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Abstract

We study the problem of subsampling of 3D scalar fields. Software tools for visualizing

3D scalar fields usually have processing and memory requirements depending upon the

size of the scalar field for getting desired interactiveness. Small computing systems

such as mobile devices have resource constraints. When the size of the scalar field is

large or exceeds the available memory, the visualization tool is unable to achieve a good

interactive rate. Appropriate subsampling of the scalar field can alleviate such a problem.

The subsampled scalar field should have all the important features of the original scalar

field. Topological properties in scalar fields carry important information about the scalar

fields itself. So preserving these properties in the subsampled scalar field can help in

retaining important features of the original large scalar field. We built a volume render

for a mobile device. We propose three subsampling algorithms based on retaining the

critical points. A method to evaluate the subsampled scalar fields based on mapping of

branches using proximity. We also showed how our algorithms and evaluation method

works on some of the dataset.
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Chapter 1

Introduction

1.1 Scalar Fields

Experiments and simulations such as computational fluid dynamics generate 3D scalar

fields. Study of objects or spaces in which scanning techniques such as laser scans,

satellite imaging, 3D radar imaging and medical imaging etc are used also produces 3D

scalar field. The scalar field is available as an array of samples(values) over the domain

polygonal mesh. These meshes can be structured or unstructured. In this paper we will

consider structured grids only. The methods of visualizing the scalar field are isosurface

extraction[3] and volume rendering[3]. Isosurface extraction involves finding of positions

in the scalar field where the value is at least equal to a given value and rendering them

onto the screen. Volume rendering is the technique where beneficial portions of the scalar

field are identified and rendered onto the screen.

1.2 Mobile Devices for Visualization

Mobile devices can be thought as small computing systems where the processing power,

memory size and memory bandwidth is relatively less compared to the desktop com-

puters. Most of these devices don’t even support floating-point operations. Use of

mobile devices has grown over the years due to its small form factor, ubiquity, low power

1



Chapter 1. Introduction 2

consumption and improvement in the processing and graphics performances. There

have been several advances in application development on such devices. Khronos Group

maintains the 3D application programming interface (API) OpenGL ES for 3D graphics

programming in mobile and embedded devices. With these capabilities, scientific visu-

alization is possible. The doctors and medical practitioners can use it for displaying CT

and MRI scans to their patients with little effort. Scientists can use them for visualizing

their simulated data when they are outside their laboratory. Engineers can use it for

reference when they are on the fields away from bulky dedicated machines. Thus there

is high potential of usage of such devices for scientific visualization purpose.

1.3 Subsampling

Subsampling is most common in 2D image processing, where the images are downscaled

for space and low resolution requirements. It enables to accelerate the visualizing ap-

plications when the user doesn’t need much of the detail. The subsampled scalar field

should have the required amount of features from the original scalar field. Subsampled

scalar field enables high degree of interactivity since it minimizes the amount of pro-

cessing, data transfer between the processor and the memory and also the total memory

requirement. Analyzing large scalar field may require huge amount of computation and

completion time. If approximate results will serve the purpose then subsampled scalar

field holds good i.e. it can be analyzed to get the results in much lesser time. Subsam-

pling can be done in the preprocessing stage and its benefits are seen in the processing

stage.

1.4 Topological Properties

Subsampling a scalar field can introduce geometrical error and or topological error. The

topological properties of the scalar field capture features, which are useful in analysis

and visualization of scalar fields. G. H. Weber et al.[4] and Takahashi et al.[5] used it
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in volume rendering for creation of the transfer function. V. Natarajan et al.[6] used

topological properties to analyze volumetric data. Hilaga et al.[7] showed that 3D shape

datasets can be compared and matched based on these properties. Bajaj et al.[8] used it

for simplification of data. We will focus on preventing topological errors in this paper.

1.5 Organization of this Thesis

The rest of the report is arranged as follows: section 2 gives the details of the volume

renderer we built for a mobile device and the challenges we faced; chapter 3 provides

the related work done in subsampling of scalar fields; chapter 4 provides an overview

of topological properties of scalar fields; chapter 5 gives details of our work; chapter 6

showcases the results and finally chapter 7 provides the conclusion from the result and

the future work.



Chapter 2

Volume Rendering on Mobile

Devices

We implemented a texture-based axis aligned volume renderer for the mobile device

Nokia N900.

2.1 Configuration of Mobile Devices

Mobile devices usually have low-powered single chip with multiple IP cores for different

purposes such as general purpose processor, dedicated graphics processor, digital signal

processor(s), and many other cores for encoding and decoding etc. The speed of the

Figure 2.1: Diagram of a sample System on Chip (SOC) used in mobile devices
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computing processor is at most 1 GHz (up to 2000 MIPS) with system bus frequency

up to 166 MHz [12]. Not all mobile devices have a graphics accelerator. The mobile

graphics processors are without any dedicated graphics memory and the most advanced

mobile graphics processor can provide fill rate of 1 giga pixels per second with a clock

speed of at most 200 MHz using the shared system memory. The system memory can be

at most 256 megabytes. Memory interface is at most 32 bits and memory bandwidth is

up to 200 MB per second [12]. The display screen dimension is small but some of them

offer high resolution within that. The user inputs are provided using touchscreen and

QWERTY keyboard. These capabilities are less compared to desktop systems due to

small form-factor and low power consumption requirements.

