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ABSTRACT
Jump Flooding is a method for propagating labels across a
given plane from different seeds. It has been used to compute
the discrete Voronoi tessellation of a given plane efficiently.
We introduce a version of JFA, which optimizes the num-
ber of pixels processed by computing only the faces of the
Voronoi tessellation. The pixels in the interior of the Voronoi
regions are not processed resulting in a 1-skeleton represen-
tation of the Voronoi tessellation in 2D and a 2-skeleton
representation in 3D. We describe an implementation of this
algorithm on a GPU using CUDA and demonstrate its per-
formance benefits on multiple data sets. As an application of
the proposed algorithm, we present a GPU based method for
extraction of channel centerlines in biomolecules. The fast
computation of the discrete Voronoi diagram is exploited to
extract channels in molecular dynamics simulation trajec-
tories on-the-fly, thereby supporting the interactive visual
analysis of static and dynamic channel structures.

Keywords
Discrete Voronoi diagram, Jump Flooding Algorithm, GPU
acceleration, Bio-molecular visualization.

1. INTRODUCTION
Voronoi tessellation is one of the most widely used tools

in computational geometry, with applications in computer
graphics, image processing, mesh processing, robot naviga-
tion, and for data analysis in several scientific and engineer-
ing disciplines. A Voronoi tessellation partitions space into
regions given a set of seed points, with each point in a par-
ticular region being closer to its corresponding seed than to
any other seed. The computation of Voronoi tessellations is
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one of the best studied problems in computational geome-
try, with optimal algorithms known for computing Voronoi
tessellations on the plane [1, 2].

Discrete Voronoi tessellation requires the computation of
regions on a discrete grid of pixels, with seed points be-
ing pixels themselves. Due to the inherent parallelism, this
problem has been approached using the GPU. The first at-
tempts to solve this problem using the GPU were done due
to Hoff et al. [5]. Guodong et al. [13] then used Jump Flood-
ing, a parallel extension to flood-fill algorithm, which prop-
agates label information from a pixel to the entire grid, to
construct approximate Voronoi tessellation. The GPU is
harnessed to enable all the labelled pixels to propagate their
label information, instead of a wave-front like approach. It
can be easily shown that this approach requires logn steps
to flood an n×n grid of pixels. Jump Flooding can be used
to generate discrete Voronoi tessellations and the resulting
algorithm is referred to as JFA (Jump Flooding Algorithm).
Assuming fixed grid of size n × n with seed points already
placed in the grid, JFA computes the Voronoi tessellation in
logn steps, and is thus independent of the number of seeds.
The discrete nature of the problem introduces errors, which
have been extensively documented in [13]. The algorithm
has been implemented by Guodong et al. using textures
and pixel shaders and is one of the most efficient methods
for computing the discrete Voronoi tessellation till date.

This paper introduces a variant of JFA, called Facet-
JFA, wherein only the pixels which are located near the
Voronoi region boundaries are processed, thus immensely
reducing the total amount of work done by the algorithm.
The proposed approach first determines the lowest grid res-
olution at which seed points can be projected to the near-
est grid pixel without conflict. Following this, the algorithm
marks the grid pixels which are destined to lie in the interior
of the Voronoi regions and refines the boundaries of these
regions. This algorithm uses an intrinsic quadtree-based ap-
proach. Like JFA, the proposed approach also requires logn
steps to compute the Voronoi diagram for an n × n grid
of pixels. But, for larger grids with fewer seed points (and
hence large Voronoi regions), almost all the pixels will be
marked as interior and hence will not be processed. This
strategy enables both space optimization and better run-
ning times in practice. We explore the speed-ups obtained
over JFA for different grid and seed set sizes. We implement
the original JFA and Facet-JFA using CUDA to compute
Voronoi tessellations in two and three dimensions. We re-
port experimental results concerning the running time and



other parameters across multiple GPU architectures.
As an application of Facet-JFA, we present a GPU ac-

celerated technique for extraction of the channel network
in biomolecules in two and three dimensions. The proposed
method allows extraction of channels at real-time interactive
rates and is thus suited for visual analysis of static and dy-
namic channel structures in Molecular Dynamics (MD) sim-
ulation trajectories. With examples, we demonstrate that
the discrete representation and the use of Facet-JFA is ap-
propriate for the typical resolutions required for visualizing
the channels in MD trajectories at interactive rates.

