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Abstract

Several visualization applications require simplification of high resolution meshes for faster processing.

Many of these meshes contain interesting substructures, called embedded structures, within the mesh.

There are applications that require the topology of the embedded structure as well as the mesh to be

preserved during the simplification process. Such a simplification technique that uses edge contractions

has been recently developed and shown to work on different datasets. This technique constructs what is

known as an extended complex and contracts edges that satisfy link conditions on the extended complex.

In this project, we prove mathematically that such edge contractions preserve the topology of the mesh

and the embedded structures. We allow embedded structures to be on the boundary of the mesh and

propose modifications to the existing algorithm to handle such cases. We also show that evaluation of

link conditions are almost always necessary in ensuring that topology is preserved.
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Chapter 1

Introduction

Several modelling and simulation applications produce complex meshes at a very high level of detail.

In order to speed up the subsequent processing, the meshes have to be simplified to generate a lower

resolution approximation of the original mesh. A popular technique to simplify the mesh is to iteratively

contract edges of the mesh. Many applications require that the topology of the mesh remain unchanged

after the simplification process. In the context of edge contractions, topology preservation can be ensured

by evaluating for each edge a set of conditions called link conditions [9] and allowing only those edges

that satisfy the link conditions to be contracted.

Many meshes contain interesting substructures of lower dimensions embedded within the mesh.

The topology of such embedded structures is often important. For instance, in a mesh that contains

two distinct regions, the boundary separating the two regions could be an embedded structure whose

topology needs to be preserved while simplifying the mesh.

Vivodtzev et al. [1, 2] have proposed a simplification technique that preserves topology of the mesh

and the embedded structures. They transform the original mesh to an extended complex by attaching

simplices from a dummy vertex to simplices of the embedded structure. Link conditions are evaluated

on the extended complex and only those edges that satisfy the link conditions are contracted to simplify

the mesh. They use this technique to simplify meshes with embedded structures and demonstrate using

different datasets that the simplification process preserves the topology of the mesh and the embedded

structures. However, the theoretical correctness of this technique is yet to be established.

The main contributions of this project are:

• We give a mathematical proof to show that link conditions evaluated in the extended complex of

a 3D mesh preserves the topology of the mesh and embedded structure.

• Our proof for 3D meshes is generic and extends to 2D meshes also. The earlier proof given by

Vivodtzev et al. [2] is incomplete as their analysis ignores simplices that are added from the

1



Chapter 1. Introduction 2

dummy vertex.

• We extend the simplification algorithm to handle embedded structures that lie on the boundary.

This was a limitation of the previous algorithm.

• We demonstrate the usefulness of the simplification in applications like isosurface preservation and

molecular surface preservation.

• We show that evaluation of link conditions on the extended complex is necessary for topology

preservation of a restricted class of 2D meshes with 1D embedded structures.

Our implementation of the simplification algorithm for tetrahedral meshes uses existing ideas based

on the Quadric Error Metric (QEM) to improve the quality of mesh elements and to approximate the

scalar field defined on the mesh. Further, the algorithm also preserves the geometry of the embedded

structure. Evaluation of the link conditions requires the computation of the order of a simplex. This

computation is non-trivial in the context of embedded structures. We describe an explicit characteriza-

tion of simplices that leads to an algorithm for computing their order.

The rest of the report is organised as follows. Chapter 2 describes related work. Chapter 3 gives

the definition of the terms used in this report. Chapter 4 describes the proofs in detail. Chapter 5 dis-

cusses implementation of the simplification algorithm. Chapter 6 lists the applications of the algorithm.

Chapter 7 discusses the results of our implementation. Chapter 8 concludes the report.



Chapter 2

Related Work

2.1 Mesh Simplification

Mesh simplification is an area of active research in the area of scientific visualization. Surveys on

different mesh simplification techniques can be found in [3, 4, 5]. Edge contractions are extensively used

for mesh simplification and several algorithms exist that differ in the manner in which edges are chosen

for contraction. A notable algorithm is the quadric error based algorithm of Garland et al. [6], which

produces high quality approximations and is very efficient.

2.2 Topology Preservation and Controlled Simplification

Dey et al. [9] showed that edges that satisfy a set of conditions, called link conditions, can be contracted

without causing topology violations. These are local conditions evaluated in the neighbourhood of the

edge. However, link conditions do not distinguish embedded structures from the rest of the mesh and

hence may not ensure topology preservation of embedded structures.

Early work on minimum and minimal triangulations studied the smallest possible mesh that can be

reached without violating the topology [15, 16].

Different from topology preserving simplification, controlled topology simplification helps to remove

topological noises like small holes, while retaining important topological characteristics of the mesh.

Reeb graphs and Morse-Smale complexes are extensively used for controlled topological simplification

[10, 11, 12].

3
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2.3 Attribute Preservation

Various attributes like material colour, scalar field etc. are often available as data at each vertex of

the mesh. These attributes also need to be preserved during the simplification process. Quadric error

metric based simplification methods can be easily extended for attribute preservation [7, 8]. Cignoni et

al. compare various simplification techniques to approximate the scalar field of a tetrahedral mesh [3].

2.4 Substructure Preservation

(a) (b)

Figure 2.1: (a) Original and (b) simplified volume containing embedded structure shown in grey.

(a) (b)

Figure 2.2: (a) Embedded structure before and (b) after simplification.

Mesh simplification algorithms should preserve important substructures of the mesh. We assume

that the substructure is specified by the user or is available as the output of prior analysis of the mesh.

Figure 2.1(a), 2.2(a) show the surface of a grey spherical ball embedded inside a cube. The mesh and

the embedded structure after simplification is shown in Figure 2.1(b), 2.2(b).

By transforming the input mesh to an extended complex, Vivodtzev et al. [1, 2] encode the topology

of the substructures in a new mesh and ensure that their topology is preserved during simplification.

They sketch a proof for topology preservation in the case of 2D meshes. However, this proof has a



Chapter 2. Related Work 5

major gap since their analysis does not consider the new simplices in the extended complex added from

the dummy vertex. Moreover, the proof does not extend to the case of 3D meshes.

2.5 Scalability

When the size of the mesh becomes huge, out-of-core algorithms are required to process the mesh. These

techniques design a mesh representation scheme and a simplification algorithm that accesses the mesh

in a spatially coherent manner [13, 17]. Since link conditions are evaluated in the neighbourhood of an

edge, they can also be implemented out-of-core for large meshes.



