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Abstract

In the field of bio-molecules, it is utmost important to study the behaviour of a molecule

while interacting with another. This interaction decides the functionality of the molecule. It is

widely accepted fact that the geometrical shape of bio-molecules determines their functionality.

Using alpha complex and regular triangulation, one can easily calculate most of the geometric

parameters of a molecule. Volume of a molecule and many other things can be computed using

alpha complex. In most of the applications, alpha complex corresponding to alpha values 0 and

1.4, is required. Here, the application requires a small sub-set of the complete triangulation.

However, to get that small sub-set, we have to bear additional over head of computation of

the whole triangulation. Hence, we propose a novel approach which can directly compute the

sub-complex or sub-set of the triangulation without generating the whole triangulation.

We propose an algorithm to compute the sub-complex of a regular triangulation(RT) for

3D molecular data using localized properties. In this paper, we have implemented an incre-

mental algorithmic approach, which builds a smaller tetrahedra first and then a larger one, to

compute sub-complex of RT that is parametrized by a real value α. We have used edge and

alpha optimization to reduce time complexity of algorithm. Our algorithm can exploit massive

parallelism supported by GPUs in order to construct RT. For getting maximum advantage at

an architectural level, we used three optimizations. Pinned memory and CUDA streams are

used to reduce the data transfer time while texture memory is used to reduce memory access

time.

All of these optimizations reduce the execution time of our algorithm by 27 %. We obtain

upto 88 % improvement in execution time for smaller alpha value, in computing a sub-complex,

over an existing state-of-art method gReg3d, which computes complete triangulation. We

obtain speedup upto 9x over best sequential CPU implementation, CGAL for zero alpha value.
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Chapter 1

Introduction

Delaunay triangulation (DT) is a particular triangulation that satisfies empty-circle property.

In other words, it is a triangulation in which no point in the given point set lies inside the

circumcircle of any triangle in the triangulation. Regular triangulation is similar to delaunay

triangulation. Only difference between them is that DT is done for unweighted points and

uses euclidean distance while regular triangulation is done for weighted points and uses power

distance. Delaunay triangulation is a dual of voronoi diagram.

Let T be the finite set of points in 3D euclidean space. The voronoi region Vr of point

p ε T is a set of all points in the space that are closer to p than any other point in T. This

partitioning of the space is called voronoi diagram. Let w(p) be the weight of point p ε T and

power distance pd(x,p) is given by pd(x,p) = ‖x− p‖2, where x ε T. [1]. Figure 1.1 shows the

voronoi diagram and delaunay triangulation for unweighted points.

Molecules are represented using the union of balls model where each atom is represented by

a ball and has a weight equal to the square of its van der Waals radius. The contribution from

each atom p is equal to the intersection between the ball corresponding to the atom and the

weighted Voronoi cell of p. The corresponding dual structure is called the dual complex. The

dual complex is a sub-complex of the weighted Delaunay triangulation. If radii r of balls are

increased to
√
r2 + α then a dual complex of the corresponding set of balls is called the alpha

complex. Figure 1.2 shows a weighted point set, corresponding weighted DT and the alpha

complex. [13].

Alpha complex is a subset of regular triangulation. Delaunay triangulation along with alpha

complex are the important geometric structures and have numerous applications in different

fields such as computational geometry, computer graphics, numerical analysis, mesh generation

in finite element methods, scientific visualization, robotics, image synthesis as well as mathe-

matics and natural sciences.
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Figure 1.1: (a). Point Set. (b). Voronoi Diagram. (c). Delaunay Triangulation. (d). Voronoi
and Delaunay complex overlayed

[17]

Figure 1.2: a)A set of weighted points in the plane b) RT of points in the plane c)Alpha
Complex of points in the plane

[13]
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In the field of bio-molecules, it is utmost important to study the behaviour of a molecule

while interacting with another. This interaction decides the functionality of the molecule. It is

widely accepted fact that the geometrical shape of bio-molecules determines their functionality.