2. DISCRETE VORONOI DIAGRAM COM-
PUTATION

2.1 Definitions

Definition 1. Let [n] be the set {0, 1, . . . , n−1}. A grid is
defined as the Cartesian product [n]d of the set [n]. Here, d
is the dimension of the grid and n is the size of the grid. A
d-dimensional grid of size n is denoted by [n]d. Any element
p ∈ [n]d is a d-dimensional vector (x1, x2, . . . , xd) and called
a pixel.

Definition 2. Given a grid [n]d with a distance metric δ
defined on it and a set of k seeds S = {s1, s2, . . . , sk} ⊆
[n]d, the discrete Voronoi diagram is a function f defined as
follows:

f : [n]d → S

such thatf(p) = si ⇐⇒ ∀j 6= i, δ(p, si) 6 δ(p, sj)

To make the above definition well defined, we will always as-
sign lowest indexed seed to the pixel p whenever p is equidis-
tant to multiple seeds. For any seed si ∈ S, f−1(si) is called
the discrete Voronoi region of si.

Definition 3. Let ∆1 = {−1, 0, 1}. The neighborhood of a
pixel p ∈ [n]d is the set of pixels Np, defined as follows:

N ′p = {p+ δ1 such that δ1 ∈ ∆d
1}

Np = N ′p ∩ [n]d \ {p}

There are at most 3d − 1 pixels in the neighbourhood of a
pixel p ∈ [n]d. If the pixel lies on the boundary of the grid
then size of neighbourhood sets is smaller than 3d − 1.

Definition 4. A cell of size l at a pixel p ∈ [n]d is a smaller
grid of size l at origin p. The set of pixels in the cell of size
l at pixel p, denoted by C(p, l), is given by:

C(p, l) = {p+ δ such that δ ∈ [l]d}

In 2D, a cell is a pixel in a grid of resolution (n/l) × (n/l).
That is, every pixel in an (n/l)× (n/l) grid represents a cell
in an n× n grid, each containing l × l pixels.

Definition 5. The refinement of a cell C(p, l), denoted by
R(C(p, l)), is the partition into 2d equal sized cells. It is
defined as follows:

∆ l
2

= {0, l
2
}

R(C(p, l)) = {C(p+ δ l
2
,
l

2
) such that δ l

2
∈ ∆d

l
2
}

Figure 1: Left: A Cell C(p, 4) in a grid [8]2. Right:
Its refinement into four cells of size 2.

In 2D, refinement refers to increasing the resolution of the
grid form an (n/l)× (n/l) grid to an (2n/l)× (2n/l) grid.

Definition 6. For a discrete Voronoi diagram f of a grid
[n]d, a pixel p is called a boundary pixel if there exists q ∈
Np such that f(p) 6= f(q). The other pixels in the grid are
called interior pixels.

2.2 Jump Flooding and JFA
The idea of utilizing graphics hardware to compute geo-

metric constructions is not new. The first attempt to com-
pute Voronoi tessellations using graphics hardware was done
by K. Hoff [5]. The algorithm described by Hoff uses projec-
tions of cones from seed points, drawing region boundaries
where two cones meet. This was vastly improved in the
more recent attempt by Guodong et al. [13], using a par-
allel approach to flooding, known as Jump Flooding. This
algorithm is based on the observation that while flooding an
area with a label, each labelled pixel can transmit its label,
instead of just the ones on the boundaries of the labelled
region. This ensures an exponential growth in the number
of labelled pixels in a grid and thus, can be computed in
O(logn) time, for an n× n grid.