Chapter 3

Definitions

A k-simplex, η is the convex hull of k + 1 ≥ 1 affinely independent points. We denote a simplex with

vertices v1, v2, . . . , vk as <v1, v2, . . . , vk>. Its dimension is dim(η) = k. A face τ of η is the simplex

defined by a non-empty subset of the k + 1 points and τ is proper if the subset is proper. We say τ ≤ η

and call η a coface of τ . The interior of a simplex, int τ is the set of points contained in τ but not in

any proper face of τ . A simplicial complex K is a collection of simplices such that:

i. If η ∈ K then all faces of η are also in K

ii. If η, τ ∈ K then η ∩ τ is empty or a face of η, τ .

The dimension of K, dim(K), is the largest dimension of simplices in K. The underlying space of

K, |K| is the union of simplex interiors in K. A simplex in K is principal if it has no coface in K other

than itself. A subdivision of a simplicial complex K is a simplicial complex L such that |L| = |K| and

each simplex in L belongs to one of the simplices in K. Two simplicial complexes K and L are said to

be combinatorially equivalent, K ' L, if they have isomorphic subdivisions.

For L ⊆ K, the closure of L, denoted by L is the smallest subcomplex that contains L. The star of

L in K, denoted by St(L;K), is the set of cofaces of the simplices in L. The link of L in K, denoted by

Lk(L;K), is the set of all faces of simplices in the closure of star that are disjoint from simplices in L.

L = {τ ∈ K|τ ≤ η ∈ L}

St(L;K) = {η ∈ K|η ≥ τ ∈ L}

Lk(L;K) = St(L;K)− St(L;K)

The order of a simplex τ in K, denoted by Ord(τ ;K), measures the topological complexity of τ in

K. Let k = dim(St(τ ;K)). Ord(τ ;K) is the smallest integer i such that there is a (k− i) simplex η, in

a suitable simplicial complex F , such that St(τ ;K) and St(η;F ) are combinatorially equivalent.

6
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Figure 3.1: Order of a simplex is an indicator of the topological complexity of its star. Blue simplices
are of order 1 and red vertices have order 2. Other simplices have order 0.

To illustrate order of a simplex, consider the 2D simplicial complex in Figure 3.1. The order of all

triangles in the mesh is 0 because the star of a triangle in the mesh is the triangle itself. Hence k = 2.

Now, we can choose a triangle with its faces as a simplicial complex so that the star of the triangle

is combinatorially equivalent to a triangle in the mesh. Hence k − i = 2 and therefore i = 0. So all

triangles of the mesh have order 0. The black edges are shared by two triangles. So k = 2. The star of

a black edge is isomorphic to a triangle subdivided into two as shown in Figure 3.2. Thus order of black

edges is also 0. Following a similar reasoning, all blue edges and vertices have order 1 and red vertices

have order 2.

(a) (b)

Figure 3.2: (a) Star of a black edge, say ab, contains exactly two triangles abc and abd. (b) Triangle acd
subdivided into two is isomorphic with star of ab.

The j-th boundary of a simplicial complex K, denoted by BdjK is the set of simplices with order

greater than or equal to j. In Figure 3.1, the 0th boundary is the entire mesh, the 1st boundary is the

set of blue edges, blue vertices and red vertices. The 2nd boundary consists of the two red vertices.

For a k-simplex η and a vertex x that is affinely independent of the vertices v1, v2, . . . , vk+1 of η, the

cone from x to η is defined as a simplex with vertices x, v1, v2, . . . , vk+1 and is denoted by x · η.

For each i, define Bdω
i K to be the simplicial complex formed by adding a dummy vertex ω and

adding cones from ω to all simplices in Bdi+1K. So, Bdω
i K = BdiK ∪ (ω · Bdi+1K). For a simplex

η ∈ Bdω
i K, we denote the link within Bdω

i K as Lkω
i (η;K).
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We use edge contraction as the basic operation for mesh simplification. While doing edge contractions

in a simplicial complex K, topology of K would be preserved if a set of conditions, called link conditions,

are satisfied. For an edge ab, the link conditions are:

Lkω
i (a;K) ∩ Lkω

i (b;K) = Lkω
i (ab;K) ∀i ≥ 0.

For a simplicial complex K, an embedded structure is a user defined subcomplex of K where dim(E) <

dim(K). An extended complex, K̃, as defined by [1, 2] is obtained from K by introducing a dummy

vertex σ and adding cones from σ to simplices in E so that K̃ = K ∪ σ · E.

To illustrate this, consider the simplicial complex K in Figure 3.3(a) where the edges in blue form

the embedded structure. Then the extended complex is constructed by inserting cones from σ to the

blue edges as shown in Figure 3.3(b).

(a) (b)

Figure 3.3: (a) Simplicial complex K with embedded structure in blue and (b) K̃ obtained by inserting
cones from σ.



Chapter 4

Topology Preservation

Let K be a tetrahedral mesh with an embedded structure E of dimension 2 or lower. K̃ is the extended

complex formed by adding cones to E from a dummy vertex σ. Vivodtzev et al. [1, 2] assume that K

can be simplified without violating topology of K or E by contracting edges that satisfy link conditions

of K̃. They sketch a proof for the case dim(K) = 2. However, as indicated earlier, this proof has a major

gap since it does not consider the cones added from σ while analysing order of simplices in K̃. Moreover,

the proof does not extend to the case of dim(K) = 3. In this section, we present a proof for the case

when dim(K) = 3. Analogous arguments prove the result for the case dim(K) = 2. Initially we assume

that E is disjoint from Bd1K and prove that link conditions are sufficient for topology preservation of

E and K. Later, we show that this assumption can be relaxed.

Consider edge contractions of K̃ where the edges are not incident on the dummy vertex σ. The link

conditions for a 3-complex K̃ are:

Lkω
0 (a; K̃) ∩ Lkω

0 (b; K̃) = Lkω
0 (ab; K̃), (III.0)

Lkω
1 (a; K̃) ∩ Lkω

1 (b; K̃) = Lkω
1 (ab; K̃), (III.1)

Lkω
2 (a; K̃) ∩ Lkω

2 (b; K̃) = φ. (III.2)

We want to prove that edge contractions that satisfy the above link conditions of K̃ preserve topology

of K and E.

We adopt a two-step approach to prove this result. First, we show that topology of K is preserved

by proving that if an edge is selected for contraction then it will satisfy link conditions of K. This is

done by proving the contrapositive statement – if an edge violates link conditions of K then it will also

violate link conditions of K̃ and hence will not be selected for edge contraction.

Next, we show that topology of E is preserved. For this, we classify edges into different categories

based on whether they are part of E or not. It is easy to show that edges outside E that satisfy link

9
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conditions of K̃ will not cause topology violation of E. For edges that belong to E, we use an approach

similar to the one used for K and show that link conditions of K̃ are violated whenever link conditions

of E are violated.