2.2 Previous Work on Mobile Devices

Initially mobiles devices were used for displaying the rendered images which were pro-

cessed and rendered in remote machines[9]. This is due to the fact that the minimum

processing, memory and graphics support were not satisfied at that time. With the ad-

vent of better mobiles, it became favorable for processing and rendering in the device

itself. The 3D models were loaded, processed on the mobile device and rendered them

with several illustrating techniques at an interactive frame rate[10]. The first volume

rendering of 3D scalar fields on mobile devices have been credited to Manuel Moser and

Daniel Weiskopf[11]. They identified the limitations in hardware of mobile devices and

used memory efficient techniques for rendering small sized scalar field of dimension at

most 643. We used the techniques mentioned by them to build a volume renderer on a

much better hardware platform. The scalar fields we used are larger up to 5123. Our

goal was to achieve at least 10 frames per second which can be considered as decently

interactive.



Chapter 2. Volume Rendering on Mobile Devices 6

Figure 2.2: Volume rendering pipeline used in our implementation

2.3 Implementation

The platform used for implementation is Nokia N900. It has Texas Instruments’ ARM

based OMAP 3430 Cortex-A8 600 MHz processor, PowerVR SGX 530 GPU (clock speed

of 110 MHz, fill rate of 500 mega pixels per second if clock speed is 200 MHz) with

OpenGL ES 2.0 support, 256 MB main memory running at frequency 166 MHz and 768

MB virtual memory.

The volume renderer we built is Graphics Processing Unit(GPU)-based i.e. it utilizes

the GPU for processing intermediate results and rendering the final result. The volume

data was submitted to the GPU in the form 2D textures since 3D textures are not

supported by the GPU hardware. 3D textures utilize trilinear interpolation to calculate

value at a particular position and it is computationally costly. Slices of 2D textures were

derived from the scalar field with respect to the axis alignment. There can be six types

of axis alignments i.e. a positive x-axis, a negative x-axis, a positive y-axis, a negative

y-axis, a positive z-axis and a negative z-axis. So this accounted for two footprints of
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Figure 2.3: Slices axis alignment Figure 2.4: Texture Atlas

the same data in the memory at any instance i.e. one for the scalar field data and other

for the set of particular axis-aligned 2D textures. If the value at each point in the scalar

field(w×h×d) is of size b bits, then the memory requirement will be (2×w×h×d×b)/8

bytes. Thus a scalar field of dimension 256×256×128 is represented by 256 slices or 2D

textures, if it is aligned to x-axis or y-axis otherwise it requires 128 slices for the z-axis

alignment. These textures are preprocessed by GPU before further use in order to get

better memory access through locality of reference.

These textures are applied to a graphic primitive i.e. rectangular polygons (may be

created using two triangular polygons for each). The guidelines of PowerVR[15] suggests

to decrease the rendering calls made to OpenGL ES. This will reduce the number of data

transfer between CPU and GPU. In order to decrease the rendering calls we used vertex

buffers to define the primitives and their texture coordinates. This is complemented with

the use of texture atlas. The graphics hardware supports at most 8 texture buffers; this

hinders the target of reducing the number of rendering calls. Texture atlas is used for

fitting several slices in one texture buffer of a given size. An algorithm have been written

for fitting maximum number of slices in a given texture buffer. In our case the texture

buffer is of 4 mega bytes. This doesn’t allow placing all the slices in one single texture

buffer for scalar fields exceeding 4 megabytes. And hence use of texture atlas reduces
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number of rendering calls to single call for scalar fields of dimension ≤ 128×128×256.

For large scalar fields texture atlas reduces the number of rendering calls to few.

The benefit obtained from using newer hardware is the support for OpenGL ES 2.0

which gives access to the programmable shader. The scalar field was not preprocessed

to create textures using the RGBA values for each point depending upon the value at

that point. If RGBA values were used in storing the textures, the memory requirement

would have increased by five folds at any instance. This helped to reduce memory usage.

The raw data is later processed in the programmable shader using transfer function

table (in the form of 2D texture) to generate the RGBA values for each point (known as

postclassification). This also provides quality rendered images.

When the zoom in feature is implemented using the scaling function of OpenGL ES,

the size of the intermediate data (number of fragments of each OpenGl ES primitive)

is increased through interpolation, which reduces the frame rates. Instead of using the

scaling function, the image obtained from the initial rendering is scaled using the bilinear

interpolation as proposed by Moser and Weiskopf. This can be done using the pixel

buffer. The cost of this interpolation is less compared to the interpolation done for

scaling function. The image quality degrades due to increased pixel size. This technique

is useful when the user doesn’t need much detail.

2.4 Results of Volume Renderer Implementation

The data of varied sizes were obtained from the Volume Dataset Repository (http:

//www.volvis.org/) at the WSI/GRIS, University of Tübingen, Germany. The table

2.1 displays the details for each of the data. Also the frame rates (average value for

a number of readings) for each of the data have been provided. All the images were

rendered using the same transfer function. These results infer that there is a decrease in

frame rates as the size of the data is increased.
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Table 2.1: Volume rendering results
Data name Dimensions Memory FPS

Silicium 98× 34× 34 110 KB 34.75
Fuel 64× 64× 64 256 KB 35.56

CTA Ear 128× 128× 30 480 KB 20.19
Hydrogen atom 128× 128× 128 2 MB 13.58

Engine 256× 256× 128 8 MB 4.78
Skull 256× 256× 256 16 MB 2.34

Vertebra 512× 512× 512 128 MB 1.24

Figure 2.5: Nokia N900 with our volume renderer displaying the shockwave data

Figure 2.6: A volume rendered image of engine data on Nokia N900.
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Figure 2.7: A volume rendered image of
hydrogen atom data on Nokia N900.

