0;3

foreach file ∈ S do4

Read Qcloud and Olr from file for each grid point;5

Aggregate qcloud and increment count where OLR[gridpoint] ≤ 200 ∀ gridpoint ∈ file ;6

Let area be the total number of grid points in the file;7

olrfraction = count/area;8

end9

/* End analysis */

root = 0; /* Assume rank 0 is the root rank */10

Root collects the qcloud and olrfraction information from every process in qcloudinfo;11

/* Form rectangular regions in root process */

if (my rank == root) then12

Sort qcloudinfo in decreasing order of qcloudinfo.qcloud;13

Clusters = NNC(qcloudinfo);14

Rectangles = ∅;15

foreach (list ∈ Clusters) do16

Let item = (minX,maxX,minY,maxY ) be set of the minimum and maximum of x and17

y coordinates of elements of list;

Add item to Rectangles;18

end19

end20

Algorithm 4.1: Parallel Data Analysis (PDA) algorithm



Chapter 4. Diffusion-based Repartitioning Strategies 67

uncontrollably. It is simple and fast and hence suitable for online analysis. Let P

be the number of processes running WRF and N be the number of processes which

analyze the Qcloud values in the split files. The algorithm takes as input the split

files {F1, F2, · · · , FP}. These split files are distributed to the N processes. Each of the

N processes analyze k files (lines 1–2). The subset S of files, where |S| = k, is chosen

as a rectangular subset of (Px, Py), where Px · Py = P is the rectangular process

decomposition in WRF. Thus P is divided into N rectangular subsets.

The value of Qcloud at each grid point in each split file is aggregated if the outgoing

long wave radiation Olr ≤ 200 (lines 4–9). The fraction of the grid points which satisfy

the above criteria, olrfraction, is calculated (lines 7–8). The aggregated Qcloud values,

one value per file, are then sent by all the N processes to a root process, rank 0 in our

case. Each process will atmost send k values. Note that some of the split files may not

have regions with Olr ≤ 200, in which case the process owning these split files will

send fewer than k values. The root process gathers the aggregated Qcloud values and

the olrfraction values (line 11).

The rest of the algorithm is executed only on the root process. Firstly the aggregated

Qcloud values obtained from the split files are sorted in non-increasing order (line 13).

A contiguous region with high cloud cover can span multiple split files processed by

multiple processes. To obtain a contiguous region, we perform a variant of nearest

neighbour clustering (NNC) (line 14). NNC outputs a set of clusters with each cluster

containing a contiguous region of high cloud cover. A rectangle is formed around each

cluster (lines 16–19) and these rectangles constitute nests for fine-resolution simulations

in WRF.

Nearest Neighbour Clustering: The pseudo code for the NNC algorithm is shown in

Algorithm 4.2. It takes as input the sorted list of Qcloud values, qcloudinfo. Each

element in qcloudinfo is a tuple of aggregated Qcloud values for a split file and the

corresponding fraction of the split file which has Olr ≤ 200. The Qcloud value of each

element in the list represent the cloud cover for a subdomain. The spatial location, i.e.

the latitude and longitude extents of a subdomain is used in this algorithm to determine



Chapter 4. Diffusion-based Repartitioning Strategies 68

proximity between two subdomains.

The algorithm iterates over each element in the input array qcloudinfo (lines 2–20).

Line 3 checks whether the aggregate Qcloud value and the fraction of the subdomain

that has Olr ≤ 200 are greater than a threshold, which is 0.005 in our case. This

avoids analyzing smaller cloud-covered regions with a very low Qcloud value. Clusters

are formed based on proximity of the elements (lines 4–18). Each cluster represents a

contiguous region of strong cloud cover. An element is added to a cluster if it is either 1-

hop or 2-hop away from an existing cluster. Initially, the list of clusters is empty. First,

we check if the current element is at 1-hop distance from any element in an existing

cluster (lines 6–9). If this does not hold true, then we check if the element is 2 hops away

from any element in an existing cluster (lines 10–13).

In lines 6 and 10, the Distance function is invoked to calculate the proximity. If

it returns true, the element is added to list. If element is within hop distance from

member, then it is added to the cluster list iff it does not deviate the mean of the

Qcloud values by more than a threshold (30% in our case) (lines 23–29). This ensures

that a cluster of contiguous cloud region has low standard deviation and also helps in

controlling the size of an existing cluster.

If element is not within 2 hops from any element in any of the existing clusters, then

a new cluster newlist is formed. element is added to newlist, which is added to the set

of clusters Clusters (lines 16–18). NNC outputs Clusters which is the set of clusters

representing different contiguous regions of cloud cover.

The parallel data analysis algorithm is executed simultaneously on a different set of

processors than the processors running the WRF simulation. Hence execution of PDA

does not affect WRF execution times. In Algorithm 4.1, the analysis of Qcloud values

in each split file is done in parallel because this is the most time-consuming step. For

a maximum of 1024 split files, experiments show that the number of elements gathered

at the root process is less than 200 for most of the time steps. The sequential NNC

algorithm (Algorithm 4.2) takes less than a second to cluster such few values. In this

case, parallel clustering would have been an overkill for online analysis. However, we



Chapter 4. Diffusion-based Repartitioning Strategies 69

Input: Sorted array qcloudinfo

Output: Clusters: List of elements, clustered by proximity

Clusters = ∅;1

LOOP: foreach element ∈ qcloudinfo do2

if (element.qcloud ≥ threshold and element.olrfraction ≥ threshold) then3

/* Check if this element is physically close to any member of any list */

foreach list ∈ Clusters do4

foreach member ∈ list do5

if (Distance (element,member,list,1)) then6

Add element to list;7

Continue next iteration of LOOP;8

end9

if (Distance (element,member,list,2)) then10

Add element to list;11

Continue next iteration of LOOP;12

end13

end14

end15

/* Form a new list */

Initialize newlist;16

Add element to newlist;17

Add newlist to Clusters;18

end19

end20

Return Clusters;21

Begin Function Distance (element, member, list, hop)22

if (distance between member and element == hop) then23

OldMean = Mean of Qcloud values of members of list;24

NewMean = Mean of Qcloud values of members of list and element.qcloud;25

if (NewMean is within 30% of OldMean) then26

Return True;27

end28

end29

Return False;30

End Function Distance31

Algorithm 4.2: Nearest Neighbour Clustering (NNC) algorithm



Chapter 4. Diffusion-based Repartitioning Strategies 70

would like to parallelize the NNC algorithm in future for simulations on larger number

of processors.

4.3 Processor Allocation

The parallel data analysis (PDA) algorithm computes a set of regions of interest (ROI) in

the domain, which in our case are the regions with high cloud cover. Nested simulations

are spawned over the regions of interest. We simulate these nests at high resolutions for

better accuracy. The resolutions of these nested simulations are thrice that of the parent

simulation. We modified the WRF code to spawn nests on-the-fly without stopping the

simulation. The initial data for the nested domains are interpolated from the parent

domain.

We showed in Chapter 3 that significant performance improvements can be achieved

by executing the nests simultaneously on different subsets of the total number of proces-

sors, P . We use the performance modeling and Huffman tree based algorithm described

in Chapter 3 to determine the size of the subset of processors for a nest and the position

of the subset in the processor grid Px×Py where Px ·Py = P . The performance model

is used to predict the execution times of nests based on the size and aspect ratio of

the nests. The Huffman tree based algorithm is used to determine the initial processor

allocation for each nested domain.

An example of processor allocation for 5 nests is shown in Figure 4.2. Assume that

the ratios of the predicted execution times of the nests are 0.1 : 0.1 : 0.2 : 0.25 :

0.35. These ratios are used as weights in the construction of the Huffman tree, as

shown in Figure 4.2(a). The corresponding processor sub-grid for each nest is shown

in Figure 4.2(b). The 5 sub-rectangles correspond to the set of processors that execute

each of the nests. The start rank i.e. the rank of the processor at the north-west corner

of the sub-rectangle and the rectangular dimensions of each processor sub-grid for this

example configuration are shown in Table 4.1 for a maximum of 1024 cores.

The regions of interest may persist in time or disappear in subsequent time steps. Our

regions of interest are the regions with high cloud cover. Clouds may form and disappear



Chapter 4. Diffusion-based Repartitioning Strategies 71

0.1 0.1

0.2 0.25 0.35

0.60.4

0.2

1.0

543

21

(a) Huffman tree for 5 nests with ex-

ecution times in ratios of 0.1 : 0.1 :

0.2 : 0.25 : 0.35

Px

Py

1

2

3

4

5

(b) Sub-division of the proces-

sor grid Px×Py for the 5 nests.

Figure 4.2: Illustration of processor allocation for nests.

Table 4.1: Processor allocation on 1024 cores

Nest ID Start Rank Processor sub-grid

1 0 13× 8

2 256 13× 8

3 512 13× 16

4 13 19× 13

5 429 19× 19

over a period of time. The PDA algorithm is invoked periodically (every 2 minutes) to

detect regions of interest (ROI) in the output of the current simulation time step. A nest

is spawned whenever a new ROI is detected. A nest is deleted when an existing ROI is

not output by PDA. A retained nest is one which was output by PDA in the previous

invocation as well as in the current invocation. The insertion, deletion and retainment of

nests cause changes in the Huffman tree structure and hence in the processor allocation.

Therefore the newly allocated set of processors (receivers) executing a retained nest may

not be the same as the previously allocated set of processors (senders) for the nest.

The senders need to distribute the nest domain data to the receivers. We modified the



Chapter 4. Diffusion-based Repartitioning Strategies 72

WRF code to execute this redistribution. First the amount of data to be redistributed is

calculated based on the nest size, followed by MPI Alltoallv to redistribute data for each

nest. The processors that are neither senders nor receivers for a nest send and receive 0

value during the MPI Alltoallv for that nest.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17

18 19

Nx Nx

Ny

Figure 4.3: Data redistribution from old to new set of processors assigned to a nest.

An example is shown in Figure 4.3 for a nest size of Nx×Ny. A nest is equally sub-

divided among its allocated processors 0− 15 as shown in the left grid. These processors

distribute the nest data to the newly allocated processors 16− 19 as shown in the right

grid of the figure. It can be observed that the region of the nest domain that processor

16 owns was previously owned by 0, 1, 4, 5. Hence 16 receives the domain data from

0, 1, 4, 5. Similarly, the other receivers also receive data from 4 senders in this example.

In the above example, the senders and receivers are non-intersecting sets. The com-

munication cost for the data redistribution between the senders and the receivers can

be minimized if the senders and receivers overlap. In torus networks, minimizing the

number of hops between the senders and receivers can minimize the redistribution cost.

We describe two strategies for data redistribution in the next section.

4.3.1 Partition from scratch

In this approach, we partition the entire process grid Px × Py for processor allocation

based on Huffman tree constructed using the predicted execution times of the nests as

weights, as explained in the previous section. The tree construction does not consider

the current allocation of processors. Hence this strategy can lead to completely non-

overlapping senders and receivers, which will lead to increased redistribution cost.

For example, let us consider the configuration in Figure 4.2. Assume that in the



Chapter 4. Diffusion-based Repartitioning Strategies 73

0.27 0.31

0.42
5

3 6

(a) Huffman tree for nests 3, 5, 6 with ex-

ecution times in ratios of 0.27 : 0.42 :

0.31.

Px

Py

3

5

6

(b) Sub-division of the processor

grid Px× Py for 3 nests.

Figure 4.4: Processor allocation for nests using partition from scratch.

next invocation, PDA outputs the nests 3, 5, 6 as regions of interest. So the nests 1, 2,

and 4 will be deleted and new nest 6 will be formed. Let the ratios of the predicted

execution times of the nests 3, 5, 6 be 0.27 : 0.42 : 0.31. The corresponding Huffman tree

and the processor partition are shown in Figure 4.4. The start rank and the rectangular

dimensions of each processor sub-grid for each nest are given in Table 4.2 for a maximum

of 1024 cores. Comparing the previous and the new allocation for nests 3 and 5 from

Tables 4.1 and 4.2, we can observe that there is no overlap between senders and receivers.

This can increase the redistribution cost.

Table 4.2: Processor allocation on 1024 cores

Nest ID Start Rank Processor sub-grid

3 13 19× 13

5 0 13× 32

6 429 19× 19

The redistribution cost may be high in some cases in this approach. However, the

rectangular partitions based on the Huffman tree are as square-like as possible owing



Chapter 4. Diffusion-based Repartitioning Strategies 74

to the tree construction in the order of increasing weights. The square-like partitions

minimize the execution times of the nests.

4.3.2 Tree-based hierarchical diffusion

In this approach, we try to maximize the overlap between senders and receivers of the

retained nests. The key idea is to shift the boundaries of rectangular partitions for the

retained nests so that the distribution of data is among neighbouring processes and the

overlap in the nest data between the old and new set of processes is maximized. This

minimizes the redistribution cost, especially on torus networks. An example is illustrated

in Figure 4.5. Figure 4.5(a) shows the existing processor partitioning for nests 1, 2, 3.

1

2

3

(a)

1

2

3

4

(b)

Figure 4.5: (a) Existing and (b) new processor allocation in the hierarchical diffusion approach.

When a new nest is added, the existing partitions are shrunk. In this example, the right

boundary of rectangle for nest 1 is shifted to the left and the left boundaries of the nests

2 and 3 are shifted to the right, thereby leaving some processors free for inserting the

new nest, as shown in Figure 4.5(b). This also leads to a large overlap between the old

and new processor partitions for nests 1, 2, 3.

This repartitioning method is based on modifying the tree corresponding to the cur-

rent allocation, rather than building the Huffman tree from scratch. The positions of

the nodes corresponding to the retained nests are kept intact in the tree. Note that the

weights of the old nodes, i.e. the retained nests, may be modified because the weights

represent the ratios of the number of processors that will execute each nest. When new



Chapter 4. Diffusion-based Repartitioning Strategies 75

nests are added and/or old nests are deleted, the processor shares of the existing nests

may change.

When there is no deletion, and there is only insertion of new nodes, they are inserted

near those existing nodes whose weights are similar to that of the new nodes. By inserting

a new node near a node in the Huffman tree with similar weight, we attempt to obtain

rectangular partitions for the nests that are more square-like. However, inserting a new

node near a node with large difference in weights will lead to skewed rectangles. Square-

like partitions lead to smaller executions times for the nests, while skewed rectangular

partition increases the execution time of a nest.

0.5

0.25 0.25

1

2 3

(a)

0.15 0.150.3 0.4
1 4 2 3

(b)

Figure 4.6: (a) Existing and (b) new trees in the hierarchical diffusion approach. Predicted

execution time ratios of the nests are the weights in the leaf nodes.

The existing and the new trees corresponding to the processor partitions of Figure 4.5

are shown in Figure 4.6. The new tree in Figure 4.6(b) is constructed by inserting node

4 near node 1. This is because the weight of node 4 is closest to that of the new weight

of node 1. The size of a partition that each node gets is proportional to its weight. Thus,

the nodes 1 and 4 get 3
7

th
and 4

7

th
of the processors allocated to their parent node. Since

the difference in weights of nodes 1 and 4 is less, so the resulting rectangles for 1 and 4

will be as square-like as possible. Note that this would not have been the case if node 4

was inserted near node 2 whose weight is 0.15. This is because the corresponding shares

for 4 and 2 would have been 0.4
0.55

= 8
11

and 0.15
0.55

= 3
11

. Thereby the rectangle for node 2

would not have been square-like due to the large difference in weights. This is illustrated



Chapter 4. Diffusion-based Repartitioning Strategies 76

in Figure 4.7. One can note that rectangle 2 is skewed as compared to rectangle 4.

0.150.4
4 2

Figure 4.7: Skewed rectangle due to large difference in weights of the two nodes.

When nests are both inserted and deleted, the nodes corresponding to the deleted

nests are deleted from the tree. Further, new nodes are inserted in the positions of deleted

nests so that the positions of the retained nests remain intact as much as possible. This

may enhance the chance of overlapping old and new nest processor allocations for the

retained nests. The algorithm for modifying the existing tree for new processor allocation

is detailed in Algorithm 4.3. The inputs are the existing tree oldtree, the list of deleted

nodes deletednodes, the modified weights of the retained nests rweights and the weights

of the new nodes nweights. The output is the modified tree newtree.

Firstly, nodes from deletednodes are marked as free in oldtree and added to the set

freenodes (lines 2–6). The siblings of these nodes are added to the set siblings (line 5).

These are used later as insertion points. The weights of the retained nodes are modified

(lines 7–9). Based on the deletion and modification of weights of retained nodes, the

weights of the internal nodes are updated (line 10). The new weights are added in the

positions of the deleted nodes (lines 11–17). As explained above, the new nodes should

be inserted near the ones who have closest weights. So, we inspect the weights of the

sibling nodes of the deleted nodes. Inserting a new node in the place of a deleted node

will lead to minimum modification of the existing tree structure. This is shown in line

13. new weight is inserted in the position of node, which was marked empty earlier.

node is selected such that the difference between the weight of its sibling sibnode and

new weight is minimum. node and sibnode are deleted from their respective sets (lines

14–15).

Note that the operation in line 13 is done only when there are multiple nodes in the



Chapter 4. Diffusion-based Repartitioning Strategies 77

Input: Existing tree oldtree, list of deleted nodes deletednodes, new weights of retained nests

rweights, and weights of new nests nweights.

Output: New tree newtree

freenodes = ∅, siblings = ∅;1

foreach node ∈ deletednodes do2

Mark node as free in the oldtree;3

Add node to freenodes;4

Add sibling of node to siblings;5

end6

foreach weight ∈ rweights do7

Update weight for the corresponding retained node;8

end9

Update weights of internal nodes of oldtree;10

/* Insert in the positions of deleted nodes, near to the nodes with closest

weights */

foreach new weight ∈ nweights do11

if (|freenodes| > 1)) then12

Add new weight to the position of node whose sibling’s weight is closest to new weight ;13

node from freenodes;14

Delete sibnode from siblings;15

end16

end17

if (|nweights| ≥ |deletednodes|)) then18

Build Huffman tree for the remaining new weights rooted at node ∈ freenodes;19

else20

Delete the remaining nodes in freenodes from oldtree;21

end22

Copy oldtree to newtree;23

Algorithm 4.3: Tree-based hierarchical diffusion algorithm



Chapter 4. Diffusion-based Repartitioning Strategies 78

set freenodes. This is because when the number of deletions is less than the insertions,

we build Huffman tree using the remaining unmatched weights in nweights, and this

subtree is rooted at the position of the last element in freenodes. This is shown in lines

18–20. If there are fewer insertions than deletions, we delete the remaining nodes of

freenodes (line 21). The updated oldtree is output as newtree.

This approach reduces the data movement between the senders and receivers and

hence achieves significant reduction in redistribution time as compared to the partition

from scratch method. This is because we attempt to allocate receivers such that there is a

large overlap between senders and receivers and the receivers are neighbouring processes

of the senders.

The processor allocation using tree-based hierarchical diffusion algorithm for the ex-

ample in Figure 4.2 is shown in Figure 4.8. To compare with the partition from scratch

approach, let us assume the same output of PDA that was considered in Section 4.3.1

(see Figure 4.4). The nests 1, 2 and 4 are deleted, nests 3 and 5 are retained and 6 is the

new region of interest. Figure 4.8(a) shows the tree after nodes 1, 2 and 4 are marked

as deleted and weights of 3 and 5 are modified. Note that deleted nodes 1, 2 have been

combined as one empty node because the two free rectangles represented by them can

be considered as one free rectangle. Hence there are two free slots available for inserting

new node 6 - the weight of one sibling node is 0.27 and that of the other is 0.42. Node

6 is inserted in the position of sibling of node 3 because 0.31 − 0.27 < 0.42 − 0.31 i.e.,

the weight of node 3 is closer to weight of node 6. The rectangular partitioning based

on this tree is shown in Figure 4.8(d). Comparing this with the partitioning obtained

from the partitioning from scratch method shown in Figure 4.4(b), we can see that there

is considerable overlap between the old and new set of processors for nests 3 and 5, as

compared to no overlap in the partition from scratch approach. Also, we observe that

the rectangles for 3 and 5 expand to neighbouring processes because we try to keep the

positions of retained nests as intact as possible.

Note that the resulting modified tree may no longer be a Huffman tree in this ap-

proach. However, the modifications may lead to some overlap between new and old



Chapter 4. Diffusion-based Repartitioning Strategies 79

0.420.27
53

(a) Deleted nodes marked empty and

weights of retained nests modified.

0.420.27
536

0.31
(b) Node 6 inserted near node 3

0.42

0.27

5

36

0.31
(c) Remaining deleted nodes re-

moved

Px

Py

3

5
6

(d) Sub-division of the proces-

sor grid based on the modified

tree.

Figure 4.8: Steps of the tree-based hierarchical diffusion algorithm for deleting nests 1, 2, 4,

retaining nests 3, 5 and adding new nest 6.

processors and redistribution among neighbouring processes. Our techniques are scal-

able for large number of processors. Also, the maximum number of hops between old

and new set of processors is likely to increase for the scratch method with larger total

processor count. Therefore the data redistribution time may increase with increase in

number of processors for the scratch method. Processor reallocation via Huffman tree

construction or reorganization depends on the number of nests and is not affected by

increase in processor count.



Chapter 4. Diffusion-based Repartitioning Strategies 80

4.3.3 Dynamic Strategy

The performance differences between the two methods, namely, the partition from scratch

method and our diffusion-based method, depend on both the execution times of the

resulting partitions and the redistribution costs. The execution time ratios of the nests

and hence the percentage of total number of processors allocated for the nests are same

in both partition from scratch method and our diffusion-based method. However, due

to integral sides of the sub-rectangles, the rectangular grids and the aspect ratios of the

rectangles for the same nest configuration may not be exactly the same. For example,

one method may allocate 16× 18 while the other may allocate 17× 17. This can lead to

slight difference in execution times of the nests for the two methods.

Similarly, while we expect the redistribution costs for our diffusion-based method to

be smaller than the partition from scratch method, there may be cases when the redis-

tribution costs are almost same in both approaches. This is because both approaches

are based on tree construction using the ratios of predicted execution times of nests

as weights. The relative order of the weights affect the construction of the tree, and

hence also affects the resulting rectangular processor grid allocated to the nests. Simi-

lar relative order of the weights of those nests that persist between reconfigurations may

result in similar trees for both approaches, and hence similar redistribution costs. There-

fore we propose a dynamic strategy that selects the approach which requires minimum

redistribution time and execution time. For this, we need to predict both these times.

Performance model for redistribution time

The primary component of the redistribution time is MPI Alltoallv between the pro-

cessors. We assume direct algorithm for MPI Alltoallv [61] between the processors in

mesh and torus based networks. We predict MPI Alltoallv time as the maximum com-

munication time between senders and receivers. First, we find the size of the message

that a sender will send to its receiver(s), and then find the number of hops between the

sender and its receivers. Using this, we find the communication time for every sender-

receiver pair. The maximum of these communication times is predicted as the time for



Chapter 4. Diffusion-based Repartitioning Strategies 81

MPI Alltoallv. For non-mesh networks like switched networks, the times taken for sender

to send messages to all receivers can be added to predict the time for MPI Alltoallv.

Performance model for execution time

We profiled the execution times of a small set (size = 13) of domains with different domain

sizes on a few (10 in our case) processor sizes within the maximum number of processors

(1024 in our case). The actual execution times of these 13 domains are used to interpolate

the execution times of the nests formed in our simulation using Delaunay triangulation.

The details of these steps are presented in Chapter 3. Additionally, we predict the

execution times of the nests for the 10 processor sizes. Using these times, we perform

linear interpolation to predict the execution time on desired number of processors. This

gives good prediction accuracies as shown later in Section 4.4. The prediction execution

times are used for dynamic selection of methods, and also for determining the weights of

the nests needed for processor allocation in the partition from scratch and our tree-based

methods.

Using the above predictions for redistribution and execution times for both scratch

and tree-based approaches, the dynamic scheme selects the one which has lower sum of

these times.

4.4 Experiments and results

4.4.1 Data analysis algorithm

One of the primary components in our work is the data analysis algorithm described in

Section 4.2 to identify clouds and form nests. We form clusters of contiguous regions

with high cloud cover using Qcloud values in non-increasing order. A Qcloud value

in this list represents the aggregated Qcloud over a subdomain, where Olr ≤ 200. The

contiguous regions are clustered based on the proximity between the subdomains.

In this section, we compare our nearest neighbour clustering algorithm described with

a simple nearest neighbour clustering approach. In Figure 4.9(a), we show the clustering



Chapter 4. Diffusion-based Repartitioning Strategies 82

using only 2 hop distance criteria. This strategy checks whether the list element is within

2 hops from an existing cluster. We can observe there are some overlapping clusters.

(a) Nearest neighbour clustering using 2-hop

distance and no mean deviation criteria. Clus-

ters overlap in space.

(b) Nearest neighbour clustering using 1-

hop and 2-hop distances and mean deviation

threshold of 30%. Clusters do not overlap.

Figure 4.9: Nearest neighbour clustering for our parallel data analysis algorithm.

In Figure 4.9(b), we show the clusters formed by our method. It can be observed

that the clusters formed by our method are non-overlapping because we first check for

1 hop and then 2 hop distance. We check for 2 hop distance only if the list element is

not within 1 hop from an existing cluster. This ensures that the list element is added to

its nearest cluster. We insert into a cluster only if the mean deviation is not more than

30% to ensure that the cluster size does not grow uncontrollably.

4.4.2 Domain Configurations

We modified the WRF source code for dynamic insertion and deletion of nested domains.

We simulated over the Indian region from 60◦E - 120◦E and 5◦N - 40◦N for the July 2005

Mumbai rainfall event [111]. The period of simulation was from July 24, 2005 18:00

hours – July 27, 2005 18:00 hours. The parent simulation resolution was 12 km and the

resolutions of the nested domains were 4 km. We compared our tree-based hierarchical



Chapter 4. Diffusion-based Repartitioning Strategies 83

diffusion approach with the partition from scratch method for both real and synthetic

test cases. For the dynamic approach, we experimented with synthetic test cases.

Real: Nests were formed over regions with high cloud cover, which were detected by our

parallel data analysis algorithm. The maximum number of nests formed during these

runs were 7. The maximum and minimum sizes of the nests formed were 202× 349 and

175 × 175. There were approximately 100 reconfigurations of processor allocations for

the nests.