4.1 Order of a simplex in E and K̃

To argue about violation of link conditions in E and K̃, it is important to understand the relationship

between the order of a simplex in E and its order in K̃. The lemmas below state this relationship.

Lemma 1. For an edge ab ∈ E, if Ord(ab;E) = 1, then

i. Ord(σab; K̃) = 1

ii. Ord(ab; K̃) ≥ 1.

Lemma 2. For an edge ab ∈ E, if Ord(ab;E) = 0, then Ord(σab; K̃) = 0.

Lemma 3. For a vertex a ∈ E, if Ord(a;E) ≥ 1, then Ord(σa; K̃) ≥ 1.

Lemma 4. For an edge ab ∈ E, if Ord(ab;E) = 1 and Ord(a;E) = 2, then Ord(σa; K̃) = 2.

Lemma 5. Bdω
i K ⊆ Bdω

i K̃, ∀i ≥ 0.

The next section describes the proof for these lemmas. Readers not interested in the proof may skip

to Section 4.3.

4.2 Proof of Lemmas

Lemma 1. For an edge ab ∈ E, if Ord(ab;E) = 1, then

i. Ord(σab; K̃) = 1

ii. Ord(ab; K̃) ≥ 1.

Proof: Ord(ab;E) = 1. So, St(ab;E) has either exactly one triangle (as shown in Figure 4.1(a))

or more than two triangles and hence St(σab; K̃) has either exactly one tetrahedron (Figure 4.1(b)) or

more than two tetrahedra. Thus Ord(σab; K̃) = 1. Since order of a face cannot be less than its coface,

Ord(ab; K̃) ≥ 1.

Lemma 2. For an edge ab ∈ E, if Ord(ab;E) = 0, then Ord(σab; K̃) = 0.

Proof: Since Ord(ab;E) = 0, ab is either principal or incident on exactly two triangles (Figure

4.2(a)). Hence in K̃, σab is principal or incident on exactly two tetrahedra (Figure 4.2(b)) and therefore

Ord(σab; K̃) = 0.
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(a) (b)

Figure 4.1: An order-1 edge ab in E and the corresponding order-1 triangle σab in K̃.

Figure 4.2: An order-0 edge ab in E and the corresponding order-0 triangle σab in K̃.

Lemma 3. For a vertex a ∈ E, if Ord(a;E) ≥ 1, then Ord(σa; K̃) ≥ 1.

Proof: Since Ord(a;E) 6= 0, |St(a;E)| is not a manifold. Hence |St(σa; K̃)| is also not a manifold.

Therefore Ord(σa; K̃) ≥ 1.

Lemma 4. For an edge ab ∈ E, if Ord(ab;E) = 1 and Ord(a;E) = 2, then Ord(σa; K̃) = 2.

(a) (b)

Figure 4.3: (a) A 1-complex with a vertex a on its 1-boundary. Note that all vertices with degree not
equal to two, lie on the 1-boundary. (b) Add cones from σ to the 1-complex. The edge σa is incident
on three triangles and therefore lies on the 1-boundary of the 2-complex.

Proof:

Case 1. a ∈ Bd1Bd1E:

Since Bd1E is a 1-complex, degree of a in Bd1E is different from 2 (see Figure 4.3(a)).
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Since all the edges in Bd1E are order-1 edges in E, in particular, the edges incident on a in Bd1E

are order-1 edges in E. Hence by Lemma 1, the triangles in K̃ formed by adding cones from σ to

these edges have order 1. Since in Bd1E, a is incident on one or more than two edges, the edge

σa is incident on one or more than two triangles in K̃(see Figure 4.3(b)). Hence σa ∈ Bd1Bd1K̃.

We know from [9] that Bd1Bd1K̃ ⊆ Bd2K̃. Therefore σa ∈ Bd2K̃. Thus Ord(σa; K̃) = 2.

Case 2. a 6∈ Bd1Bd1E:

Degree of a in Bd1E is exactly 2. Besides the edge ab, assume that the vertex a is incident on

edge ax. Since Ord(ab;E) = 1, ab is incident on either exactly one or more than two triangles in

E. Let ab be incident on exactly one triangle. Since all edges incident on a, besides ax and ab,

have order 0, the star of a contains a half disk as shown in Figure 4.4. We now consider two cases

based on the number of triangles incident on ax.

Case 2a. ax is incident on one triangle:

(a) (b)

Figure 4.4: (a) Ord(σa; K̃) = 2 since St(a;E) has a half disk and a principal edge. (b) Ord(σa; K̃) = 2
since ab and ax are incident on one and three triangles respectively.

In this case the sequence of triangles aby1, ay1y2, . . . , aynx form a half disk of triangles. If

St(a;E) is exactly a half disk, then Ord(a;E) = 1. However, we know Ord(a;E) = 2, hence

St(a;E) must contain at least one principal edge in addition to the half disk, as shown in

Figure 4.4(a). Corresponding to each triangle, ayiyi+1 in the half disk, St(σa; K̃) contains

the tetrahedron σayiyi+1 and corresponding to each principal edge av, St(σa; K̃) contains

the principle triangle σav. It is not possible to have isomorphic subdivisions of St(σa; K̃) and

star of a triangle in any arbitrary complex because of the principal triangles in St(σa; K̃).

So, Ord(σa; K̃) = 2.

Case 2b. ax is incident on more than two triangles:

In this case, ab is incident on one triangle and ax is incident on more than two triangles, as

shown in Figure 4.4(b). Hence, St(σa; K̃) will contain the triangle σab, which is incident on
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only one tetrahedron, and σax which is incident on more than two tetrahedra. No subdivision

of star of a triangle in any arbitrary complex can contain triangles incident on one and more

than two tetrahedra at the same time. Thus Ord(σa; K̃) = 2.

The above arguments extend to the case when ab is incident on more than two triangles and ab and

ax are incident on different number of triangles.

The only case remaining is when ab and ax do not form half disks but are incident on the same

number of triangles. At least two of the triangles incident on ab remain connected even when edge ab is

removed. This implies, at least two of the tetrahedra incident on σab remain connected even when the

triangle σab is removed. Note that the above mentioned tetrahedra lie in St(σa; K̃). Now, consider a

triangle in an arbitrary complex whose star contains at least three tetrahedra. One of the triangles in

the subdivision of this star satisfies the property that its removal disconnects the incident tetrahedra.