Figure 2.8: A volume rendered image of
bonsai data on Nokia N900.

2.5 Techniques for Large Scalar Field

The goal of at least 10 fps couldn’t be achieved with the previously mentioned tech-

niques. Several techniques have been proposed to handle large scalar fields in desktop

computers[14]. Their applicability to mobile devices has been summarized below.

Bricking technique assumes the scalar field at least fits into the main memory. The

scalar field is subdivided into small parts called bricks. The GPU memory is assumed

to be small here. So these bricks are sent to the GPU memory in batches of some order

and rendered. This is similar to what we did if the slices don’t fit into a single texture

buffer.

The multiresolution based volume rendering stores the scalar field in an octree. De-

pending upon the distance from the camera, it decides whether a particular child node

of the octree is traversed (followed by processing and rendering) or not. This technique

may increase the number of rendering calls depending upon the size of each child node.

Also it increases the number of primitives in the graphics pipeline, which can further

decrease the performance.

Compressed texture support of GPU can be utilized for improving performance with

decreased quality of the rendered image. The hardware which we used supports com-

pressed textures in RGB and RGBA formats only. This will neutralize the effects of

memory saving done and the postclassification cannot be performed anymore.
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In wavelet compression based technique, the scalar field is converted into hierarchical

wavelet representation in compressed form using octree. When a child node is selected

for display, it is decompressed first and then used by the rendering call. This reduces the

memory footprint at the cost of increased processing. This technique also has the same

problems as with the multiresolution technique.

The packing technique and the vector quantization technique uses compression but

here decompression is done using shader(either vertex or fragment). The low clock speed,

memory bandwidth and small number of stream processors in GPU of mobile devices

may not deliver the desired performance due to increased floating-point computations.

The above approaches are not applicable in mobile devices due to the hardware limita-

tions. This necessitates moving towards other solutions. In mobile devices, downscaling

of images and video is quite common utilizing the fact that the display screens are smaller

in size and minor decrease in detail will not affect user’s perception. This motivates us

to study and explore the possibilities in downsampling also known as subsampling.



Chapter 3

Topology of a Scalar Field

The topological properties of a scalar field refer to the topology of its level sets. Let

f : M.R be a piecewise scalar function defined over a mesh M. The level set for a

particular isovalue v ∈ R is defined as a set of points p ∈ M where f(p) = v. The

connectivity among points of a level set can be defined based on certain scheme (distance

or edges in the mesh M etc.). This will result in a graph with one or more connected

components called contours (in 1D iso point, in 2D isoline, in 3D isosurface). The

contours begin from points called minima and ends at points called maxima. Minima and

maxima points together constitute the extrema points. The points where the contours

join or split, are called saddles. There are various types of saddles depending upon the

number of splits and joins. The saddles and the extrema points together are called the

critical points. Other than critical points, there are points where contours are neither

created or destroyed nor split or join. Such points are called regular points. Figure 3.1

demonstrates a 2D scalar field.

Contour tree is an abstract way of representing a scalar field introduced by Van

Krevald et al[19]. The contour tree captures the topological properties of a scalar field.

A contour tree can be subdivided hierarchically into branches known as branch decom-

position commenced by Pascucci et al[20]. A single branch consists of a pair of either

saddle and extremum or extremum and extremum. A branch decomposed contour tree

consists of a single branch having extrema as pair and the rest of the branches are pair

12
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Figure 3.1: A terrain with contours (right picture) representing a 2D scalar field; The
critical points are: A is minima, B and C are saddles, D, E and F are maxima; The
graph on the right shows how the contours begins from A, splits at B and C, and finally
ends at D, E and F. The contour tree and branches for the scalar field in the middle and
right respectively.

by an extremum and a saddle. A distinct saddle can be paired up in multiple branches

depending upon the connectivity in the contour tree. Each branch has a value associ-

ated with it called the persistence which is the absolute difference between its pairing

points. In subsampling, we try to approximate a scalar field, such that the functions

which generated the new scalar field and the original scalar field are close to each other.



Chapter 4

Related Work on Subsampling

Martin Kraus and Thomas Ertl suggested a topology-controlled downsampling tech-

nique[1] for structured volume grid. They selected a cube of a grid consisting of 8 corner

points and classified each of the point as regular or critical (saddle or extremum) taking

18 points around its neighborhood. The critical points are the one which provides the

topological properties, thus preserving them will preserve the topology of the scalar field

itself. They provided an algorithm to choose the data value of the new point which will

replace those eight points. Thus the original scalar field is downsampled to 1/8th of its

size. Their classification of points is based on Weber[2] definition of regular and critical

points. Weber classified each point considering 6 points (figure 4.1) from its neighbor-

hood from the face centers. Martin Kraus and Thomas Ertl used 18 points (figure 4.2)

which comprised of 6 face centered points and 12 edge centered points since it gave them

better results compared to 6 points.

In the downsampling process, their algorithm partitions the scalar field into unit

cubes with eight corner points and selects a critical point from that cube. The selection

of a critical point among two or more critical points of a cube incurs loss in topology

and hence do not guarantee complete topology preservation. The value at the selected

critical point is taken as the value of the new point which will be replacing the corner

points of the cube in the downsampled scalar field. If there is no critical point among

the points in the cube, the average of their values is taken as the value of the new point.