Hence, the geometrical shape of bio-molecule, determined in terms of its cavities, protrusions,

dynamics and energetics, determines how it interacts with another bio-molecule. Using regular

triangulation (RT) or weighted delaunay triangulation and alpha complex of atoms in the

molecule, we can compute cavities and protrusions. The construction of the alpha complex

plays an important role in finding out the volume of a molecule, which is one of the important

parameters of geometric shape. Hence, it is of utmost important to construct RT and alpha

complex for molecular data in order to study its behaviour [18].

In most of these fields, the computation of delaunay triangulation or RT is a bottleneck.

Due to this, there is a need to develop a fast algorithm that can compute delaunay triangulation

accurately and efficiently. There are many serial algorithms, but all are time and memory inten-

sive. Hence, we require parallel implementation. We exploit fine grain parallelism supported by

GPUs, which uses a massively parallel architecture with hundreds to thousands of processing

elements, to efficiently compute a sub-complex of DT. As DT involves an irregular structure,

very few serial algorithms can be parallelized. As a consequence, it becomes challenging to

implement DT on GPUs.

Generally DT is computed first and then its sub-complexes such as alpha complexes are

constructed. We have seen that RT and its sub-complexes are used in different fields and

to generate sub-complex we have to generate whole DT, which is a bottleneck. However, in

many applications, only a small sub-set like, alpha complex corresponding to 0 and 1.4, are

required. To compute such small sub-set, we have to incur an overhead of computation of

whole triangulation. Hence, we propose an algorithm which eliminates the bottleneck step of

computing the whole triangulation and can compute the sub-set or sub-complex directly.

Hence, we propose a novel approach to compute sub-complex directly for a given alpha

value without computing complete RT. The notion behind this approach is that the efficient

computation of the sub-complex may lead to an efficient parallel computation of the RT. Given

a 3D point set, which contains x, y, z coordinates and radius of each atom in a given molecule

and some alpha value, our algorithm constructs sub-complex of a regular triangulation of a

point set P that consists exactly the tetrahedra in the alpha complex. We aim to develop an

efficient algorithm for the particular case of the point set representing the atoms in a molecule.

The atom spheres (or balls) in the model of molecule have some properties that we can exploit

to get an efficient algorithm.

1. Although two balls may interpenetrate, their centers can not get too close because of the
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van der Waals forces. Hence, we can assume that the center of a ball can not lie in the

another ball.

2. Their radii range is fairly restricted. By looking at van der Waals atom radii table, we

can say that the ratio of the largest atom radius to the smallest atom radius is always

less than or equal to three.[4]

3. The distribution of atoms is nearly uniform.

4. Fourth property is a proven theorem. It states that for each atom in a molecule, the max-

imum number of atoms in the molecule that it can intersect is bounded by a constant.[12]

Our algorithm consists of three stages. The first stage is the formation of the grid. This is

useful as we can take advantage of the grid in the next step for neighbor search. This stage is

performed on CPU. The second stage involves generation the possible tetrahedra list. Here, we

perform neighbor search and then generate neighbor list. From this neighbor list, the possible

tetrahedra list is generated. This is costlier than any other sub-stage. Hence, to reduce the

time complexity of this stage, we use two optimizations namely edge optimization and alpha

optimization. The third stage is checking the validity of tetrahedra. Here, we check whether

the tetrahedron generated follows the property for alpha complex or not. All of these stages

are performed on GPU. Moreover, for getting maximum advantage at an architectural level,

we used three optimizations. Pinned memory and CUDA streams are used to reduce the data

transfer time while texture memory is used to reduce memory access time.

All of these optimizations reduce the execution time of our algorithm by 27 %. Our algorithm

gives better performance for small alpha values in computing a sub-complex than the state of the

art method gReg3d, which computes complete triangulation. We obtain 15-88% improvement

over the gReg3d for alpha values between 0-3. We obtain upto 9x speedup over the best

sequential CPU implementation, CGAL.

In related work chapter, different algorithms to compute regular triangulation are discussed.

Methodology chapter explains two different approaches. First part of this section explains how

alpha complex can be used to generate RT and also explains the practicality of this approach.