The existence of such a triangle implies that St(σa; K̃) and the star of a triangle cannot have isomorphic

subdivisions. So, Ord(σa; K̃) = 2.

Lemma 5. Bdω
i K ⊆ Bdω

i K̃, ∀i ≥ 0.

Proof: Except for the simplices in E, all other simplices have the same star in K and K̃. Hence

the only simplices whose order may differ between K and K̃ are those in E. For a simplex s ∈ E,

Ord(s;K) = 0 since E ∩Bd1K = φ. Since order of a simplex is a non-negative number, Ord(s; K̃) ≥ 0.

Hence Bdω
i K ⊆ Bdω

i K̃.

Note that the assumption, E ∩Bd1K = φ, is essentially required only for the proof of Lemma 5.

4.3 Preserving topology of K

We now show that whenever link conditions are violated for an edge ab of K, they are violated for K̃

as well.

Suppose ith link condition (where i = 0, 1, 2) is violated in K. Then there is a simplex s in Bdω
i K

such that s ∈ Lkω
i (a;K), s ∈ Lkω

i (b;K) and s 6∈ Lkω
i (ab;K). By Lemma 5, s ∈ Lkω

i (a; K̃) and

s ∈ Lkω
i (b; K̃). We show that s 6∈ Lkω

i (ab; K̃).

For a simplex s ∈ E, since E ∩ Bd1K = φ, Ord(s;K) = 0. When K is extended to K̃, cones are

added from σ to simplices in E. The cones thus added to s may increase the order of s in K̃ i.e.,

Ord(s; K̃) may be greater than Ord(s;K). Thus a new simplex that appears in Lkω
i (ab; K̃) is a simplex

belonging to one of the following types:

I. a cone from σ

II. a cone from ω to simplices incident on σ
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III. a cone from ω to simplices in E

IV. the subcomplex E (if i > 0).

If any of these new simplices in Lkω
i (ab; K̃) is s, link conditions in K̃ would be satisfied. However,

we show that none of the new simplices lie in Bdω
i K and hence cannot be s since s ∈ Bdω

i K. Type I

or type II is not in Bdω
i K since the dummy vertex σ 6∈ Bdω

i K. Type III is not in Bdω
i K because in

Bdω
i K, cones from ω are added only to simplices whose order is higher than 0. However, all simplices

in E have order 0 in K. Type IV is not in Bdω
i K because all simplices in E have order 0 and hence do

not belong to Bdω
i K, i > 0. Hence, none of the new simplices in Lkω

i (ab; K̃) can be s.

Thus the simplex s lies in both Lkω
i (a; K̃) and Lkω

i (b; K̃) but does not lie in Lkω
i (ab; K̃). So ith link

condition of K̃ is violated.

4.4 Preserving topology of E

An edge ab either belongs to the subcomplex E or lies outside E. In either case we show that if

contracting ab does not violate link conditions in K̃ then the topology of E is preserved.

4.4.1 Contracting edges not in E

Let ab denote an edge in K̃ that is not contained in E. Let c be the new vertex obtained after contracting

ab. Let F denote the embedded structure after contracting ab. A simplex <v1, . . . , vn, c> lies in F if

and only if either <v1, . . . , vn, a> or <v1, . . . , vn, b> lies in E.

Case 1. a, b 6∈ E:

None of the vertices of E are affected by the contraction. So F = E and topology of E is preserved.

Case 2. a ∈ E; b 6∈ E:

After contracting ab all simplices <v1, . . . , vn, a> ∈ E become <v1, . . . , vn, c> ∈ F . This renaming

of a vertex does not change the topology of E.

Case 3. a, b ∈ E; ab 6∈ E:

This edge contraction is rejected because link condition (III.0) is violated. Cones are added from

σ to a and b but not to ab. So, σ ∈ Lkω
0 (a; K̃) ∩ Lkω

0 (b; K̃) but σ 6∈ Lkω
0 (ab; K̃).
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4.4.2 Contracting edges in E

The embedded structure E is a 2-complex. The two link conditions corresponding to Bdω
0 E and Bdω

1 E

are:

Lkω
0 (a;E) ∩ Lkω

0 (b;E) = Lkω
0 (ab;E), (II.0)

Lkω
1 (a;E) ∩ Lkω

1 (b;E) = φ. (II.1)

We show that if the ith link condition, (i = 0, 1), is violated in E then ith link condition in K̃ is

also violated. First, we show that if ab ∈ BdiE, then ab ∈ BdiK̃, so that it is meaningful to talk about

contracting ab in ith boundary of K̃.

It is clear that ab ∈ Bd0K̃ since ab ∈ E ⊂ K ⊂ K̃. Now, suppose ab ∈ Bd1E. The order of an edge

in a 2-complex cannot be two or higher. So, Ord(ab;E) = 1. Using Lemma 1, ab ∈ Bd1K̃. Thus, if

ab ∈ BdiE, then ab ∈ BdiK̃.

Now, suppose ith link condition is violated in E while contracting edge ab. Then there is a simplex

s ∈ Bdω
i E such that s ∈ Lkω

i (a;E), s ∈ Lkω
i (b;E) and s 6∈ Lkω

i (ab;E).

Case 1. Link condition (II.0) is violated:

Since Bdω
0 E is a 2-complex, s is either an edge or a vertex.

Case 1a. s is an edge, say v1v2:

If v1 6= ω and v2 6= ω, then av1v2 ∈ E and hence σav1v2 ∈ K̃. So, σv1v2 ∈ Lkω
0 (a; K̃).

Similarly, σv1v2 ∈ Lkω
0 (b; K̃). Therefore, Lkω

0 (a; K̃) ∩ Lkω
0 (b; K̃) contains a triangle.

Now, assume that either v1 or v2 is the dummy vertex ω. Without loss of generality, let v1 be

the dummy vertex. Since cones from ω are added only to simplices in Bd1E, Ord(av2;E) = 1.

Using Lemma 1, Ord(σav2; K̃) = 1 and so ωσav2 ∈ Bdω
0 K̃. Hence ωσv2 ∈ Lkω

0 (a; K̃).

Similarly, ωσv2 ∈ Lkω
0 (b; K̃). Therefore, Lkω

0 (a; K̃) ∩ Lkω
0 (b; K̃) contains a triangle.

In both cases the link condition (III.0) is violated because Lkω
0 (ab; K̃) cannot contain a

triangle.

Case 1b. s is a vertex, say v:

If v 6= ω, then av, bv ∈ E and abv 6∈ E which implies σav, σbv ∈ Bdω
0 K̃ and σabv 6∈ Bdω

0 K̃.

Hence σv ∈ Lkω
0 (a; K̃) ∩ Lkω

0 (b; K̃) and not in Lkω
0 (ab; K̃). Thus link condition (III.0) is

violated.