The work by Guodong et al. [13] introduces two variants
of the flooding algorithm, one with a halving step length
and the other with a doubling step length. It is also shown
that the former approach results in fewer errors, as com-
pared to the latter one. The experiments in this paper use
the halving approach to flood label information. The jump
flooding algorithm to compute Voronoi tessellations utilize
this flooding. The JFA algorithm using jump flooding in the
halving step mode proceeds in the following way:

1. Initially, each pixel corresponding to a seed s records
a tuple 〈s, position(s)〉 and all other pixels record
〈nil, nil〉.

2. In step l, each pixel (x, y) passes the tuple correspond-
ing to the seed closest to it to the pixels (x + i, y +
j), i, j ∈ {−l, 0, l}.

3. The step size halves in each iteration and the above
step is repeated starting with l = n till l = 1 when the
algorithm halts.

Figure 2(a) demonstrates how JFA proceeds on a 256×256
grid. There are several variants of JFA described in [13] and
[14], including JFA+1, JFA+2, JFA2 and 1+JFA. We use
JFA+1, which is JFA with one additional round of flooding
for the experiments in this paper.



Figure 2: Comparison of execution of JFA and Facet-JFA on a 256 × 256 grid with 10 seed points. (a) JFA
completes in 8 steps for this grid. In each step, all the pixels update their labels based on the seed closest to
them. Notice that in earlier steps many pixels are coloured black as they have not received any valid seed
till then. (b) Facet-JFA also takes 8 steps for completion. For this example, 8 × 8 grid is determined to be
the initial resolution, on which JFA is executed resulting in coarse Voronoi diagram (frame with l = 1). In
subsequent steps, the coarse boundaries are refined till the final resolution is reached. In refinement steps,
the pixels coloured black are those which are marked and remain inactive, resulting in faster computation.

Algorithm 1 Facet-JFA

Input: S: Set of seeds.
Input: n: Grid size.
Input: m: Initial grid resolution (optional).
Output: M: n× n grid where pixels on the Voronoi region
boundary are set to the index of the seed.

1: If m is not provided, compute the smallest value m =
2p, p ∈ N such that for every two seeds (i1, j1) and
(i2, j2), i1·m

n
6= i2·m

n
or j1·m

n
6= j2·m

n
.

2: M := Create an m×m grid.
3: Unmark each pixel in the m×m grid.
4: Run JFA on the m ×m grid with seeds (i, j) replaced

by ( i·m
n
, j·m

n
).

5: Initialize q to m and repeat steps 6 to 9 doubling q after
each iteration and halting when q ≥ n.

6: M := Create a 2q × 2q grid.
7: Refine each unmarked pixel (i, j) in the q × q grid to 4

pixels, (2i, 2j), (2i+ 1, 2j), (2i, 2j + 1), (2i+ 1, 2j + 1) in
the 2q × 2q grid.

8: With l = 1, run one step of JFA on the M with seeds
(i, j) replaced by ( i·2q

n
, j·2q

n
). Launch threads only for

the unmarked pixels.
9: Mark all pixels in M which have identically labelled

neighbours. Again, launch threads only for the un-
marked pixels.

10: return M

2.3 Facet-JFA
A great amount of work is done in the original JFA in

the flooding of label information by the pixels which are in
the interior of Voronoi regions. Much of this flooding can
be seen as extraneous as it does not affect the boundaries of
the Voronoi regions being formed. The proposed algorithm
aims to eliminate this overhead by computing the region
boundaries alone, instead of processing every pixel in each
region. The proposed algorithm is presented as Algorithm 1
for 2D case. This algorithm can easily be extended to higher
dimensions as well.

Just like JFA, the proposed algorithm also takes logn
steps to finish. The algorithm marks the interior pixels, thus
lowering the number of threads that need to be launched.
This greatly reduces the total amount of work done by the

algorithm and thus the running time, as demonstrated in
the experiments. This algorithm can perform as bad as JFA
if initial grid resolution m is close to or same as n. Fig-
ure 2 demonstrates the steps involved in Facet-JFA and
how those steps compare with the steps involved in JFA. In
the first logm steps, Facet-JFA essentially executes JFA to
obtain the Voronoi diagram at a lower resolution of m×m.
In the next logn− logm steps, the boundary cells are iden-
tified and refined iteratively. During refinement, a new pixel
acquires a label corresponding to its parent or the label of
the parent’s neighbour. Executing single step of JFA with
l = 1 accomplishes this refinement.