Synthetic: The real traces for our application had fewer configuration changes and fewer

(4 – 5) nests on average. We generated some synthetic test cases in order to test our

algorithm for higher number of nests in a time step and more number of redistributions

per adaptation point. We tested with upto 70 random nest configuration changes, with

number of nests varying between 2 – 9. Nests were randomly inserted and deleted. The

maximum and minimum sizes of the nests formed were 361× 361 and 181× 181.

4.4.3 Experimental Setup

We performed our simulations on two different kinds of systems, a Blue Gene/L system

and an Intel Xeon cluster called fist. Table 4.3 details our experimental configurations.

Table 4.3: Simulation Configurations

Simulation Configuration Maximum Number

of Cores

Blue Gene/L: Dual-core 700 MHz PowerPC 440

processor cores with 1 GB physical memory, 3D

torus network

1024

fist: 2 Xeon quad core processors (2.66GHz, 12MB

L2 Cache) with 16GB memory, connected by In-

finiband switched network

256

For the experiments on Blue Gene/L [126], we developed a folding-based topology-

aware mapping [145] that maps the neighbouring processes to neighbouring processors



Chapter 4. Diffusion-based Repartitioning Strategies 84

on the 3D torus. This topology-aware mapping was used for all our experiments so that

the processes are one hop away from their neighbours in the process grid. This also

benefits the execution times for both the partition from scratch method and diffusion

based approach.

For all our experiments, visualization was performed on a graphics workstation in

Indian Institute of Science (IISc) with a dual quad-core Intel R© Xeon R© E5405 and an

NVIDIA graphics card GeForce 8800 GTX.

4.4.4 Improvement in redistribution time

Our tree-based hierarchical diffusion method achieved 14% and 12% improvements in

redistribution times on 512 and 1024 Blue Gene/L cores respectively over partition from

scratch method for the real test cases.

Table 4.4 shows the average percentage improvement in redistribution times for our

tree-based hierarchical diffusion method over partition from scratch method for the syn-

thetic test cases. It can be observed that the performance improvement is higher in

Table 4.4: Average improvement in redistribution times for synthetic test cases

Simulation Configuration Improvement

BG/L 1024 cores 15%

BG/L 256 cores 25%

fist 256 cores 10%

the case of Blue Gene/L which has 3D torus network. This is because our tree-based

hierarchical approach selects the new processor allocation based on the neighbours in the

process grid. For Blue Gene/L the neighbours in the process grid are also neighbours

in the processor topology because of our topology-aware mapping. However, in the fist

cluster, there is no regular mesh/torus topology, hence the gains are lower. However,

it is important to note that we still achieve 10% improvement over the scratch method

because of the overlap between the senders and receivers in our approach. Maximum

overlap ensures less data communication during the redistribution. We also observe



Chapter 4. Diffusion-based Repartitioning Strategies 85

higher improvement for 256 cores. We assume that this may be because of larger per-

core data for redistribution in the case of smaller number of cores.

For both real and synthetic test cases, we observed an average of 4% increase in

execution times for our approach over the partition from scratch method. This is because

in our approach, the Huffman tree is not constructed from scratch and we try to maximize

the overlap. Hence the resulting partitions may not always be square-like. However,

when the number of adaptation points is high, it is more important to minimize the

redistribution cost.

4.4.5 Distance between senders and receivers

Figure 4.10 shows the average hop-bytes during the sender-receiver communication for

partition from scratch and our approach for 70 synthetic test cases on 1024 Blue Gene/L

cores. The hop-bytes metric is the weighted sum of message sizes where the weights

are the number of hops (links) traveled by the respective messages. Higher hop-bytes

0 10 20 30 40 50 60 70
Case number

0

2

4

6

8

10

12

Av
er

ag
e 

ho
pb

yt
es

Partition from scratch
Tree-based hierarchical diffusion

Figure 4.10: Average hop-bytes for partition from scratch method and tree-based hierarchical

approach. X-axis denotes the test case number and Y-axis denotes the hop-bytes. Tree-based

hierarchical approach incurs lesser hop-bytes than scratch method.

is an indication of higher communication load on the network [12]. It can be seen that

the average in the case of partition from scratch is 5.25 whereas in our approach the



Chapter 4. Diffusion-based Repartitioning Strategies 86

average is 2.44. This is because in our strategy the receiver process grid is placed closer

to the sender process grid so that the number of hops between a sender-receiver pair is

minimized.

Figure 4.11 shows the percentage of overlap of data points between the senders and

receivers for partition from scratch and our approach for 70 synthetic test cases on 1024

Blue Gene/L cores. It can be observed that the overlap is higher for our method and

hence our approach incurs lesser redistribution time.

0 10 20 30 40 50 60 70
Case number

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f o
ve

rla
p

Partition from scratch
Tree-based hierarchical diffusion

Figure 4.11: Percentage overlap between senders and receivers for partition from scratch

method and tree-based hierarchical approach. X-axis denotes the test case number and Y-

axis denotes the percentage overlap. Tree-based hierarchical approach has more overlap than

scratch method.

In the case of fist cluster, we found that there was an overlap of 27% data points

between senders and receivers for our tree-based hierarchical approach. For the scratch

method, there was 15% overlap. This is because in our method, we try to maximize the

overlap between senders and receivers so that there is less data communication during

the redistribution.



Chapter 4. Diffusion-based Repartitioning Strategies 87

4.4.6 Dynamic Approach

In this section, we present the results for our dynamic scheme which selects either the

scratch or the tree-based approach. We tested 12 reconfigurations for synthetic cases

on 1024 BG/L cores for a simulation period of 4 hours. The approach with the mini-

mum sum of predicted execution and redistribution times was selected by the dynamic

approach. Since the efficiency of dynamic selection approach depends on the ability to

predict the execution times of different nest configurations, we calculated the Pearson’s

correlation coefficient between the actual and predicted execution times. We found that

our prediction method yielded Pearson’s correlation coefficient of 0.9. This shows linear

relationship between the two and hence also shows that our performance prediction for

execution times is nearly accurate.

Out of the 12 reconfiguration cases, scratch method was selected two times and tree-

based approach was selected ten times. The dynamic approach made correct decisions

in 10 out of the 12 cases. In terms of actual execution times, our tree-based diffusion

method gave smaller sum of execution and redistribution times than partition from

scratch method in 9 cases, while the partition from scratch method gave smaller sum in

the remaining 3 cases.

Figure 4.12 shows the total times including the execution times and redistribution

times for tree-based approach, partition from scratch method and dynamic approach. It

can be observed that the redistribution time is lowest in our tree-based method, while the

execution time is the lowest in the partition from scratch method. The dynamic selection

approach combines the advantages of both the methods, with its redistribution time

similar to the tree-based approach and its execution time similar to the partition from

scratch method. The dynamic scheme resulted in 3% improvement in overall execution

time than the next best-performing tree-based approach. It should be noted that more

frequent adaptation points seen in our real runs (about 70 adaptation points) will result

in higher performance improvement for the dynamic scheme.



Chapter 4. Diffusion-based Repartitioning Strategies 88

Tree-based Scratch Dynamic0

50

100

150

200

250

300

350

Ti
m

e 
(s

ec
on

ds
)

Execution time
Redistribution time

Figure 4.12: Execution and redistribution times.

4.5 Discussion

In this section, we discuss how our techniques can be useful for other applications and

can be applicable on other platforms.

4.5.1 Use of our Techniques for Other Applications

There are many applications in various other scientific domains where our methods can

be applied and prove useful. Some examples are flow dynamics, and vehicle dynam-

ics. In the case of multi-scale flow simulations, macroscopic flow phenomenon in a large

computational flow domain is simulated using continuum approach whereas the more

compute-intensive molecular dynamics (MD) simulations track the motion of individual

discrete atoms in small spatial regions [122]. Detailed MD simulations are required for

atomistic physical phenomena which can vary spatially and temporally. In the case of

vehicle dynamics, multibody simulations are used to simulate the entire vehicle whereas

the more sophisticated finite element method (FEM) simulations are applied to study

structural deformations to tires on rough surfaces. FEM simulations are dynamically

spawned based on road conditions [9]. In both these cases, our approach of perfor-

mance modeling and processor allocations can be used for the detailed simulations. For



Chapter 4. Diffusion-based Repartitioning Strategies 89

performance prediction, the parameters for interpolation need to be determined by the

scientist/user. Our processor allocation and reallocation algorithms for detailed simula-

tions can be used to determine the partitioning and redistribution with minimum data

movement. Another such application domain is fluid-structure interactions where fluid

flow causes deformation of the structure and boundary conditions of the fluid flow are

altered [40]. Deformations can dynamically occur, thereby requiring remeshing into finer

grids in certain regions of the domain.

Our performance model and resource allocation strategies can also be extended to

be used for visualization of cosmological simulation output where the parent domain is

dynamically refined into coarser levels [62]. Our methods can be extended to coupled

simulations, for e.g., climate simulations like Community Earth System Model [43]. The

long running climate simulations incur temporal variability in invoking certain compu-

tations in the model components based on atmospheric dynamics, dynamic vegetation,

aerosol formation and removal etc. Thus, they require remapping of components in cer-

tain time-steps. The processor allocations and reallocations for model components can

be determined using our strategies. However, in coupled simulations, since there are

few communications between the independent components, an additional constraint of

distance between communicating components need to be considered when mapping the

sub-tasks onto sub-partitions.

4.5.2 Use of our Techniques for Other Platforms and Interconnects

Although we have shown results with IBM Blue Gene, our techniques can be applied to

other systems with torus networks that are widely prevalent. Our data redistribution

strategies will be effective on custom interconnects as well as clusters that do not have

regular interconnect topologies. The processor allocation and reallocation algorithms are

based on Huffman-tree construction using sub-domain sizes and do not assume anything

about the underlying network. Hence, they can be directly used on any platform with

any interconnect.

Our mapping heuristics are also applicable on other regular custom interconnect



Chapter 4. Diffusion-based Repartitioning Strategies 90

topologies where jobs are allocated in contiguous partitions. The mapping heuristics

discussed in Section 3.5, are based on folding of virtual topology on the physical network.

For mesh and torus-based topologies, folding can be achieved in a similar way as discussed

in this thesis. However, rethinking is required for mapping algorithms for multi-level

direct networks [13] and fat-tree topology [68]. The 2D virtual topology of the application

cannot be folded on a graph/tree-based topology trivially. Lower communication times

can be achieved by mapping a sub-domain on to adjacent groups in the lower levels of

these kinds of hierarchical networks.

4.6 Summary

In this chapter, we presented a parallel data analysis algorithm and efficient processor

reallocation algorithm to detect and track tall clouds in tropical weather systems. Our

data analysis algorithm detects organized cloud systems using a variant of nearest neigh-

bour clustering. We performed nested high-resolution simulations for the regions with

high cloud cover. The nested simulations were executed on a disjoint subset of the total

number of processors. Due to the dynamic nature of the clouds, the nests may form and

disappear with time. We proposed a tree-based efficient processor allocation algorithm

that reallocates processors for the persistent nests at a low data redistribution cost.

Our approach considers the existing processor allocation and selects a new subset

of processors with maximum overlap with the existing rectangular subset of processors.

Results showed that we are able to reduce the redistribution times by upto 25% as

compared to partition from scratch method with minimum increase in the execution

times. We also developed a dynamic scheme that attempts to select the best of the two

approaches, namely, partition from scratch and our approach.

Our detection and tracking algorithms are quite generic. In future, we would like

to apply these algorithms for other applications which require simultaneous tracking of

multiple dynamic events.

Weather simulations produce large amounts of output data, which needs to be quickly

visualized for comprehending the simulation output. On-the-fly visualization becomes



Chapter 4. Diffusion-based Repartitioning Strategies 91

more important in cases of weather conditions like depressions and cloud formations,

which can result in severe weather phenomena like cyclones and heavy rainfall. In the

next chapter, we describe an adaptive framework for simultaneous simulations and on-

the-fly visualization that decides execution parameters based on the resource character-

istics like network bandwidth, computation speed and stable storage space.



Chapter 5

Simultaneous Simulation and Visualization

Conventional post-processing of simulation data suffers from shortcomings like delay

between simulation and visualization times. Recent efforts focus on approaches for online

visualization [75, 132]. In this chapter we discuss our adaptive framework for loosely

coupled simulation and online visualization.

5.1 Introduction

Critical weather applications like cyclone or hurricane tracking and earthquake model-

ing require high-performance and high-fidelity simulations to obtain real-time forecasts

and high-resolution visualization by the climate scientists for subsequent analysis. For

timely analysis and rapid response, these applications require online/“on-the-fly” visu-

alization simultaneously performed with the simulation. This will enable the scientists

to provide real-time guidance to policy and decision makers, and feedback control for

refining the simulation. Remote visualization, where the visualization is performed at

a location different from the site of simulation, can enable geographically distributed

climate scientists to share vital information, perform collaborative analysis, and provide

joint guidance on critical weather events, and hence can help harness the expertise of a

large climate science community.

Such high performance simulation and simultaneous visualization involve the use of

large stable storage or disk for storing the weather data and networks for transfer of data

92



Chapter 5. Simultaneous Simulation and Visualization 93

Figure 5.1: Illustration of simultaneous simulation and remote visualization using stable stor-

age.

from the stable storage to the remote visualization site as shown in Figure 5.1. However,

constraints on the size and capacity of the stable storage and the network can limit the

effectiveness of online and simultaneous remote visualization of critical weather events.

In this work, we assume that the data that is transferred to the visualization site is

removed from the simulation site thereby increasing the available free disk space at the

simulation site.

5.1.1 Motivation

Contemporary weather simulations have demonstrated very high scalability on large

number of modern-day processors [80]. Simulations running on thousands of cores take

less than a second of execution time per time step [80]. Parallel I/O can enable very high

I/O bandwidth of the range of 5 – 20 GBps on large number of cores [66, 144]. A combi-

nation of high simulation rate and high I/O bandwidth leads to high rate of generation of

gigabytes of weather data as output and hence rapid accumulation of data in the stable

storage. This gives rise to the critical problem of storage limitation for long-running

weather applications. The network bandwidth between the simulation and visualization

sites impacts the rate at which data is moved out from the simulation site and hence

determines the amount of remaining disk space available for simulation output. Further-

more, the continuous development of high resolution simulation models for fine-grained

analysis leads to an increase in simulation output data volume and hence exacerbates



Chapter 5. Simultaneous Simulation and Visualization 94

the problem of storage space limitation for weather simulations. Eventual unavailability

of storage for storing simulation output, due to the disk becoming completely full, can

result in either stalling of the simulations or visualization of fewer frames, resulting in

loss of visualization of critical weather events.

The problem is illustrated in Table 5.1 that shows the estimated time when the stable

storage becomes unavailable for weather simulations (last column). The table shows data

for a weather simulation of grid size 4486 × 4486 points, 10 km resolution resulting in

about 31 GB of output per time step, execution time of 1.2 seconds for a simulation time

step on 16,384 processor cores, I/O bandwidth of about 5 GBps, and for various total

disk sizes and network bandwidths. The values for simulation grid sizes and resolutions,

parallel I/O bandwidths and execution time on about 16,000 cores are reported and

projected in recent research efforts [66, 80, 144]. We find that even the presence of large

disk spaces, and fast networks can result in the storage becoming unavailable within few

minutes to hours of high-resolution weather simulations that are envisaged to execute

for few days to weeks on large-scale machines. This in turn hampers effective remote

visualization of critical weather events. Hence it is highly essential to adaptively use the

processor space and adjust the frequency of output based on the application and resource

dynamics. Such a dynamic solution will ensure that the disk space is always available

to store the output of the simulation and the climate scientists are able to constantly

monitor progress of the simulation.

5.1.2 Problem Statement

In this chapter, we describe our adaptive framework that simultaneously performs nu-

merical simulations and online continuous remote visualization of critical weather ap-

plications in resource-constrained environments. The objective of our framework is to

enable continuous progress in simulation and maximize temporal resolution in visualiza-

tion, considering the limitations in storage and network capacities. We define temporal

resolution as the frequency at which successive frames are visualized. High temporal

resolution would mean that more number of successively produced frames are visualized.



Chapter 5. Simultaneous Simulation and Visualization 95

Table 5.1: Illustration of Disk Space Limitation. Weather simulation of grid size 4486 × 4486

points, 10 km resolution, execution on 16,384 cores with 1.2 seconds of execution time per time

step, and I/O bandwidth of about 5 GBps.

Disk Space Network Bandwidth Time when storage becomes full

5 TB
1 Gbps 25 minutes

10 Gbps 36 minutes

100 TB
1 Gbps 8 hours

10 Gbps 12 hours

300 TB
1 Gbps 24.5 hours

10 Gbps 36 hours

500 TB
1 Gbps 41 hours

10 Gbps 60 hours

Our framework considers both application and resource dynamics including the inten-

sity of weather events, available disk space and the network bandwidth to adapt various

application and resource parameters including simulation resolutions, rate of simulation,

selecting the number of processors for simulation, and the frequency of data output for

visualization. We have developed two algorithms for processor allocation and selecting

the frequency of data output for visualization. The first algorithm is a greedy strategy

that attempts to maximize the simulation rate and frequency of output while the second

algorithm is based on linear optimization that attempts to provide steady-state simula-

tion and visualization rates. We have applied our framework for large-scale and long-

range tracking of cyclones. We conducted experiments with our framework for three ex-

periment settings corresponding to inter-department, intra-country and cross-continent

visualizations. We show that our optimization method is able to provide about 30%

higher simulation rate completing the entire simulation for all network configurations,

consumes about 25-50% lesser storage space completely avoiding disk overflow problem

and the resulting stalling of simulation, and provides higher and more consistent rate of

visualization than the greedy approach.



Chapter 5. Simultaneous Simulation and Visualization 96

5.1.3 Chapter Outline

Section 5.2 presents our adaptive framework including the components and interactions.

Section 5.2.4 explains our adaptive algorithms for deciding processor allocation and out-

put frequency. Section 5.3 presents our experiments involving different network band-

widths and results including simulation rates. Section 5.4 briefly discusses the generality

of the framework and we summarize in Section 5.5.

5.2 Adaptive Integrated Framework

Critical weather application simulations require immediate analysis on the occurrence of

critical events. Hence executions of these applications require efficient processor alloca-

tion and a robust disk-space management strategy because of the sheer amount of data

produced by the simulations. The absence of such a middleware can lead to problems

including disk overflow, stalling of simulation, and low temporal resolution.

We have developed an adaptive framework that performs efficient processor allocation

and robust disk-space management to handle the large amount of data produced by the

simulations. Our framework, shown in Figure 5.2, consists of the following components

to perform coordinated simulations and continuous online remote visualizations: an ap-

plication manager that determines the application configuration for weather simulations

based on resource characteristics, a job handler that coordinates the execution of weather

simulations, a simulation process that performs weather simulations with different ap-

plication configurations, frame sender and receiver daemons that deal with transport of

frames from simulation to visualization sites, and a visualization process for visualization

of the frames. The following subsections describe in detail the components and their

interactions.

5.2.1 Application Manager

Application manager is the primary component that makes our framework adaptive to

resource configuration changes. It invokes a decision algorithm periodically or at specified



Chapter 5. Simultaneous Simulation and Visualization 97

Application Manager

Periodic Invocation

Simulation

Process

Visualization

Process

Application

Config

Job Handler

Output Frequency

# Processors

Application

Configuration

Stall if no disk space

F
r
a
m
e
S
e
n
d
e
r

F
r
a
m
e
R
e
c
e
iv
e
r

Network (Intranet/Internet)

Output Frames

Visualized Frames

Figure 5.2: Adaptive framework for continuous simulations and online visualization.

times. The decision algorithm considers as input the bandwidth of the network between

the weather simulation and visualization sites, the available free disk space, the I/O

bandwidth, and the resolution of weather simulation. The application manager also uses

average observed bandwidth between the simulation and visualization sites, obtained by

using the time taken for sending about 1 GB message across the network. The decision

algorithm then determines the number of processors for execution of the simulation and

the frequency of output of weather data for continuous visualization. The application

manager stores these parameters to an application configuration file. It also notifies

other components in the framework if the available free disk space becomes significantly

low by setting a CRITICAL flag in the application configuration file.

The efficiency of the decision algorithm used in the application manager impacts

the rate of simulation and online visualization in our framework. We have developed

two decision algorithms for the application manager. These algorithms are described in

Section 5.2.4.



Chapter 5. Simultaneous Simulation and Visualization 98

5.2.2 Job Handler and Simulation Process

The job handler component is responsible for scheduling the WRF weather simulation

application with the application configuration determined by the application manager.

The WRF weather simulation process is executed on a certain number of processors

with a simulation resolution and frequency of output of the weather data specified in the

application configuration. The job handler starts, stops and restarts the simulation pro-

cess whenever the application configuration changes. The simulation process simulates

weather over a specified period of time and produces output for visualization.

The simulation process continuously simulates weather events across time steps and

outputs weather data to disks as long as the available disk space is sufficient for accommo-

dating the output. The WRF simulation process also periodically reads the application

configuration file written by the application manager. If the available free disk space

is significantly low, the application manager sets the CRITICAL flag. In this case, the

simulation process stalls execution, and periodically checks the application configuration

file. When the free disk space becomes sufficient again, the application manager resets

the CRITICAL flag, and WRF continues execution. When the application configuration

specified in the configuration file changes from the current configuration used for the

WRF execution, the WRF process stops. The job handler then restarts WRF with the

new application configuration and continues execution.

In our framework, the WRF simulation process is made to stall if the available free

disk space is very low. Continuing the simulation without generating the output will

result in large time “gaps” in the visualization of weather events. Therefore, instead

of continuing simulation without generating output, we stall the simulation. This is a

reasonable strategy since our framework is primarily intended for online and continuous

remote visualization.

The modifications to WRF for our application are minimal as explained later in

Section 5.3.2. Whenever simulation resolution needs to be changed or configuration

change is signalled by the application manager, WRF stops. Job handler reschedules

it using a new configuration input from the application manager, using the number of



Chapter 5. Simultaneous Simulation and Visualization 99

processors and frequency of output specified in the application configuration file.

5.2.3 Frame Sender and Receiver, and Visualization Process

Critical weather applications require continuous visualization of the simulated output.

The frame sender daemon continuously checks for the availability of weather data output

frames and sends the available frames over the network to the remote visualization site.

The frame receiver daemon at the remote visualization site receives the frames and

invokes the visualization process for visualization of the frames.

5.2.4 Decision Algorithm for the Application Manager

The decision algorithm invoked by the application manager determines

1. the number of processors, and

2. the frequency of output of simulation

for execution of simulations for a given

1. resolution of simulation,

2. the bandwidth of the network connecting the simulation and visualization sites,

3. the available free disk space at the simulation site, and

4. the minimum progress rate (MPR) of simulations desired by the user.

The decision algorithm takes as input the execution times for different number of pro-

cessors and simulation resolutions. The execution times of a subset of configurations

have been experimentally found by running sample WRF runs for simulation time of 1

hour on different discrete number of processors, spanning the available processor space.

Nearest neighbour interpolation is used to interpolate the execution times for other

number of processors. The algorithm also considers lower bound for output frequency

or upper bound for interval between outputs, upper output interval. This upper bound

corresponds to the minimum frequency with which the climate scientist would want to



Chapter 5. Simultaneous Simulation and Visualization 100

visualize the weather events. The decision algorithm can be invoked periodically with

updated network bandwidth values to consider the scenario of changing network band-

widths and transfer times.

The objective of the decision algorithm is to maximize the rate of simulations and

to enable continuous visualization with maximum temporal resolution. However, these

objectives are contradictory. Visualization of maximum number of output frames can

be achieved by increasing the frequency of output of weather data by simulations but

this can increase the time for I/O and hence decrease the rate of simulations. Increasing

the frequency of output can also lead to rapid accumulation of output data and hence

rapid decrease in the available free disk space, eventually stalling the simulations. On

the other hand, decreasing the frequency of output can increase the simulation rate, but

will result in visualization of fewer frames.

Faster networks with high bandwidths result in faster transfer of output frames from

the simulation to visualization sites and hence results in large-scale freeing of disk space

at the simulation site. Also, unlike traditional scheduling, executing the simulations

on large number of processors corresponding to the maximum simulation rate may not

be the optimum strategy. Sometimes, the simulations may have to be “slowed down”

because faster simulations can lead to faster consumption of storage if the network to

the visualization site is slow. Thus a decision algorithm has to carefully consider these

various dependent impacting factors to achieve a good balance between its contradic-

tory objectives of maximizing simulation rate and temporal resolution of visualization.

The decision algorithm considers both application and resource parameters as inputs.

The simulation resolution and the minimum progress rate of simulation are application-

specific parameters. The resolution of simulation impacts the visualization quality. For

example, in the case of cyclone tracking, a climate scientist may want to visualize with

coarser resolutions during the initial stages of cyclone formation and with finer resolu-

tions when the cyclone intensifies. The I/O bandwidth, network bandwidth and the free

disk space are resource parameters.



Chapter 5. Simultaneous Simulation and Visualization 101

We have devised two decision algorithms: a greedy algorithm that uses thresholds for

modifying parameters, and an optimization-based approach. The following subsections

describe these algorithms.

Greedy-Threshold Algorithm

This algorithm attempts to employ the maximum number of processors for maximum

simulation rate and output every simulated time step for maximum temporal resolution.

However, since this greedy strategy can result in rapid decrease in available free disk

space, the algorithm also uses thresholds for free disk space to dynamically adjust the

frequency of output and the number of processors for execution. The algorithm con-

siders two sets of thresholds, lowdiskspace-thresholdset when the remaining disk space

is low and highdiskspace-thresholdset when the remaining disk space is high. For our

current work, we set lowdiskspace-thresholdset = {50, 25}, and highdiskspace-thresholdset

= {60}. When the remaining disk space is less than an upper bound of lowdiskspace-

thresholdset, the algorithm first decreases the frequency of output i.e. increases the in-

terval of output, output interval. If the output interval is already equal to its maximum

value, upper output interval, and if the free disk space is still less than the thresholds

in lowdiskspace-thresholdset, the algorithm “slows down” the simulation or increases the

execution time by decreasing the number of processors used for simulation. If the free

disk space is less than the lowest threshold in lowdiskspace-thresholdset, the algorithm

sets the CRITICAL flag in the application configuration file, thereby leading to stalling

of the simulations.