If v is ω, then since link condition (II.0) is violated, ω 6∈ Lkω
0 (ab;E). This implies ωab 6∈

Bdω
0 E, and therefore Ord(ab;E) = 0. Since ω ∈ Lkω

0 (a;E), it follows that Ord(a;E) ≥ 1,

because cones from ω are added only to simplices in Bd1E. Using Lemma 3, Ord(σa; K̃) ≥ 1.
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Hence ωσa ∈ Bdω
0 K̃ and ωσ ∈ Lkω

0 (a; K̃). Similarly, ωσ ∈ Lkω
0 (b; K̃). However, since

Ord(ab;E) = 0, it follows from Lemma 2, that Ord(σab; K̃) = 0 and hence ωσ 6∈ Lkω
0 (ab; K̃).

Therefore link condition (III.0) is violated.

Case 2. Link condition (II.1) is violated:

Since Bdω
1 E is a 1-complex, s is a vertex.

Case 2a. s is a vertex, v ∈ E:

Since Bdω
1 E is a 1-complex, Ord(av;E) = 1. Using Lemma 1, Ord(σav; K̃) = 1, which

implies σv ∈ Lkω
1 (a; K̃). Similarly, σv ∈ Lkω

1 (b; K̃). Therefore, Lkω
1 (a; K̃) ∩ Lkω

1 (b; K̃)

contains an edge.

Case 2b. s is ω:

Since in Bdω
1 E, cones from ω are added only to vertices of order 2, Ord(a;E) = 2. Using

Lemma 4, Ord(σa; K̃) = 2. Hence, ωσa ∈ Bdω
1 K̃ and ωσ ∈ Lkω

1 (a; K̃). Similarly, ωσ ∈

Lkω
1 (b; K̃). Therefore, Lkω

1 (a; K̃) ∩ Lkω
1 (b; K̃) contains an edge.

In both cases the link condition (III.1) is violated because Lkω
1 (ab; K̃) cannot contain an edge.

4.5 2-complexes

We now consider the analogous problem in 2D, where K is a 2-complex and E is a 1-complex disjoint

from Bd1K. Vivodtzev et al. [2] describe a proof of topology preservation by claiming that Bd1K̃ =

E ∪ Bd1K. However, this is not true because Bd1K̃ contains edges incident on σ in addition to edges

in E ∪Bd1K. For example, in Figure 3.3(b), the edges σa, σb, σc and σd are all order 1 edges.

Moreover, the arguments used in their proof infers order of an edge by considering the number of

triangles shared by the edge. These arguments do not extend to the case of 3-complexes. For instance,

the star of an edge in 3-complexes contains several tetrahedra but the number of tetrahedra do not

directly indicate the order of the edge. Our arguments look at relationship between the star of simplices

in E and K̃ to infer the order of a simplex. This approach is more general than arguments in [2]. Hence

we prove the result in the case of 2D meshes using arguments analogous to the 3D case.

Topology preservation of K and topology preservation of E while contracting edges that do not lie in

E, can be shown using the same arguments as in the 3D case. For the sake of completeness, we describe

topology preservation of E when an edge from E is contracted, although this is analogous to the 3D

case.

Since E is a 1-complex, E has one link condition given by:

Lkω
0 (a;E) ∩ Lkω

0 (b;E) = φ. (I.0)
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We show that if contracting an edge ab ∈ E violates link condition (I.0), then link conditions are

violated in K̃ as well. Since E is a 1-complex, only vertices can be present in Lkω
0 (a;E) ∩ Lkω

0 (b;E).

The vertex, v, that violates link condition (I.0) can either be the dummy vertex ω or a vertex in E.

Case 1. v ∈ E:

Since av ∈ E, σav ∈ K̃. Thus, σv ∈ Lkω
0 (a; K̃). Similarly, σv ∈ Lkω

0 (b; K̃). Therefore, Lkω
0 (a; K̃)∩

Lkω
0 (b; K̃) contains an edge.

Case 2. v is ω:

Since cones from ω are added only to vertices of order 1, Ord(a;E) = 1. This means degree of a

in E is either exactly one or more than two. Hence in K̃, the edge σa is incident on either exactly

one or more than two triangles. Thus Ord(σa; K̃) = 1. Hence ωσa ∈ Bdω
0 K̃ and ωσ ∈ Lkω

0 (a; K̃).

Similarly, ωσ ∈ Lkω
0 (b; K̃). Therefore, Lkω

0 (a; K̃) ∩ Lkω
0 (b; K̃) contains an edge.

Since K̃ is a 2-complex, Lkω
0 (ab; K̃) cannot contain an edge. Hence, in both the cases 0th link

condition is violated in K̃.

4.6 Embedded structure on boundary

We now extend our result to include embedded structures that intersect the boundary of K. This

assumption is a serious shortcoming of the previous result [1, 2] because embedded structure often lies

on the boundary, as shown in our applications.

Lemmas 1-4 clearly show that the relation between order of a simplex in E and K̃ does not change

whether embedded structure intersect the boundary of K or not. However, Lemma 5 is not necessarily

true when we remove the assumption on E. For example, if E contains a triangle, say abc which is part

of a single tetrahedron in K, then Ord(abc;K) = 1. However, the triangle abc ∈ K̃ is incident on two

tetrahedra due to the cone from σ and hence Ord(abc; K̃) = 0. Thus Bdω
1 K 6⊆ Bdω

1 K̃.

However, note that Lemma 5 is not necessary to show that topology of E is preserved while con-

tracting an edge. A simple solution that ensures that topology of K is also preserved is to verify that

link conditions of K are satisfied in addition to the link conditions for K̃. Although this additional

validation seems to require evaluation of three new link conditions, in practice, the link conditions for

K and K̃ can be verified in a single procedure.

4.7 Necessity of Link Conditions

For a manifold M , the link condition for an edge ab is Lk(a;M) ∩ Lk(b;M) = Lk(ab;M). The results

from [9] show that for 2-manifolds and 3-manifolds, link conditions are necessary for ensuring topology
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preservation. The assumption of the domain being a manifold is very restrictive and does not hold

in many practical situations. However, in a more general setting of non-manifolds, the link conditions

are not necessary for ensuring topology preservation. In this section, we show that under practically

reasonable assumptions, the link conditions are almost always necessary. In particular, when K is a

2-manifold with or without boundary, E is a 1-manifold with or without boundary, and E ∩Bd1K = φ,

we show that except for two special cases, the link conditions of K̃ are necessary for preserving the

topology of K and E.