2.4 Runtime and space analysis
JFA and Facet-JFA both take logn steps to finish. Each

of these steps involve processing multiple pixels in parallel.
But the advantage of using Facet-JFA is that it processes
smaller girds in initial stages, while at later stages when grid
size becomes larger, many of the pixels are not processed.
We perform qualitative assessment of Facet-JFA in terms
of the number of pixels processed by the algorithm after
performing JFA on the initial coarse grid. The lower the
number of these pixels, the larger would be the performance
gain, both in terms of timing benefit and potential space

savings. We show that the algorithm processes O(d · kd
d
2
e ·

nd−1 · logn) pixels in the general case, and at most 5 · (3k−
6) · n logn pixels in the specific case of a 2D grid. This is a
factor of n improvement over JFA, which processes logn ·n2

pixels in its complete execution. Including the number of
pixels processed in the JFA execution on the initial grid, the
total number of pixels processed by Facet-JFA is at most

O(d · kd
d
2
e · nd−1 · logn+m2 · logm).

2.4.1 2D grid

Lemma 1. The number of boundary pixels in the discrete
Voronoi diagram of a two dimensional grid [n]2 with seed
set of size k is linear in k and n. The number of boundary
pixels is at most 5 · (3k − 6) · n.

Proof. The Voronoi diagram is the dual of the Delau-
nay triangulation. So, number of edges in the 2D Voronoi
diagram is equal to that in the Delaunay triangulation. The
number of vertices in the Delaunay triangulation is exactly



k i.e. the number of seeds. Since the Delaunay graph is
planar, the number of edges is at most (3k − 6).

Figure 3: The set of boundary pixels (red) due to
intersection of a line (red) with a [10]2 grid.

Now, any line passing through [n]2 can contribute at most
5n boundary pixels (Refer to Figure 3 for an example and
Lemma 2 for proof in d dimensions). So, each Voronoi edge
can contribute at most 5n boundary pixels. Therefore, the
total number of boundary pixels in a two dimensional dis-
crete Voronoi diagram is at most 5 · (3k − 6) · n.

Theorem 1. Total number of pixels processed by Facet-
JFA while computing the discrete Voronoi diagram for k
seeds in a [n]2 grid is bounded by 5 · (3k − 6) · n logn.

Proof. Facet-JFA subdivides the grid in a quadtree
fashion. The leaves of the quad tree are the pixels in the
grid, while the internal nodes are the cells in the grid. The
construction of the discrete Voronoi diagram of a grid us-
ing Facet-JFA involves reaching the boundary pixels of the
Voronoi regions using this tree. By Lemma 1, we know that
the number of boundary pixels in a discrete Voronoi diagram
is at most 5 · (3k− 6) ·n. In a quadtree, to reach a leaf node
we need to access logn internal nodes. So, during the course
of a run of Facet-JFA, the total number of pixels processed
is at most 5 · (3k − 6) · n logn.

2.4.2 d-Dimensional grid

Lemma 2. The number of boundary pixels resulting be-
cause of intersection of a hyperplane in Rd with the grid
[n]d is at most O(d · nd−1).

Proof. In [n]d, all neighbours of a grid pixel are within a

distance of
√
d. We consider two parallel hyperplanes at the

distance of
√
d from the given hyperplane. Refer to Figure 3

for an illustration. The given hyperplane is shown as bold
red line while the two parallel hyperplanes are shown as
dotted lines. Now, it is easy to see that boundary pixels can
not lie outside the volume bounded by the two hyperplanes.
So, estimating the maximum number of pixels that can lie
in this volume will give an upper bound on the number of
boundary pixels.