The observation is that decreasing the rate of simulation and the frequency of output

may eventually lead to freeing up of disk space. At some point when the remaining

free disk space increases sufficiently, the algorithm follows a reverse process using the

thresholds in highdiskspace-thresholdset, whereby it increases the simulation rate by in-

creasing the number of processors for execution first. If the maximum simulation rate is

achieved and the remaining free disk space is sufficient, then the algorithm decreases the

output interval. Thus this algorithm gives more preference to maximizing the simulation



Chapter 5. Simultaneous Simulation and Visualization 102

rate than to maximizing the output frequency.

The pseudocode for this is shown in Algorithm 5.1. This algorithm is invoked peri-

odically every 1.5 hours. In the pseudocode, OI refers to the output interval. oldOI and

newOI refer to the old and new values of output interval. minOI and maxOI refer to

the minimum and maximum values of output interval. mintime and maxtime refer to

the minimum and maximum values of execution time per time step of simulation, and

correspond to execution with maximum and minimum number of processors respectively.

Input: oldOI, minOI, maxOI, oldtime, mintime, maxtime

D ← Remaining free disk space;1

if (D ≤ 10%) then set CRITICAL flag;2

else if (D ≤ 50%) then3

if (D ≥ 25%) then4

newOI ← oldOI + (50−D)
25 · (maxOI − oldOI);5

else6

newtime← oldtime + (25−D)
15 · (maxtime− oldtime);7

end8

else if (D ≥ 60%) then9

if (oldtime > mintime) then10

newtime← oldtime− (D−60)
40 · (oldtime−mintime);11

else if (oldOI > minOI) then12

newOI ← oldOI − (D−60)
40 · (oldOI −minOI);13

end14

Output: newOI and corresponding number of processors for newtime to application

configuration file

Algorithm 5.1: Greedy-Threshold Algorithm

If the remaining disk space is between 25 and 50%, then OI is decreased (lines 4 –

5) so that the rate at which data is output to the disk is decreased, and hence the disk

fills up at a slower rate. If the remaining disk space is lower than 25%, the simulation

rate is decreased (lines 6 – 8). If the remaining disk space is more than 60% and the

simulation rate is lesser than the maximum possible rate, the simulation rate is increased

by increasing the number of processors (lines 10 – 11). If the remaining disk space is



Chapter 5. Simultaneous Simulation and Visualization 103

more than 60% and the simulation rate is maximum, then frequency of output of data

by the simulation process is increased (lines 12 – 13). The algorithm calculates the

new execution time newtime for simulation from the previous value oldtime in lines 7

and 11 and determines the corresponding number of processors using the benchmark

profiling runs with WRF. Thus, the greedy-threshold heuristic takes reactive approach

in determining the number of processors for simulation and the output frequency for

visualization based on the available disk space thresholds.

Optimization Method

The primary objective of a traditional scheduling problem for parallel simulations is

to maximize the rate of simulations. The rate of simulations is typically high for large

number of processors and high I/O bandwidth. However faster execution time and higher

I/O bandwidth can lead to faster consumption of storage space by the simulations. In

addition, if the network bandwidth from the simulation to the visualization end is low,

then the disk can overflow soon. It is also interesting to note that the fastest rate of

simulation can be achieved and the disk space limitation problem can be avoided in spite

of high I/O bandwidth, slow network and small execution time, if the output frequency

is 0, i.e. output is not generated by the simulations at all. But for critical weather

applications, it is vital to output as frequently as possible in order to perform continuous

visualization of the output and monitor the simulation output. However frequent I/O can

decrease the simulation rate and also leads to faster accumulation in the storage. Thus we

can think of our problem as an optimization problem that primarily attempts to maximize

the simulation rate within the constraints related to continuous visualization, acceptable

frequency of output, minimum progress rate of simulations (MPR), I/O bandwidth, disk

space and network speed.

We formulate our problem as a linear programming problem with constraints to

obtain the number of processors and the frequency of output for simulations. The simu-

lation resolution determines the amount of output produced. The I/O bandwidth implies

the time to write to disk and the network bandwidth controls the time to transfer data.



Chapter 5. Simultaneous Simulation and Visualization 104

Together, the resource constraints control the rate at which the disk is filled up and the

rate at which data reaches the visualization site. We consider an important constraint

involving the minimum progress rate of simulations, for considering the criticality needs

of the application. This constraint is useful for ensuring quality of service to the climate

scientist for continuous and fast visualization. We do not consider the actual visualiza-

tion time in this formulation because visualization is performed in a pipelined fashion.

The task is accelerated by the GPU and completes within a second, much before the

next frame arrives at the visualization site even in the case of high-bandwidth networks.

Since we want the best possible throughput of the simulation inspite of the resource

constraints, we express the objective of our optimization problem as

minimize t

where t is the execution time to solve a time step. The parameters used in the formulation

are listed in Table 5.2. Among these parameters, the decision variables involved in the

formulation are S, F , T and t. In the table, a frame is the output of one time step

of simulation and corresponds to the smallest unit of simulation output that can be

visualized. Interval corresponds to some fixed execution time interval for the simulations.

The following sub-sections describe the formulation of the constraints.

Table 5.2: Problem Parameters

t Time to solve one simulation time step

S Number of frames solved in an interval

F Number of frames output in an interval

T Number of frames transferred in an interval

O Size of one frame output in one time step

D Total remaining free disk space

TIO Time to output one time step

b Network bandwidth



Chapter 5. Simultaneous Simulation and Visualization 105

Time Constraint: Frames should be continuously transferred from the simulation site

so that there is minimum stalling at the visualization end. Consider an interval I when

T frames are transferred, S frames are solved and F frames are output. For continuous

visualization, the time to produce F frames should be less than the time to transfer T

frames since the next set of frames should be ready for transfer by the time the current

frames are transferred. If the next set of frames are not available, the continuity of the

visualization will be affected and the visualization process will incur idling. The time to

produce a frame corresponding to a time step includes the time to solve the time step and

the time to write the frame onto the disk. Thus, the time to produce F frames includes

the time to solve S frames and to write F frames onto the disk. This gives equation (5.1)

where tts is the time to solve, tto is the time to output and ttt is the time to transfer.

Expanding equation (5.1), we obtain the constraint specified in equation (5.2) which

can be rearranged as equation (5.3). The relation between S and F is determined by

the output frequency for the simulation. For example, if the output frequency is 1 then

S = F , i.e. every frame that is solved is written to the disk.

tts + tto ≤ ttt (5.1)

S · t + F · TIO ≤ O
b
· T (5.2)

t + (F/S) · TIO ≤ O
b
· (T /S) (5.3)

Disk Constraint: If the rate at which the simulation process writes data to the disk

is lower than the rate at which data is transferred from the disk, then there is no disk

constraint but generally this is not the case. Assuming that the rate of input to the

disk from the simulation is greater than the rate at which the simulation output data

is transferred to the visualization site, then the time n in which the disk will overflow

is given by equation (5.4) where Rin and Rout are the rate of input to the disk and

rate of output from the disk respectively. Rin is calculated using the solve time t, the

output data size O and the output interval (inverse of frequency expressed in simulated

time units) OI. Rout is calculated using network bandwidth b. From this we derive



Chapter 5. Simultaneous Simulation and Visualization 106

equation (5.5) which can be rearranged as equation (5.6).

n ≤ D
(Rin)−(Rout)

(5.4)

O·F
t·S + TIO·F

− b ≤ D
n

(5.5)

t ≥
[

O
(D
n

+ b)
− TIO

]
· (F/S) (5.6)

Rate Constraint: A steady rate of progress in simulation is required for critical weather

applications in order for scientists to provide advance information based on visualization.

For weather applications, the rate of progress is represented by the ratio of the time

simulated by the application (simulation time) and the wall-clock time taken by the

application for the simulation (wall-clock time). For critical applications like cyclone

tracking where advance information is needed by the scientists to provide timely guidance

to decision makers, this ratio has to be greater than 1, i.e., the simulation time has to

be greater than the wall-clock time taken for the simulation. The rate of simulation is

dependent on the computation speed as well as on the output frequency. Higher the

frequency of output, higher will be the number of I/O writes to the stable storage and

hence lesser will be the simulation rate. Also, lower the I/O bandwidth, more significant

will be the impact of high output frequency on the simulation rate. In most cases, the

scientists may want to specify a minimum acceptable limit for this ratio. We denote

this minimum ratio as MPR (Minimum Progress Rate). Equation (5.7) specifies the

constraint related to the rate of simulations. Let ts denote the integration time step

associated with the resolution of the simulation. This is the amount of time simulated

or solved per time step and depends on the simulation resolution. If S frames are solved

in an interval I and F frames are produced in that interval, then simulation time will

be ts · S and wall-clock time will be the summation of solve time and time to output

F frames i.e. t · S + TIO · F as specified in equation (5.8). This can be rewritten as



Chapter 5. Simultaneous Simulation and Visualization 107

equation (5.9).

Simulation time
Wall−clock time

≥ MPR (5.7)

=⇒ (ts·S)
(t·S + TIO·F )

≥ MPR (5.8)

=⇒ ts
(t + TIO · F/S)

≥ MPR (5.9)

Bounds: Depending on the maximum number of processors available and the scalability

of the application, t has a lower bound TLB, as specified in equation (5.10). We specify

an upper bound OIUB for the output interval based on the minimum frequency of visu-

alization of weather events desired by the users/climate scientists. For our experiments,

we have specified the upper bound for output frequency to be 30 simulated minutes i.e.

the interval between two time steps which are output by the simulation for visualization

is maximum of 30 minutes. Output interval also has a lower bound OILB based on the

limitations of the simulation application. For our weather application, the output inter-

val has a lower bound of 1 simulated minute. The bounds for the output interval are

specified in equation (5.11).

t ≥ TLB (5.10)

OILB ≤ OI ≤ OIUB (5.11)

Linearizing the Constraints: To linearize the non-linear constraints in equations (5.3),

(5.6) and (5.9), we substitute FS by z and T
S by y respectively to obtain the constraints

(5.12), (5.13) and (5.14) for our optimization problem.

t + z · TIO ≤ O
b
· y (5.12)

t ≥ O
(D
n

+ b)
− TIO · z (5.13)

ts
(t + TIO · z)

≥ MPR (5.14)

OI depends on the ratio between the number of frames solved by the simulations and the



Chapter 5. Simultaneous Simulation and Visualization 108

number of frames output to the disk. OI is a multiple of the integration time step ts as

shown in Figure 5.3. A frame is solved after every ts simulated time and a frame is output

ts ts ts ts ts ts ts ts

OI OI

Figure 5.3: Output Interval and integration time step.

to disk after every OI simulated time. Thus the total time simulated in an interval of

execution time, where S frames are solved and F frames are output to the disk, is given

by equation (5.15). Using equation (5.15), the bound constraint of equation (5.11) can

be rewritten as equation (5.16).

OI · F = ts · S (5.15)

OILB ≤ ts
z
≤ OIUB (5.16)

We used GLPK (GNU Linear Programming Kit) [34] to solve the above linear pro-

gramming problem and obtain the values for t, z and y. From the value of t, we determine

the corresponding number of processors using the benchmark profiling runs with the

weather simulations as explained in Section 5.2.4. We obtain the output interval, OI,

by substituting for z = F
S and ts in equation (5.15). This decision algorithm is invoked

every 1.5 hours during the simulation run period. The optimization algorithm takes less

than 0.3 seconds per run, thereby incurring negligible overheads. Moreover, the decision

algorithm is invoked in a background process, thus not interfering with the run times of

the simulations. Given the inputs D, TIO, MPR, b, ts, and O, this algorithm outputs

the number of processors corresponding to t and OI to the application configuration file.

5.3 Experiments and Results

In this section we present our experimental setup including the details of the weather

application used for simulation and remote visualization, the resource configurations used



Chapter 5. Simultaneous Simulation and Visualization 109

for experiments involving networks of different bandwidths, and the results for automatic

tuning by our adaptive framework.

5.3.1 Weather Application: Tracking Cyclone Aila

We have applied our framework for large-scale and long-range tracking of cyclones that

involves a large amount of parallel computations with large data sets, subsequent data

analysis and high-resolution visualization for scientific discovery. Visualization of cy-

clones is vital for subsequent data analysis and to help scientists comprehend the huge

volume of data output. Visualization can be helpful in identifying low pressure regions

or the appearance of high vorticity.

In our experiments, we used the framework for tracking a tropical cyclone, Aila,

in the Indian region. Aila was the second tropical cyclone to form in the Northern

Indian Ocean during 2009 [4]. The cyclone was formed on May 23, 2009 about 400 km

south of Kolkata, India and dissipated on May 26, 2009 in the Darjeeling hills. There

were 330 fatalities, 8,208 reported missing and about $40.7 million estimated damage.

We simulated Aila upto a finest resolution of 3.33 km using WRF. To track the lowest

pressure region or eye of the cyclone Aila, we employ a finer resolution nest on the region

of our interest inside the parent domain as shown in Figure 5.4. We have performed the

simulations for an area of approximately 32×106 sq. km. from 60◦E - 120◦E and 10◦S -

40◦N, comprising of the region of formation and dissipation of Aila over a period of about

3 days. The nesting ratio i.e. the ratio of the resolution of the nest to that of the parent

domain, was set to 1:3. The 6-hourly 1-degree FNL analysis [31] GRIB (Gridded Binary)

meteorological input data for our model domain was obtained from CISL Research Data

Archive[98].

As WRF is a regional model, with each level of refinement, it needs input data

at a finer resolution. Before executing WRF, the WRF Preprocessing System (WPS) is

executed to interpolate the meteorological data onto the domain of interest. For tracking

cyclones, our framework contains mechanisms for identifying the formation of cyclones in

addition to the functionalities described in the earlier sections. The framework spawns a



Chapter 5. Simultaneous Simulation and Visualization 110

Figure 5.4: Windspeed visualization in finer resolution nest inside parent domain.

nest when the pressure drops below 995 hPa. We also use a configuration file that specifies

the different resolutions for simulations for different pressure gradients or intensity of

the cyclone. This can be specified by the climate scientists who typically use coarser

resolutions for the initial stages of cyclone formation and finer resolutions when the

cyclone intensifies. As and when the cyclone intensifies i.e. the pressure decreases, our

framework changes the resolution of the nest multiple times to obtain a better simulation

result from the model. Table 5.3 shows the pressure values used for different resolutions.

Table 5.3: Resolutions for different Pressure Values

Pressure (hPa) 995 994 992 990 988 986

Resolution (km) 24 21 18 15 12 10

The track of Aila as produced by simulation can be seen in Figure 5.5. It can be

observed from the figure that the depression was formed in the central Bay of Bengal

region (around 14◦N) and traversed north-east upto Darjeeling (27◦N).



Chapter 5. Simultaneous Simulation and Visualization 111

Figure 5.5: Visualization (volume rendering) of Perturbation Pressure at 18:00 hours on 23rd,

24th and 25th May, 2009.

5.3.2 Framework Implementation

The modifications to the WRF weather application for our work are minimal. We mod-

ified WRF to include monitoring of lowest pressure in the nest domain or in the parent

domain when there is no nest. Our framework forms a nest dynamically based on the

lowest pressure value in the domain and monitors the nest movement in the parent do-

main along the eye of the cyclone. The nest is centered at the location of lowest pressure

in the parent domain. WRF is restarted whenever pressure drops below the threshold

values specified by the user. When the application configuration file specifies the number

of processors and output interval that are different from the current configuration, the

simulation process is rescheduled on a different number of processors.

For faster I/O we used WRF’s split NetCDF approach, where each processor outputs

its own data. For example, simulation of 12 km resolution running on 288 processes

results in output of 3 MB per process. The split approach is beneficial, especially for

low bandwidth, low latency networks for faster data transfer from the simulation site.

It also significantly reduces the I/O time per time step by up to 90% over the default

approach of generating output to a single large NetCDF file. We have developed a utility

to merge these split NetCDF files at the visualization site. Our plug-in for VisIt[17]

enables directly reading the WRF NetCDF output files, eliminating the cost of post-

processing before data analysis. We also customized VisIt to automatically render as and

when these WRF NetCDF files are merged after arriving at the visualization site. The

simulation output has been visualized using GPU-accelerated volume rendering, vector



Chapter 5. Simultaneous Simulation and Visualization 112

plots employing oriented glyphs, pseudocolor and contour plots of the VisIt visualization

tool.

The application manager periodically (in our work, every 1.5 hours) monitors the

available disk space using the UNIX command df. The application manager also uses

the average observed bandwidth between the simulation and visualization sites, obtained

by using the time taken for sending about 1 GB message across the network. The

decision algorithm is invoked every 1.5 hours. This frequency was sufficient for our

experiment settings where the storage space and network bandwidth did not exhibit

high fluctuations. For highly dynamic environments, the decision algorithm will have to

be invoked more frequently. Although some of the threshold values used in our framework

are specific to our experiment settings and WRF simulations, the underlying principles

of our framework are generic and applicable to other applications.

5.3.3 Resource Configuration

For all our experiments, visualization was performed on a graphics workstation in Indian

Institute of Science (IISc) with a Intel R© Pentium R© 4 CPU 3.40 GHz and an NVIDIA

graphics card GeForce 7800 GTX. We used hardware acceleration feature of VisIt for

faster visualization. We executed the simulations on four different sites resulting in

three different remote visualization settings, namely, inter-department, intra-country and

cross-continent visualizations. In the inter-department configuration, the WRF simula-

tions were executed on a dual-core AMD Opteron 2218 cluster, fire, in Indian Institute

of Science (IISc). In the intra-country configuration, the simulations were performed

on quad-core Intel Xeon X5460 cluster, gg-blr, in Centre for Development of Advanced

Computing (C-DAC) [1], Bangalore, India. The transfer between simulation and visual-

ization site for this intra-country configuration was carried out on the National Knowl-

edge Network (NKN)[85] with maximum bandwidth of 1 Gbps. In the cross-continent

configurations, the simulations were performed on two clusters. One was a dual-core

AMD Opteron 265 cluster, moria, in Innovative Computing Lab of University of Ten-

nessee, Knoxville, USA. The other was the Abe [2] cluster in the National Centre for



Chapter 5. Simultaneous Simulation and Visualization 113

Table 5.4: Simulation and Visualization Configurations

Configuration Simulation Configuration Maximum

Cores for

Simulation

Maximum

Disk Space

Used

Average

Sim-Vis

Bandwidth

inter-

department

fire: 12x2 dual-core AMD

Opteron 2218 based 2.64 GHz

Sun Fire servers, CentOS release

4.3, each with 4 GB RAM, 250

GB Hard Drive, and connected

by Gigabit Ethernet

48 182 GB 56 Mbps

intra-country gg-blr: HP Intel Xeon quad-core

processor X5460, 40 nodes, 320

3.16 GHz cores, RHEL 5.1 on

Rocks 5.0 operating system, each

with 16 GB RAM and 500 GB

SATA based storage, and con-

nected by Infiniband

90 150 GB 40 Mbps

cross-

continent:moria

moria: dual AMD Opteron 265

(dual-core) 1.8 GHz cores, RHEL

5, each with 4GB RAM and 180

GB SATA Hard Drive, and con-

nected by Gigabit Ethernet

56 100 GB 60 Kbps

cross-

continent:abe

abe: Dell PowerEdge 1955 dual-

socket quad-core compute blades,

1200 blades, 9600 2.33 GHz cores,

RHEL 4 operating system, 1 GB

RAM per core, 100 TB Lustre

filesystem, and connected by In-

finiband

128 700 GB 8 Mbps



Chapter 5. Simultaneous Simulation and Visualization 114

Supercomputing Applications at the University of Illinois in USA. Table 5.4 gives de-

tailed specifications of the three resource configurations including the maximum number

of cores used for simulations, the maximum disk space used by our adaptive framework

for the experiments, and the average available bandwidth between the simulation and

visualization sites for each of the configurations.

To obtain the simulation rates for different number of processors, sample WRF runs

were executed for different discrete number of processors and interpolated for other

number of processors as mentioned in Section 5.2.4. These WRF profiling runs were

executed on

1. 12, 16, 24, 30, 36, 42 and 48 processors in fire cluster.

2. 16, 24, 32, 48, 56, 64, 80 and 90 processors in gg-blr cluster.

3. 12, 16, 24, 30, 36, 42, 48 and 56 processors in moria cluster.

4. 32, 48, 64, 80, 96, 112 and 128 processors in abe cluster.

WRF simulations have limitations on the number of cores that can be used, depending

on the grid size. Specifically, each MPI process should have at least 6× 6 parent domain

grid points and 9 × 9 nest domain grid points to process. For our simulations, we used

a minimum nest grid size of 100 × 127 that is appropriate for the region of interest of

cyclone Aila. This imposed limitation on the number of cores for simulations.

5.3.4 Results

The initial simulation resolution in all experiments was 24 km. We present results related

to simulation throughput, visualization progress, disk consumption and adaptivity for

our various experimental configurations in the following sections.

Inter-department Configuration

Figure 5.6 shows the simulation progress for the inter-department configuration. On

the x-axis, the wall-clock time progression is shown when different frames are simulated



Chapter 5. Simultaneous Simulation and Visualization 115

00:00 04:00 08:00 12:00 16:00 20:00
Wall clock time

22-May 16:00

22-May 23:00

23-May 06:00

23-May 13:00

23-May 20:00

24-May 03:00

24-May 10:00

24-May 17:00

25-May 00:00

25-May 07:00

Si
m

ul
at

io
n 

tim
e

Optimization Method
Greedy-Threshold

Figure 5.6: Simulation times with progress in executions for inter-department configuration.

The graphs show faster rate of simulation for Optimization-based approach. Greedy-Threshold

(red) and Optimization-based Approach (blue).

and on the y-axis, the corresponding simulation time steps are shown. The graph plots

the times simulated with progress in executions. The optimization approach resulted

in about five hours of less execution time than the greedy-threshold algorithm for the

same total simulated time. The optimization approach maximizes simulation rate within

resource constraints, and so it is able to provide a steady state solution for the simulation

rate. The greedy-threshold algorithm, due to its reactive behavior, shows inconsistent

rates of simulations throughout the simulation period.

Figure 5.7 shows the progress of visualization at the visualization site. On the x-

axis, the wall-clock time progression is shown when different frames are visualized and

on the y-axis, the corresponding simulation time steps represented by the frames are

shown. Any given point in the graphs corresponds to the time when a simulated time

step is visualized. For example, at time 15:00 hours corresponding to the x-axis, the

frame corresponding to 23rd May 03:00 hours simulation time step is visualized in the

optimization-based approach. It can be seen in the figures that the visualization progress



Chapter 5. Simultaneous Simulation and Visualization 116

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
Wall clock time of visualization

22-May 19:00

22-May 23:00

23-May 03:00

23-May 07:00

23-May 11:00

23-May 15:00
Si

m
ul

at
io

n 
tim

e
Optimization Method
Greedy-Threshold

Figure 5.7: Progress of Greedy-Threshold (red) and Optimization-based Approach (blue) at

the visualization end for inter-department configuration. Optimization approach shows faster

visualization progress.

is much faster for the optimization method whereas the greedy heuristic approach lags

behind in visualizing frames because it tries to send every time step from the simulation

to the visualization site in the initial stages. Since the optimization method outputs

frames depending on the resource constraints, reasonable visualization progress is made.

Figure 5.8 shows the rate of disk consumption for the inter-department configuration.

The graph plots the percentage of available free disk space with progress in simulation.

The greedy-threshold algorithm, due to its emphasis on minimizing the execution time

and maximizing the frequency of disk output in initial stages, results in high rate of

storage space consumption in the initial stages. The available free disk space becomes less

than 50% within 4 hours of execution time. The algorithm then tries to take corrective

action and consumes less storage by decreasing the simulation rate and the frequency

of output to the disk. Nevertheless, the greedy algorithm consumes about 90% of the

disk space by the end of the simulations. The optimization method, due to its steady

state behavior, is able to determine the appropriate simulation rate and the frequency of



Chapter 5. Simultaneous Simulation and Visualization 117

00:00 04:00 08:00 12:00 16:00 20:00
Wall clock time

0

20

40

60

80

100

Re
m

ai
ni

ng
 fr

ee
 d

is
k 

sp
ac

e 
%

Optimization Method
Greedy-Threshold

Figure 5.8: Free disk space with progress in executions for inter-department configuration.

The graphs show the decrease in available disk space as simulation progresses in time. Greedy-

Threshold (red) and Optimization-based Approach (blue).

output considering the different resource constraints and arrive at a global solution over

a longer period of time. The efficiency of the optimization method results in about 25%

less consumption of storage space than the greedy algorithm.

Figure 5.9 shows the adaptation in the number of processors and the output inter-

val of the simulations. The wall-clock time progression for the simulation is plotted on

x-axis, left y-axis plots the number of processors used during the simulation period and

right y-axis plots the output interval chosen by the framework at various points of the

simulation. The greedy method initially recommends maximum number of processors

in order to have the highest simulation throughput. It also starts with a lowest output

interval of 3 minutes in order to output as many time steps as possible. However with

time, as the free disk space decreases, the output interval is increased and the number

of processors is gradually decreased. The optimization method adjusts output frequency

as and when needed according to the remaining disk space. It adapts the frequency



Chapter 5. Simultaneous Simulation and Visualization 118

00:00 05:00 10:00 15:00 20:00
Wall clock time

0

10

20

30

40

50

60

70

Nu
m

be
r o

f p
ro

ce
ss

or
s

0

5

10

15

20

25

30

35

40

45

Ou
tp

ut
 in

te
rv

al
 (s

im
ul

at
io

n 
m

in
ut

es
)

Optimization Method: Number of Processors
Optimization Method: Output Interval
Greedy-Threshold: Number of Processors
Greedy-Threshold: Output interval

Figure 5.9: Adaptivity of the framework showing variation in number of processors (Left y-axis)

and output interval (Right y-axis) for inter-department configuration.

of output to the best possible value for the given resource constraints from the begin-

ning of the simulations. Since the primary objective is to minimize the solve time, the

optimization method recommends maximum number of processors depending on the re-

source constraints and when it is able to satisfy the upper bound of output interval. The

optimization method is able to sustain maximum simulation throughput throughout the

simulation (red curve in the figure). However, though the greedy approach starts with

best simulation rate (blue curve in the figure), it has to decrease the rate of simulation

eventually due to increased disk consumption because of high initial output frequency.