Since necessity of link conditions for topology preserving simplification of meshes with embedded

structures were not studied earlier, it was not clear if such simplifications were too conservative and dis-

allowed edge contractions that preserved the topology but violated the link conditions. Our result below

shows that 2D mesh simplification with embedded structures is nearly optimal using link conditions, in

the sense that most of the edge contractions that we disallow do in fact modify topology.

The link conditions for K̃,

Lkω
0 (a; K̃) ∩ Lkω

0 (b; K̃) = Lkω
0 (ab; K̃), (4.1)

Lkω
1 (a; K̃) ∩ Lkω

1 (b; K̃) = φ. (4.2)

are not necessary in the following special cases.

(a) (b)

Figure 4.5: Two exceptions where the edge ab can be contracted without violating topology, but violates
the link conditions. (a) Exception 1 : a, x and b are the first 3 vertices in E. (b) Exception 2 : ya is on
the boundary of K.

Exception 1. Lkω
0 (a; K̃) ∩ Lkω

0 (b; K̃) contains an edge σx where a, x and b are three vertices of E as

shown in Figure 4.5(a). In this case, there is no topology violation since the complex before and

after contraction is topologically equivalent. However, link condition (4.1) is violated as an edge

is present in Lkω
0 (a; K̃) ∩ Lkω

0 (b; K̃).

Exception 2. Lkω
0 (a; K̃)∩Lkω

0 (b; K̃) contains an edge xy such that either ya or yb lies on the boundary

of K (Figure 4.5(b)). If ya and yb were not on the boundary of K, then after contraction of ab,

the edge yc would have been incident on three triangles and hence caused a topology violation.
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However, without loss of generality, say ya is on the boundary. After contraction, yc is incident

on two triangles and hence there is no topology violation.

We now show that, in all other cases, whenever link conditions of K̃ are violated, the topology of K

or E changes. The link conditions of K̃ could be violated in three ways:

Case 1. An edge xy violates link condition (4.1):

Case 1a. xy ∈ K:

Figure 4.6: After contracting ab to c, yc becomes part of three triangles

Since Exception 2 is excluded, the edge ya is part of two triangles in K - yax and yau.

Similarly, yb is part of two triangles in K - ybx and ybv (Figure 4.6). If u 6= v, after

contracting ab to c, the edge yc is part of three triangles, ycx, ycu and ycv. In K, no edge

is part of three triangles. Thus contracting ab results in change in topology of K. If u = v,

then the same argument holds after replacing xy with yu.

Case 1b. xy 6∈ K:

The only edges in Bdω
0 K̃ that are not part of K are the edges incident on either σ or ω.

Since all the edges in E are part of three triangles in K̃, the order of any edge in E is 1 in

K̃. Hence for any simplex s ∈ Bdω
0 K̃, if cone from σ is added to s, then cone from ω is also

added to s. So we can assume without loss of generality that x is ω.

If xy is ωσ, since cones from ω are added only to simplices of order 1 or higher Ord(σa;E) =

Ord(σb;E) = 1. This means that σa and σb are incident on a single triangle. Hence a and

b are degree-1 vertices in E. If the path from a to b in E consists of only one edge, then

contracting ab would destroy the embedded structure. If there are more than one edge, since

Exception 1 is excluded, contracting ab would create a new cycle in E (Figure 4.9). Thus

topology of E is violated.

The only other edges whose order is 1 in K̃ are the edges in E or the edges in Bd1K. Hence,

ya and yb are either both in E or Bd1K. Note that it is not possible for one edge to be in E

and the other to be in Bd1K since E ∩Bd1K = φ.



Chapter 4. Topology Preservation 20

If ya, yb ∈ E, since Exception 1 is excluded, either ab ∈ E or there exists edges wa, bz ∈ E.

On the other hand, if ya, yb ∈ Bd1K, since Bd1K is a 1-manifold, either ab ∈ Bd1K or there

exist edges wa, bz ∈ Bd1K.

If ab ∈ Bd1K, then contracting ab changes topology of Bd1K because the cycle ab− by− ya

exists before contraction and does not exist after contraction. The same argument holds if

ab ∈ E. So, we can assume that the path wa−ay−yb−bz exists in either Bd1K or E (Figure

4.7). After contracting ab to c, the edges wc, yc and zc are incident on c and thus either

Bd1K or E becomes a non-manifold after contraction. If w = z, then a cycle is destroyed.

Figure 4.7: Bd1K or E becomes a non-manifold after contracting ab

Case 2. Link condition (4.1) is violated only by vertices, say vertex x:

Figure 4.8: If ab contracts to c, the edge xc would be incident on three triangles.

If x is not σ or ω, then edge ax, bx and ab exist, but the triangle axb does not exist. Since K

cannot have principal edges, there exists triangles axu and bxv. We can assume that u 6= v, since

Lkω
0 (a; K̃) ∩ Lkω

0 (b; K̃) does not contain any edges. If both ax and bx were part of exactly one

triangle, then Lkω
0 (a; K̃) ∩ Lkω

0 (b; K̃) would have contained the edge ωx. Hence we can assume

that ax is shared by a second triangle, axz (Figure 4.8). After contracting ab to c, the edge xc

becomes part of three triangles, xzc, xcu and xcv and thus topology of K changes.

If x is either σ or ω, then a and b are vertices in E or Bd1K. We can assume without loss of

generality that x is ω since all the cones added from σ are also added from ω. If there is no

path from a to b in link of ω then contracting ab would violate topology as it would connect

two components which are disconnected in Bd1K̃. If there is a path from a to b in link of ω,
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Figure 4.9: Contracting edge ab creates a new cycle in Bd1K or E.

then since Lkω
0 (a; K̃) ∩ Lkω

0 (b; K̃) contains no edges, the path contains at least 3 edges (Figure

4.9). Otherwise if ay, yb are the only two edges, then edge ωy ∈ Lkω
0 (a; K̃) ∩ Lkω

0 (b; K̃). Hence

contracting ab introduces a new cycle and changes topology of E or Bd1K.

Case 3. Link condition (4.2) is violated by a vertex x:

If x ∈ K, then the cycle ax, bx and ab exists in E ∪ Bd1K and the cycle would be destroyed by

contracting ab thus changing the topology of E or Bd1K. If x is ω or σ, a and b are degree-1

vertices in E. We have already considered this case earlier in Case 1b.