14
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Figure 4.1: 6-points based neighbor-
hood marked as white sphere; their con-
nectivity is shown using grey edges; sur-
rounded red sphere is in contention for
classification.

Figure 4.2: 18-points based neighbor-
hood marked as white spheres; their
connectivity is shown using grey edges;
surrounded red sphere is in contention
for classification.

Their approach has some drawbacks. No perturbation scheme had been used. To-

gether with the classification scheme they described, it generates a huge number of

critical points mostly extrema along the flat regions (region in scalar field having iden-

tical value). This result in extra constant factor computations required for processing

the critical points. The avoidance of perturbation also makes the output absolutely

implementation dependent, since there can be ties. Ties can occur when the absolute

distance from the average value among two or more competing critical points are same.

Use of average value for the cubic cell having all regular points causes some topological

loss, and this loss can be avoided. They used subdivision of scalar field which doesn’t

create new points. This helps to reduce the computations at the cost of lesser topological

preservation.



Chapter 5

Subsampling Algorithms

We devised three new subsampling algorithms, which try to preserve the topology of

the scalar fields. These algorithms are extension of the work done by Kraus el al [1].

We also identified some measurement techniques that can be used for evaluating the

subsampled scalar field when compared to the original scalar field. We applied the

algorithms on various scalar fields obtained from data sets with size ranging from 413 to

256 × 256 × 128. The algorithms have been compared based on the evaluation of the

subsampled scalar field. Our goal was to build a subsampling algorithm which reduces

amount of computation as well as memory footprint and produces minimum topological

distortion. A topological distortion can be removal of original topological structures as

well as introduction of new structures. This will enable it to be used on mobile devices.

5.1 Some Terms and Definitions

5.1.1 Perturbation

The topological properties are based on Morse Theory. In Morse Theory, each point in

the scalar field should have a unique value. In practical cases, such uniqueness is not

possible. To make the points unique, they need to be perturbed. One of the methods

for perturbation is indexing the points. Therefore even if two or more points may have

same value, their indices are different. In a rectilinear (structured) grid, all the original

16
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Figure 5.1: A locality

Figure 5.2: The 26 neighboring points
around a subsampled point for the
neighborhood set

points can be ordered by rows, then by columns and finally by slices or depths. Thus all

these points can be indexed from 0 to n− 1, where n is the total number of points in the

rectilinear grid. Any new points introduced by subdivision are assigned a unique index

i ≥ n. This paper follows such method of perturbation.

5.1.2 Locality

Since we only consider rectilinear scalar field, the scalar field can be subdivided into cubic

blocks each consisting of exactly 8 points. Such a cubic block is considered as a locality.

In the subsampled scalar field, each such locality from the original scalar field will be

replaced by a single point with a value decided by the subsampling algorithm. Each

locality in the original scalar field is identified by a position in the subsampled scalar

field. The points in a locality can be ordered. Let (xo, yo, zo) be the lowest indexed

point in the locality. Then the order will be: (xo,yo,zo), (xo + 1,yo,zo), (xo + 1,yo,zo + 1),

(xo,yo,zo + 1), (xo,yo + 1,zo), (xo + 1,yo + 1,zo), (xo + 1,yo + 1,zo + 1), (xo,yo + 1,zo + 1).

Let Lo(xs, ys, zs) be the locality with respect to the subsampled position (xs, ys, zs). In a

locality itself, there exists exactly 3 neighbors for each point. For example the point 0’s

neighbors in the locality are 1, 3 and 4. A locality in which all the 8 points are regular

is known as a regular locality and subsampled position for this locality be L-regular. A
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Figure 5.3: The 26 neighboring points around a subsampled point with the neighborhood
set formation for each of 8 points in the locality

locality in which at least one of the points is critical is known as a critical locality and

subsampled position for this locality be L-critical.

5.1.3 Permissible Value Assignment

For a given subsampling position with respect to a locality L in the original scalar

field, the subsampling algorithm will calculate a value v. This value v is permissible

if it is in the closed interval [min(L), max(L)] otherwise non-permissible, where min(L)

and max(L) is the minimum, maximum value respectively in the locality. Our entire

algorithms use permissible values.

5.1.4 Probable Identical Branch Neighbourhood Set

When there is more than one critical points in a locality, only one of which can survive

(owned) in the subsampled position and the rest (disowned) may take the position in

the surrounding subsampled L-regular point position with some loss in topology. In

other words, these disowned critical points may get replaced by some other point of

the same branch to which it belonged. The new critical points can be the L-regular

points surrounding the L-critical point. This will result in some topological loss. Such
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Figure 5.4: A neighborhood set forma-
tion for 2 critical points in a locality

Figure 5.5: A neighborhood set forma-
tion for 3 critical points in a locality

topological loss can be minimized by mapping each disowned critical points to the L-

regular points in the subsampled position due to regular locality and giving them a value

close to the disowned points. The set of such subsampled point position for a disowned

point is termed as probable identical branch neighborhood set or just neighborhood set in

short.

There is a set of subsampled positions which can be a probable position for a disowned

point. Since there are 8 points in one locality, there can be at most 8 critical points in a

locality and at most 26 regular subsampled point positions around a given subsampled

position (see figure 5.2). The neighborhood set comprises of points from these 26 points

and each of these points should be L-regular and associated to some regular locality in

the original scalar field.