Intra-country Configuration

Figure 5.10 shows the simulation progress for the intra-country configuration. On the

x-axis, the wall-clock time progression is shown when different frames are simulated and

on the y-axis, the corresponding simulation time steps are shown. We find that the

optimization method provides steady and faster rate of simulations than the greedy-

threshold algorithm. The optimization approach resulted in about seven hours of less



Chapter 5. Simultaneous Simulation and Visualization 119

00:00 04:20 08:40 13:00 17:20 21:40 26:00
Wall clock time

22-May 16:00

22-May 23:00

23-May 06:00

23-May 13:00

23-May 20:00

24-May 03:00

24-May 10:00

24-May 17:00

25-May 00:00

25-May 07:00

Si
m

ul
at

io
n 

tim
e

Optimization Method
Greedy-Threshold

Figure 5.10: Simulation times with progress in executions for intra-country configuration. The

graphs show faster rate of simulation for Optimization-based approach. Greedy-Threshold

(red) and Optimization-based Approach (blue).

execution time than the greedy-threshold algorithm for the same total simulated time.

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
Wall clock time of visualization

22-May 19:00

22-May 23:00

23-May 03:00

23-May 07:00

23-May 11:00

23-May 15:00

Si
m

ul
at

io
n 

tim
e

Optimization Method
Greedy-Threshold

Figure 5.11: Progress of Greedy-Threshold (red) and Optimization-based Approach (blue)

at the visualization end for intra-country configuration. Optimization approach shows faster

visualization progress.

Figure 5.11 shows the progress of visualization at the visualization site for the intra-

country configuration. On the x-axis, the wall-clock time progression is shown when



Chapter 5. Simultaneous Simulation and Visualization 120

different frames are visualized and on the y-axis, the corresponding simulation time

steps represented by the frames are shown. The visualization progress is faster for the

optimization method whereas the greedy heuristic approach lags behind in visualizing

frames because it tries to visualize every time step in the initial stages. The greedy

heuristic is able to visualize less than 10 hours of simulation frames even after 21 hours

of simulation. This is because of lower network bandwidth. The optimization method is

able to visualize about a day of simulation progress in intra-country configuration. It can

be observed in Figures 5.7 and 5.11 that the visualization progress in the inter-department

and intra-country configurations is similar despite different network bandwidths. This is

due to optimal selection of output frequency by the optimization method.

00:00 04:20 08:40 13:00 17:20 21:40 26:00
Wall clock time

0

20

40

60

80

100

Re
m

ai
ni

ng
 fr

ee
 d

is
k 

sp
ac

e 
%

Optimization Method
Greedy-Threshold

Figure 5.12: Free disk space with progress in executions for intra-country configuration. The

graphs show the decrease in available disk space as simulation progresses in time. Greedy-

Threshold (red) and Optimization-based Approach (blue).

Figure 5.12 shows the rate of disk consumption for the intra-country configuration.

In the greedy-threshold heuristic, the disk space is quickly consumed and the free disk

space falls below 20% because of faster solve time and slower network. In the optimiza-

tion approach, the free disk space never drops below 50% during the entire run of the

simulation because of the consideration of the global solution by this method.

Figure 5.13 shows the number of processors and output interval for the simulations



Chapter 5. Simultaneous Simulation and Visualization 121

00:00 03:00 06:00 09:00 12:00 15:00 18:00
Wall clock time

0

20

40

60

80

100

Nu
m

be
r o

f P
ro

ce
ss

or
s

0

10

20

30

40

50

Ou
tp

ut
 In

te
rv

al
 (s

im
ul

at
io

n 
m

in
ut

es
)

Number of Processors
Output Interval

Figure 5.13: Adaptivity of the framework showing variation in the number of processors (red,

left y-axis) and output interval (green, right y-axis) for intra-country configuration. Decision

algorithm computes the optimal number of processors and output interval. MPR = 5.

automatically determined by our framework at different stages of execution for the intra-

country configuration. During the initial stages, our framework chooses an initial value of

9 and 80 for output interval and the number of processors respectively. During the course

of execution, the number of processors and output interval changes a few times. This

happens when one or more parameters changes in the constraint equations as explained

in Section 5.2.4. For example, when resolution changes from 18 km to 15 km, the

time to solve a time step, the output data size per time step and the time to output a

time step also increase. So, the decision algorithm re-evaluates the correct number of

processors and the best output interval for the current parameters. As the resolution

becomes finer, the output size and hence the time to output increases. Therefore, it

can be observed that with refinement of simulation, the output interval is increased by

the decision algorithm to satisfy the MPR and to prevent disk overflow due to frequent

I/O. Thus, our framework adaptively changes the execution and application parameters

based on the application and resource configurations and application simulation rates.

Our framework also provides guarantees regarding the rate of simulations (simu-

lation time/wall-clock time). Specifically, the framework attempts to maintain higher



Chapter 5. Simultaneous Simulation and Visualization 122

simulation rates than the minimum progress rate (MPR), using the rate constraint in

equation 5.9 of the decision algorithm. The minimum progress rate (MPR) of simula-

tions for the rate constraint of our algorithm was chosen as 5 for this setup. We found

that the average rate of simulation maintained by our framework during the execution

was 5.33. Thus our framework satisfies MPR.

Cross-continent Configuration: moria

00:00 03:34 07:09 10:43 14:17 17:51
21:26 25:00

Wall clock time

22-May 17:00

23-May 00:00

23-May 07:00

23-May 14:00

23-May 21:00

24-May 04:00

24-May 11:00

24-May 18:00

25-May 01:00

Si
m

ul
at

io
n 

tim
e

Optimization Method
Greedy-Threshold

Figure 5.14: Simulation throughput for cross-continent moria configuration. Greedy-Threshold

approach leads to stalling. Optimization approach is able to complete simulation without

stalling. Greedy-Threshold (red) and Optimization-based Approach (blue).

Figure 5.14 shows the simulation progress for the cross-continent simulations on moria

cluster. On the x-axis, the wall-clock time progression is shown when different frames

are simulated and on the y-axis, the corresponding simulation time steps are shown.

The available disk space gets filled at a faster rate since the bandwidth was only 60

Kbps. Hence in the greedy approach, WRF simulation had to be stalled even before

the completion of the simulation time-period. This is shown by means of dotted lines in

the graph after the wall clock time value of 24 hours. However, using the optimization



Chapter 5. Simultaneous Simulation and Visualization 123

approach, WRF simulation was able to complete without stalling. This is because of

selection of near-optimal parameters for execution based on the resource characteristics

like network bandwidth and disk space as explained in Section 5.2.4. It is also clear from

this result that a non-adaptive solution would result in stalling of the simulation much

earlier than in the greedy-threshold algorithm described in Section 5.2.4.

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00 40:00
Wall clock time of visualization

22-May 17:00

22-May 20:00

22-May 23:00

23-May 02:00

23-May 05:00

Si
m

ul
at

io
n 

tim
e

Optimization Method
Greedy-Threshold

Figure 5.15: Progress of Greedy-Threshold (red) and Optimization-based Approach (blue) at

the visualization end for cross-continent moria configuration. Optimization approach shows

faster visualization progress.

Figure 5.15 shows the progress of visualization. On the x-axis, the wall-clock time

progression is shown when different frames are visualized and on the y-axis, the corre-

sponding simulation time steps are shown. The visualization progress is much faster for

the optimization method whereas the greedy heuristic approach lags behind in visual-

izing frames because of higher output frequency initially. The greedy heuristic is able

to visualize less than 3 hours of simulation frames even after 30 hours of simulation.

This is because the network bandwidth for this configuration is low and hence transfer-

ring data corresponding to every time step slows down the visualization progress. The

frames arrive at the visualization site at a slower rate because of low network speed.



Chapter 5. Simultaneous Simulation and Visualization 124

However, the optimization method is able to provide higher visualization throughput

than the greedy-threshold method because the optimization algorithm recommends a

higher output interval.

00:00 04:00 08:00 12:00 16:00 20:00 24:00
Wall clock time

0

20

40

60

80

100

Re
m

ai
ni

ng
 fr

ee
 d

is
k 

sp
ac

e 
%

Optimization Method
Greedy-Threshold

Figure 5.16: Free disk space with progress in executions for cross-continent moria configuration.

The graphs show the decrease in available disk space as simulation progresses in time. Greedy-

Threshold (red) and Optimization-based Approach (blue).

Figure 5.16 shows the rate of disk consumption. The storage space decreases rapidly

for the greedy-threshold heuristic because it tries to maximize the number of frames

output without considering available disk space in the initial stages. Since the network

bandwidth is very low, this approach suffers from disk overflow (less than 5%) before

completion of simulation. The optimization method is able to complete simulation with

more than 20% of the disk space remaining. This is because though the disk is filled faster

due to slower network, the optimization method tries to adjust the output frequency and

number of processors from the beginning of the simulation.

Figure 5.17 shows the adaptation in the number of processors and the output interval

of the simulations by the framework based on the application and resource configurations

for the cross-continent configuration on moria cluster. The wall-clock time progression



Chapter 5. Simultaneous Simulation and Visualization 125

00:00 05:00 10:00 15:00 20:00 25:00
Wall clock time

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f p
ro

ce
ss

or
s

0

5

10

15

20

25

30

35

40

45

Ou
tp

ut
 in

te
rv

al
 (s

im
ul

at
io

n 
m

in
ut

es
)

Optimization Method: Number of Processors
Optimization Method: Output Interval
Greedy-Threshold: Number of Processors
Greedy-Threshold: Output interval

Figure 5.17: Adaptivity of the framework showing variation in number of processors (Left

y-axis) and output interval (Right y-axis) for cross-continent moria configuration.

for the simulation is plotted on x-axis, left y-axis plots the number of processors used

during the simulation period and right y-axis plots the output interval chosen by the

framework as the simulation progresses. When the greedy approach cannot further

increase output interval or decrease number of processors and the disk space is sufficiently

low, the WRF simulations have to stall. Whereas in the optimization approach, it tries

to avoid stalling from the beginning by considering the various impact factors for smooth

simulation and visualization. It can be observed that the optimization method is able to

provide a higher simulation rate during the entire run though the network speed for this

configuration is very low. In contrast, the simulation throughput for the greedy method

drops after few hours of the run. We also find that the output interval has lesser variation

in the optimization method than the greedy-threshold heuristic. Thus, the optimization

method is able to provide a consistent “quality-of-service” for visualization by the climate

scientists, which is very essential for remote visualization of critical weather applications.



Chapter 5. Simultaneous Simulation and Visualization 126

Cross-continent Configuration: Abe

In this section, we show some results of automatic tuning of execution parameters by our

framework for the cross-continent experiment on Abe cluster of NCSA. We performed

simulations over a larger domain, approximately from 30◦E - 150◦E and 10◦S - 40◦N,

and for a period of 3 days 18 hours. The minimum progress rate (MPR) of simulations

for the rate constraint of our algorithm was chosen as 3 for this setup. Steady progress

in simulation and visualization without stalling is observed.

Figure 5.18 shows the simulation throughput. We observe that the simulation for 3

days and 18 hours was completed in about a day because of the high simulation rate.

The simulation curve shows a rapid change in slope for the initial few hours when the

cyclone is being formed and the simulation resolution is being refined. After it reaches

00:00 04:00 08:00 12:00 16:00 20:00 24:00 28:00
Wall-clock time

23-May 00:00

23-May 16:00

24-May 08:00

25-May 00:00

25-May 16:00

26-May 08:00

Si
m

ul
at

io
n 

tim
e

Simulation Throughput

Figure 5.18: Simulation throughput for cross-continent Abe configuration.

the finest resolution, it continues at a steady rate and there is not much change in slope.

At a coarser resolution, the time steps are solved at a much faster rate because the

number of grid points are lesser than in the finer resolution. Hence the slope is steeper

in the beginning of the simulation.

Figure 5.19 shows that we are able to continuously visualize despite the slow network

bandwidth. It can be seen that there is a change in slope of the curve at a point



Chapter 5. Simultaneous Simulation and Visualization 127

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00 40:00
Wall-clock time

22-May 20:00

22-May 23:00

23-May 02:00

23-May 05:00

23-May 08:00

Si
m

ul
at

io
n 

tim
e

Visualization progress

Figure 5.19: Visualization progress for cross-continent Abe configuration.

corresponding to 23rd May, 05:00 hours simulation time step. This is because a nest is

formed at this time step, and hence the total amount of output data for a single time

step increases and hence the time to transfer one time step increases.

Figure 5.20 shows that the simulation completed without overflowing available disk

space. This is because of adjusting the number of processors to the correct value so that

availability of disk space is not a problem even though the simulation rate is high and

the network bandwidth is low.

00:00 04:00 08:00 12:00 16:00 20:00 24:00 28:00
Wall-clock time

0

20

40

60

80

100

Re
m

ai
ni

ng
 fr

ee
 d

is
k 

sp
ac

e 
%

Disk Usage

Figure 5.20: Disk Consumption for cross-continent Abe configuration.



Chapter 5. Simultaneous Simulation and Visualization 128

We find a considerable time lag between the time when a time step was simulated

and when the corresponding frame was visualized. This is because of the high simulation

rate in Abe cluster, and the slow Internet-based transfer of frames to the visualization

site in India. We address this problem of lag between simulation and visualization times

in Chapter 7.

The time taken for simulating a time step in the coarsest resolution (24 km) in Abe

is approximately 0.6 seconds. Our framework chose the initial number of processors for

WRF executions in Abe as 96, and the output interval for the simulations as 30 as can

be seen in Figure 5.21. The maximum number of processors, i.e 128 processors were

not chosen because of the disk space constraint due to the slow network. If simulation

had started on 128 processors, it would have progressed at a much faster rate leading

to storage problem later. At the same time, it was also not drastically reduced so that

a minimum progress rate of simulation is maintained without overflowing the disk. The

output interval was chosen to be 30 minutes because more output frames would mean a

higher disk space consumption rate due to slow data transfer from the disk.

00:00 04:00 08:00 12:00 16:00 20:00 24:00
Wall clock time

0

20

40

60

80

100

120

140

Nu
m

be
r o

f P
ro

ce
ss

or
s

0

10

20

30

40

50

Ou
tp

ut
 In

te
rv

al
 (s

im
ul

at
io

n 
m

in
ut

es
)

Number of Processors
Output Interval

Figure 5.21: Change in number of processors and output interval for cross-continent Abe con-

figuration.

It can be seen that the change in the number of processors during the course of ex-

ecution is not frequent. This is because the decision algorithm selects an optimal value



Chapter 5. Simultaneous Simulation and Visualization 129

considering parameters like simulation resolution, I/O bandwidth, network bandwidth,

time to solve and free disk space available. When the simulation runs at a given resolu-

tion, only the disk space varies. However since the total available disk space is already

considered by the algorithm while selecting the optimal value, there is not much vari-

ation later during the run. When the resolution changes, some of the parameters like

output per time step and time to solve a time step change and hence we can see some

variation in the number of processors. At a finer resolution, the time to solve a time

step increases. Since the simulation starts with a coarser resolution and then changes to

a finer resolution at different points of the experiment, the number of processors is more

for the finer resolutions.

00:00 05:00 10:00 15:00 20:00 25:00
Wall clock time

0

10

20

30

40

50

60

Si
m

ul
at

io
n 

ra
te

Average Simulation Rate

Figure 5.22: Actual rates of simulations for cross-continent Abe configuration. The rate con-

straint of our decision algorithm ensures higher simulation values than the MPR.

Figure 5.22 shows the actual rates of simulations for different stages of WRF execution

for the experiment with the cross-continent Abe configuration. We set an MPR value of

3 for this experiment and we find that the rates are always maintained higher than the

MPR value, thus ensuring minimum guarantees in the speed of simulations, which is very

essential for continuous tracking of critical weather events. Even though the simulation

is slowed down in the beginning of the experiment when the simulation rate is quite

high due to coarser resolution, yet the framework ensures that the MPR is satisfied.



Chapter 5. Simultaneous Simulation and Visualization 130

We observe that the simulation rates reduces with time after the formation of nest

and further refinement. The nest domain has a smaller time step and is integrated more

number of times than the parent, and hence the overall solve time increases. Resolution is

continuously refined during the execution for better simulation accuracy. Finer resolution

simulations require more number of computations, and hence the decision algorithm

increases the number of processors for higher resolutions to satisfy the MPR.

5.4 Discussion

Simulation data continues to grow in size in many applications like cosmology [3] and

earthquake simulations [129]. In these applications, online visualization approach will be

effective in quick understanding of the data. Our adaptive framework for online visual-

ization is readily applicable to other applications executed on any resource configuration

for continuous simultaneous simulation and visualization using optimal parameters.

The framework effectively responds to application and resource dynamics. Dynamic

nest formation by the framework affects the simulation rate and output, which results

in change in simulation parameters by the framework. Resource usage like shared disk

space and network bandwidth may also affect the simulation progress rate and data

transfer rate. This is efficiently handled by our framework by periodic invocation of the

decision algorithm.

5.5 Summary

In this chapter, we have described an adaptive integrated framework for simultaneous

simulation and on-the-fly remote visualization of critical weather applications like cy-

clones. We show how our framework achieves high simulation rates for loosely coupled

simulation and visualization, and adapts simulation parameters according to the resource

parameters. The framework recommends the number of processors for simulation and

the output interval based on the disk space, I/O bandwidth and network speed con-

straints. In the process, the framework also considers the dynamics of the changing



Chapter 5. Simultaneous Simulation and Visualization 131

resource configurations. As shown in Section 5.3, a simple and intuitive greedy approach

may lead to low throughput, stalling of simulation and disk overflow. This shows the

importance of considering network bandwidth, execution time and output frequency for

a smooth online visualization. Our optimization method is able to provide about 30%

higher simulation rate completing the entire simulations for all network configurations,

consumes about 25-50% lesser storage space completely avoiding the disk overflow prob-

lem and the resulting stalling of simulations, and provides higher and more consistent

rate of visualization than the greedy approach. Hence we claim that it is very important

to consider the currently available network bandwidth, and disk space to be able to do

online visualization with best throughput and best temporal resolution.

The experiments discussed in this chapter involve a single region of interest. However,

it is conceptually straight-forward to extend to multiple regions of interest. Specifically,

some of the WRF simulation problem parameters in Table 5.2 will be calculated based on

the multiple regions of interest instead of a single region of interest. The size of simulation

output of one time step will increase depending on the number and dimensions of nests.

The time to solve one simulation time step should be estimated from the dimensions

and resolutions of the parent and the nested simulations. However, the linear program

formulation remains the same.

In weather simulations and online visualization, the climate scientist or the user may

like to alter some of the simulation parameters like the region of interest and resolution.

We have extended our framework to add steering capabilities for interactive simulation-

visualization in order to incorporate the user inputs in the simulation. We describe in

the next chapter reconciling user-driven steering with the algorithmic steering described

in this chapter.



Chapter 6

Integrated Algorithmic and User-driven Steer-

ing

6.1 Introduction

Large-scale simulations for critical weather applications like cyclone tracking and earth-

quake modeling require simultaneous online/“on-the-fly” visualization simultaneously

performed with the simulations. Online visualization enables the scientists to provide

real-time feedback in order to steer the simulations for better and more appropriate

output suited to the scientific needs. Remote visualization can enable geographically

distributed climate scientists to share vital information, perform collaborative analysis,

and provide joint guidance on critical weather events. Remote visualization and feedback

control using computational steering can thus assist a large climate science community

in analyzing large-scale scientific simulations.

In the previous chapter, we described an adaptive framework that automatically

tunes various parameters including the frequency of visualization output and number

of processors for simulations to enable simultaneous simulations and continuous online

remote visualization of critical weather applications in environments with storage and

network constraints. In this chapter, we consider computational steering and feedback

control of critical weather applications by remote scientists in addition to the automatic

tuning of execution parameters.

132



Chapter 6. Integrated Algorithmic and User-driven Steering 133

6.1.1 Motivation

Computational steering is a well-studied approach that allows the user to interactively

explore a simulation in time or space by giving feedback to the simulation, based on

visualization output. By allowing user input to instantaneously impact the simulation,

interactive steering “closes the loop” between simulation and visualization [93, 95]. Un-

like existing efforts on computational steering, a steering framework for controlling the

high performance simulations of critical weather events needs to take into account both

the steering inputs of the scientists and the criticality needs of the application. We

use the minimum progress rate (MPR) of the simulations as a parameter to represent

the criticality of the application. This is a parameter input by the climate scientist to

express the desired quality-of-service of the weather simulations. It denotes the mini-

mum number of climate days that has to be simulated and output in a given wall-clock

time by the application. A steering framework for critical weather applications, while

allowing the scientist or user to remotely steer various application parameters includ-

ing the resolution of simulations and the frequency of output for visualization, should

also analyze the impact of the user-specified parameters and given resource constraints

on the MPR, guide the user on possible alternative options, and possibly override the

user-specified values with automatically determined values. For example, the steering

framework should override a very high output frequency specified by the user if it deter-

mines that the high value can lead to unavailability of storage and severely compromise

the MPR or criticality needs of the application.

6.1.2 Problem Statement

In this chapter, we describe an integrated user-driven and automated steering framework,

InSt (Integrated Steering), for simulations, online remote visualization, and analysis

for critical weather applications. InSt allows steering of application parameters includ-

ing resolution of simulation, rate of simulation and frequency of data for visualization.

Further, it allows scientists to specify region of interest and perform finer resolution

simulation for the region of interest. However InSt also considers the criticality of the



Chapter 6. Integrated Algorithmic and User-driven Steering 134

application, namely, the minimum progress rate needed for the application, and vari-

ous resource constraints including storage space, network bandwidth, and the number

of processors, to decide on the final parameter values for simulation and visualization.

Thus the integrated framework tries to find the best possible parameter values based on

both user input and resource constraints. In the previous chapter, we described algorith-

mic steering using an optimization-based algorithm to automatically tune application

parameters. In this chapter, we describe our framework, InSt, that effectively combines

computational steering by the user/scientist with the algorithmic steering performed by

the runtime system of the framework. Thus InSt is unique since it considers the rec-

onciliation of both user-driven computational steering and algorithmic steering, unlike

existing work that considers only user-driven computational steering [83, 93, 134, 139].

Using our framework, we performed cross-continent steering with the steering and visu-

alization performed in India and simulations conducted on a TeraGrid [137] cluster in

NCSA, USA. We show that InSt performs reconciliation between algorithmic and user-

driven computational steering for a 3-day weather simulation while providing quality of

service with respect to simulation rate and continuous visualization.

6.1.3 Chapter Outline

Section 6.2 presents our integrated steering framework including the components and

interactions. Section 6.3 explains the reconciliation between the algorithmic steering and

user-driven steering. Section 6.4 presents our experiments involving different network

bandwidths and results including simulation rates and we summarize in Section 6.5.

6.2 InSt Steering Framework

Simultaneous and continuous visualization for user-guided simulation of critical weather

applications require robust middleware for better application performance and efficient

resource management. We have developed an integrated steering framework that per-

forms automatic tuning as well as user-driven steering. Our framework, InSt, shown



Chapter 6. Integrated Algorithmic and User-driven Steering 135

Figure 6.1: InSt: Integrated Steering Framework

in Figure 6.1, consists of the following components to perform coordinated simulations,

online remote visualizations, and user-driven steering: an application manager that de-

termines the application configuration for weather simulations based on resource char-

acteristics and user input, a simulation process that performs weather simulations with

different application configurations, a visualization process for visualization of the frames,

frame sender and receiver daemons that deal with transfer of frames from simulation to

visualization sites, simdaemon and visdaemon for communication of user-specified sim-

ulation parameters and system response and user interface for accepting user input. In

our work, we remove the frames from the simulation site once they are transferred to the

visualization site. The following subsections describe in detail the primary components

for user-driven steering.



Chapter 6. Integrated Algorithmic and User-driven Steering 136

6.2.1 User Interface, SimDaemon and VisDaemon

The user gives input through the user interface as shown in Figure 6.1. In particular,

user can specify nest location, simulation resolution, bounds for output interval and

simulation progress rate through the user interface. The input values from the user

are sent to the application manager through the VisDaemon and SimDaemon. The

VisDaemon receives user input from the user interface through the visualization process,

and communicates the same to the SimDaemon. The SimDaemon specifies this user

input to the application manager. The response from the manager is conveyed back by

the daemons to the user through the user interface.

6.2.2 Application Manager

The application manager is the primary component of InSt and acts as the bridge be-

tween automatic steering and user-driven steering in our framework. The application

manager periodically monitors the resource parameters, namely the free disk space and

available network bandwidth. For automatic/algorithmic steering, the application man-

ager periodically invokes the decision algorithm, explained in Section 5.2.4 for obtaining

the number of processors for simulations and the frequency of weather data output to

be generated by the simulations for continuous visualization, given resource parameters

and resolution of simulation. For user-driven steering, the application manager asyn-

chronously receives the user inputs, including the upper bound for frequency of output

and simulation resolution, from the visualization site. The manager checks the feasibility

of running the simulations with the user inputs, advises the users of alternate options

if not feasible, and invokes the decision algorithm with the user inputs and resource

parameters if feasible.

The manager writes the simulation parameters output by the decision algorithm to

the application configuration file, and starts or stops-and-restarts the simulations with

the parameters. More details on the reconciliation of the automatic/algorithmic and

user-driven steering are given in Section 6.3.



Chapter 6. Integrated Algorithmic and User-driven Steering 137

6.3 Reconciling User-driven and Algorithmic Steering

Initially, before starting the simulations, the application manager specifies default values

for simulation resolution and MPR. The application manager then determines the fre-

quency of output using the decision algorithm based on resource constraints for the given

resolution of simulation. The simulations are then started with these values. The user at

the visualization site can change these simulation parameters during execution through

the user interface. The interface also allows the user to specify a location for formation

of nest or sub-region in the domain for finer resolutions. When the user requests nest

placement or a finer simulation resolution, the simulation process restarts and continues

with a new configuration involving the nest and the new resolution.

When a user specifies an output interval (inverse of frequency) and/or MPR value,

the InSt framework considers the criticality of the application, proactively checks the

feasibility of executing the simulations with these inputs, and guides the user with pos-

sible alternative values for ensuring continuous and reasonable progress of simulations

and visualization. When a user specifies an output interval and does not specify MPR,

the framework checks if the specified interval can be used without violating the rate con-

straint of equation (5.9), i.e., if the simulations can generate output with the specified

interval such that the simulation rate will continue to be greater than the current MPR

used by the application manager. This relationship between output interval, OI, and

MPR is given by equation (6.1) which is derived using equation (5.9) and the relation

F/S = ts/OI described in equation (5.15).