Chapter 5

Implementation

Our implementation of simplification of 3D meshes with embedded structures essentially contracts edges

that satisfy the link conditions. The input mesh represents a 3-manifold with or without boundary and

the embedded structure is a 2-manifold with or without boundary. The simplification proceeds until the

number of vertices in the mesh reaches a user-specified threshold, v, or until no edge can be contracted

without violating topology, whichever happens earlier.

5.1 Data structure and algorithm

We represent the input mesh using the triangle-edge data structure [14]. Each triangle has a flag to

identify if the triangle belongs to E. Using ideas from [8], we modify the quadric error metric [6] to

handle 3D meshes with a scalar field and improve the quality of the mesh. In order to ensure that

the geometry of the embedded structure is minimally affected, triangles in the embedded structure

are treated similar to boundary triangles i.e. edges that are incident on the embedded structure are

penalized with a higher weight. Edges are selected from a priority queue in the order of increasing

cost. Function SIMPLIFY describes the high level algorithm. Implementation details, except for the

evaluation of order of simplices in K̃, can be found in earlier work [6, 8].

SIMPLIFY(K)

Initialise priority queue Q with edges in K

while(# of vertices > v and Q.notempty()) do

ab = Q.pop()

if(Link Conditions for K and K̃ are satisfied)

Contract ab and update K and Q

endif

endwhile

22
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5.2 Evaluating the order of simplices in K̃

Simplices that are not part of E have the same order in K and K̃. Hence we consider only simplices

whose order is different in K and K̃ in this section.

Tetrahedra: All tetrahedra incident on σ have order 0.

Triangles: A triangle abc ∈ E ∩ Bd1K is incident on exactly two tetrahedra, one in K and the other

a cone from σ, and hence Ord(abc; K̃) is 0. If abc lies in the interior of K then abc is incident on

three tetrahedra and hence has order 1. The triangle could also be a cone from σ, namely σab. The

triangle σab is incident on two tetrahedra if St(ab;E) has two triangles. In this case, Ord(σab; K̃) is 0.

If St(ab;E) has exactly one triangle then Ord(σab; K̃) is 1.

Edges: For an edge σa, Ord(σa; K̃) = Ord(a;E). For edges in E, we consider the following two cases.

Case 1. Edge ab ∈ E lies on Bd1K:

If ab is incident on exactly two triangles abc and abd in E and if both abc and abd are on Bd1K

as shown in Figure 5.1(a), then Ord(ab; K̃) is 0. This is because the half sphere St(ab;K) grows

to become a sphere in K̃ after adding the cones from σ. If, at least one triangle, say abc is in

the interior of K, as shown in Figure 5.1(b) then Ord(ab; K̃) is 2. This is because Bd1K is a

2-manifold and hence ab is incident on a triangle abx on Bd1K. Triangle abx is incident on only

one tetrahedron and abc on three tetrahedra. Subdividing the star of a triangle cannot create two

triangles, one of which is incident on exactly one tetrahedron and the other on three tetrahedra.

(a) (b)

Figure 5.1: (a) St(ab;E) contains triangles abc and abd, both lying in Bd1K. (b) St(ab;E) contains
triangle abd on Bd1K and abc in the interior of K.

If ab is incident on only one triangle abc ∈ E and abc lies on Bd1K, as shown in Figure 5.2(a),

then Ord(ab; K̃) = 1, since St(ab; K̃) is a half sphere. If abc lies in the interior of K, as shown
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(a) (b)

Figure 5.2: (a) St(ab;E) contains exactly one triangle abc lying in Bd1K. (b) St(ab;E) contains exactly
one triangle abc lying in the interior of K.

in Figure 5.2(b), then Ord(ab; K̃) = 2, due to triangles abx and abc incident on one and three

tetrahedra respectively, as before.

Case 2. Edge ab ∈ E lies outside Bd1K:

Ord(ab; K̃) = 1, if St(ab;E) has exactly two triangles because St(ab; K̃) has isomorphic subdivision

with star of a triangle acd ∈ E in the interior of K, as shown in Figure 5.3.

(a) (b)

Figure 5.3: (a) St(ab;E) contains exactly two triangles abc and abd in the interior of K. (b) Isomorphic
subdivision of star of acd.

If St(ab;E) has only one triangle abc, as shown in Figure 5.4(a) then Ord(ab; K̃) is 2 since σab is

incident on exactly one tetrahedron, while abc is incident on three tetrahedra, as shown in Figure

5.4(b).

Vertices: For a vertex a 6∈ Bd1K, Ord(a; K̃) = Ord(a;E)+1, using isomorphic subdivisions of St(ab;E)

described in Figure 5.3(a) and Figure 5.4(a).

For a vertex a ∈ Bd1K, if St(a;E) ⊂ Bd1K, then Ord(a; K̃) = Ord(a;E), using the subdivision of

St(ab;K), described in Figure 5.1(a) and Figure 5.2(a). If St(a;E) is a disk such that a half disk lies on

Bd1K and the remaining half disk lies in the interior of K, then Ord(a; K̃) is 2, using the subdivision

of St(ab;K), described in Figure 5.1(b). If St(a;E) is a half disk that lies in the interior of K, then
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(a) (b)

Figure 5.4: (a) St(ab;E) contains exactly one triangle abc in the interior of K. (b) σab is incident on
one tetrahedron, whereas abc is incident on three tetrahedra.

Ord(a; K̃) is 2, using the subdivision of St(ab;K), described in Figure 5.2(b). Although it is possible

to analyse the remaining cases when a lies on Bd1K and its star lies partially in the interior of K, for

ease of computation and book keeping involved during implementation, we consider such a vertex to

have order 3. Overestimating the order of the vertex assures that the topology is preserved at the cost

of preventing a few legal edge contractions.

5.3 Updating priority queue after an edge contraction

After contracting an edge ab to c, cost of the edges in the neighbourhood of c have to be recomputed in

order to update the priority queue. This is a computationally expensive step. Moreover, it is possible

that some of these computations are redundant since the cost of an edge will be recomputed several

times during a sequence of edge contractions.

We apply a simple optimisation to reduce the overhead involved in updating the priority queue after

an edge contraction. Associated with each vertex a, we store a timestamp that indicates when any

edge incident on a was last contracted. Each edge ab in the priority queue also has a timestamp that

indicates when the edge ab was added to the priority queue. If the timestamp associated with edge ab

is older than those associated with vertices a or b, it means that the current cost of the edge ab is stale

and has to be recomputed. However, we do this recomputation in a lazy manner. Whenever an edge ab

is selected for contraction, we recompute the cost of the edge if it is stale. The edge is inserted back to

the priority queue with a new timestamp and the process is repeated till a non-stale edge is selected for

contraction.