Given one of the d axes, the volume consists of at most
nd−1 columns of pixels along this axis. We claim that for a
suitable choice of axis the number of boundary pixels within
each column is at most (2d + 1). Let r be the length of a
column within the volume bounded by the two hyperplanes,
see Figure 3. We choose the axis that minimizes the angle θ
and maximizes cos θ. In this case, cos θ ≥ 1/

√
d where the

equality holds when the hyperplane and its normal subtend
the same angle with all the axes. Further, r·cos θ = 2

√
d. So,

the value of r is at most 2
√
d×
√
d = 2d. A column length of

2d within the volume corresponds to at most (2d+1) pixels.
Counting pixels within all columns results in an upper bound
of (2d+ 1) · nd−1 = O(d · nd−1) boundary pixels.

For the case of d = 2, the number of boundary pixels due
to a Voronoi edge is at most 5n.

Lemma 3. The number of boundary pixels in the discrete
Voronoi diagram on a grid [n]d with seed set of size k is

upper bounded by O(d · kd
d
2
e · nd−1).

Proof. We know from Lemma 2 that intersection of any
hyperplane can result in O(d · nd−1) boundary pixels in a

grid. Also, it is known that there are O(kd
d
2
e) Voronoi facets

in a d-dimensional Voronoi diagram [4]. It follows that the
total number of boundary pixels in a discrete Voronoi dia-

gram is bounded by O(d · kd
d
2
e · nd−1).

Theorem 2. Total number of pixels processed by Facet-
JFA for computation of discrete Voronoi diagram for k seeds

in a [n]d grid is O(d · kd
d
2
e · nd−1 · logn).

Proof. The argument given in Theorem 1 can be ex-
tended to the d dimensional case as well. By Lemma 3,
we know that the number of boundary pixels in a discrete

Voronoi diagram is O(d · kd
d
2
e · nd−1). In a d dimensional

quadtree, to reach a leaf node we need to access logn inter-
nal nodes. Thus, the total number of pixels processed is at

most O(d · kd
d
2
e · nd−1 · logn).

2.5 CUDA Implementation
We implement jump flooding on CUDA using a gather-

style approach, wherein in step l, each pixel gathers the
label information from 8 neighbours l pixels away from it.
It can easily be shown that this approach is equivalent to
the halving mode of jump flooding. This approach is free
from write-conflicts and the GPU based approach greatly
benefits from this fact, as GPUs are inherently massively
parallel. We used this gather-style approach to jump flood-
ing to implement JFA and Facet-JFA.

In the implementation of JFA, the grid is copied only once
to the device memory. A total of logn calls are made to
the kernel, each call corresponding to a step of the flood-
ing algorithm. The implementation of Facet-JFA involves
multiple kernels as the algorithm consists of several phases.
The computation of m in the first step of Facet-JFA is
done on the CPU and is considered as a preprocessing step
(a short discussion on this step is included in the supple-
ment). In practice, m can be directly provided by the user,
determined based on a user-defined error tolerance, or it
can be domain specific and based on closest possible pair.
Once m has been determined, Facet-JFA first computes
Voronoi diagram at the coarsest resolution of m ×m using
JFA. Then the algorithm proceeds by repeatedly launching
the cell refinement, JFA and marking steps in succession till
the final resolution n×n is reached. At an intermediate grid
resolution of q×q, q2 threads are launched, which return im-
mediately after launching if the pixel is marked. Otherwise,
they update the Voronoi region using one step (l = 1) of
JFA on that grid. The cell refinements to obtain the 2q×2q
grid and the marking of interior pixels is also done using



CUDA kernels. The main overhead in this implementation
lies in the launching of threads for every pixel, irrespective of
whether it is marked or not. A better and thus more efficient
approach would be to launch threads only for the unmarked
pixels, thus greatly reducing the launch overhead. Selective
launching of threads only for unmarked pixels is non-trivial
and not supported on all CUDA architectures.

It should be noted that space requirement in the current
implementation is n2 which is used for storing the n × n
matrix. The refinement step which results in doubling of
resolution is handled carefully within the allocated space
so that no extra space is required even temporarily. The-
oretically, Facet-JFA requires much less space than JFA
as discussed in 2.4, but achieving that limit would require
special indexing structures.