MPR ≤ ts

[t+ TIO · (ts/OI)]
(6.1)

It can be clearly seen that there is a direct relation between OI and MPR. For example,

let the resolution be 15 km, the integration time step, ts, be 45 seconds, TIO be 43 seconds

and t be 3.95 seconds. Now if the user requests OI of 180 seconds (i.e. solved time steps

are output onto the storage every 3 simulated minutes), then from equation (6.1), MPR

will be less than or equal to 3.06. But if the MPR currently used by the application



Chapter 6. Integrated Algorithmic and User-driven Steering 138

manager is 5, then the system clearly cannot satisfy his request for an OI of 180 seconds.

Therefore in such cases, InSt has to override the user requested value for OI.

Also, it can be seen from equation (6.1) that if the OI is too low, it will decrease the

simulation rate as well. Hence to continuously simulate and visualize at a steady rate,

InSt determines the lower bound of OI from equation (6.1) using the current value of

MPR used by the application manager. If the value of OI requested by the user is less

than this lower bound, then InSt does not incorporate the user-specified OI. In this

case, the InSt framework informs the user of the lowest feasible OI. If the user-specified

value of OI is greater than the lower bound, this value forms the upper bound for OI in

the decision algorithm, i.e. the decision algorithm in InSt tries to find the best possible

OI within the user-specified bound.

If the user specifies a MPR value, then the application manager attempts to change

the current MPR value it uses in the decision algorithm with the user-specified value.

However, it first checks if the user-specified MPR, uMPR is feasible for the current reso-

lution of simulations by calculating an upper bound, MPRmax, feasible for the resolution

and comparing the user-specified uMPR with MPRmax. For calculating MPRmax, the

feasible upper bound, we substitute OI with∞ and t with its lower bound TLB in equa-

tion (6.1) and obtain MPRmax as the ratio of integration time step ts and TLB. If the

user specified MPR, uMPR, is greater than this feasible upper bound, MPRmax, for

the current resolution, InSt proactively tries to find a coarser resolution and checks the

feasibility of uMPR for the coarser resolution by calculating MPRmax for the coarser

resolution. MPRmax for the coarser resolution will be higher than the MPRmax for the

finer resolution because of greater ts. The application manager then provides the user

with the options of coarser resolution at which the uMPR is feasible. Thus, InSt proac-

tively tries to find a balance between the algorithmic steering of the decision algorithm

and the user-driven steering values considering the criticality, represented by MPR, of

the application.

The flowchart in Figure 6.2 depicts the reconciliation or handshaking dialogue be-

tween the algorithmic steering and user-driven steering. In the flowchart, MPR is the



Chapter 6. Integrated Algorithmic and User-driven Steering 139

Input simulation

parameters

expert

I

Form nest or

refine simulation?

Update simulation

U

uMPR specified?

uOI possible with

uMPR?

uOI specified?

uOI specified?

uMPR possible

with Res?

Bad Input

uOI satisifies

MPR?

U

Res = coarsest?

Res = older

resolution?

U

Increment

Res

I

I

Yes

No

Yes No

Yes

No

No

Yes

Yes

Yes

Yes

No No

No

No

Yes

Yes

No

Figure 6.2: Flowchart depicting reconciliation



Chapter 6. Integrated Algorithmic and User-driven Steering 140

value currently used by the application manager for simulations, Res represents the

current resolution of simulation, uMPR and uOI are the user-provided MPR and OI

(output interval) values. The flowchart shows the various feasibility analysis done by

the application manager before accepting or overriding user request. If the user-specified

values are approved by the application manager, the simulation process is updated with

the new values. This is denoted in the flowchart using connectors marked ‘U’. When

the application manager is not able to satisfy user-request due to infeasibility with re-

spect to the current minimum progress rate used in the simulations, then the user is

recommended an optimal set of values. This is denoted by connectors marked ‘I’ in the

flowchart.

In summary, InSt updates the simulation parameters based on user input, i.e. there

is a path in the flowchart from the start to ‘U’ in the following cases when the user

specifies:

• nest location.

• uMPR and uOI, and both values can be used by InSt either at the current

resolution or a lower resolution.

• uOI, and it is feasible with the current MPR used in the execution.

InSt reports infeasible user inputs, i.e. there is a path in the flowchart from the start

to ‘I’ in the following cases when the user specifies:

• uMPR and uOI, and both values cannot be used even at the coarsest resolution.

• uOI, and it is not possible to use uOI with the current MPR used in the execution.

• null input values for all input fields.

Therefore the user drives the simulation process and the automatic tuning framework

steers the weather simulation to the favorable state of continuous visualization with

minimum stalling and maximum progress rate.



Chapter 6. Integrated Algorithmic and User-driven Steering 141

6.4 Experiments and Results

6.4.1 Resource Configuration

For all our experiments, visualization was performed on a graphics workstation in In-

dian Institute of Science (IISc) with a dual quad-core Intel R© Xeon R© E5405 and an

NVIDIA graphics card GeForce 8800 GTX. We used hardware acceleration feature of

VisIt for faster visualization. We executed the simulations on two different sites resulting

Table 6.1: Simulation and Visualization Configurations

Configuration Simulation Configuration Maximum

Cores for

Simulation

Maximum

Disk

Space

Average

Sim-Vis

Bandwidth

intra-country gg-blr: HP Intel Xeon Quad Core

Processor X5460, 40 nodes, 320

3.16 GHz cores, RHEL 5.1 on

Rocks 5.0 operating system, each

with 16 GB RAM and 500 GB

SATA based storage, and con-

nected by Infiniband primary inter-

connect and Gigabit Ethernet sec-

ondary interconnect. For our work,

we used the Gigabit network

96 150 GB 40 Mbps

inter-country abe: Dell PowerEdge 1955 dual-

socket quad-core compute blades,

1200 blades, 9600 2.33 GHz cores,

RHEL 4 operating system, 1 GB

RAM per core, 100 TB Lustre

filesystem, and connected by Infini-

band

128 700 GB 8 Mbps



Chapter 6. Integrated Algorithmic and User-driven Steering 142

in two different remote visualization and computational steering settings, namely, intra-

country and inter-country steering. In the intra-country configuration, the simulations

were performed on a quad-core Intel R© Xeon R© X5460 cluster, gg-blr, in the Centre for

Development of Advanced Computing (C-DAC), Bangalore, India. The transfer between

simulation and visualization site for this intra-country configuration was carried out on

the National Knowledge Network (NKN). In the inter-country configuration, the WRF

simulations were conducted on the dual-socket quad-core Intel 64 (Clovertown) Pow-

erEdge 1955 cluster, Abe, in National Center for Supercomputing Applications (NCSA),

Illinois, USA. Table 6.1 gives the detailed specifications of the two resource configura-

tions including the maximum cores used for simulations, the maximum disk space used

by our adaptive framework for the experiments, and the average available bandwidth

between the simulation and the visualization sites for each of the configurations.

6.4.2 Weather Model and Cyclone Tracking

We used our framework for tracking cyclone Aila. The details of Aila were specified in

Section 5.3.1. For the intra-country experiments, we performed simulations for an area

of approximately 32 × 106 sq. km. from 60◦E - 120◦E and 10◦S - 40◦N over a period

of 2 days. For the inter-country experiments, we performed simulations over a larger

area or domain and for a longer period of time, since the Abe cluster supports faster

rate of simulations (approximately 1.5 time steps per second) and has faster Infiniband

interconnect. For these inter-country experiments, the domain was approximately from

30◦E - 150◦E and 10◦S - 40◦N and the simulation was done over a period of 3 days 18

hours. These domains correspond to the areas of formation and dissipation of Aila.

6.4.3 Framework Implementation

The modifications to the WRF were mentioned in Section 5.3.2. We specified the upper

bound for output frequency (OIUB) to be 30 simulated minutes. For the steering inter-

face, we have developed a GUI inside VisIt using Qt. A snapshot of the GUI can be seen

in Figure 6.1.



Chapter 6. Integrated Algorithmic and User-driven Steering 143

6.4.4 Computational Steering Results

In this section, we demonstrate the user-driven steering supported by InSt, namely,

the various steering capabilities provided to the user, the feedback mechanisms in the

framework, and the reconciliation of the user-driven steering and automatic tuning or

algorithmic steering by the framework. For these experiments, the simulations are started

at a particular resolution. However, unlike in the automatic tuning experiments of the

previous section, the resolutions of the ongoing simulations can be changed only by the

user. Similarly, the placement of the nest for finer simulations can also be performed

only by the user.

Intra-country Steering

Figure 6.3 shows the steering results for the intra-country experimental setup using the

gg-blr cluster. The simulation throughput (blue curve), the visualization progress (red

curve) and the remaining free disk space (green curve) are shown in the figure. The graph

also shows the various steering events provided by the user. Initially, the simulations

were started with a resolution of 24 km, and MPR of 5. User input at various stages of

the simulation and visualization resulted in steering events. Below, we list the steering

events together with the system response and the effect of these events.

• E1: This event occurs after 3.8 hours of execution. In this event the user decides

to form a nest based on the visualization output and also provides the nest lo-

cation. This causes the decision algorithm to reconsider the various system and

application parameter values and compute the optimal number of processors and

output interval. The formation of nest decreases the simulation rate (blue curve)

and hence the slope decreases after the event. There is also a drop in the available

disk space (green curve) after this event occurs. This is because of increased rate

of output due to the output corresponding to the new nest along with the output

of parent domain data. Increased output per time step also decreases the slope of

the visualization progress plot (red curve).



Chapter 6. Integrated Algorithmic and User-driven Steering 144

• E2: This event occurs after about 4.8 hours of execution. In this event the user

decides to refine the simulation to a finer resolution of 18 km. To start at a finer

resolution, WRF has to preprocess input data at that resolution. Hence we observe

the flat region after E2 corresponding to the time required for preprocessing. This

time depends on the I/O bandwidth of the system. The framework then starts with

the user-provided resolution of 18 km. Finer simulation resolution implies more

computation time and more output per time step. Therefore we observe further

decrease in slope for simulation throughput and visualization progress plots. We

also observe reduction in disk space after E2.

00:00
01:36

03:12
04:48

06:24
08:00

09:36
11:12

12:48
14:24

16:00

Wall clock time

23-May 00:00

23-May 06:00

23-May 12:00

23-May 18:00

24-May 00:00

24-May 06:00

24-May 12:00

24-May 18:00

25-May 00:00

S
im

u
la

ti
o
n
 t

im
e

E1

E2

E3 E4

E5

E6

70

75

80

85

90

95

100

P
e
rc

e
n
ta

g
e
 o

f 
D

is
k 

S
p
a
ce

 R
e
m

a
in

in
g

Simulation Throughput
Visualization Progress
Remaining Disk Space

Figure 6.3: Simulation (blue) and Visualization (red) progress, and Disk Consumption (green)

for intra-country configuration with computational steering. Initial WRF resolution = 24 km,

MPR = 5. Events E1 − E6 affect the simulation throughput and the visualization progress as

reflected in the graph.



Chapter 6. Integrated Algorithmic and User-driven Steering 145

• E3, E4: This event occurs after about 8 hours of execution. E3 denotes the event

where the user requests for a simulation rate of 8 but the system denies owing to

infeasibility. The maximum rate possible with the upper bound of output interval

of 30 minutes at resolution of 18 km is 6 considering the time to solve and time

to output in this experimental setup. This value can be estimated using equa-

tion (6.1). The system then tries to find a coarser resolution at which the user’s

desired rate is feasible as explained in Section 6.3. In this case, the system pro-

vides an alternate option of making the resolution 21 km. In this way, the system

tries to satisfy one requirement of the user, while compromising another based on

feasibility analysis. The user can then prioritize resolution over rate or the other

way round. E4 denotes the event where the user asks for a resolution of 21 km, as

suggested by the system.

As these events demonstrate, InSt takes a proactive approach towards user-driven

computational steering. While it attempts to steer the simulations based on user

inputs, it also analyzes the impact of the user inputs on the criticality of the

application, namely, the MPR desired for the simulations, and “advises” the user

about possible violations of the “quality-of-service” due to his inputs, and provides

him with suitable alternate options. Thus, InSt follows an effective reconciliation

approach towards steering executions. Unlike existing work that mainly focuses on

user-driven steering, this reconciliation of the user inputs and the criticality needs

of the application is very essential for critical weather applications like cyclone

tracking.

• E5: This event occurs after about 10.6 hours of execution. In this event the user

decides to increase the output interval to 21. As can be seen in the simulation

curve, the slope slightly increases signifying an increase in the simulation rate.

The simulation rate increases because the increased output interval causes the

simulation process to spend lesser amount of time writing files to disk. Increased

output interval causes a slight increase in the available disk space after event E5.

This is because the rate of input to the disk decreases whereas the rate of output



Chapter 6. Integrated Algorithmic and User-driven Steering 146

from the disk, determined by the network bandwidth, remains almost the same.

• E6: This event occurs after about 11.8 hours of execution. This is where the

user decides to refine the resolution to 12 km for better visualization. Since finer

resolution implies more time to solve a time step, it can be seen from the graph

that the slope of the simulation curve after E6 is lower compared to before. Finer

resolution also increases amount of output produced by the simulation per time

step and hence rapid decrease in the available disk space (green curve) can also be

observed.

Figure 6.3 shows that the available disk space is always above 95%. This is because

of adjusting the number of processors by the decision algorithm to the correct value so

that disk space is not a problem even when inputs are given by the user. Fluctuations

in the disk curve can be seen at times corresponding to the events E1 to E6. Increase in

disk space can be seen after the events and before restarting WRF because during this

period, the transfer rate remains the same as there is almost no input to the disk.

It can also be observed that the visualization progress closely follows the simulation

progress. This is because when the simulation rate is slower due to finer resolutions, the

increased amount of output increases the transfer time to the visualization site. Similarly,

coarser resolution simulations produce lesser amount of data and thus requires lesser

transfer time to the visualization site. For example, simulation at 24 km parent resolution

and 8 km nest resolution produces 162 MB data per time step, whereas simulation with

parent resolution of 10 km and nest resolution of 3.33 km produces 973 MB data per

time step.

Inter-country Steering Results

We also performed inter-country steering from the visualization site in India to the

simulation site in NCSA, USA. Figure 6.4 shows the results obtained in the inter-country

configuration with NCSA’s Abe cluster in USA for simulations, and the visualization

engine in IISc, India. The graph shows the various algorithmic steering events and user-

driven steering events. Initially, the simulations were started with a resolution of 18 km,



Chapter 6. Integrated Algorithmic and User-driven Steering 147

00:00
01:05

02:11
03:16 04:22

05:27
06:33

07:38
08:44

09:49 10:55
12:00

Wall clock time

23-May 00:00

23-May 08:00

23-May 16:00

24-May 00:00

24-May 08:00

24-May 16:00

25-May 00:00

25-May 08:00

25-May 16:00

26-May 00:00

26-May 08:00

Si
m

ul
at

io
n 

tim
e

E1

E2

E3

E4

Simulation Throughput

Figure 6.4: Simulation progress for inter-country configuration with computational steering.

Initial WRF resolution = 18 km, MPR = 3. Both algorithmic and user-driven steering events

(E1 − E4) affect the simulation throughput as reflected in the graph.

and MPR of 3 on 96 processors with an output interval of 30 simulated minutes. Below,

we list the algorithmic events (E1 and E4) and user-driven steering events (E2 and E3)

that occurred during the 11 hours of execution. The response to these events in terms

of the simulation throughput and visualization progress is similar to the intra-country

experiment.

• E1: This event occurs after 30 minutes of execution. In this event, the decision

algorithm computes the number of processors as 80. This change from 96 to 80

is because of the rapid disk space consumption due to the high simulation rate at

coarser resolution. Decrease in number of processors decreases the rate of simula-

tion as implied by the decrease in slope after E1.



Chapter 6. Integrated Algorithmic and User-driven Steering 148

• E2: This event occurs after 2 hours of execution. In this event, the user requests for

change in output interval to 60 simulated minutes. Increase in output interval leads

to slight increase in the slope after E2 because of slight increase in the simulation

rate due to fewer disk writes.

• E3: This event occurs after 5 hours of execution. In this event, the user requests

for change in resolution from 18 km to 12 km for better simulation output. A

significant decrease in slope can be observed after E3 because of more number of

computations per time step.

• E4: This event occurs after 8 hours of execution when finer resolution causes

the simulation rate to decrease. The decision algorithm increases the number of

processors from 80 to 112 in response to this event and maintains the minimum

simulation rate.

6.5 Summary

High-performance simulations, effective “on-the-fly” remote visualizations, and user-

driven computational steering of simulations based on feedback to focus on important

scientific phenomena are essential for efficient monitoring of critical weather events, and

providing timely analysis. In this chapter, we have described our integrated steering

framework, InSt, that combines user-driven steering with automatic tuning of applica-

tion parameters based on resource constraints and the criticality needs of the application

to determine the final parameters for simulations. Our steering framework proactively

analyzes the impact of user inputs on the criticality of the application, advises the user

on violations, guides with alternate options, and arrives at the final agreeable parame-

ters. We have demonstrated the algorithmic and steering aspects of our framework with

experiments involving intra and inter country steering. Results of these experiments

demonstrate how the framework guarantees a minimum rate of simulation, continuous

visualizations, and reconciliation between algorithm and user-driven steering.

In our integrated framework for algorithmic and user-driven steering, there can be



Chapter 6. Integrated Algorithmic and User-driven Steering 149

delay in visualization depending on the network bandwidth. The framework may recom-

mend higher output interval depending on resource parameters like higher disk space.

This may lead to more delay between simulation and visualization times in medium and

low-bandwidth networks. We elaborate on this lag between simulation and visualization

times in the next chapter and describe some heuristics for reducing this delay.



Chapter 7

Reducing Simulation-Visualization Lag on Con-

strained Networks

The delay between the simulation time and the visualization time for a simulation time

step should be as minimum as possible in the case of critical weather simulations. In this

chapter, we discuss efficient online visualization techniques to reduce the lag between

simulation and visualization times.

7.1 Introduction

High-fidelity high resolution numerical weather simulations involve large-scale computa-

tions and generate large amount of data. Online visualization of the simulation output

enriches the process of scientific discovery and fosters profound and unexpected insights.

While the ability to generate data continues to grow in leaps and bounds, the ability to

comprehend it all on-the-fly continues to encounter great challenges [38]. This is espe-

cially true for high resolution and nested simulations, which can generate gigabytes of

data per time step.

7.1.1 Motivation

Efficient online visualization, where the output of the simulation is visualized as soon as

it is produced, is highly desirable in critical applications. Though our framework InSt,

150



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks151

as explained in Chapters 5 and 6, adapts to resource constraints and helps in smooth and

continuous simulation and visualization of critical applications in resource-constrained

environments, it cannot guarantee an upper bound on the lag between the time when

the simulation produces an output frame and the time when the frame is visualized. It

is important to reduce the lag between the simulation and visualization times so that

scientists are able to get on-the-fly view of the simulation. Also, for critical applications

like tsunami prediction, the faster the simulation output reaches the visualization site,

the better are the chances of taking active measures on time. In this chapter, we address

the critical issue of reducing this lag by adapting to the available resource parameters

and the simulation output.

In an environment of continuous simulation and remote visualization, the accumu-

lation of simulated frames in the simulation site will lead to a longer queue of pending

frames for visualization, and hence increase the number of frames to be sent to the visu-

alization site before transferring the recently produced frames. The length of this queue

will increase with time because simulation will continuously output frames. This, in

turn, will increase the lag between when a frame is produced and when it is visualized

because of sending all the frames in the queue in order.

7.1.2 Problem Statement

Our work tries to minimize the lag between simulation and visualization times to enable

efficient online visualization. A viable solution to this problem can be to discard some

frames from the queue. This will reduce the queue size and hence reduce the lag as well.

One option can be to send one frame from the queue. But in this case, though the lag

will be reduced, the occurrence of important events might go unnoticed. Another option

can be to select the most representative set of frames from the queue and discard the

rest. This will minimize the queue length to some extent. A different approach can be

to increase the output interval so that no frames are discarded. In this case, one should

note that increasing output interval is equivalent to decreasing temporal resolution (i.e.

the frequency at which successive frames are visualized) without examining the data.



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks152

If most of the frames in the queue are redundant, then increasing output interval is a

good option, whereas if the nature of data is unknown, i.e., redundancy in the frames is

unknown, increasing output interval may lead to missing important events. Hence it is

highly important to examine the data before discarding.

In our work, we transfer a representative subset of pending frames to the visualization

site and discard rest of the frames. We have developed three algorithms to reduce

the lag - most-recent, auto-clustering and adaptive. The aim is to minimize the lag

between simulation and visualization times and also to visualize important events in the

simulation. Most-recent tries to achieve the best possible lag, auto-clustering tries to

visualize all important events in the simulation and adaptive tries to visualize most of

the important events within acceptable lag. Using experiments with different network

configurations, we find that in general the adaptive algorithm strikes a good balance in

reducing lag and visualization of most representative frames, with up to 72% smaller

lag when compared to auto-clustering, and 37% larger representativeness than most-

recent for slow networks. We also introduce new measures to evaluate the quality of the

visualized output.

7.1.3 Chapter Outline

In Section 7.2, we elaborate the problem of simulation-visualization lag. Section 7.3

presents algorithms to reduce simulation-visualization lag. Section 7.4 presents the ex-

perimental results on lag reduction on different network bandwidths. Section 7.5 briefly

summarizes the contributions. Section 7.6 concludes and enumerates our future efforts.

7.2 Simulation-Visualization Lag

Figure 7.1 shows the lag between the simulation and visualization times for three different

network bandwidths between the simulation and visualization sites. We simulate the

cyclone Aila (refer Section 5.3.1). During the simulation, a nest is formed over the

cyclone and the simulation is refined with growing intensity of the cyclone. The y-axes



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks153

0.0 2.4 4.8 7.2 9.6 12.0
Wall-clock time (hours)

23-May 00:00

23-May 12:00

24-May 00:00

24-May 12:00

25-May 00:00

25-May 12:00

26-May 00:00

Ti
m

e 
st

ep
s 

si
m

ul
at

ed
LAG

Simulation Time
Visualization Time

(a) High-bandwidth configuration

0 8 17 26 35
Wall-clock time (hours)

22-May 22:00

23-May 08:00

23-May 18:00

24-May 04:00

24-May 14:00

25-May 00:00

Ti
m

e 
st

ep
s 

si
m

ul
at

ed

LAG

Simulation Time
Visualization Time

(b) Medium-bandwidth configuration

0 3 7 11 15
Wall-clock time (hours)

22-May 21:00

23-May 01:00

23-May 05:00

23-May 09:00

23-May 13:00

23-May 17:00

Ti
m

e 
st

ep
s 

si
m

ul
at

ed

LAG

Simulation Time
Visualization Time

(c) Low-bandwidth configuration

Figure 7.1: Simulation times (blue) and visualization times (red) showing the simulation-

visualization lag.



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks154

in Figures 7.1(a), 7.1(b) and 7.1(c) show the time steps simulated. The x-axes indicate

the wall-clock times for simulation and visualization. The blue curve shows the wall-

clock time at which a time step was simulated and the red curve shows the wall-clock

time when the time step was visualized.

Figure 7.1(a) shows the simulation and visualization times for high-bandwidth (56

Mbps) configuration. It can be seen that slope of the simulation curve keeps decreasing

due to gradual refinement of simulation resolution. With finer resolution, the simula-

tion speed decreases and hence the lag between simulation and visualization decreases.

Figure 7.1(b) shows the simulation and visualization times for medium-bandwidth (16

Mbps) configuration. The difference between the visualization time and the simulation

time for a given time step is more than the high-bandwidth configuration because of lower

network speed. In this case, the lag monotonically increases unlike the high-bandwidth

case because the initial lag is comparatively higher. Hence, decrease in simulation rate

due to increase in simulation resolution does not decrease the lag significantly. The

simulation-visualization lag is much more in the low-bandwidth (1.1 Mbps) configura-

tion as shown in Figure 7.1(c). The time taken for a frame to reach the visualization site

from the simulation site is more due to the slow network speed between the simulation

and visualization sites. Hence a time step is visualized much later than when it was

simulated.

In critical applications, it is imperative for simulation output to be visualized as soon

as the data is produced. Online/on-the-fly visualization requires that the visualization

times closely follow the simulation times. If the network bandwidth is low, then the

visualization times might lag behind the simulation times. This lag can increase if the

simulation speed is very high and the network bandwidth is very low. This is evident

from Figures 7.1(a), 7.1(b) and 7.1(c). The lag for the time step corresponding to 23rd

May 00 hours is 25 minutes for high-bandwidth, 3 hours for medium-bandwidth and

12.5 hours for low-bandwidth configurations. A comparison of these figures shows that

as the network bandwidth decreases, the lag between the simulation and visualization

increases. When the network bandwidth is high, the frames are transferred quicker and



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks155

S1

V1

S2

V2

S3

V3

S4 S5 S6 S7 S8

1 1
2

1
2
3

2
3
4

2
3
4
5

3
4
5
6

3
4
5
6
7

3
4
5
6
7
8

LAG1

LAG2

LAG3

Figure 7.2: Simulation and visualization progress.

hence the number of frames simulated in that time is fewer whereas in the case of low

network bandwidth, the frames take longer time to be transferred and hence the number

of frames simulated in that time is higher. This leads to lag accumulation as explained

below.

An illustration of increasing lag between the simulation and visualization times is

shown in Figure 7.2. The two horizontal lines show the simulation and visualization

progress. Si is the simulation time for the ith frame and Vi is the visualization time for

the same. LAGi shows the difference between Vi and Si, i.e. the time difference between

the visualization and simulation of the ith frame. It can be seen from the figure that

when the 1st frame reaches the visualization site at V1, the 2nd and 3rd frames are already

produced and are waiting to be sent. When the 2nd frame reaches the visualization site

at V2, the 3rd, 4th, 5th and 6th frames are queued at S6. Though the ith frame is produced

at Si, it can only be sent after the previously-queued frames are transferred. Therefore

the queue size continues to increase as shown by the numbered rectangles in the figure.