The one disadvantage with this scheme is that by lazily updating the priority queue we may not

always be selecting the edge with least cost for contraction. However, note that an edge which has a

high cost before contraction is very likely to have a high cost even after the contraction. Hence, even

though this optimisation may not always select the edge with least cost, in most cases it will be selecting

a low cost edge for contraction and hence will not affect the quality of simplification a lot.
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Applications

6.1 Isosurface Topology Preservation

Topology of isosurfaces gives insights about important features of the underlying volumetric data. The

topology of isosurfaces may be important in medical applications like cortex labelling, organ template

fitting etc. In CAD modelling, features like tunnels and holes are used in identifying important charac-

teristics of the model.

By treating the isosurface as an embedded structure, we ensure topology preservation of the isosurface

while doing mesh simplification. For this purpose, we extract the relevant isosurface and then do

remeshing of the original tetrahedral mesh so that the triangles which make up the isosurface become

faces of the tetrahedra in the new mesh. To do this, we consider each tetrahedron that intersects the

isosurface and subdivide the tetrahedron based on how the isosurface passes through the tetrahedron.

Figure 6.1 shows that the topology of isosurface is preserved after simplification of the Bucky Ball

dataset. Moreover, the geometry of the embedded structure remain close to the original. A simple

extension allows us to simplify the mesh while preserving the topology of multiple isosurfaces.

6.2 Molecular Surface Topology Preservation

Modelling of molecular surfaces of proteins is useful in applications like biomolecular recognition, study

of drug binding cavities etc. Preserving the topology of the molecular surface is important in studying

the properties of the molecule. For example, the stability of a protein depends on the number and size

of voids [18].

A molecule in solution is represented by a volume mesh. We simplify the mesh while preserving

the topology of the molecular surface, which is specified as an embedded structure. Figure 6.2 shows a

molecular surface before and after simplification.
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(a) (b) (c)

Figure 6.1: Isosurface topology preserving volume simplification. From left to right - isosurface at 100%,
30% and 10% of original data.

(a) (b) (c)

Figure 6.2: Molecular surface simplification. The mesh representing the volume occupied by the protein
molecule (PDB ID: 193L) is simplified while preserving the topology of the molecular surface. From left
to right - molecular surface at 100%, 30% and 10% of original data.
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Results

We report the results of our experiments on four datasets. The first three datasets from the aim@shape

repository have a scalar field associated with them. In each case, we are interested in preserving the

topology of one or more isosurfaces extracted from the data. Error introduced in the scalar field due to

the simplification is measured by the root mean square error, computed as the difference between the

scalar field value at vertices of the original and the simplified meshes. The fourth dataset represents

a molecule in solution, where the surface of the molecule is stored as the embedded structure. Error

introduced by the simplification is measured as the rms distance between the two surfaces.

We simplify the four datasets and measure the root mean square error, the time taken and the

standard deviation of dihedral, solid and face angles during simplification, see Table 7.1 for details. The

average values of the three types of angles remain nearly constant at around 1.22, 0.53 and 1.05 radians.

Topology violation without using Link Conditions: The quadric error metric as described in

Section 5.1 aims to preserve the geometry of the mesh and the embedded structure. We now illustrate,

using an example, the importance of link conditions to ensure topology preservation.

Figure 7.1 shows a thin ring-like section in the embedded structure of the Liquid Oxygen Post dataset.

The magnified view shows that the ring-like section is a 2-manifold with boundary. A simplification

without checking link conditions of K̃ creates a principal edge (i.e. no cofaces), thus violating the

topology of the embedded structure.
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(a) (b) (c)

Figure 7.1: Topology violation of embedded structure. (a) Embedded structure with a ring like portion.
(b) Magnified view of the ring like portion which is a 2-manifold with boundary. (c) After simplification,
a principal edge appears (shown in red) and violates topology.
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(a) Bucky Ball

% #vert rms time dihedral solid face
100 331485 0 0 0.383 0.508 0.383
50 165742 0.016 44 0.397 0.463 0.361
30 99445 0.023 67 0.431 0.455 0.368
20 66297 0.029 80 0.458 0.456 0.377
10 33148 0.034 94 0.477 0.461 0.383
5 16574 0.039 103 0.489 0.468 0.388
2 6629 0.064 117 0.497 0.477 0.393

(b) Plasma64

% #vert rms time dihedral solid face
100 276446 0 0 0.338 0.495 0.343
50 138223 0.028 36 0.354 0.435 0.319
30 82933 0.029 54 0.393 0.423 0.327
20 55289 0.029 64 0.424 0.423 0.336
10 27644 0.028 74 0.442 0.427 0.343
5 13822 0.030 81 0.453 0.431 0.348
2 5528 0.032 87 0.460 0.437 0.351

(c) Liquid Oxygen Post

% #vert rms time dihedral solid face
100 126890 0 0 0.571 0.575 0.608
50 63445 0.039 20 0.607 0.602 0.612
30 38067 0.073 29 0.637 0.627 0.615
20 25378 0.089 33 0.661 0.646 0.617
10 12689 0.098 39 0.676 0.658 0.619
5 6344 0.122 42 0.686 0.667 0.622
2 2537 0.111 46 0.691 0.674 0.624

(d) Molecule

% #vert rms time dihedral solid face
100 34920 0 0 0.533 0.380 0.415
50 17460 0.008 9 0.607 0.495 0.449
30 10476 0.013 12 0.655 0.569 0.472
20 6984 0.021 14 0.690 0.619 0.490
10 3492 0.047 18 0.711 0.651 0.502
5 1746 0.127 22 0.722 0.666 0.509
2 698 0.279 26 0.725 0.671 0.511

Table 7.1: Results of simplification of three isosurface and a molecular surface dataset. The time taken
is measured on a 2 GHz Intel Xeon CPU.
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Conclusion and Future Work

We prove theoretically the correctness of the technique proposed by [1, 2] for topology preserving sim-

plification of meshes with embedded structures. Our approach results in a unified proof for 2D and

3D meshes. We also demonstrate usefulness of this technique in applications like isosurface topology

preservation and molecular surface topology preservation. Besides preserving the scalar field and cre-

ating good quality mesh elements, our implementation also ensures that the geometry of the embedded

structure in preserved.

In this report, we have analysed the necessity of the mesh simplification technique for 2D meshes

with 1D embedded structures. The necessity of the technique in the case of 3D meshes needs to be

analysed. In the current work, we do a detailed case analysis for computing order of simplices. We

need to explore if there are other approaches to identify order of a simplex. Since such techniques

would measure the topological complexity of simplices, they may provide better insights in identifying

important features of a mesh.
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