The neighborhood set for each critical point in a locality can be found using polarity

of the critical points. So any subsampled position lying exactly between two or more

poles, will be common to those poles. The neighbor in between two poles is shared (see

figure 5.3). It also provides the initial polar sets used for finding neighborhood set. Some

examples of neighborhood set calculation are shown in figure 5.4 and 5.8. An algorithm

for finding the neighborhood set for each critical point of a locality is shown in algorithm

1.
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Algorithm 1 : Neighborhood Set Formation Algorithm

1: procedure FindNeighborhoodSet(Point P) . P is a subsampled position
2: Identify the set Scritical of critical points in P’s corresponding locality in original

scalar field.
3: Let RP be the set of points in subsampled scalar field which are P’s neighbors

and corresponds to regular locality in original scalar field.
4: for each of the point Pi in Scritical do
5: Put the initial set of points in NPi

which ∈ RP and resides in the polar set
for Pi.

6: end for
7: for each of the point Pi in Scritical do
8: If the one step neighbor of Pi is not critical add all points of the polar set for

that position to NPi
which do not belong to any polar set of critical points.

9: end for
10: for each of the point Pi in Scritical do
11: If the two step neighbor(through one step non critical neighbor) of Pi is not

critical add all points of the polar set for that position to NPi
which do not belong

to any polar set of critical points and one step neighbors.
12: end for
13: return NP0 , NP1 , ..., NP|Scritical|

. returns neighborhood set for each critical point
in the locality for the point P

14: end procedure

5.2 Using the Neighborhood Set

We used the neighborhood set in our algorithms. The decision on the appropriate critical

point whose value is to be placed at L-critical point is based on the loss for each L-

regular point. The loss for each L-regular point with respect to a critical point for its

neighborhood set is found. This loss denotes the topological loss that is responsible for

selecting an L-regular point for a critical point if it is disowned. The L-regular point

which gives the minimum loss is taken as ideal choice. The critical point which gives the

maximum minor loss is chosen (owned) for the L-critical position. The rest of the critical

points (disowned) are replaced or survived through the L-regular points having the minor

loss. Since an L-regular point can be in multiple neighborhood sets for a critical locality

(having more than 2 critical points), a L-regular point can be provide minor loss for 2

or more disowned points. Such ties can be resolved by forming a bipartite graph. One

set with disowned critical points and other with the L-regular points. The edges are
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Figure 5.6: A neighborhood set formation for 3 critical points in a locality shown in Fig
5.8; followed by selection of owned critical point(red); the disowned critical points (blue
and green) are survived using one of the L-regular point from their neighborhood set

between the disowned critical points and the L-regular points of their neighborhood set.

The edges are given some weights, which are the losses for the L-regular and disowned

critical point of that edge. The perfect matching of this bipartite graph gives the solution.

5.3 Classification of Points

Each point in a mesh or scalar field can be classified as Regular, Saddle, Minima or

Maxima. We used a classification scheme based on Face-Centered 24-fold subdivision

Carr et al [16]. This subdivision was selected because it is consistent with the mesh and

thus it will result in less artifact and accurate classification of the points. According to

this subdivision, an original (non-new) point in the mesh will be surrounded by at most

26 points. Among these 6 will be the original points, and rest of the points will be newer.

The newer points include 8 body-centered points and 12 face-centered points. The figure

5.7 shows the neighborhood of an original point. Each point in a scalar field can be

classified based upon the points in its neighborhood. The neighborhood forms a blanket

around the point to be classified. This blanket can be decomposed into simplicial mesh

to obtain the connectivity, where two points are connected if there is a path formed by

edges between them. The connectivity thus obtained is useful in classification. A critical

point can be an extremum or a saddle point.
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Figure 5.7: 26 points based neighborhood due to Face-Centered 24-fold subdivision.
The navy blue colored spheres are body-centered points; green colored spheres are face-
centered points; white sphere are the original points; the internal red sphere is the original
point in contention for classification.

This neighborhood contains all the six points considered in Weber’s classification.

Such a neighborhood of points can be created from a structured grid using 8 trilinear

interpolations (for the body-centered points) and 12 bilinear interpolations (for the face

centered points). Trilinearly interpolated points have degree 6 each (with 3 nearest

bilinearly interpolated points and 3 nearest original points). Bilinearly interpolated

points have degree 4 each (with 2 nearest trilinearly interpolated points and 2 nearest

original points). Original points (used in Weber’s classification) have degree 8 each (with

4 nearest trilinearly interpolated points and 4 nearest bilinearly interpolated points).

The classifier algorithm for a given point P is shown in algorithm 2. The point

classification algorithm identifies all the points which are either greater or less than to P

(in terms of value; if values are same, index number is used to break the tie) and creates

two sets of points. This is followed by removal of those edges which connects two points

of different sets which lead to disconnected graph. There are three types of connected

components in G used in classification of P. If G comprises of single component with

either all greater (minima) or all less than or equal (maxima), we denote P as extremum.