The second part discusses the approach of building RT from sub-complexes containing only

tetrahedra. The main idea here is to incrementally construct larger tetrahedra from smaller

tetrahedra. This part also contains an algorithm, data structure optimizations related to al-

gorithm and optimization related to GPUs. To the best of our knowledge, this approach has

not been tried yet. Experiments and result chapter gives in-depth insight about the effect of

optimizations on the performance. It also gives the comparison between the result generated

4



by our algorithm with the fastest GPU algorithm (gReg3d) till now and also with the serial

version. Future work chapter throws a light on the prospective future work that can be done

in order to improve its performance.
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Chapter 2

Related Work

Triangulations have been studied since 1934. There are several sequential algorithms which can

be categorized under the following three classes.

2.1 Sequential Algorithms

2.1.1 Incremental Insertion

In this method, initially a simplex is generated which can encompass all the points, then the

points in the point set are inserted one at a time. Due to the addition of new point, the earlier

simplex is partitioned into sub-simplices. All the sub-simplices are then recursively checked for

empty circumcircle property and flipping is performed to preserve the property of DT. Edge

flipping is shown in figure 2.1. This method can also be extended to higher dimensions. For

d-dimensional point set, the time complexity of this algorithm is O(nlog(n) + nd(d/2)e ) [11].

In Bowyer-Watson algorithm[5] [20], points are added one at a time. After every insertion,

triangles whose circumcircles contain the new point are deleted, leaving a star-shaped polygonal

hole which is then re-triangulated using the new point. By using the connectivity of the

triangulation to efficiently locate the triangles to remove, the algorithm can take O(nlogn)

operations to triangulate n points in 2D.

2.1.2 Higher Dimensional Embedding

In this method, points are transformed to a D+1 dimensional space, and a convex hull of those

uplifted points are constructed. By projecting the convex hull back to a D-dimensional space,

we get the delaunay triangulation. For 2D point set, the time complexity of this algorithm is

O(nlogn) [2].
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Figure 2.1: Flipping of an Edge

2.1.3 Divide and Conquer

These methods are based on recursive partitioning and local triangulation of point sets, and in

the merging phase the resulting triangulation is obtained by cleverly combining two triangu-

lations. These algorithms are proven to be optimal in 2D space, both in the average and the

worst case. Explicit ordering of edges incident on a vertex makes it an optimal process in 2D.

However, for a higher dimension, merging phase becomes time consuming.

2.2 Parallel Algorithms

Even before the advent of the GPU, there were a few attempts to triangulate the point set

parallely, mainly using divide and conquer and higher dimensional embedding paradigm.

One of such successful attempts was done by Blelloch et al. [3]. The higher dimensional em-

bedding technique is used to triangulate 2D point set. They modified the convex hull algorithm.

After projecting points in a higher dimension, points are projected again on a plane, passing

through the median and perpendicular to an original 2D plane. They proved that concatenating

the results of the left half and the right half with the lower convex hull of these projected points

will give the DT. They used MPI and achieved speedup upto 5x for 128k points on the Cray

T3D with 64 processors. However, this approach is only applicable for 2D unweighted points

and not for 3D weighted points.

De-Wall algorithm [9] uses a divide and conquer strategy. In this algorithm, points are

divided into two halves and while dividing the points, triangulation of border points are con-

structed. This border triangulation (wall) will not be dismantled afterwards. After construction

of the wall, the point set is divided into two parts and both of these parts can be constructed

independently. Hence, each processor constructs its wall and generates two independent halves

7



which can be processed further by other processors. Initially, parallelism is less, but as al-

gorithm progresses parallelism increases. For 2000 points and 64 processors, they achieve a

speedup up to 19x [8].

Third algorithm (gReg3d) [6] is based on incremental insertion and parallelized on the GPU.

There are two phases. The first phase is to perform parallel flipping insertion based algorithm

to compute approximate DT. To avoid getting stuck while flipping, the author has suggested to

perform flips after each iteration of point insertion. In the second phase, star-splaying approach

is used to convert locally non-delaunay facets into locally delaunay facets. They used NVIDIA

GTX 580 Fermi graphics card and obtained upto 10x speedup for 3M unweighted points in 3D.

This algorithm is for unweighted point, but can be converted into the weighted point algorithm.

8



Chapter 3

Methodology

We have implemented two different incremental approaches

3.1 Part I : using alpha complex

The basic idea of this approach is that alpha complex is a subset of the RT and if we increase

alpha to a large enough value, then the alpha complex will essentially be equal to the RT.