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks156

Since the number of frames waiting at the simulation site increases, the time between

when a frame is produced and when it is visualized also increases. For example, the 8th

frame will have to wait in the queue for the 3rd, 4th, 5th, 6th and 7th frames to be sent.

In this case, the transfer times of the queued frames will add to the lag for the 8th frame.

Thus this leads to cumulative addition of lag for the later frames. Hence LAGi increases

as illustrated in Figure 7.2 for the 1st, 2nd and 3rd frames.

7.3 Reduction of Simulation-Visualization Lag

The scenario shown in Figure 7.2 can be better or worse depending on the network

bandwidth between the simulation site and the visualization site. This is evident from

the experiments with different network bandwidths (Figure 7.1). If the bandwidth is very

low, there will be more number of frames accumulated during the time when a frame is

transferred and hence the lag will be more. On the other hand, if the bandwidth is very

high, the lag will be less. So it is required for an online remote visualization framework

to adapt to the changing network bandwidths and minimize the lag. We have developed

strategies in InSt (Section 6.2) for adapting to the network bandwidth and the length of

the queue of pending frames, i.e. the frames which are yet to be sent to the visualization

site from the simulation site.

7.3.1 Requirements for Online Visualization

As shown in Figure 7.2, the lag between S3 and V3 is more than the lag between S1 and

V1, i.e. the lag for the frames produced later is more than the lag for the earlier frames.

This increasing lag is mainly because of two reasons:

1. Sending all the frames.

2. More frames being produced by the simulations in the time when a frame is being

transferred.

A simple strategy that will not lead to increasing lag will be to increase the output

interval i.e. to not produce excess frames if the network bandwidth is low. Though this



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks157

will ensure that the frames are sent for visualization as soon as they are produced, the

high output interval may result in missing important events between two consecutive

frames. Since the purpose of visualization is to identify important events, this strategy

is not desirable. Hence, in our work we do not consider this strategy of increasing the

output interval to reduce the lag.

It is easy to observe that with increasing queue of pending frames, the lag for suc-

cessive frames keeps increasing. This gives the idea of decreasing the queue length to

decrease the lag. The approach we follow to decrease the queue length is to drop some

frames from the queue. In our work, we choose a subset of frames from the queue and

discard the rest so that the queue size decreases, which in turn will reduce the lag.

Our framework adapts to different network bandwidths to reduce the lag. The higher

the network bandwidths, the lesser the number of frames that will be dropped by our

framework.

The criterion to drop frames must adhere to either of the two conflicting goals:

Case 1: The sent frames contain useful information - In this case, the goal is to send

good quality frames. The quality of the frames can be based on the amount of non-

redundant information contained in the frames that are sent. The objective is to send

the most representative frames, i.e. the frames which represent their immediate temporal

neighborhood well. The representative frames are chosen such that they are somewhat

distinct from each other. However this will not give the best possible lag because there

may be many important frames in the queue.

Case 2: Minimal lag is maintained - In this case, the goal is to always maintain the best

possible lag irrespective of whether all important information is visualized or not.

Thus we need to either compromise the quality of visualized frames or the lag be-

tween the simulation and visualization times. We have extended the Frame Sender (Sec-

tion 5.2.3) component for dynamically deciding whether to send or discard the pending

frames. We describe this in detail in the following subsections.



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks158

7.3.2 Frame Selector

We reduce the simulation-visualization lag by extending the frame sender in our frame-

work to include a Frame Selector component as illustrated in Figure 7.3. The Frame

Selector invokes a frame selection algorithm to select frames that will be sent to the

visualization site. These algorithms are explained in the next section.

. . .

Storage

Pending Frames
. . .

A
d
a
p
t
iv
e

F
r
a
m
e
S
e
n
d
e
r

F
r
a
m
e
R
e
c
e
iv
e
r

Network

Frame Selection

Algorithm

Figure 7.3: Frame Selector.

7.3.3 Strategies for Selection of Time steps to Reduce the Lag

We have developed three frame selection algorithms for the Frame Selector component

of InSt. These algorithms are described below.

Most-Recent

This is a simple strategy that selects the frame that is most recently generated by the

simulation process for sending to the remote visualization site. If t cur is the current time

when a frame is chosen, t gen is the time when the frame is generated by the simulation

process, and t tran is the time for transferring the chosen frame to the visualization site,

the most-recently generated frame results in minimal value of (t cur − t gen) + t tran

among all the frames in the queue, since the t gen for the most recent frame is the highest.

Thus this strategy aims to reduce the lag between the visualization and simulation of a

frame to the minimal value. However, it is important to note that the most recent frame



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks159

may not be the most representative frame of all the frames in the queue. This algorithm

has time complexity of O(1).

Auto-clustering

This algorithm reduces the lag as well as sends only useful information to the visualiza-

tion site. The strategy is to select some frames from the queue of pending frames and to

discard some based on the importance of each frame. In our work, we decide the impor-

tance of a frame based on how well that frame represents the other frames in its temporal

neighborhood. Since sending all the frames can result in large simulation-visualization

lag, as discussed in Section 7.3.1, this strategy reduces the lag by discarding some frames.

The other important requirement is to visualize the significant temporal phases in the

simulation output. Auto-clustering achieves this by retaining some representative frames

so that useful information is not lost.

In the first part of this algorithm, we examine the current queue of pending frames

and form temporal non-overlapping clusters as shown in Figure 7.4. The different colours

represent the different clusters. These clusters represent phases in the queue of pending

frames. The phases are determined by comparing the root mean square distance of the

... ...

Figure 7.4: Auto-clustering Strategy.

values of a varying field between two successive frames. If P1 and P2 are two vectors,

then the root mean square distance and the normalized root mean square distance are

given by Equations (7.1) and (7.2) respectively.

RMSD(P1, P2) =

√∑N
i=1(x1,i−x2,i)2

N
(7.1)

NRMSD = RMSD
xmax−xmin

(7.2)

After forming the clusters, a representative frame from each cluster is chosen such that

it has the least standard deviation among the frames in that cluster. These are colored



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks160

black in Figure 7.4. The pseudocode for this is shown in Algorithm 7.1. The algorithm

takes as input the set of pending frames F = {f1, f2, ..., fn}, which are queued at the

simulation site and outputs the set of representative frames R = {r1, r2, ..., rk}, R ⊆ F ,

for sending to the visualization site.

In the algorithm, the number of clusters k is determined in the lines 1–11. We calcu-

late the normalized root mean square distance (NRMSD) of pressure variable between

every two consecutive frames using Equation (7.2) and find the standard deviation. In

our simulations, the value of pressure decreases over time, thereby increasing the function

range. Relative values and ranges of the variables affect clustering results [48]. There-

fore, we use NRMSD in order to avoid biasing the RMSD by higher function range.

The number of clusters is determined by the number of frames having a high standard

deviation. In our algorithm we have chosen a threshold of 0.4 standard deviation above

the mean to define large distances of frames from the previous frames. From initial ob-

servations, we found that 0.4 standard deviation provides a balance between very few

and very high number of clusters. Thus, the algorithm uses the principle that if Fi is

distinctly different from Fi+1, it may imply a change of phase.

Once the number of clusters is determined, we then find the cluster centres using

an iterative method similar to the well-known k-means [77] clustering algorithm. Unlike

the traditional k-means approach, we aim to find a temporal clustering, which means

that the clusters are sequenced according to the temporal order. The reason for this is

to capture distinct temporal phases among the frames in the queue. Each cluster has

a common boundary with each of its neighboring cluster to its right side and to its left

side as shown in Figure 7.4. Initially, we place the cluster centres at equal distances

from each other. In each iteration, each frame is assigned to the closest cluster centre

among the two centres to its left and right as shown in lines 13–16 of Algorithm 7.1.

After assigning all the frames to one of the cluster centres to its left or right, a new

cluster centre is determined for each cluster based on the standard deviation of root

mean square distance. In each of the clusters, the one which has the least standard

deviation is selected as the new cluster centre (lines 17–19).



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks161

Input: The set of pending frames F

foreach i ∈ F do1

Find rms(Fi−1, Fi) using Equation (7.2);2

rms[Fi] ← rms(Fi−1, Fi);3

end4

avg rms ← average of rms[Fi] ∀ i ∈ F ;5

k ← 0; /* k is the number of clusters */6

foreach i ∈ F do7

if (avg rms - rms[Fi] ≥ threshold) then8

k ← k + 1;9

end10

end11

/* Let C(G1), C(G2), ..., C(Gk) be the frames that represent the centers of k clusters

*/

/* Initially, the clusters centers are equally spaced */

/* Refine the cluster centres */

repeat12

/* Form clusters and cluster boundaries using the cluster centers */

foreach j ∈ F do13

Gp ← argmin
i={left,right}

(rms(Fj , C(Gi)));
14

add j to members(Gp);15

end16

foreach i ∈ G do17

C(Gi) ← argmin
i∈members(Gi)

standard deviation(i);
18

end19

until there is no change in the cluster centres ;20

foreach i ∈ G do21

Ri ← C(Gi);22

end23

Output: The set of representative frames R

Algorithm 7.1: Auto-clustering Algorithm



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks162

The space requirements for this algorithm are modest because only the data points

and centroids are stored, similar to that of k-means [124]. Specifically, the storage

required is O(n + k), where n is the number of points and k is the number of clusters.

The time required is O(I∗n), where I is the number of iterations required for convergence.

We have found empirically that this algorithm converges fast and I is very small, therefore

this algorithm is linear in the number of data points.

Although auto-clustering does not guarantee minimal lag, it selects representative

frames from the queue of pending frames to retain the frames containing significant

information. It sends useful information to the visualization site so that important

phases in the simulation are visualized.

Adaptive

Adaptive algorithm is a hybrid strategy that combines the characteristics of the most-

recent and auto-clustering methods because it is important to reduce the lag as well as

to visualize the important phases of the simulation. In this algorithm, utmost impor-

tance is given to visualizing the frames as soon as they are produced by the simulation

process. The user/scientist can specify an upper bound LAG UB to limit the simulation-

visualization lag.

As discussed in Section 7.3.1, one way to reduce lag is to drop frames. But dropping

many frames may result in too much loss of information. Another approach to reduce

lag without losing too much information is to reduce the size of each frame. Since we

employ frame compression as a size reduction technique in all our strategies, we consider

one more kind of size reduction in this adaptive strategy. The specific size reduction

technique is to remove less important information from a frame. Scientific data produced

by simulations have different sets of parameter values, and these sets can be prioritized

into different levels of importance based on the specific needs of the scientists. For

example, weather data has different sets of variables like pressure, temperature, wind

velocities, humidity, precipitation, etc. For the critical weather application of cyclone

tracking, pressure is the most important variable. A cyclone is characterized by the



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks163

continuous drop in pressure and high wind velocity at the centre of the cyclone. So we

form different levels of information by retaining different sets as enumerated below.

1. Level 0: All variables

2. Level 1: Pressure, Wind Velocities, Temperature

3. Level 2: Pressure

Thus, we can reduce the size of a frame to different levels by retaining different sets

of most important parameters/data in the frame and eliminating the others. Since the

total time to send data across the network depends on the size of data, the time to

transfer will decrease if we reduce the size of each frame by sending the most important

information in the frame.

Input: The set of pending frames F and the set L of different levels of information in

descending order of amount of information content

/* Invoke auto-clustering algorithm to get the set of representative frames R′

*/

R′ = auto-clustering(F)1

/* Adaptively choose an appropriate level for the chosen frames */

foreach representative frame i ∈ R′ do2

foreach level j ∈ L do3

curr frame ← jth level of information in i;4

curr transfer time ← time to transfer curr frame;5

if (curr transfer time ≤ LAG UB) then6

add i to R;7

break;8

end9

end10

end11

Output: The set of representative frames R

Algorithm 7.2: Adaptive Algorithm



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks164

It may not be always possible to send the full simulation output to the visualiza-

tion site within the lag limit, so this algorithm tries to send as much information as

possible for visualization. At first, the adaptive algorithm invokes the auto-clustering

algorithm explained in Algorithm 7.1. For each of the representative frames output by

auto-clustering, the adaptive algorithm checks if the full frame can be sent without vio-

lating the lag limit LAG UB, i.e. it checks whether the difference in the times between

when the frame will reach the visualization site and when it was produced by the simula-

tion process will be less than LAG UB. If it cannot send the full frame without violating

the lag limit, then it checks whether it can send the frame with the next level of reduced

information content such that the lag is less than LAG UB. There can be multiple such

levels of reduced information content depending on the amount of information in the

simulation output. With each level of reduced information in a frame, the time to send

the frame also decreases since the time to transfer data is directly proportional to its size.

If even the lowest level of reduced frame content cannot be sent, then the adaptive algo-

rithm discards the frame and considers the next representative frame. The pseudocode

for this is shown in Algorithm 7.2.

This technique will ensure that the lag for the visualized frames is always less than

LAG UB. When the algorithm decides to send a frame with partial data, the time to

transfer that frame is also less which implies that the number of pending frames accumu-

lated in the queue within that time is fewer. Hence the rate at which the queue length

increases is lesser when reduced frames are sent. When accumulation of pending frames

is less, then in the next iteration of the Frame Selector, the algorithm will most likely

select a full frame for visualization within the lag limit. Hence the adaptive algorithm

is able to adapt to network conditions and current queue size. It adaptively decides

whether to send or not and how much information to send. We elaborate this using

experimental results in Section 7.4. The time complexity of this algorithm is similar to

that of auto-clustering.

InSt invokes the frame selection algorithm when the frames are in transit from the

simulation to the visualization site, hence this ensures that the time required for the frame



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks165

selection does not increase the simulation-visualization time. Hence the time for frame

selection need not be considered in the optimization problem described in Section 5.2.4.

For example, in the high-bandwidth case, the maximum queue length is 3 when frame

selection algorithm is used. The transfer time for a full frame at 18 km resolution is

around 1 minute and the frame selection algorithm runs in less than 0.3 seconds for

clustering 3 frames. However, in certain cases like slow network bandwidths, where the

queue size can be very large, the frame selection algorithm execution time may exceed

the frame transfer time. In those cases, the frame selection algorithm considers a subset

of the pending frames so that its execution time does not surpass the transfer time. The

limitation of this approach is that considering a subset of frames may result in choosing

different representative frames. However, we have found experimentally that this simple

modification maintains the quality of the data reasonably well as has been shown in

Section 7.4.

7.4 Experiments and Results

In this section we present experimental results of using the frame selection algorithms

for simulation-visualization lag reduction by InSt. The frame selection algorithms are

sequential in the current work, and are executed on a single processor at the simulation

site. The experiments have been conducted on the high-bandwidth, medium-bandwidth

and the low-bandwidth configurations, shown in Table 7.1.

7.4.1 Evaluation Strategies

We measure performance improvement over the original all algorithm in terms of simulation-

visualization lag. We also compare the frame selection algorithms in terms of repro-

ducibility of information with respect to the original set of frames. The latter comparison

is done with the aim of demonstrating that the resulting visualization does not hinder the

quality of data for scientific analysis. We measure the quality of frames in the following

three ways.



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks166

Table 7.1: Simulation and Visualization Configurations

Configuration Simulation Configuration Maximum

Cores for

Simulation

Maximum

Disk Space

Used

Average

Sim-Vis

Bandwidth

High-

bandwidth

fire: 12x2 dual-core AMD Opteron

2218 based 2.64 GHz Sun Fire servers,

CentOS release 4.3, each with 4 GB

RAM, 250 GB Hard Drive, and con-

nected by Gigabit Ethernet

48 180 GB 56 Mbps

Medium-

bandwidth

gg-blr: HP Intel Xeon quad-core pro-

cessor X5460, 40 nodes, 320 3.16 GHz

cores, RHEL 5.1 on Rocks 5.0 oper-

ating system, each with 16 GB RAM

and 500 GB SATA based storage, and

connected by Infiniband

90 150 GB 40 Mbps

Low-

bandwidth

kraken: Two 2.6 GHz six-core AMD

Opteron processors (Istanbul) per

node, 9,408 compute nodes, Cray

Linux Environment (CLE) 2.2, 16 GB

of memory per node and connected by

Cray SeaStar2+ router

288 700 GB 1.1 Mbps



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks167

First, we find the root mean square (rms) distance between the successive frames

because mean squared error has been used in literature as an objective distortion mea-

sure. Minimizing mean squared error leads to better perceptual quality [90]. The root

mean square distance between the successive frames gives a measure of continuity for the

chosen output interval and captures the variation between successive frames. If a frame

selection algorithm has the same variation as the original all algorithm, then the frame

selection algorithm closely follows the original algorithm. In the absence of singular

events, higher output interval will correspond to higher rms.

Second, we look at the probability distribution of the data which gives the spread or

variability in the data values output from the all and the frame selection algorithms. A

similarity in the probability distributions will imply similarity in the frequencies of the

range of data values output by the algorithms.

In WRF, a moving nest captures the movement of the cyclone and the nest centre is

placed at the eye of the cyclone. An important feature of the cyclone tracking application

is to track the eye of the cyclone. Hence the nest movement in WRF is important because

it follows the movement of the eye of the cyclone. However, the eye of the cyclone does not

move every time step and hence the nest also does not move every time step. Though the

frame selection algorithms drop frames in order to reduce the lag, they ideally should

capture the frames in which the nest position changes. Hence we also compare the

algorithms in terms of how well the frames chosen by the algorithms capture the nest

movement.

7.4.2 High-bandwidth Configuration

We present the results for high network bandwidth between simulation and visualization

sites in this section. As explained in Section 7.3.3, for the adaptive algorithm, the

user/scientist can specify an upper bound on the simulation-visualization lag. We have

experimented with upper bounds of 20 and 30 minutes for simulation-visualization lag.



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks168

0 3 6 9 12
Wall-clock time (hours)

23-May 07:00

23-May 22:00

24-May 13:00

25-May 04:00

25-May 19:00

Ti
m

e 
st

ep
s 

si
m

ul
at

ed

Simulation Time
Visualization Time (Auto-clustering)
Visualization Time (Most-Recent)
Visualization Time (Adaptive 30min)
Visualization Time (Adaptive 20min)
Visualization Time (All)

Figure 7.5: Simulation and visualization times for high-bandwidth configuration. Visualization

curves (except for all) are very close to the simulation curve.

Simulation-visualization lag

Figure 7.5 illustrates the lag between the simulation and visualization times for our frame

selection algorithms, by showing the simulation times when the frames are generated at

the simulation site and the visualization times at the visualization site corresponding to

the different algorithms. The red “all” curve in the figure corresponds to the default

policy of sending all the frames generated at the simulation site to the visualization site.

It shows the visualization times for all. It can be observed that the visualization time

lags by almost 4 hours for the default policy for the 24th May 13:00 hours simulation

time step. The visualization times for almost all the frame selection algorithms are very

close to the simulation times. This is because the frame selection algorithms are able

to prune the frames to be sent and hence can reduce the lag accumulation of pending



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks169

frames that was explained in Section 7.3. The dropping of frames by the frame selection

algorithms and the high network bandwidth keeps the queue length to the minimal and

hence reduces the lag.

Rms distance between successive frames

Table 7.2 shows the rms distance for all and the frame selection algorithms. We have

taken the rms distance with respect to the variable perturbation pressure P. The table

shows that there is not much variation in the average rms distance between the successive

frames for all the frame selection algorithms. The average rms distance for the frame

selection algorithms do not differ much from the original all strategy. This suggests that

there is no major information lost even if frames were dropped between two successive

frames at the visualization site.

Table 7.2: Statistics for rms distance between successive frames for high-bandwidth configura-

tion

Frame Selection Algorithm Minimum Maximum Average

All 0.0016 0.0110 0.0039

Auto-clustering 0.0017 0.0114 0.0045

Most-recent 0.0019 0.0114 0.0045

Adaptive (30 minutes) 0.0023 0.0114 0.0047

Adaptive (20 minutes) 0.0018 0.0111 0.0044

Histogram of data distribution

The probability distribution of data can be obtained from the histogram of the data

distribution in the frames selected by the frame selection algorithms. The histogram for

all is shown in Figure 7.6 for the variable perturbation pressure. It can be seen that most

of the pressure values for all the time steps lies in the bin number 150, which correspond

to the perturbation pressure range of -92 Pa to -82 Pa.



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks170

50 100 150 200 250
300

350
10

20
30

40
50

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.00

0.02

0.04

0.06

0.08

Figure 7.6: Histogram for all for high-bandwidth configuration.

50 100 150 200 250
300

350
10

20
30

40
50

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.000
0.008
0.016
0.024
0.032
0.040
0.048
0.056
0.064
0.072
0.080

Figure 7.7: Histogram for the auto-

clustering algorithm for high-bandwidth

configuration.

50 100 150 200 250
300

350
10

20
30

40
50

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.000
0.008
0.016
0.024
0.032
0.040
0.048
0.056
0.064
0.072
0.080

Figure 7.8: Histogram for the most-recent

algorithm for high-bandwidth configuration.

Figures 7.7 and 7.8 show the histograms for auto-clustering and most-recent frame

selection algorithms. Figures 7.9 and 7.10 show the histograms for adaptive algorithm

with lag bound of 30 and 20 minutes. It can be observed that similar to histogram for

all in Figure 7.6, most of the pressure values for all the time steps lies in the bin number

150 for the frame selection algorithms.

We show the histogram similarity between the all and the frame selection algorithms



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks171

50 100 150 200 250
300

350
10

20
30

40
50

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.000
0.008
0.016
0.024
0.032
0.040
0.048
0.056
0.064
0.072
0.080

Figure 7.9: Histogram for the adaptive al-

gorithm with lag bound of 30 minutes for

high-bandwidth configuration.

50 100 150 200 250
300

350
10

20
30

40
50

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.000
0.008
0.016
0.024
0.032
0.040
0.048
0.056
0.064
0.072
0.080

Figure 7.10: Histogram for the adaptive al-

gorithm with lag bound of 20 minutes for

high-bandwidth configuration.

by calculating the volume between the histograms. The volume enclosed between the

histograms of a frame selection algorithm and the all algorithm is shown in Table 7.3.

It should be noted that the lesser the volume, the more similar are the histograms. It

Table 7.3: Volume between All and Frame Selection Algorithms for high-bandwidth configura-

tion

Frame Selection Algorithm Volume

Auto-clustering 12.1632

Most-recent 14.0009

Adaptive (30 minutes) 16.1188

Adaptive (20 minutes) 9.9505

can be observed that the volume is minimum for the adaptive algorithm with lag bound

of 20 minutes, followed by auto-clustering. The adaptive algorithm with lag bound of

20 minutes sends some frames with reduced information which leads to reduced transfer

times and hence more frames can be sent. Therefore it is able to perform better than

auto-clustering which always sends full frames. Both these algorithms perform better

than the most-recent because the most recently produced frame may not be the most



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks172

representative frame in the queue. The histogram for the adaptive algorithm with lag

bound of 30 minutes is the most dissimilar to the histogram for all algorithm. This is

because the lag limit of 30 minutes allows full frames to be transferred initially because of

higher lag limit in comparison to the lag of 20 minutes. Hence in the case of 30 minutes

bound, after sending full frames initially, the framework is unable to send frames even

with reduced information. This is because the full frames incur high transfer times

and that increases the number of pending frames. Therefore, during the simulation,

sometimes the frames in the front of the queue cannot be sent in order to maintain the

lag bound. This leads to discarding many representative frames and thus the adaptive

algorithm with lag limit of 30 minutes performs worse than others.

Nest positions

Figure 7.11 shows the frames in which the nest position changes from the position in the

previous frame. The dots in the graphs depict the frames corresponding to changes in

nest positions. These are shown for those frames which are chosen by the frame selection

algorithms. The number of nest position changes captured by all, auto-clustering, most-

recent, adaptive with lag bound of 30 minutes and adaptive with lag bound of 20 minutes

are 114, 102, 97, 94 and 106 respectively. This shows that the adaptive with lag bound

of 20 minutes and the auto-clustering algorithms are able to capture most of these nest

movements. Nest position changes also imply temporal phase changes in the frames and

since we select representative frames, we are able to capture most of these changes.

7.4.3 Medium-bandwidth Configuration

We present results for medium network bandwidth between simulation and visualization

sites in this section. For the adaptive algorithm, we experimented with upper bound of

15 minutes for the simulation-visualization lag.



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks173

All

Autoclustering

Most Recent

Adaptive (30 min)

23-May 06:00 23-May 18:00 24-May 06:00 24-May 18:00
Time steps visualized

0

Adaptive (20 min)

Figure 7.11: Nest position changes for high-bandwidth configuration.

Simulation-visualization lag

Figure 7.12 illustrates the lag between the simulation and visualization times for our

frame selection algorithms. The red “all” curve shows the visualization times for the de-

fault policy of sending all the frames generated at the simulation site to the visualization

site. It can be observed that the visualization time lag is more than the high-bandwidth

network. Our frame selection algorithms are able to reduce the lag considerably. All

the three strategies most-recent, auto-clustering and adaptive perform almost similarly.

In comparison to high-bandwidth case, the simulation-visualization lag is higher for our

frame selection algorithms because of slower network bandwidth.



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks174

00:00 06:00 12:00 18:00 24:00 30:00
Wall-clock time

22-May 22:00

23-May 13:00

24-May 04:00

24-May 19:00

Ti
m

e 
st

ep
s 

si
m

ul
at

ed

Simulation Time
Visualization Time (Auto-clustering)
Visualization Time (Most-Recent)
Visualization Time (Adaptive 15 min)
Visualization Time (All)

Figure 7.12: Simulation and visualization times for medium-bandwidth configuration.

7.4.4 Low-bandwidth Configuration

We present the results for low network bandwidth between simulation and visualization

sites in this section. For the adaptive algorithm, we experimented with upper bound of

45 minutes for the simulation-visualization lag.

Simulation-visualization lag

Figure 7.13 illustrates the lag between the simulation and visualization times for our

frame selection algorithms. It can be observed that most-recent performs the best in

terms of lag. The adaptive algorithm considerably improves the simulation-visualization

lag because it sends the representative frames only if it can meet the lag bound. The

adaptive algorithm reduces the lag by almost 86%. The lag for auto-clustering is better



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks175

0 4 8 12 16
Wall clock time (hours)

22-May 17:00

23-May 05:00

23-May 17:00

24-May 05:00

24-May 17:00

Ti
m

e 
st

ep
s 

si
m

ul
at

ed

Simulation Time
Visualization Time (MR)
Visualization Time (Adaptive 45min)
Visualization Time (Auto)
Visualization Time (All)

Figure 7.13: Simulation and visualization times for low-bandwidth configuration.

than all but worse than the adaptive because auto-clustering algorithm sends all the

representative frames. Sending full representative frames on a low-bandwidth network

requires more transfer time and hence auto-clustering incurs more lag. Adaptive sends

partial or full frame depending on the current lag, and hence reduces the lag substantially.