When there are two components with one group as all greater and other as all less or

equal, we denote P as regular. If G has more than two components, it is saddle. This

algorithm can be slightly modified to identify flat regions in the original scalar field by
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Algorithm 2 : Point Classification Algorithm

1: procedure Classify(Point P)
2: Identify the set S of points in P’s neighborhood.
3: Define the connectivity graph G among the points in S with edge set E.
4: for each of the point Q in S do
5: If Q is greater than P (in case of same value, ties broken using indices), then

Mark Q as positive.
6: Otherwise, Mark Q as negative.
7: end for
8: for each edge e(A,B) in E where A and B are two end points of e do
9: If the marking on the points A and B are different then delete edge e from E.

10: end for
11: Let the number of connected components in G be C.
12: if C==1 then
13: P is an extremum point.
14: else if C==2 then
15: then P is a regular point.
16: else
17: P is a saddle point.
18: end if
19: end procedure

checking that all the comparisons involved tie break or not. If yes, the point P can be

considered as regular. This can help in increasing number of regular locality and reduce

some computations involved in processing the critical locality.

The algorithm is of the order of O(n) where n is the number of edges considered

in the connectivity since the number of edges will be always greater than or equal to

number of points based neighborhood. Since this algorithm will be called once for each

of the points in the scalar field, the 6 points based neighborhood will be providing the

result quickly, followed by the 18 points based and then the 26 point based solutions.

We used this algorithm in our subsampling algorithms. We also found that the

algorithm 2 without indices gives good result for few of the datasets. But due to increase

in computation, we didn’t use it in this thesis.
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Figure 5.8: A general subsampling method

5.4 Subsampling Algorithms

5.4.1 The General Algorithm

The algorithm identifies the subsampling point position for each locality of the original

rectilinear grid. Then for each locality, all the points are classified. Based on the type of

points in a locality, the subsampled point’s value is calculated. It was Kraus et al [1] who

devised this technique. The general algorithm is shown in algorithm 3 which identifies

the subsampled position and calls the new value assigning method for that position.

5.4.2 Kraus’ Improved (KImp)

In this paper we show some variety of ways in which the values of the points in the

subsampled scalar field can be calculated. The first algorithm is a similar to Kraus’[1]

but with the above mentioned classification and perturbation of point through indexing.

Kraus gave highest priority to the extrema, followed by saddle. If there is one or more

extrema in a locality, the extremum with maximum distance from the average of the

extrema is chosen whose value will be set to the new subsampled point. If there isn’t
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Algorithm 3 : General Subsampling Algorithm

1: procedure Subsample(A 3D structured scalar field D) . The original data with
dimension width, height and depth

2: for k = 0 to depth/2 -1 do
3: for j = 0 to height/2 - 1 do
4: for i = 0 to width/2 - 1 do
5: D′+=getValueOfTheNewPoint(i, j, k, D)
6: end for
7: end for
8: end for
9: return D′. . A subsampled 3D structured scalar field (data) with dimension

width/2, height/2 and depth/2
10: end procedure

any extremum but saddles and or regular, the saddle with maximum distance from the

the average of the saddle is chosen whose value will be set to the new subsampled point.

In case of a regular locality, the average of all the eight points is taken as the value of

the new subsampled point. The algorithm is shown in algorithm KImp.

5.4.3 Loss Based Point Selection without Regular Neighbor

Modification (LSWM)

The second algorithm is based on different selection process for the each critical locality.

The neighborhood set for each of the critical point is found out. This is followed by calcu-

lation of the probable loss incurred if the critical point is not chosen for the subsampled

position with respect to the present locality. The difference dre between the L-regular

neighborhoods re from a neighborhood set of an maximum extremum e is re.max if

re.max ≤ e.value else 0. The difference dre between the L-regular neighborhoods re

from a neighborhood set of an minimum extremum e is re.min if re.min ≥ e.value else

0. The difference drs between the L-regular neighborhoods rs from a neighborhood set

of a saddle s is rs.max if rs.max ≤ e.value or rs.min if rs.min ≥ e.value else 0. The

loss is calculated for a critical point e for each point from its neighborhood set by the

expression abs(e.value − dre) and the minimum (minor loss) among them is chosen for

comparison among the critical points. If there are extrema among the critical points
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Algorithm 4 : Kraus’ Improved Point Selection Algorithm [KImp]

1: procedure GetValueOfTheNewPoint(A point with location i, j, k and the
input scalar field (data))

2: Let P1, P2, P3, P4, P5, P6, P7 and P8 be the points of the locality which will be
replaced by the new point.

3: Classify each of the above points using the algorithm Classify 2.
4: if All of P1, P2, ..., P8 are regular then
5: return the average of the values of all the points.
6: else if Some of P1, P2, ..., P8 are saddles but not extrema then
7: if Only one saddle in the locality then
8: return the value of the saddle.
9: else if More than one saddles then

10: return the saddle’s value which is farthest from the average of all the
saddles in this locality with ties broken using indices.

11: end if
12: else if Some of P1, P2, ..., P8 are extrema then
13: if Only one extrema in the locality then
14: return the value of the extremum.
15: else if More than one extremum then
16: return the extremum’s value which is farthest from the average of all the

extrema in this locality with ties broken using indices.
17: end if
18: end if
19: end procedure

in a locality, only the extrema are considered for comparison. So if the extrema exists,

the extremum having the maximum minor loss is chosen for subsampled position. The

ties are resolved through indices value. When all the critical points in the locality are

saddles, the saddle having the maximum minor loss is chosen for subsampled position.

The regular locality in original scalar field is replaced by the average in the subsampled

position.