3. EXPERIMENTAL RESULTS

3.1 Experimental Setup
The experiments have been performed simultaneously on

two different GPU architectures from nVidia, namely the
latest Kepler and the older Fermi. The GPUs used for the
experiments are the GTX-660 Ti and Tesla C2050. The
CPU in both cases was an Intel Xeon octa core, running
at 2GHz and with 16 GB of main memory. The following
experiments were done.

1. Time comparisons for JFA and Facet-JFA in a 2D
case on the Kepler and Fermi architectures.

2. Time comparisons for JFA and Facet-JFA in a 3D
case on the Kepler architecture.

3. Comparison of the number of threads launched in JFA
and Facet-JFA.

The experiments were run at resolutions ranging from
256 × 256 to 4096 × 4096, with the resolution doubling in
each run. The number of seeds was increased from 10 to
100,000 incrementally for each resolution. The default ran-
dom number generator, rand() was used to generate the seed
locations. Running times are reported in milliseconds and
are calculated separately for the actual kernel execution and
copying of the grid from the host to the device and back.
In the case of Facet-JFA, the time taken to generate the
starting resolution is taken as a preprocessing step and is
not included in the timing computation. In each experi-
ment, the time reported is the average taken over 100 runs
of the algorithm.

3.2 Observations
The speed-up obtained on the GTX-660Ti GPU has been

plotted in Figure 4. The performance of Facet-JFA was
superior to that of JFA in most cases, with speed-ups as high
as 10x in the case of 10 seeds on a 4096× 4096 grid on the
GTX-660Ti. It was observed that the number of seeds and
the speed-up observed are inversely related, as the presence
of a larger number of seeds would generally result in smaller
regions, resulting in fewer interior points. This could also be
due to the fact that, in Facet-JFA, the starting resolution
of a grid would increase in proportion to the number of seeds,
thus necessitating larger numbers of threads to be launched
in the initial call to JFA. Nevertheless, in cases where JFA
outperformed Facet JFA, the slow down was marginal (0.9x).

Figure 4: Facet-JFA speed-ups in 2D case.

The threshold on the number of seeds for which JFA starts
to outperform Facet-JFA was experimentally observed to
be approximately n seeds for an n× n grid.

The pattern of speed-up observed on the Tesla C2050 al-
most exactly mirrored the observations on the GTX-660Ti,
albeit at a slightly lower factor. This can be attributed to
fewer number of cores on the Tesla (448, as compared to 1344
on the GTX-660Ti). We also observe similar speed-ups in
the 3-dimensional case. For example, for a 5123 grid with
1000 seeds, we observed a speed-up of around 6x. The time
taken to copy the contents of the host memory to the device
and back dominated the total running time in the 256×256
and 512× 512 grids, whereas the time taken to execute the
kernel assumed prominence from the 1024 × 1024 grid on-
wards. The speed-up was most pronounced, as expected, for
the largest grid. The detailed results of these three experi-
ments are included in the supplementary material.

Also included in the supplementary material, is an experi-
ment where we note a marked improvement in the number of
threads launched (fewer than JFA) in most of the cases un-
der consideration. The trend we observed in this experiment
almost exactly mirrors the trends observed in the speed-up,
implying that speed-up is a direct consequence of the num-
ber of threads launched. However, we observed that the
speed-up is a scaled down value of the ratio of the improve-
ments in the number of launched threads (e.g. 88 times
fewer active threads translated into 11x speed-up).

4. APPLICATION TO BIO-MOLECULAR
CHANNEL EXTRACTION

Biomolecules, such as proteins, are the fundamental build-
ing blocks of living systems. It has been observed that struc-
tures including cavities, channels, protrusions, and depres-
sions in biomolecule play an important role in defining its
function [9]. Thus, geometric techniques have been used
widely to facilitate study of this structure-function relation-
ship [3].