Figure 4.1 shows the flowchart of algorithm 1.

Algorithm 1 has two stages. The first stage is dividing the space into a grid of proper size.

The second stage is to generate the alpha complex. The first stage can be done on the CPU and

the whole data is then transferred to the GPU. In the second stage, we invoke three kernels to

compute different simplices and each thread will work on a point in point set. The first kernel

generates the edges, which are not part of the triangles and the tetrahedra, the second kernel

generates triangles and the third generates tetrahedra.

However, this algorithm will not give correct results when four or more atoms intersect with

each other. For example, consider four atoms A, B, C, D in the 2d plane as shown in figure 4.2.

All of the four atoms are intersecting with each other. Our algorithm gives all edges i.e. AB,

BC, CD, DA, AC, BD. However, the edge BD is invalid because it does not follow the property

of RT. The problem here is we can not decide whether an edge belongs to alpha complex just

by focusing on two points. We have to construct a triangle in 2d in order to decide that. The

problem with this strategy is that we do not know, in advance, at what alpha value this triangle

will form. Similarly, we can not decide which edge or a triangle is a part of the alpha complex

based only on the local properties at that alpha value in 3d. However, there are theorems for

tetrahedra in 3d which are useful in deciding the validity of tetrahedra at that alpha value.

Hence, we switch to the second approach.

9



Figure 3.1: Flowchart for algorithm 1

Figure 3.2: Example that will contradict Part 1 algorithm
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Algorithm 1 Algorithm for part I

1: procedure
2: Formation of grid -Make 100*100*100 size grid
3: loop:
4: 3 GPU Kernel calls
5: Kernel I:Construct Concrete Edges
6: Kernel II:Construct Triangles
7: for Every tetrahedron in possible tetrahedra list do
8: if Satisfies orthogonal property then
9: Add the point to final tetrahedra list.
10: end if
11: end for . // Kernel III:Construct tetrahedra
12: Increment alpha value by width of grid.
13: Go to loop until every point gets saturated.
14: end procedure

3.2 Part II : using sub-complex containing only tetrahe-

dra

Algorithm 2 Algorithm for part II

1: procedure
2: Formation of grid -Make 100*100*100 size grid
3: 3 GPU Kernel calls
4: Kernel I: Generation of the possible tetrahedra list
5: Kernel II: Checking the validity of RT properties for non-degenerate cases
6: Kernel III: Checking the validity of RT properties for degenerate cases
7: end procedure

3.2.1 Algorithm

As there are proved theorems about the tetrahedron in 3d, we can compute tetrahedron based

on local properties and triangulation generated by this method will be unique assuming the

points are in general position. Figure 4.3 shows the flowchart of algorithm 2.

Algorithm 2 has two stages. The first stage is dividing the space into a grid of proper size.

The second stage is to generate tetrahedra list and check validity of tetrahedra for generating

unique triangulation in both degenerate and non-degenerate cases. The first stage is done on

the CPU and the second stage is done on the GPU. We invoke three kernels in the second stage.

The first kernel is used to generate the possible tetrahedra list. The second and third kernels

11



Algorithm 3 Kernel I: Generating possible tetrahedra list

1: procedure
2: Search the points in r + rmax neighbourhood in every direction.
3: for Every tuple in point list do
4: Find the ortho-center and ortho-radius for the tetrahedron
5: Compute the α at level
6: if α given by user >= α at level then
7: Add the tetrahedron to possible tetrahedra list.
8: end if
9: end for
10: end procedure

Figure 3.3: Flowchart for algorithm 2
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are used to check the validity of the triangulation.

3.2.2 First stage

In this stage, we have divided the 3d molecular space into a grid of size of 100*100*100. This

space division is very useful in searching the neighborhood points in second stage. As the

neighbor search is restricted to a cube of length equal to twice the addition of the radius of

the point or an atom under consideration and largest radius of an atom in a molecule, we have

divided the space optimally. Larger the grid size, smaller the number of points in a cell and we

have to search more number of cells. As a result, memory complexity increases. However, if we

use smaller grid size, there will be a larger number of points in a cell. Though we are required

to search a less number of cells, time complexity increases due to a large number of points in a

cell. Hence the optimal division of space is important. After doing some experiments, we find

out that 100*100*100 is an optimal grid size for our application.