Rms distance between successive frames

Figure 7.14 shows the rms distance between successively visualized frames. The mini-

mum, maximum and average rms distance for the frame selection algorithms are shown

in Table 7.4. It can be seen that the rms distance for frames sent by most-recent are

quite high due to the huge gap between the successive frames. The difference in average

rms distance between frames for most-recent and all is the highest. The average rms



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks176

23-May 03:00 24-May 00:00 24-May 21:00
Simulation time

0.000

0.005

0.010

0.015

0.020

0.025

0.030
S
u
cc

e
ss

iv
e
 f

ra
m

e
 d

if
fe

re
n
ce

All
Autocluster
Most Recent
Adaptive (45m)

Figure 7.14: Rms between successively visualized frames.

distance for the adaptive algorithm is higher than auto-clustering because the latter has

lesser output interval between two successive frames. Thus, though the auto-clustering

algorithm has more simulation-visualization lag, it provides with a better continuity be-

tween the frames sent. The adaptive algorithm is thus able to strike a good balance

in providing reduced simulation-visualization lag and choosing the most representative

frames.

Table 7.4: Statistics for rms distance between successive frames for low-bandwidth configura-

tion

Frame Selection Algorithm Minimum Maximum Average

All 0.0007 0.0042 0.0012

Auto-clustering 0.0042 0.0138 0.0073

Most-recent 0.0130 0.0266 0.0182

Adaptive (45 minutes) 0.0041 0.0166 0.0090



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks177

Histogram of data distribution

The histogram for all is shown in Figure 7.15 for the variable perturbation pressure.

Most of the pressure values for all the time steps lie in the bin number 500. Similarly,

100
200

300
400

500
600

10
20

30
40

50
60

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

0.072

Figure 7.15: Histogram for all for low-

bandwidth configuration for the variable

perturbation pressure.

100
200

300
400

500
600

10
20

30
40

50
60

0.01

0.02

0.03

0.04

0.05

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

Figure 7.16: Histogram for the auto-

clustering algorithm for low-bandwidth con-

figuration.

100
200

300
400

500
600 5

10
15

20
25

30
35

40

0.01

0.02

0.03

0.04

0.05

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

Figure 7.17: Histogram for the most-recent

algorithm for the low-bandwidth configura-

tion.

100
200

300
400

500
600

10
20

30
40

50
60

0.01

0.02

0.03

0.04

0.05

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

Figure 7.18: Histogram for the adaptive al-

gorithm with lag bound of 45 minutes for the

low-bandwidth configuration.

most of the pressure values lie in bin number 500 for auto-clustering, most-recent and

adaptive algorithm with lag bound of 45 minutes, as shown in Figures 7.16, 7.17 and 7.18

respectively. There is some dissimilarity between the histogram for our frame selection



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks178

algorithms and the histogram for all because our algorithms send fewer frames to reduce

the lag.

Table 7.5 shows the volume enclosed between the histogram for all and the histograms

for the frame selection algorithms. It can be seen that the volume for auto-clustering is

Table 7.5: Volume between All and Frame Selection Algorithms for low-bandwidth configura-

tion

Frame Selection Algorithm Auto-clustering Most-recent Adaptive

(45 minutes)

Volume 58.38 161.12 101.52

the lowest, i.e. it is the most similar to the all. This is because auto-clustering sends all

the representative frames unlike the most-recent and the adaptive. Though most-recent

has the minimum lag as shown in Figure 7.13, it is the most dissimilar to all. Hence

sending the most recent frame in the queue may not be the best strategy to reduce

simulation-visualization lag in terms of the quality of the frames sent. The adaptive

algorithm performs better than the most-recent but its volume difference from the all

strategy is larger than for auto-clustering because the adaptive never sends any frame if it

is unable to meet the specified lag bound. This suggests that higher the lag bound, more

the number of frames that can be sent by the adaptive algorithm. Therefore increasing

the lag bound may improve the information content of the frames sent. To verify this,

we executed the simulation and visualization in an emulated environment in which the

low-bandwidth configuration was emulated on a high-bandwidth network by introducing

delays while transferring output frames from the simulation to the visualization site. We

used the high-bandwidth configuration between simulation and visualization in Indian

Institute of Science for the emulations. The emulated low network bandwidth corre-

sponded to 1.4 Mbps. The volume for the histograms for this experiment is shown in

Table 7.6. We can see that the volume decreases as the lag bound is increased. The

volume for the adaptive strategy with upper bound lag of 150 minutes approaches the

volume for auto-clustering, while the corresponding lag for adaptive strategy is half of



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks179

that for auto-clustering.

Table 7.6: Volume and Lag between All and Frame Selection Algorithms for emulated low-

bandwidth configuration

Frame Selection Algorithm Volume Lag at 24 May 20:00 hours

Auto-clustering 62.56 300 minutes

Adaptive (45 minutes) 188.79 45 minutes

Adaptive (75 minutes) 110.01 60 minutes

Adaptive (150 minutes) 85.49 150 minutes

Nest positions

Figure 7.19 shows the frames in which the nest position changes from the position in the

previous frame. The dots in the graphs depict the frames corresponding to changes in

nest positions. These are shown for those frames which are chosen by the frame selec-

tion algorithms. The number of nest position changes captured by all, auto-clustering,

most-recent and adaptive with lag bound of 45 minutes are 148, 12, 2 and 6 respectively.

When compared to the high-bandwidth configuration results, the low-bandwidth con-

figuration leads to very small number of nest position changes captured by most-recent,

auto-clustering and adaptive strategies due to the slow network. The auto-clustering and

adaptive strategies lead to better distribution of nest position changes than the most-

recent that captures the nest position changes only in the later part of the application

progress. This is because the most-recent selects the most recent frame in the queue with-

out any consideration about the representativeness of the chosen frame, so it is possible

that the chosen frame does not have changes in the nest position. Auto-clustering best

captures the nest position changes at the expense of increased simulation-visualization

lag. When compared to the adaptive strategy, auto-clustering exhibits a steady-state

behavior of sending the most representative frames, and hence has a higher chance of

sending frames with nest position changes.



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks180

All

Autoclustering

Most Recent

22-May 22:00 23-May 22:00 24-May 22:00
Time steps visualized

Adaptive (45 min)

Figure 7.19: Nest position changes for low-bandwidth configuration.

7.5 Putting it all together

The InSt framework (refer Section 6.2) manages coordination between the frame selec-

tion algorithm that minimizes simulation-visualization lag, and the decision algorithm

that determines the simulation parameters for given resource constraints. The frame

selection algorithm discards some frames from the queue of pending frames and this re-

sults in change in available disk space. Due to this, there is slight reduction in the rate

at which the disk space gets filled, which is taken into account in the optimization prob-

lem. The current available disk space is considered in every invocation of the decision

algorithm to determine the output interval and the number of processors as discussed in

Section 5.2.4. The decision algorithm is helpful in maintaining a steady simulation rate

and continuous visualization considering the resource characteristics like I/O bandwidth,



Chapter 7. Reducing Simulation-Visualization Lag on Constrained Networks181

network bandwidth and computation speed. Furthermore, the frame selection algorithm

helps minimize the lag between the simulation and visualization times.

7.6 Summary

In this chapter, we presented an adaptive framework for efficient online remote visual-

ization of critical weather applications like cyclone tracking. We described most-recent,

auto-clustering and adaptive algorithms for frame selection at the simulation site in or-

der to reduce the simulation-visualization lag. We showed that most-recent performs

the best in terms of lag-reduction but it cannot ensure that representative frames are

selected. The adaptive algorithm helps both in reducing the lag as well as improving the

information content of the visualized frames. Adaptive algorithm adapts according to

available network bandwidth, number of pending frames, and user-specified lag bound.

Auto-clustering performs well in terms of sending representative frames from the simula-

tion site and it also reduces the lag as compared to all. These strategies are quite generic

and are applicable to other scientific domains.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

As we enter the exascale era, it is important to efficiently perform high-performance

scientific simulations and visualization, despite the different growth rates in the com-

putation speeds and the memory and network bandwidths. In this thesis, we explored

few techniques for high-throughput simulations, online data analysis and visualization

for weather applications. We performed extensive experiments using different resource

configurations and for different weather events like cyclones, depressions and cloud for-

mations.

We presented an adaptive integrated steering framework for simulation and visualiza-

tion of critical applications like cyclone tracking across various resource configurations.

We demonstrated that it is important to consider the resource constraints for continuous

simulation and visualization across varying network bandwidths. A simple and intuitive

greedy approach may lead to low throughput, stalling of simulation and disk overflow.

Our framework adapts the simulation rate and the output interval based on the disk

space and network speed constraints. In the process, the framework also considers the

dynamics of the application and changing resource configurations. Our optimization

method is able to provide about 30% higher simulation rate and consumes about 25-

50% lesser storage space, and provides higher and more consistent rate of visualization

182



Chapter 8. Conclusions and Future Work 183

than a simple greedy approach. Our framework also enables scientists to input steer-

ing parameters like nest location and simulation resolution. Additionally the framework

combines user-driven steering and automatic tuning and recommends optimal simulation

parameters for smooth simulation and visualization.

We introduced algorithms for reducing delay between simulation and visualization

times. We described most-recent, auto-clustering and adaptive algorithms for select-

ing frames to be sent from the simulation site to the visualization site. Most-recent

strategy selects the most recent frame output by the simulation and hence performs the

best in terms of reducing the delay. The auto-clustering algorithm selects a subset of

significant frames for visualization. The adaptive algorithm selects a subset of signif-

icant frames and reduces the information content of selected frames depending on the

simulation-visualization lag. We found that auto-clustering performs well in terms of

sending representative frames from the simulation site and it also reduces the lag as

compared to sending all frames. We also showed that the adaptive algorithm helps both

in reducing the lag as well as selecting important frames. From experiments on different

network configurations, we conclude that the adaptive algorithm strikes a good balance

in reducing lag and visualization of most representative frames, with up to 72% smaller

lag when compared to auto-clustering, and 37% larger representativeness than most-

recent for slow networks. Hence, an adaptive algorithm is best suited for lag reduction

as it is able to adapt to the information content in frames based on the current lag and

the number of pending frames.

We presented a novel combination of performance modeling, processor allocation

strategies, and topology-aware mapping heuristics to improve the performance of sim-

ulations with multiple high-resolution nested simulations. We showed that the perfor-

mance of such weather simulations can be improved by allocating subsets of processors

to each region of interest instead of the entire processor space. Our linear interpolation

based performance prediction model predicts execution times with low error. Our pro-

cessor partitioning strategy based on Huffman tree construction and recursive bisection

outperforms a näıve proportional allocation by 8% with respect to the total execution



Chapter 8. Conclusions and Future Work 184

time. We developed 2D to 3D mapping heuristics that reduce communication times in

the nested simulations as well as the parent simulation. Our experiments showed up to

33% improvement in performance with up to an additional 7% improvement with our

topology-aware mapping heuristics. Our topology-oblivious and topology-aware map-

pings reduce the communication times by a maximum of 66%. Hence, we observe that

significant improvements in performance are achieved with a different model of execution,

such as simultaneous execution of nests in our case.

We presented a parallel data analysis algorithm that detects organized cloud systems

using a variant of nearest neighbour clustering. We presented a tree-based processor

reallocation algorithm for dynamic and concurrent weather events. Our tree-based diffu-

sion algorithm considers the existing processor allocation and recommends a new subset

of processors for multiple simultaneous simulations so that the data redistribution cost

for the persistent nests is minimized. We achieved this by reorganization of the existing

tree corresponding to the existing processor allocation. Experiments showed that we

were able to reduce the redistribution times by up to 25% as compared to partitioning

the processor space from scratch. We also developed a dynamic scheme that attempts

to select the best of the two approaches, namely, partition from scratch and our hier-

archical diffusion approach. Hence, it is important to design algorithms that consider

distance between communicating processes and hence minimize the average number of

hops between senders and receivers.

8.2 Future Work

The methodologies developed in this work are not tightly-coupled to weather simula-

tions. The described techniques like detection of regions of interest and selection of

representative frames are generic and can be extended to other applications with min-

imal effort. Our kmeans-based temporal clustering can be applied to scenarios where

number of clusters are unknown and significant phases are required to be captured. We

list below few possible extensions of our work.



Chapter 8. Conclusions and Future Work 185

• Online data analysis and visualization: In our work, we perform automatic

tuning of I/O frequency depending on resource constraints. In addition to this,

it may be worthwhile to do automatic tuning of parameters related to on-the-

fly data analysis. Efficient large data analysis techniques can be employed to

determine the usefulness of the current simulation time step, and hence reduce

the number of time steps written to storage for visualization. Depending on the

resource characteristics, it may not be possible to analyze every time step. An

optimization approach, similar to ours, can be used to determine parameters like

frequency of transferring time steps for analysis and frequency of storing time steps

into secondary memory for visualization.

• Communication-aware mapping for multiscale simulations: Multiscale sim-

ulations often require all-to-all based communications. Using collective communica-

tions like all-to-all may incur high communication times due to network contention,

specially in supercomputers with thousands of nodes. Hence, algorithmic redesign

to communicate within a subset of nodes with efficient process-to-node mapping

can improve performance of multiscale simulations. The topology-aware mappings

discussed in this thesis are mainly for foldable mappings on a 3D torus. It will be

challenging to explore extension of our techniques for optimizing overall communi-

cation times in nested simulations on different network topologies like 5D torus of

Blue Gene/Q and for non-foldable mappings. Additionally, it will be worthwhile

to explore contention optimization algorithms.

In this thesis, we have experimented on IBM Blue Gene machines which allocate

jobs on contiguous partitions. Hence the entire partition was considered as a sin-

gle torus for mapping. Newer approaches will be required to extend our mapping

strategies on systems with non-contiguous job allocations, such as the Cray su-

percomputers. Multiple disjoint sub-tori may have to be considered for mapping

across the non-contiguous partitions in these systems.

• Performance modeling for multiscale simulations: Our performance model



Chapter 8. Conclusions and Future Work 186

and the processor allocation and reallocation strategies are applicable to nested

simulations. It will be interesting to apply these techniques to other applications

that involve multiscale simulations. The linear interpolation-based performance

modeling approach described in this thesis requires profiling experiments for a few

nest configurations. Future work may explore possibilities of combining analyt-

ical performance modeling and our approach to reduce the number of profiling

experiments and give accurate predictions for nested simulation execution times.

• Scalability prediction on exascale machines: Petascale computing enables

high fidelity simulations. However, it is also important to use an accurate perfor-

mance model of the application to determine the appropriate number of processes

to use for a given problem size. Using the maximum number of available proces-

sors may not always lead to satisfactory speedup as described in this thesis. This

may be due to smaller problem size per process or increasing communication cost.

However, redesigning the traditional methods used by domain scientists can boost

performance on higher number of cores. It will be interesting to develop reliable

performance models that can be useful in adaptively determining the appropriate

number of cores and the algorithm to be used in the application prior to execution

on large number of available cores.

• Multi-site multiple events steering: We performed single-site steering in our

work. It will be more challenging to perform multi-site steering by different users,

which will involve simultaneous inputs from different users. The framework can be

extended to support various visualization requirements from different geographi-

cally distributed users. The framework has to reconcile automatic tuning decision

with different inputs from different users. It will be even more challenging to per-

form steering for multiple event simulations from multiple visualization sites. The

framework may need to deal with conflicting requirements from different users with

respect to simulation parameters for the multiple events.



Bibliography

[1] Centre for Development of Advanced Computing. http://cdac.in/.

[2] Intel 64 Cluster Abe. http://www.ncsa.illinois.edu/UserInfo/Resources/

Hardware/Intel64Cluster/.

[3] J. Ahrens, K. Heitmann, S. Habib, L. Ankeny, P. McCormick, J. Inman, R. Arm-

strong, and K.-L. Ma. Quantitative and Comparative Visualization applied to

Cosmological Simulations. Journal of Physics: Conference Series, 46:526–534.

[4] Cyclone Aila. http://en.wikipedia.org/wiki/Cyclone_Aila.

[5] R Allan and A Mills. Survey of HPC Performance Modelling and Prediction Tools.

Science and Technology, 2010.

[6] Rosa M. Badia, Francesc Escale, Edgar Gabriel, Judit Gimenez, Rainer Keller,

Jesus Labarta, and Matthias S. Muller. Performance Prediction in a Grid Envi-

ronment. In Grid Computing, volume 2970 of Lecture Notes in Computer Science,

pages 257–264. 2004.

[7] K.J. Barker, Scott Pakin, and D.K. Kerbyson. A Performance Model of the Krak

Hydrodynamics Application. In International Conference on Parallel Processing,

pages 245–254, 2006.

[8] Bradley J. Barnes, Barry Rountree, David K. Lowenthal, Jaxk Reeves, Bronis

de Supinski, and Martin Schulz. A Regression-based Approach to Scalability Pre-

diction. In Proceedings of the 22nd International Conference on Supercomputing,

ICS ’08, pages 368–377, 2008.

[9] P. Bayrasy, M. Burger, C. Dehning, I. Kalmykov, and M. Speckert. Applications

for MBS-FEM-coupling with MpCCI using automotive simulation as example. In

187

http://cdac.in/
http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64Cluster/
http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64Cluster/
http://en.wikipedia.org/wiki/Cyclone_Aila


BIBLIOGRAPHY 188

Proceedings of the 2nd Commercial Vehicle Technology Symposium (CVT 2012),

pages 375–384, 2012.

[10] David M. Beazley and Peter S. Lomdahl. Lightweight Computational Steering of

Very Large Scale Molecular Dynamics Simulations. In Proceedings of the Inter-

national Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’96, 1996.

[11] Francine Berman. High-Performance Schedulers. In Ian Foster and Carl Kesselman,

editors, The Grid: Blueprint for a New Computing Infrastructure, pages 279–309.

Morgan Kaufmann, 1999.

[12] Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale, and I-Hsin Chung. Auto-

mated Mapping of Regular Communication Graphs on Mesh Interconnects. In

Proceedings of International Conference on High Performance Computing (HiPC),

2010.

[13] Abhinav Bhatele, Nikhil Jain, William D. Gropp, and Laxmikant V. Kale. Avoid-

ing Hot-spots on Two-level Direct Networks. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis,

SC ’11, 2011.

[14] Abhinav Bhatele and Laxmikant V. Kale. Heuristic-Based Techniques for Mapping

Irregular Communication Graphs to Mesh Topologies. In 13th IEEE International

Conference on High Performance Computing & Communication, pages 765–771,

2011.

[15] John Brooke, Thomas Eickermann, and Uwe Woessner. Application Steering in

a Collaborative Environment. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, SC ’03, 2003.

[16] Junwei Cao, D.K. Kerbyson, E. Papaefstathiou, and Graham R. Nudd. Perfor-

mance Modeling of Parallel and Distributed Computing using PACE. In Perfor-

mance, Computing, and Communications Conference, 2000. IPCCC ’00. Confer-

ence Proceeding of the IEEE International, pages 485–492, 2000.

[17] Henry R. Childs, Eric Brugger, Kathleen S. Bonnell, Jeremy S. Meredith, Mark



BIBLIOGRAPHY 189

Miller, Brad Whitlock, and Nelson Max. A Contract Based System For Large Data

Visualization. In IEEE Visualization, 2005.

[18] I-Hsin Chung, Robert Walkup, Hui-Fang Wen, and Hao Yu. MPI Performance

Analysis Tools on Blue Gene/L. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, SC ’06, 2006.

[19] I-Hsin Chung, Robert E. Walkup, Hui-Fang Wen, and Hao Yu. MPI Performance

Analysis Tools on Blue Gene/L. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, SC ’06, 2006.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. The MIT Press, 2 edition, 2001.

[21] H. S. M. Coxeter. Barycentric Coordinates. In Introduction to Geometry, pages

216–221. Wiley, 2nd edition, 1969.

[22] Boris N. Delaunay. Sur la sphere vide. Bulletin of Academy of Sciences of the

USSR, 6:793–800, 1934.

[23] J. Delgado, S.M. Sadjadi, M. Bright, M. Adjouadi, and H.A. Duran-Limon. Per-

formance Prediction of Weather Forecasting Software on Multicore Systems. In

IPDPS, Workshops and PhD Forum, 2010.

[24] P.A. Dinda. Online Prediction of the Running Time of Tasks. In Proceedings of the

10th IEEE International Symposium on High Performance Distributed Computing,

pages 383–394, 2001.

[25] J. Dongarra, P. Beckman, and T. Moore. International Exascale Software Project

Roadmap. Technical report, DOE and NSF, Nov 2009.

[26] Isaac Dooley and Laxmikant V. Kale. Control Points for Adaptive Parallel Perfor-

mance Tuning. PPL Technical Report, 2008.

[27] P.-F. Dutot, T. N’Takpe, F. Suter, and H. Casanova. Scheduling Parallel Task

Graphs on (Almost) Homogeneous Multicluster Platforms. IEEE Transactions on

Parallel and Distributed Systems, 20(7):940–952, 2009.

[28] David Ellsworth, Bryan Green, Chris Henze, Patrick Moran, and Timothy Sand-

strom. Concurrent Visualization in a Production Supercomputing Environment.



BIBLIOGRAPHY 190

IEEE Transactions on Visualization and Computer Graphics, 12(5):997–1004,

2006.

[29] F. Ercal, J. Ramanujam, and P. Sadayappan. Task Allocation onto a Hypercube

by Recursive Mincut Bipartitioning. In Proceedings of the third conference on Hy-

percube concurrent computers and applications: Architecture, software, computer

systems, and general issues - Volume 1, C3P, pages 210–221, 1988.

[30] N. Fabian, K. Moreland, D. Thompson, A.C. Bauer, P. Marion, B. Gevecik,

M. Rasquin, and K.E. Jansen. The ParaView Coprocessing Library: A Scalable,

General Purpose In Situ Visualization Library. In IEEE Symposium on Large Data

Analysis and Visualization, 2011.

[31] NCEP Final Analyses. http://www.mmm.ucar.edu/wrf/OnLineTutorial/DATA/

FNL/.

[32] Takashi Furumura and Li Chen. Large Scale Parallel Simulation and Visualiza-

tion of 3D Seismic Wave Field Using the Earth Simulator. Journal of Computer

Modeling in Engineering & Sciences, 6(2):153–168, 2004.

[33] G. A. Geist, J. A. Kohl, , and P. M Papadopoulos. CUMULVS: Providing Fault-

Tolerance, Visualization and Steering of Parallel Applications. International Jour-

nal of High Performance Computing Applications, 11:224–236, 1996.

[34] GNU Linear Programming Kit. http://www.gnu.org/software/glpk.

[35] Guojun Gu and Chidong Zhang. Cloud components of the Intertropical Con-

vergence Zone. Journal of Geophysical Research: Atmospheres, 107(D21):ACL

4–1–ACL 4–12, 2002.

[36] Weiming Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko, J. Vetter, and

N. Mallavarupu. Falcon: On-line Monitoring and Steering of Large-scale Paral-

lel Programs. Proceedings of the Fifth Symposium on the Frontiers of Massively

Parallel Computation, pages 422–429, 1995.

[37] Weiming Gu, Jeffrey Vetter, and Karsten Schwan. An Annotated Bibliography of

Interactive Program Steering. ACM SIGPLAN Notices, 1994.

[38] Charles D. Hansen and Chris R. Johnson. The Visualization Handbook. Academic

http://www.mmm.ucar.edu/wrf/OnLineTutorial/DATA/FNL/
http://www.mmm.ucar.edu/wrf/OnLineTutorial/DATA/FNL/
http://www.gnu.org/software/glpk


BIBLIOGRAPHY 191

Press, 2005.

[39] Torsten Hoefler and Marc Snir. Generic Topology Mapping Strategies for Large-

scale Parallel Architectures. In Proceedings of the International Conference on

Supercomputing, ICS ’11, pages 75–84, 2011.

[40] Gene Hou, Jin Wang, and Anita Layton. Numerical Methods for Fluid-Structure

Interaction - A Review. Communications in Computational Physics, 12(2):337–377.

[41] Y.F. Hu and R.J. Blake. An Improved Diffusion Algorithm for Dynamic Load

Balancing. Parallel Computing, 25(4):417–444, 1999.

[42] B. Huang1, D. Xiong, and H. Li. An Integrated Approach to Real-time Envi-

ronmental Simulation and Visualization. Journal of Environmental Informatics,

3(1):42–50, 2004.

[43] James Hurrell and et al. The Community Earth System Model: A Frame-

work for Collaborative Research. Bulletin of the American Meteorological Society,

94(9):1339–1360, 2013.

[44] Joseph A. Insley, Michael E. Papka, Suchuan Dong, George Karniadakis, and

Nicholas T. Karonis. Runtime Visualization of the Human Arterial Tree. IEEE

Transactions on Visualization and Computer Graphics, 13(4), 2007.

[45] Intergovernmental Panel on Climate Change. http://ipcc.ch/.

[46] Integrated Performance Monitoring. http://ipm-hpc.sourceforge.net.

[47] D.J. Jablonowski, J.D. Bruner, B. Bliss, and R.B. Haber. VASE: The Visualiza-

tion and Application Steering Environment. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis,

SC ’93, 1993.

[48] Raj Jain. Art of Computer Systems Performance Analysis Techniques For Exper-

imental Design Measurements Simulation And Modeling. Wiley Computer Pub-

lishing, John Wiley & Sons, Inc., 1991.

[49] Stephen A. Jarvis, Daniel P. Spooner, Helene N. Lim Choi Keung, Junwei Cao,

Subhash Saini, and Graham R. Nudd. Performance Prediction and its use in Par-

allel and Distributed Computing Systems. Future Generation Computer Systems,

http://ipcc.ch/
http://ipm-hpc.sourceforge.net


BIBLIOGRAPHY 192

22(7):745–754, 2006.

[50] Y. Jean, T. Kindler, W. Ribarsky, Weiming Gu, G. Eisenhauer, K. Schwan, and

F. Alyea. Case Study: An Integrated Approach for Steering, Visualization, and

Analysis of Atmospheric Simulations. In Proceedings of IEEE Visualization ’95,

1995.