A channel is a pathway through the empty space within a
molecule that connects an internal point and the molecular
exterior [11]. Channels are crucial for the migration of ions,



solvent, and small molecules through proteins, and their ul-
timate binding to the functional sites. Channels through
transmembrane proteins selectively transport ions and small
molecules across cell membrane. In recent years, continuous
Voronoi diagrams have been used to determine center-lines
of the channels in biomolecules [8, 12, 15]. The set of all
channel center-lines is usually referred to as the channel net-
work of the biomolecule.

Biomolecules are not static entities, they undergo vari-
ous structural changes dynamically which are important for
their function. Molecular Dynamics (MD) simulation tra-
jectories are series of snapshots of the biomolecule as it un-
dergoes changes over time. This simulation data has proved
crucial in understanding dynamic behaviour of biomolecules.
Recently, there has been great interest in development of
fast techniques for analysis of MD trajectories [6, 10]. Lin-
dow et al. [7] addressed the problem of channel extraction
in MD trajectories using continuous Voronoi diagrams with
focus more on the accuracy of detected channels rather
than interactive analysis. Discrete Voronoi diagrams can
be utilized to overcome the time-consuming step of comput-
ing continuous Voronoi diagram, and the extracted discrete
channel network is sufficient for visual analysis. Further,
here we are interested in computation of Voronoi edges only,
which makes Facet-JFA an ideal candidate.

In this section, we present a GPU accelerated technique
for computation of channel center-lines in biomolecules. We
motivate this problem and present our technique using 2D
synthetic data. However, the method can be easily extended
to 3D. We show results both for 2D and 3D data. We exploit
the fast computation of Voronoi facets by Facet-JFA for ex-
tracting channel network in the biomolecule. The Voronoi
edges provide the locus of points which are locally farthest
from the closest pair of atoms. The Voronoi edges can be
restricted to empty regions inside the molecule to obtain
the channel network. The discrete Voronoi diagram is com-
puted using the GPU accelerated Facet-JFA. We addition-
ally propose parallel methods for all other stages of the chan-
nel extraction algorithm. This implementation can process
molecules of considerable size at a grid size suited for fast
volume rendering on modern GPUs. Thus, using the pro-
posed method, it is possible to interactively analyse static
as well as dynamic channel structures in MD trajectories.

4.1 Channel extraction algorithm
Algorithm 2 describes the proposed parallel approach for

fast extraction of channel network. To simplify notation,
we refer to disks and union of disks in the 2D data also as
atoms and molecules, respectively. The working of this algo-
rithm is demonstrated with a 2D example in Figure 5. Brief
demonstration for a 3D example is provided in Figure 6.

4.2 Discussion
As mentioned earlier, the proposed GPU accelerated ex-

traction of channels is particularly suited for gaining a quick
overview of channels in Molecular Dynamics (MD) trajecto-
ries. With fast channel extraction, the user can view the
evolution of channels over time in MD data which typi-
cally consists of thousands of steps, and identify critical time
steps. Further, channels can be computed for different sol-
vent (probe) radii at interactive rates. An example use of
this technique for study of dynamic channels in a 2D syn-
thetic MD trajectory is shown in Figure 8.

Algorithm 2 Extract Channel Network

Input: S: Set of atoms.
Input: rs: Solvent radius.
Input: n: Grid size.
Output: CN: n × n grid where pixels on channel center-
lines are set to 1 while other pixels are 0.
Output: AM: n × n grid where pixels occupied by atoms
of biomolecule are set to 1. This is an optional output.

1: VD := Construct discrete Voronoi diagram for S using
Facet-JFA.

2: VE := Extract Voronoi edges by processing each pixel
in VD in parallel. Set such edge pixels to 1. This step is
not required in 2D, as VD already consists of only edges.

3: AM := Process each atom a ∈ S in parallel and set pixels
lying inside the ball of radius ra + rs to 1. AM is called
atomic region mask.

4: Shoot n rays in X direction in parallel into AM and de-
termine their first and last intersections with AM. Re-
peat the same procedure for Y direction.

5: Construct MM, the molecular region mask where the
pixel is set to 1 if they lie inside at least one of the
intersection intervals determined in previous step.

6: IM := AM xor MM. IM is called molecular inside mask.
7: CN := VE and IM. Restrict Voronoi edges to inside

region of molecule to obtain the channel network for the
molecule.