3.2.3 Data Structure

Coalesced memory is an important factor in improving performance on GPUs. Here, each

thread will access consecutive memory locations. This actually helps to access all the elements

required for 32 threads using single access. This in turn increases the effective bandwidth. To

achieve this, we have sorted the data according to cellindex and the cellindex number is generated

for all cells using the following formula

cellindex = cellx ∗ 100 ∗ 100 + celly ∗ 100 + cellz

All the points, i.e. x, y, z co-ordinates of points and their radii are also arranged based

on sorted cellindex array. The data structures are set up on the CPU and then the data is

transferred to the GPU. As a result, the points having same cellz co-ordinate will be together.

While searching the neighborhood we are generating the cellindex in such a way that the points

having same cellz co-ordinates get accessed together. Therefore, our data structure can exploit

coalesced memory access and increase the effective bandwidth.

3.2.4 Kernel I: Generating possible tetrahedra list

Algorithm 3 gives the detailed description of this stage. Here, each thread works on a point in

the data set. There are two sub stages in this stage. The first one is generating neighborhood

point list. For this, we are searching in the cube centered at the focused point and has a length

equal to twice the addition of the radius of the focused point and largest radius of a point in

the data set. Using assumption 1, we can say that the maximum distance between centers of

13



Figure 3.4: Example for edge optimization in 2d

two points, that are just touching each other, is r + rmax where r is radius of a point and rmax

is radius of largest point in a molecule. Hence, this search box or cube gives us all the points

that can be touched to a focused point.

The second sub stage is to generate the tuples from the neighborhood point list, which was

generated in earlier sub stage. The time complexity of this sub stage is n3 where n is the

number of neighbors. Hence, we used two optimizations.

3.2.5 Edge optimization

The first optimization is called edge optimization. The basic idea is that tetrahedra will be

formed only if all of the four points intersect with each other. So, if any of the pair is not

intersecting then we can ignore all the tuples having the respective pair. For example, in figure

4.4, blue edges can not be a part of alpha complex at this alpha value. The reason is that balls

corresponding with this edges are not intersecting with each other. So, we can ignore these

edges.

3.2.6 Alpha optimization

The second optimization is based on alpha hence its called alpha optimization. Here, we are

using the basic idea in edge optimization together with the alpha complex concept. There

are two facts that will be used in this optimization. The first fact is the basic idea of edge

14



Figure 3.5: Example for alpha optimization in 2d

optimization and the second fact is that orthocenter is equidistant from all four points of

tetrahedra. From these two facts, we can say that if all the four balls are grown by alpha

(alpha at level) such that for all of them orthocenter lies on the surface, then all the four balls

have a point i.e. orthocenter as a common intersection. Hence, alpha at level or greater alpha

value than the alpha at level, these balls will always have a common intersection. As a result,

those four points will not form a tetrahedra if the alpha value is below the alpha at level. For

example, consider three atoms A, B, C in 2d shown in figure 4.5 and point O is orthocenter.

According to alpha optimization the triangle will form only if the grown ball encompasses the

orthocenter. That’s what is shown in figures 4.5.

Tetrahedra, generated after all these steps, are added to the possible tetrahedra list and

given to Kernel II as an input.

3.2.7 Kernel II and III

As we do not know, beforehand, how many possible tetrahedra each thread will generate, we

have calculated the maximum number of tetrahedra that can be generated from the maximum

number of neighbors in neighborhood list. Each thread is allocated a chunk of global memory

equal to the maximum number of tetrahedra. However, each thread will not use all the allocated

global memory. So, most of the array elements are empty and we require contiguous filled

memory which can be easily used by later GPU kernels. Hence, we are using prefix sum to

collect all tetrahedra generated by all threads in a single array. For this, we are using prefix

sum library provided in the thrust package of CUDA. This array is actually provided as an

input to kernel II. In kernel II and III, each thread will work on a tetrahedron.
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In both of these kernels, we are checking the validity of the tetrahedron. The tetrahedron

is said to be valid if there are no points in the data set which lies in orthosphere generated by

the tetrahedron points. For checking validity of the tetrahedron, we have to get orthocenter

and orthoradius of orthosphere. For this, we have to solve linear system of equations. We are

using LU factorization for this. This is done for every tetrahedron.