This strategy assumes that all the critical points which are not chosen (disowned)

will survive in the subsampled scalar field by some new points if there exists non-empty

neighborhood set and these will incur a loss of at least minor loss for each them. Thus

the loss is never overestimated. The detailed algorithm is shown in algorithm LSWM.
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Algorithm 5 : Loss Based Point Selection Algorithm [LSWM]

1: procedure GetValueOfTheNewPoint(A point with location i, j, k and the
input scalar field (data))

2: Let P1, P2, P3, P4, P5, P6, P7 and P8 be the points of the locality which will be
replaced by the new point.

3: Classify each of the above points using the algorithm Classify 2.
4: if All of P1, P2, ..., P8 are regular then
5: return the average of the values of all the points.
6: else if Only one of P1, P2, ..., P8 is critical then
7: return the value of the only critical point.
8: else if Some of P1, P2, ..., P8 are saddles but not extrema then
9: Let P1, P2, ..., Pi, i ≤ 8 be the saddles.

10: return Select(P1, P2, ..., Pi, i ≤ 8) 6
11: else if Some of P1, P2, ..., P8 are extrema then
12: Let P1, P2, ..., Pi, i ≤ 8 be the extrema.
13: return Select(P1, P2, ..., Pi, i ≤ 8) 6
14: end if
15: end procedure

5.4.4 Loss Based Point Selection with L-regular Modification

for Disowned Extrema only using Hungarian Algorithm

(LSEM)

The third algorithm does exactly like the second algorithm but it additionally doesn’t use

average value for certain regular locality. These are the localities from the neighborhood

locality of the disowned extrema. Only those disowned extrema are considered whose

neighborhood set is non-empty. Here the problem converts to the assignment problem

such that the total loss is least for a locality.

A well known algorithm to solve this is the Hungarian algorithm[18] in O(n3) where

n is the number of vertices. The Hungarian algorithm performs perfect matching in

bipartite graphs with minimum edge weight. Here the bipartite graph can be formed

using the set of disowned extrema for a locality and their points from their respective

neighborhood set. If there is a single disowned extremum in a locality, only the regular

locality from the neighboring set which gives minor loss is taken as the replacement

position. If there is a tie among the regular localities for same minor loss, the one with
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Algorithm 6 : Select Owned Point Among the Critical Points Algorithm

1: procedure Select(P1, P2, ..., Pi, i ≤ 8) . A set of critical points from a locality of
one type only extremum or saddle

2: Let NP1 , NP2 , ..., NPi
, i ≤ 8 be the neighbor set for the respective extrema/saddles

using algorithm 1.
3: Let NP1 , NP2 , ..., NPi

, i ≤ 8 be the neighbor set for the respective extrema/saddles
using algorithm.

4: Let min(dr1), min(dr2), ...,min(dri
), i ≤ 8 be the respective minor losses for the

extrema/saddles.
5: return the value of the extremum/saddle with maximum minor loss in this

locality with ties broken using indices.
6: end procedure

the minimum index is chosen. When there are more than two disowned extrema in a

locality, Hungarian algorithm is called with the points as the vertices and edges between

an extremum and it’s neighboring regular locality with the loss value as its weight. There

may be a tie such that two or more disowned extremum have the same regular locality

for individual minor loss. This is taken care by the Hungarian algorithm.

This algorithm assumes survival of all the disowned extrema which has non-empty

neighborhood set and got matched by the Hungarian algorithm. There exists a problem

with this approach. If not all of the disowned extrema are matched i.e. the number of

regular neighboring localities are less or most of them having common regular neighboring

locality, the loss will be greater. But such a case is very rare. There may the case where

the two disowned extrema from different locality are matched to same regular subsampled

position. We have not handled this situation since it will require additional storage; as

a result the value for the last matching will remain in the disputed regular subsampled

position. The detailed algorithm is shown in algorithm LSEM.

5.4.5 Loss Based Point Selection with L-regular Modification

for Disowned Critical Points (LSCM)

This algorithm has similarity with previous. The difference is that it modifies regular

points not only for extremum but for saddles too. The extrema are given more priority
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Algorithm 7 : Loss Based Point Selection Algorithm with L-regular Modification for
Disowned Extrema [LSEM]

1: procedure GetValueOfTheNewPoint(A point with location i, j, k and the
input scalar field (data))

2: Let P1, P2, P3, P4, P5, P6, P7 and P8 be the points of the locality which will be
replaced by the new point.

3: Classify each of the above points using the algorithm Classify 2.
4: if All of P1, P2, ..., P8 are regular and there is no assignment for this locality by

algorithm 9 then
5: return the average of the values of all the points.
6: else if Only one of P1, P2, ..., P8 is critical then
7: return the value of the only critical point.
8: else if Some of P1, P2, ..., P8 are saddles but not extrema then
9: Let P1, P2, ..., Pi, i ≤ 8 be the saddles.

10: return Select(P1, P2, ..., Pi, i ≤ 8) 6
11: else if Some of P1, P2, ..., P8 are extrema then
12: Let P1, P2, ..., Pi, i ≤ 8 be the extrema.
13: return SelectnModifyAll(P1, P2, ..., Pi, i ≤ 8) 9
14: end if
15: end procedure

than the saddles. The Hungarian algorithm is run twice when there is a mix of extrema

and saddles in the locality. In the first run the matching is done for the disowned extrema.

This is followed by second run for the disowned saddles. This increases the computation

required for processing the critical points. Like algorithm LSEM, this algorithm too

does not handle disputed regular subsample positions and allows it to be overwritten.