8: return CN, AM

Figure 7 shows the quality of results obtained for
biomolecules with number of atoms ranging from few hun-
dreds to thirteen thousand. The grid resolution used is
128 × 128 × 128 which is enough for computing a good
overview of the channel network in the molecule. This reso-
lution is ideal for high quality volume rendering at interac-
tive rates on modern graphics hardware. The results shown
in Figure 7 can be computed and simultaneously visualized
at interactive speed of 10 FPS. Currently we don’t support
analysis of the extracted channels, like identification of con-
nected components or pruning of small channels. This facil-
ity can be introduced to give the user a richer experience.
We believe this minimal analysis can also be performed at
interactive rates.

5. CONCLUSIONS
We propose a variant of JFA, Facet-JFA, to compute dis-

crete Voronoi tessellations using a GPU, which optimises on
the number of threads launched, and hence the running time.
The proposed algorithm has been studied both theoretically
and via experiments on large data sizes. Several improve-
ments are possible over the proposition. Facet-JFA uses a
quadtree to refine the starting grid. The starting grid could
have been non-uniform, thus starting with varying levels of
refinement in various regions. This would require a divide
and conquer approach to merge regions with the same quad-
tree level, resulting in the launch of fewer threads, as com-
pared to Facet-JFA. Also, in most real world applications,
the computation of approximate Voronoi boundaries might
suffice. Hence, fewer iterations of the refinement steps of
Facet-JFA might provide an acceptable resolution for the
application.



(a) Input atoms (b) SAS (c) Voronoi diagram (d) Voronoi edges

(e) Atomic Region (f) Molecular Region (g) Interior (h) Channels

Figure 5: Demonstration of GPU accelerated extraction of bio-molecular channel network. (a) A synthetic
molecule in 2D. (b) Solvent accessible surface constructed by incrementing the atomic radii by the solvent
radius. (c) Voronoi diagram for set of atom centres. Each Voronoi region is given a random colour. (d)
Voronoi edges. (e) The atomic region mask obtained by projecting each atom on the grid. This mask is
computed by processing the atoms in parallel. (f) The molecular region mask obtained by shooting rays on
atomic region mask. We shoot n rays from the bottom and the left, and determine each ray’s first and last
intersection points with the atomic region mask. Again parallelism is exploited by processing rays in parallel.
(g) Pixels in the molecular interior are determined by performing XOR operation on atomic region mask
and molecular region mask. The pixels in molecular interior are exactly those which lie inside the molecular
region but are not occupied by atoms of the molecule. (h) Finally, the Voronoi edges are restricted to the
region inside the molecule to obtain the channel network. This is accomplished by simply performing AND
operation on Voronoi edge mask and molecular interior mask.

(a) 1OED (b) Atomic region (c) Voronoi edges (d) Interior (e) Channels

Figure 6: Extension of 2D channel extraction algorithm to 3D. (a) A trans-membrane channel protein, PDB id:
1OED, is shown in cartoon representation. (b) The atoms are projected onto the 3D gid to determine atomic
region. (c) The Voronoi edges are computed using Facet-JFA. (d) The region inside the molecule (shown in
yellow) is determined by shooting rays in 3 orthogonal directions. (e) The Voronoi edges are restricted to
the molecular inside region resulting in highlighting the molecular channel network.



(a) 1GRM (184) (b) 2J1N (8,142) (c) 2OAU (13,573) (d) 200L (1,289)

Figure 7: A few channel networks extracted are shown in blue along with the atomic region (orange). These
images were generated using 1283 grid resolution at interactive speeds. Number of atoms are in the brackets.

Figure 8: An example of dynamic channel in Molecular Dynamics simulation trajectory. The molecule in
this synthetic dataset has two gates which are both closed initially. In Frame 2, the gate at the top opens
resulting in channel to central cavity. In Frame 5, the top gate closes completely while bottom gate starts to
open revealing a dynamic channel from top to the bottom. By Frame 7, the molecule regains its closed state.
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