The actual implementation uses the floating point types provided by the processor archi-

tecture. Even if these data types are used to represent the input, the computation can produce

an intermediate or final result which cannot be precisely represented in the native data type.

For example, orientation test for positively oriented tetrahedron in 3d can produce false answer

due to numerical inaccuracy. To overcome this, we are using exact floating point computation.

However, floating point arithmetic is fast but unreliable and exact arithmetic is precise but

slow. Hence, we are using a mixed-precision approach where we are calling the exact compu-

tations only when the error crosses a threshold epsilon value. Our implementation adapts the

exact floating point computation implemented by Shewchuk [19] on the GPU.

Exact floating point computation uses hundreds of registers and memory for stack is limited

to 512KB. Additionally, exact computation for insphere test needs local storage of up to 14880

floating point numbers[6] for expansions and other results. Due to these constraints , we are

invoking two separate kernels. In kernel II, only points which are at a distance greater than

r+ ε and less than r− ε are considered and then the tetrahedron is added to the output if it is

valid. Here, we are using floating point arithmetic. In kernel III, we are considering the points

in between r + ε and r − ε. Here, we are using exact computation.

In many computational geometry problems, degenerate cases occur. Consider that the input

has four points in 3d that are coplanar. An exact variant of orientation test of these points will

report that they are coplanar. These cases are called degenerate cases. The elegant solution

to handle such cases is Simulation of Simplicity (SoS) [10]. This general method simulates

a perturbation of the input points such that they appear to be in general position. We have

adopted the SoS implementation provided in gReg3d[6]. We call Sos implementation only when

exact computation in kernel III gives zero value for both orientation and insphere test.

3.2.8 Optimization related to GPUs

We have implemented three optimizations related to GPUs which increase the performance

considerably. We found out that memory transfers and computation of kernel I are taking too

much time. Hence, we decided to use following optimizations.
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Figure 3.6: Pinned memory

3.2.8.1 Pinned memory

Host (CPU) data allocations are pageable by default. The GPU cannot access data directly

from pageable host memory, so when a data transfer from pageable host memory to device

memory is invoked, the CUDA driver must first allocate a temporary page-locked, or pinned,

host array, copy the host data to the pinned array, and then transfer the data from the pinned

array to the device memory. As can be seen in the figure 4.6, pinned memory is used as a

staging area for transfers from the device to the host. We can avoid the cost of the transfer

between pageable and pinned host arrays by directly allocating our host arrays in the pinned

memory. We allocated pinned host memory in CUDA using cudaMallocHost().[14]

3.2.8.2 CUDA streams

A stream in CUDA is a sequence of operations that execute on the device in the order in which

they are issued by the host code. All device operations (kernels and data transfers) in CUDA

run in a stream. When no stream is specified, the default stream (also called the null stream)

is used. The default stream is different from other streams because it is a synchronizing stream

with respect to operations on the device: no operation in the default stream will begin until

all previously issued operations in any stream on the device have completed, and an operation

in the default stream must complete before any other operation (in any stream on the device)

will begin. Using streams, we can perform the data transfers parallelly. [16][14]
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3.2.8.3 Texture memory

Texture memory is one of the important type of read-only memory that can improve perfor-

mance and reduce memory traffic when reads have certain access patterns. Although texture

memory was originally designed for traditional graphics applications, it can also be used quite

effectively in some GPU computing applications. Texture memory is cached on chip, so in some

situations it will provide higher effective bandwidth by reducing memory requests to off-chip

DRAM. Specifically, texture caches are designed for graphics applications where memory access

patterns exhibit a great deal of spatial locality [15]. As it contains spatial type of caching, the

memory access time reduces considerably. As a result, texture memory is faster than global

memory. [14]

Pinned memory and CUDA streams help in reducing the memory transfer time. However,

texture memory helps in reducing the data access time in all kernels.
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Chapter 4

Experiments and results

We implement our algorithm using CUDA 5.5. All experiments are performed on a cluster with

5GB of memory and NVIDIA Tesla K20 graphics card. We first compare the performance of

our implementation with the fastest sequential 3D RT, CGAL[7], on the CPU and then with

state-of-the art method, gReg3d. Subsequently, we analyze the effect of the techniques we

propose and effect of the different GPU optimizations on the performance.