[51] C. Ryan Johnson, Markus Glatter, Wesley Kendall, Jian Huang, and Forrest Hoff-

man. Querying for Feature Extraction and Visualization in Climate Modeling. In

Proceedings of the 9th International Conference on Computational Science, ICCS

2009, pages 416–425, 2009.

[52] Christopher R. Johnson and Steven G. Parker. A Computational Steering Model

Applied to Problems in Medicine. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis, SC ’94, 1994.

[53] William L. Jorgensen. The Many Roles of Computation in Drug Discovery. Science,

303(5665):1813–1818, 2004.

[54] Gregory Karagiorgos, Nikolaos M. Missirlis, and Filippos Tzaferis. Fast Diffusion

Load Balancing Algorithms on Torus Graphs. In Euro-Par ’06, 12th International

Euro-Par Conference, 2006.

[55] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Ir-

regular Graphs. Journal of Parallel Distributed Computing, 48(1):96–129, 1998.

[56] Johannes Kehrer, Florian Ladstadter, Philipp Muigg, Helmut Doleisch, Andrea

Steiner, and Helwig Hauser. Hypothesis Generation in Climate Research with

Interactive Visual Data Exploration. IEEE Transactions on Visualization and

Computer Graphics, 14(6):1579–1586, 2008.

[57] Wesley Kendall, Markus Glatter, Jian Huang, Tom Peterka, Robert Latham, and

Robert Ross. Terascale Data Organization for Discovering Multivariate Climatic

Trends. In Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis, SC ’09, 2009.

[58] Darren J. Kerbyson, Kevin J. Barker, and Kei Davis. Analysis of the Weather

Research and Forecasting (WRF) Model on Large-Scale Systems. In PARCO,



BIBLIOGRAPHY 193

pages 89–98, 2007.

[59] James A. Kohl, Torsten Wilde, and David E. Bernholdt. Cumulvs: Interacting

with High-Performance Scientific Simulations, for Visualization, Steering and Fault

Tolerance. International Journal of High Performance Computing Applications,

2006.

[60] Kraken Cray XT5, NICS, Tennessee. http://www.nics.tennessee.edu/

computing-resources/kraken.

[61] Sameer Kumar, Yogish Sabharwal, Rahul Garg, and Philip Heidelberger. Op-

timization of All-to-all Communication on the Blue Gene/L Supercomputer. In

Proceedings of the International Conference on Parallel Processing, 2008.

[62] Marc Labadens, Damien Chapon, Daniel Pomarede, and Romain Teyssier. Visual-

ization of Octree Adaptive Mesh Refinement (AMR) in Astrophysical Simulations.

In Proceedings of the Astronomical Data Analysis Software and Systems (ADASS)

XXI, 2011.

[63] Guan-Joe Lai. A Communicative-aware Task Scheduling Algorithm for Heteroge-

neous Systems. In Proceedings of the 14th International Workshop on Database

and Expert Systems Applications, pages 161–166, 2003.

[64] LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov.

[65] Zhiling Lan, Valerie E. Taylor, and Greg Bryan. Dynamic Load Balancing of

SAMR applications on Distributed Systems. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis,

SC ’01, 2001.

[66] Samuel Lang, Philip H. Carns, Robert Latham, Robert B. Ross, Kevin Harms, and

William E. Allcock. I/O Performance Challenges at Leadership Scale. In Proceed-

ings of the International Conference for High Performance Computing, Network-

ing, Storage and Analysis, SC ’09, 2009.

[67] Averill M. Law. Simulation Modeling and Analysis. McGraw-Hill, fourth edition,

2007.

http://www.nics.tennessee.edu/computing-resources/kraken
http://www.nics.tennessee.edu/computing-resources/kraken
http://lammps.sandia.gov


BIBLIOGRAPHY 194

[68] C.E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercomput-

ing. IEEE Transactions on Computers, C-34(10):892–901, Oct 1985.

[69] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William

Gropp, Rob Latham, Andrew Siegel, Brad Gallagher, and Michael Zingale. Par-

allel netCDF: A High-Performance Scientific I/O Interface. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage

and Analysis, SC ’03, 2003.

[70] A. Lingas, R.Y. Pinter, R.L. Rivest, and A. Shamir. Minimum Edge Length Rec-

tilinear Decompositions of Rectilinear Figures. In 20th Allerton Conference on

Communication, Control, and Computing, pages 53–63, 1982.

[71] Hua Liu, Lian Jiang, Manish Parashar, and Deborah Silver. Rule-based Visual-

ization in the Discover Computational Steering Collaboratory. Future Generation

Computer Systems, 21(1):53–59, 2005.

[72] Tianming Liu, Hong-Jiang Zhang, and Feihu Qi. A Novel Video Key-frame-

extraction Algorithm based on Perceived Motion Energy Model. IEEE Trans-

actions on Circuits and Systems for Video Technology, 2003.

[73] Jiebo Luo, C. Papin, and K. Costello. Towards Extracting Semantically Meaningful

Key Frames From Personal Video Clips: From Humans to Computers. In IEEE

Transactions on Circuits and Systems for Video Technology, pages 289–301, 2009.

[74] E. Luque, A. Ripoll, A. Cortes, and T. Margalef. A Distributed Diffusion Method

for Dynamic Load Balancing on Parallel Computers. In Proceedings of the Euromi-

cro Workshop on Parallel and Distributed Processing, pages 43–50, 1995.

[75] K.-L. Ma, C. Wang, H. Yu, and A. Tikhonova. In Situ Processing and Visualiza-

tion for Ultrascale Simulations. Journal of Physics (Proceedings of SciDAC 2007

Conference), 78, 2007.

[76] Kwan-Liu Ma. In Situ Visualization at Extreme Scale: Challenges and Opportu-

nities. IEEE Computer Graphics and Applications, 29(6):14–19, 2009.

[77] J. B. MacQueen. Some Methods for Classification and Analysis of MultiVariate

Observations. In Proceedings of the fifth Berkeley Symposium on Mathematical



BIBLIOGRAPHY 195

Statistics and Probability, volume 1, pages 281–297, 1967.

[78] Henning Meyerhenke, Burkhard Monien, and Stefan Schamberger. Graph parti-

tioning and disturbed diffusion. Parallel Computing, 35(10–11):544–569, 2009.

[79] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. C. Skamarock, and

W. Wang. The Weather Research and Forecast Model: Software Architecture and

Performance. In Proceedings of the 11th ECMWF Workshop on the Use of High

Performance Computing In Meteorology, Oct 2004.

[80] J. Michalakes, Josh Hacker, Richard Loft, Michael O. McCracken, A. Snavely, N.J.

Wright, Tom Spelce, Brent Gorda, and R. Walkup. WRF Nature Run. In Proceed-

ings of the International Conference for High Performance Computing, Network-

ing, Storage and Analysis, SC ’07, 2007.

[81] John Michalakes. RSL: A Parallel Runtime System Library For Regional Atmo-

spheric Models With Nesting. Technical Report ANL/MCS-TM-197, Mathematics

and Computer Science Division, Argonne National Laboratory, Argonne, 1997.

[82] Charles Moad and Beth Plale. Portal Access to Parallel Visualization of Scientific

Data on the Grid. Technical Report TR593, Computer Science Department, Indi-

ana University, February 2004. http://www.cs.indiana.edu/pub/techreports/

TR593.pdf.

[83] Anirudh Modi, Lyle N. Long, and Paul E. Plassmann. Real-time Visualization of

Wake-vortex Simulations using Computational Steering and Beowulf Clusters. In

VECPAR’02: Proceedings of the 5th International conference on High Performance

Computing for Computational Science, 2002.

[84] Irene Moulitsas and George Karypis. Architecture Aware Partitioning Algorithms.

In International Conference on Algorithms and Architectures for Parallel Process-

ing, pages 42–53, 2008.

[85] National Knowledge Network, Department of Information Technology, Government

of India. http://www.mit.gov.in/content/national-knowledge-network.

[86] G. Nudd, D. Kerbyson, E. Papaefstathiou, S. Perry, J. Harper, and D. Wilcox.

PACE: A Toolset for the Performance Prediction of Parallel and Distributed

http://www.cs.indiana.edu/pub/techreports/TR593.pdf
http://www.cs.indiana.edu/pub/techreports/TR593.pdf
http://www.mit.gov.in/content/national-knowledge-network


BIBLIOGRAPHY 196

Systems. International Journal of High Performance Computing Applications,

14(3):228–251, 2000.

[87] Leonid Oliker and Rupak Biswas. Efficient Load Balancing and Data Remapping

for Adaptive Grid Calculations. In Proceedings of the ninth annual ACM Sympo-

sium on Parallel Algorithms and Architectures, pages 33–42, 1997.

[88] J.M. Orduna, V. Arnau, A. Ruiz, R. Valero, and J. Duato. On the design of

communication-aware task scheduling strategies for heterogeneous systems. In

International Conference on Parallel Processing, pages 391–398, 2000.

[89] J.M. Orduna, F. Silla, and J. Duato. A New Task Mapping Technique for

Communication-aware Scheduling Strategies. In International Conference on Par-

allel Processing Workshops, pages 349–354, 2001.

[90] A. Ortega and K. Ramchandran. Rate-distortion Methods for Image and Video

Compression. Signal Processing Magazine, IEEE, 15(6):23–50, Nov 1998.

[91] T. Ozcelebi, A.M. Tekalp, and M.R. Civanlar. Delay-Distortion Optimization for

Content-Adaptive Video Streaming. IEEE Transactions on Multimedia, 9(4):826–

836, June 2007.

[92] Steven G. Parker, Charles D. Hansen, Christopher R. Johnson, and Michelle Miller.

Computational Steering and the SCIRun Integrated Problem Solving Environment.

Scientific Visualization Conference, 1997.

[93] Steven G. Parker and Christopher R. Johnson. SCIRun: A Scientific Programming

Environment for Computational Steering. In Proceedings of the International Con-

ference for High Performance Computing, Networking, Storage and Analysis, SC

’95, 1995.

[94] Steven G. Parker, Christopher R. Johnson, and David Beazley. Computational

Steering Software Systems and Strategies. Computational Science and Engineering,

IEEE, 1997.

[95] Steven G. Parker, Michelle Miller, Charles D. Hansen, and Christopher R. John-

son. An Integrated Problem Solving Environment: the SCIRun Computational

Steering System. Proceedings of the Thirty-First Hawaii International Conference



BIBLIOGRAPHY 197

on System Sciences, 7:147–156, Jan 1998.

[96] Robert Patro, Cheuk Yiu Ip, and Amitabh Varshney. Saliency Guided Summa-

rization of Molecular Dynamics Simulations. In Scientific Visualization: Advanced

Concepts, pages 321–335, 2010.

[97] A. R. Porter, M. Ashworth, A. Gadian, R. Burton, P. Connolly, and M. Bane.

WRF code Optimisation for Meso-scale Process Studies (WOMPS) dCSE Project

Report. Jun 2010.

[98] UCAR CISL Research Data Archive. http://rda.ucar.edu.

[99] Daniel A. Reed, Christopher L. Elford, Tara M. Madhyastha, Evgenia Smirni, and

Stephen E. Lamm. The Next Frontier: Interactive and Closed Loop Performance

Steering. In ICPP Workshop, pages 20–31, 1996.

[100] R. Rew and G. Davis. The Unidata netCDF: Software for Scientific Data Access.

In 6th International Conference on Interactive Information and Processing Systems

for Meteorology, Oceanography, and Hydrology, California, American Meteorology

Society, 1990.

[101] Randy L. Ribler, Huseyin Simitci, and Daniel A. Reed. The Autopilot Performance-

directed Adaptive Control System. Future Generation Computer Systems, 2001.

[102] R.L. Ribler, J.S. Vetter, H. Simitci, and D.A. Reed. Autopilot: Adaptive Control of

Distributed Applications. In Proceedings of the Seventh International Symposium

on High Performance Distributed Computing, Jul 1998.

[103] M. Riedel, T. Eickermann, W. Frings, S. Dominiczak, D. Mallmann, T. Dussel,

A. Streit, P. Gibbon, F. Wolf, W. Schiffmann, and T. Lippert. Design and Evalu-

ation of a Collaborative Online Visualization and Steering Framework Implemen-

tation for Computational Grids. In 8th IEEE/ACM International Conference on

Grid Computing, pages 169–176, 2007.

[104] Badia R.M., Labarta J., Gimenez J, and Escale F. DIMEMAS: Predicting MPI

Applications Behavior in Grid Environments. In Workshop on Grid Applications

and Programming Tools (GGF8), 2003.

[105] Robert Sisneros and Markus Glatter and Brandon Langley and Jian Huang and

http://rda.ucar.edu


BIBLIOGRAPHY 198

Forrest Hoffman and David Erickson III. Time-Varying Multivariate Visualization

for Understanding Terrestrial Biogeochemistry. Journal of Physics: Conference

Series (SciDAC 08), 125(1), July 2008.

[106] C. Roig, A. Ripoll, and F. Guirado. A New Task Graph Model for Mapping

Message Passing Applications. IEEE Transactions on Parallel and Distributed

Systems, 18(12):1740–1753, 2007.

[107] Regional Ocean Modeling System. http://www.myroms.org.

[108] D. Rosenfeld. and I. M. Lensky. Satellite-based Insights into Precipitation For-

mation Processes in Continental and Maritime Convective Clouds. Bulletin of the

American Meteorological Society, 79:2457–2476, 1998.

[109] Seyed Masoud Sadjadi, Shu Shimizu, Javier Figueroa, Raju Rangaswami, Javier

Delgado, Hector A. Duran, and Xabriel J. Collazo-Mojica. A Modeling Approach

for Estimating Execution Time of Long-running Scientific Applications. In IPDPS,

Fifth High-Performance Grid Computing Workshop, 2008.

[110] Hans Sagan. Space-Filling Curves. Springer-Verlag, 1994.

[111] Sandeep Sahany, V. Venugopal, and Ravi S. Nanjundiah. The 26 July 2005 Heavy

Rainfall Event over Mumbai: Numerical Modeling Aspects. Meteorology and At-

mospheric Physics, 109:115–128, 2010.

[112] Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel Diffusion Schemes

for Repartitioning of Adaptive Meshes. Journal of Parallel and Distributed Com-

puting, 47:109–124, 1997.

[113] William J. Schroeder, Kenneth M. Martin, and William E. Lorensen. The Visual-

ization Toolkit. Kitware Inc., third edition, Aug 2004.

[114] Gilad Shainer and Jacob Liberman. Weather Research and Forecast (WRF) Model

Performance and Profiling Analysis on Advanced Multi-core HPC Clusters. In 10th

LCI International Conference on High-Performance Clustered Computing, 2009.

[115] Han-Wei Shen and Christopher R. Johnson. Differential Volume Rendering: A

Fast Volume Visualization Technique for Flow Animation. In Proceedings of the

conference on Visualization ’94, pages 180–187, 1994.

http://www.myroms.org


BIBLIOGRAPHY 199

[116] Alex Shenfield, Peter J. Fleming, and Muhammad Alkarouri. Computational Steer-

ing of a Multi-objective Evolutionary Algorithm for Engineering Design. Engineer-

ing Applications of Artificial Intelligence, 2007.

[117] Horst D. Simon and Shang-Hua Teng. How Good is Recursive Bisection? SIAM

Journal on Scientific Computing, 18(5):1436–1445, 1997.

[118] Shweta Sinha and Manish Parashar. Adaptive System Sensitive Partitioning of

AMR Applications on Heterogeneous Clusters. Cluster Computing, 5:343–352,

2002.

[119] Oliver Sinnen and Leonel A. Sousa. Communication Contention in Task Schedul-

ing. IEEE Transactions on Parallel and Distributed Systems, 16(6):503–515, Jun

2005.

[120] Oliver Sinnen, Leonel Augusto Sousa, and Frode Eika Sandnes. Toward a Realistic

Task Scheduling Model. IEEE Transactions on Parallel and Distributed Systems,

17(3):263–275, Mar 2006.

[121] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. Duda, X.-

Y. Huang, W. Wang, and J. G. Powers. A Description of the Advanced Research

WRF version 3. NCAR Technical Note TN-475, 2008.

[122] Edward Smith, David Trevelyan, and Tamer A. Zaki. Scalable coupling of Molec-

ular Dynamics and Direct Numerical Simulation of multi-scale flows. Tech-

nical report, Mechanical Engineering, Imperial College London, 2013. http:

//www.hector.ac.uk/cse/distributedcse/reports/transflow02/.

[123] T. Takei, J. Bernsdorf, N. Masuda, and H. Takahara. Lattice Boltzmann Simulation

and Its Concurrent Visualization on the SX-6 Supercomputer. In Proceedings of

the Seventh International Conference on High Performance Computing and Grid

in Asia Pacific Region, pages 212–219, 2004.

[124] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Min-

ing, (First Edition). Addison-Wesley Longman Publishing Co., Inc., 2005.

[125] C. Tapus, I-Hsin Chung, and J.K. Hollingsworth. Active Harmony: Towards Au-

tomated Performance Tuning. In Proceedings of the International Conference for

http://www.hector.ac.uk/cse/distributedcse/reports/transflow02/
http://www.hector.ac.uk/cse/distributedcse/reports/transflow02/


BIBLIOGRAPHY 200

High Performance Computing, Networking, Storage and Analysis, SC ’02, 2002.

[126] IBM Blue Gene Team. Overview of the Blue Gene/L System Architecture. IBM

Journal of Research and Development, 49, 2005.

[127] IBM Blue Gene Team. Overview of the Blue Gene/P Project. IBM Journal of

Research and Development, 52, 2008.

[128] Top 500 Supercomputing Sites. http://www.top500.org.

[129] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma, and

D. O’Hallaron. From Mesh Generation to Scientific Visualization: an End-to-

End Approach to Parallel Supercomputing. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis,

SC ’06, 2006.

[130] Rob F. Van der Wijngaart, Srinivas Sridharan, and Victor W. Lee. Extending

the BT NAS Parallel Benchmark to Exascale Computing. In Proceedings of the

International Conference on High Performance Computing, Networking, Storage

and Analysis, SC ’12, 2012.

[131] Jeffrey S. Vetter and Karsten Schwan. High Performance Computational Steer-

ing of Physical Simulations. In IPPS ’97: Proceedings of the 11th International

Symposium on Parallel Processing, 1997.

[132] V. Vishwanath, M. Hereld, and M. E. Papka. Toward Simulation-Time Data Anal-

ysis and I/O Acceleration on Leadership-Class Systems. In Proceedings of IEEE

Symposium on Large-Scale Data Analysis and Visualization, pages 9–14, 2011.

[133] N. Vydyanathan, S. Krishnamoorthy, G.M. Sabin, U.V. Catalyurek, T. Kurc,

P. Sadayappan, and J.H. Saltz. An Integrated Approach to Locality-Conscious

Processor Allocation and Scheduling of Mixed-Parallel Applications. IEEE Trans-

actions on Parallel and Distributed Systems, 20(8):1158–1172, 2009.

[134] Rick Walker, Peter Kenny, and Jingqi Miao. Exploratory Simulation for Astro-

physics. Proceedings of the SPIE, Conference on Visualization and Data Analysis,

6495, 2007.

[135] Chaoli Wang, Hongfeng Yu, and Kwan-Liu Ma. Importance-Driven Time-Varying

http://www.top500.org


BIBLIOGRAPHY 201

Data Visualization. In IEEE Transactions on Visualization and Computer Graph-

ics, 2008.

[136] Brad Whitlock, Jean M. Favre, and Jeremy S. Meredith. Parallel In Situ Cou-

pling of Simulation with a Fully Featured Visualization System. In Eurographics

Symposium on Parallel Graphics and Visualization, 2011.

[137] Nancy Wilkins-Diehr, Dennis Gannon, Gerhard Klimeck, Scott Oster, and Sud-

hakar Pamidighantam. TeraGrid Science Gateways and Their Impact on Science.

Computer, 41(11):32–41, Nov 2008. https://portal.xsede.org/.

[138] Bryan Worthen, Thomas C. Henderson, Justin Luitjens, and Martin Berzins. Scal-

able Parallel AMR for the Uintah Multi-Physics Code. In Petascale Computing

Algorithms and Applications, pages 67–82. Chapman and Hall/CRC, 2008.

[139] H. Wright, R. H. Crompton, S. Kharche, and P. Wenisch. Steering and Visu-

alization: Enabling Technologies for Computational Science. Future Generation

Computer Systems, 26(3):506–513, 2010.

[140] Nicholas J. Wright, Wayne Pfeiffer, and Allan Snavely. Characterizing Parallel

Scaling of Scientific Applications using IPM. In 10th LCI International Conference

on High-Performance Clustered Computing, 2009.

[141] Qishi Wu, Jinzhu Gao, Mengxia Zhu, N.S.V. Rao, Jian Huang, and S.S. Iyengar.

Self-Adaptive Configuration of Visualization Pipeline Over Wide-Area Networks.

In IEEE Transactions on Computers, pages 55–68, 2008.

[142] Qishi Wu, Mengxia Zhu, Yi Gu, and Nageswara S. V. Rao. System Design and Al-

gorithmic Development for Computational Steering in Distributed Environments.

IEEE Transactions on Parallel and Distributed Systems, 21(4), 2010.

[143] X.-P. Xu and A. Needleman. Numerical Simulations of Fast Crack Growth in

Brittle Solids. Journal of the Mechanics and Physics of Solids, 42(9):1397–1434,

1994.

[144] H. Yu, R. K. Sahoo, C. Howson, G. Almasi, J. G. Castanos, M. Gupta, J. E. Mor-

eira, and J. J. Parker. High Performance File I/O for The Blue Gene/L Supercom-

puter. In Proceedings of the 12th International Symposium on High-Performance

https://portal.xsede.org/


BIBLIOGRAPHY 202

Computer Architecture, 2006.

[145] Hao Yu, I-Hsin Chung, and J. Moreira. Topology Mapping for Blue Gene/L Super-

computer. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’06, 2006.

[146] Hongfeng Yu, Kwan-Liu Ma, and Joel Welling. A Parallel Visualization Pipeline for

Terascale Earthquake Simulations. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis, SC ’04, 2004.

[147] Florence Zara, François Faure, and Vincent Jean-Marc. Parallel Simulation of

Large Dynamic System on a PCs Cluster: Application to Cloth Simulation. Inter-

national Journal of Computers and Applications, 26(3), Mar 2004.

[148] Jidong Zhai, Wenguang Chen, and Weimin Zheng. PHANTOM: Predicting Per-

formance of Parallel Applications on Large-scale Parallel Machines using a Single

Node. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’10, pages 305–314, 2010.

[149] Xu-Dong Zhang, Tie-Yan Liu, Kwok-Tung Lo, and Jian Feng. Dynamic Selec-

tion and Effective Compression of Key Frames for Video Abstraction. Pattern

Recognition Letters, 24:1523–1532, Jun 2003.

[150] Elena V. Zudilova. Simulation-Visualization Complexes as Generic Exploration

Environment. In ICCS ’01: Proceedings of the International Conference on Com-

putational Science, volume 2074 of Lecture Notes in Computer Science, pages 903–

911, 2001.


	Acknowledgements
	Publications
	Abstract
	Keywords
	Introduction
	Simulation, Data Analysis, and Visualization
	High-performance Simulation
	Data Analysis
	Online Visualization

	Weather Simulations
	Motivation
	Problem Statement
	Weather Models
	Weather Research and Forecasting Model
	Regions of Interest

	Adaptive Framework
	Computational Steering
	Representative Frame Selection
	Processor Allocation and Reallocation
	Thesis Outline

	Related Work
	In-situ Visualization
	Framework for Visualization
	Computational Steering
	Selection of Representative Frames
	Performance Modeling
	Mesh Repartitioning and Load Balancing
	Topology-aware Task Mapping
	Performance Analysis of WRF

	Improving Throughput of Nested Simulations
	Introduction
	Motivation
	Problem Statement
	Results and Contributions

	Parallel Execution of Subdomains
	Performance Prediction
	Processor Allocation
	Mapping
	Topology-oblivious mapping
	Topology-aware mapping

	Resource Allocation and Mapping
	Experiments and results
	Domain Configurations
	Experimental Setup
	Improvement in execution time
	Improvement with topology-aware mapping
	Effect on high-frequency output simulations
	Efficiency of our processor allocation and partitioning strategy
	Scalability and speedup

	Summary

	Diffusion-based Repartitioning Strategies
	Introduction
	Challenges
	Problem Statement
	Chapter Outline

	Tracking Cloud Systems via Parallel Data Analysis
	Processor Allocation
	Partition from scratch
	Tree-based hierarchical diffusion
	Dynamic Strategy

	Experiments and results
	Data analysis algorithm
	Domain Configurations
	Experimental Setup
	Improvement in redistribution time
	Distance between senders and receivers
	Dynamic Approach

	Discussion
	Use of our Techniques for Other Applications
	Use of our Techniques for Other Platforms and Interconnects

	Summary

	Simultaneous Simulation and Visualization
	Introduction
	Motivation
	Problem Statement
	Chapter Outline

	Adaptive Integrated Framework
	Application Manager
	Job Handler and Simulation Process
	Frame Sender and Receiver, and Visualization Process
	Decision Algorithm for the Application Manager

	Experiments and Results
	Weather Application: Tracking Cyclone Aila
	Framework Implementation
	Resource Configuration
	Results

	Discussion
	Summary

	Integrated Algorithmic and User-driven Steering
	Introduction
	Motivation
	Problem Statement
	Chapter Outline

	InSt Steering Framework
	User Interface, SimDaemon and VisDaemon
	Application Manager

	Reconciling User-driven and Algorithmic Steering
	Experiments and Results
	Resource Configuration
	Weather Model and Cyclone Tracking
	Framework Implementation
	Computational Steering Results

	Summary

	Reducing Simulation-Visualization Lag on Constrained Networks
	Introduction
	Motivation
	Problem Statement
	Chapter Outline

	Simulation-Visualization Lag
	Reduction of Simulation-Visualization Lag
	Requirements for Online Visualization
	Frame Selector
	Strategies for Selection of Time steps to Reduce the Lag

	Experiments and Results
	Evaluation Strategies
	High-bandwidth Configuration
	Medium-bandwidth Configuration
	Low-bandwidth Configuration

	Putting it all together
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work