Name No of points Memcpy Kernel1 Prefixsum Kernel 2 Kernel 3

1U71 1505 4547 18195 343 5744 64
3N0H 1509 4248 19812 159 5763 46
3L3R 1520 4297 19470 210 5555 43
3SY7 2969 5150 21982 153 5103 472
3SYB 3157 5287 21624 168 5386 450
1B4V 3848 6365 22237 187 4990 61
4HHB 5306 11792 66362 394 17884 81
2J1N 8142 9417 31165 328 4646 433
3SY9 11297 11015 39154 431 4398 44
2VL0 15156 25452 160451 789 91119 180
1K4C 16068 15091 78586 583 5607 51
2OAU 16647 28403 173204 826 108397 175
2BG9 17923 36833 222422 1047 178382 257
1AON 58674 52569 210387 1974 72464 148

Table 4.1: Data set sizes and splitups of time for different stages for zero alpha

4.1 Speedup over best sequential CPU implementation

We have taken 14 different data sets and calculated their speedup over a sequential CPU

implementation. As can be seen from table I, the number of points in data set varies from 1500
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Figure 4.1: Speedup over sequential CPU implementation

to 60000. Figure 4 shows the speedup that we obtain over the best sequential code. We obtain

speedup upto 9x. The prominent reason for speedup is that we are using approximately 2500

cores, whereas only one core is used in CPU implementation. All the optimizations, explained

above, helps to reduce the execution time, which in turn results in an increase in speedup. For

some cases such as 5306, 15156, 16647 and 17923 we are getting very less speedup. Primary

reason behind this is that these molecules are more compact than others. Hence, they contain

more molecules in their neighborhood. This in turn increases work in generating tuples step

and which is also evident from table 5.1.

4.2 Running time comparison

Our algorithm computes a sub-complex of the RT that is parametrized by a real value α

whereas gReg3d computes the complete triangulation. Still, we are comparing our algorithm

with gReg3d. The reason behind this is that we can compute the subcomplex of the RT that is

parametrized by a real value α only after the computation of whole triangulation. So, gReg3d

requires a little bit of post processing to get the required sub-complex. Hence, this is a fair

comparison. Figures 5.2, 5.3 and 5.4 represent the percentage improvement in execution time

for calculating tetrahedra for different alpha value over a gReg3d. It is evident from the figures

that, in most of the cases, as the number of points increases the alpha up to which our algorithm
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Figure 4.2: percentage improvement over gReg3d

Figure 4.3: percentage improvement over gReg3d
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Figure 4.4: percentage improvement over gReg3d

can perform better than gReg3d decreases. The most prominent reason for such behavior is that

molecules have a large number of neighbors which in turn increases the number of tetrahedra in

the possible tetrahedra list. In most of the applications we require, sub-complex of 0 and 1.4 as

alpha value. From figure 5.5, we can see that up to 15000 points, we can compute sub-complex

for both of these values. However, after that we can only compute for zero alpha value. The

reason for this behavior is same as above. We obtain up to 88 % improvement for calculating 40

% of total tetrahedra in triangulation. In general, we obtain 15-88% improvement over gReg3d

for alpha values between 0-3.

Figure 5.7 gives the percentage redution in execution timings with optimization related to

GPU turned on and off. Here, we can see that texture memory gives more reduction in time.

Texture memory gives upto 23 % reduction in time and with all optimizations enabled, the

execution time is reduced by 27 %.

Figure 5.8 shows the percentage breakup of timings for different stages for the optimized

version of the code and it is evident that kernel I is still taking the highest time. As it contains

generation of neighborhood point list and tuples from it, kernel I should logically take more

time and this is what we exactly see in figure 5.8.
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Figure 4.5: Alpha upto which our algorithm gives better performance than gReg3d

Figure 4.6: Percentage tetrahedra which we are computing over whole triangulation
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Figure 4.7: Percentage reduction in execution time when different optimizations are turned on
and off

Figure 4.8: Percentage breakup of times for different stages
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Chapter 5

Conclusions

The focus of this thesis is to efficiently construct the sub-complex of RT containing only tetra-

hedra that satisfy the alpha complex properties. In many application, we need only a small

sub-set of the triangulation and still, have to bear the overhead of the computation of the whole

triangulation. In this paper, we have shown a novel approach to construct the sub-complex of

RT. We have shown that it is possible to construct sub-complex solely based on local properties.

In this paper, we described an incremental algorithmic approach, as in building a smaller

tetrahedra first and then a larger one, to compute sub-complex of RT that is parametrized by a

real value α. We have implemented two optimizations to reduce time complexity of algorithm.

Edge optimization reduces the complexity of tuple generation step and alpha optimization helps

in pruning the tetrahedra from the generated tetrahedra list. For getting maximum advantage

at an architectural level, we used three optimizations. Pinned memory and CUDA streams

are used to reduce the data transfer time while texture memory is used to reduce memory

access time. Experimental results show that the reduction of 27% is obtained when all the

optimizations are turned on. Moreover, texture memory alone contributes upto 23% reduction

for the smaller data sizes but pinned memory alone gives upto 11 % reduction for the larger

data sizes.

We have shown that our algorithm can exploit massive parallelism supported by GPUs in

order to construct RT. Our algorithm gives upto 88 % improvement in execution time over

the best implementation till now, gReg3d, for a smaller alpha values. Our algorithm handles

degenerate cases also. Our algorithm gives speedup upto 9x over the best sequential CPU

implementation, CGAL for zero alpha value.

To the best of our knowledge, this is the first algorithm which computes sub-complex directly.

It is the first step towards the efficient parallel computation of the complete regular triangulation

by incrementally building the sub-complexes.
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Chapter 6

Future Work

There are few limitations of our algorithm. One of the limitations is that it can be used only for

molecular data. The second biggest limitation is that it can compute whole RT but takes a lot

of time. This happens because our algorithm computes the tetrahedra incrementally based on

tetrahedra sizes.It can only compute sub-complex for a given alpha value. A very large alpha

value is required to get complete RT. As a result, each atom will have more number of atoms in

its neighborhood. This in turn results in an increase in the time complexity of tuple generation

step. Hence, it takes a lot of time to compute complete RT.

The possible solution to this problem is to increment alpha value gradually and compute

sub complex for each alpha value. However, in our algorithm this strategy will not work. The

most prominent reason for such behavior is that, as we increment the alpha value we still have

to consider the points from lower alpha value. For example, we compute the sub-complex for

zero alpha value and then we increment alpha by one. If we consider points in annular region

of two neighborhood search boxes such as box for zero alpha value and box for incremented

alpha value, then we will not get correct triangulation. The points in the zero alpha box also

play an important role in deciding the triangulation. Hence, for incremented alpha value also,

we have to consider all the points in the box which is generated using incremented alpha value.

As a result of this, we are actually losing the advantage of an incremental approach.

To circumvent this problem, we can use the star completion approach. The star of a point

is said to be complete if all the terahedra incident on that point form a sphere in 3d. This

point is also called as saturated point. This strategy will help in our algorithm. After a few

increments in alpha value, most of the points will get saturated and then we don’t have to

consider those saturated points in next alpha values. This will reduce the number of points

in neighbor list and also reduces the time complexity of generation of tuple step. Hence, this

strategy will work.

26



Another possibility is to use more than one GPU device. This actually speedups the com-

putation further more by taking advantage of parallelism provided by GPU devices. We can

compute RT for larger molecules. It might be possible that this will scale well in spite of

communication overhead produced by using more than one GPU device.

For larger data set sizes which can not accommodated in a GPU memory, we can use hybrid

approach. In this, data can be divided in CPU and GPU and each will either perform the whole

algorithm and then communicate for outputting the result or each will perform a step in the

algorithm and communicate after each step. We can use CUDA and OpenMP to do such kind

of programming.

Besides, our implementation is currently memory bound, especially on some GPUs with

very high computation power, so it will benefit from improvements in the data structure and

memory access optimizations.

Hence, there is a scope for the improvement in algorithmic as well as in computational part

of the problem.
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