The detailed algorithm is shown in algorithm LSCM.

5.5 Evaluation of the Subsampled Scalar Field

We use contour tree to evaluate the subsampled scalar field. Both the subsampled and the

original scalar fields are converted into meshes. The meshes are constructed conforming

to the face-centered 24-fold subdivision [16] by introducing all the face center points

and a single body center point to reduce artifacts in the resulting scalar field. This

results in neighborhood structure for a non-interpolated point as shown in figure 5.7.

The neighborhood structure for a face centered point and body-centered point is shown
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Algorithm 8 : Loss Based Point Selection Algorithm with L-regular Modification for
Disowned Critical Points [LSCM]

1: procedure GetValueOfTheNewPoint(A point with location i, j, k and the
input scalar field (data))

2: Let P1, P2, P3, P4, P5, P6, P7 and P8 be the points of the locality which will be
replaced by the new point.

3: Classify each of the above points using the algorithm Classify 2.
4: if All of P1, P2, ..., P8 are regular and there is no assignment for this locality by

algorithm 9 then
5: return the average of the values of all the points.
6: else if Only one of P1, P2, ..., P8 is critical then
7: return the value of the only critical point.
8: else if Some of P1, P2, ..., P8 are saddles but not extrema then
9: Let P1, P2, ..., Pi, i ≤ 8 be the saddles.

10: return SelectnModifyAll(P1, P2, ..., Pi, i ≤ 8) 9
11: else if Some of P1, P2, ..., P8 are extrema then
12: Let P1, P2, ..., Pi, i ≤ 8 be the extrema.
13: return SelectnModifyAll(P1, P2, ..., Pi, i ≤ 8) 9
14: end if
15: end procedure

in figure 5.9 and 5.10 respectively.

A contour tree can be decomposed into branches using the branch decomposition

algorithm given in [17]. The branch decomposed contour tree is produced for the meshes

of original and subsampled scalar field, which were used for evaluation and comparison.

The branches due to subsampled scalar field are mapped to the branches due to original

scalar field. In the branch having the pair of extremum and extremum, the least valued

extremum is not considered as extremum in the evaluation. Thus from each of the

branches, an extremum is extracted. This extremum can either maximum or minimum.

The branches to be mapped must have the same type of extremum. Given a position

in the subsampled mesh, it is always possible to find the locality in the original mesh

which has been substituted with the point in subsampled position. This locality contains

15 points i.e. 8 old points at the corners, 6 new points on the face and 1 new point in the

center of the locality also known as body center. Thus for an extremum point eSub of a

branch belonging to a branch decomposed contour tree of subsampled scalar mesh, there

exist a locality in the original scalar mesh. This locality can contain a set of extremum
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Algorithm 9 : Select Owned Among the Critical Points and Modify L-regular Point
for Disowned Algorithm

1: procedure SelectnModifyAll(P1, P2, ..., Pi, i ≤ 8) . A set of critical points
from a locality

2: Let NP1 , NP2 , ..., NPi
, i ≤ 8 be the neighbor set for the respective extrema/saddles

using algorithm 1.
3: Let min(dr1), min(dr2), ...,min(dri

), i ≤ 8 be the respective minor losses for each
critical point respectively.

4: Let Pmml (owned) be the critical point (extremum is preferred if exists) with
maximum minor loss in this locality with ties broken using indices.

5: Match the rest of the extremum (if exists) using Hungarian algorithm for mini-
mum total loss.

6: for each matched critical points Pc with regular locality rc do
7: if Pc is a Maxima and rc.max ≤ Pc.value then
8: Set the value at rc.value = Pc.value.
9: else if Pc is a Minima and re.min ≥ Pc.value then

10: Set the value at rc.value = Pc.value.
11: end if
12: end for
13: Remove from NP1 , NP2 , ..., NPi

, i ≤ 8, the regular locality which are matched to
the extrema.

14: Match the rest of the saddles (if exists) using Hungarian algorithm for minimum
total loss.

15: for each matched critical points Pc with regular locality rc do
16: if Pc is a Saddle and rc.max ≤ Pc.value and rc.min ≥ Pc.value then
17: Set the value at rc.value = Pc.value.
18: end if
19: end for
20: return Pmml.value. . the value of the owned point
21: end procedure

EOrg of same type as eSub. Now since all the extremum in EOrg belong to certain branch

in the branch decomposed contour tree of the original scalar mesh. Now to map eSub

to one of eOrg ∈ EOrg, certain conditions must be checked i.e. the value at eOrgmust

be close to the value at esub. If there is a tie i.e. more than one extremum in EOrg are

equally closer to eSub, the persistence of the branches of those extrema will be considered

and the closest among them get mapped. If there still exists a tie, it can be broken by

indices i.e. the closest numbered extremum gets mapped.

When EOrg is empty, the next set of points will be the blanket of points covering the
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Figure 5.9: The neighborhood
structure for a face-centered
point of size 6

Figure 5.10: The neighborhood
structure for a body-centered
point point of size 14

current locality from outside. The set of points can be labeled with level. The initial set

of points from locality will be labeled as level zero. Next sets of points will be at level

0.5, 1.0, 1.5. 2.0 and so on. This process continues until all the points in original mesh

are exhausted.

It can so happen that an extremum from original mesh being considered for mapping

with an extremum from the subsampled mesh which is already mapped to some other

point. In this case, the tie can be broken by the level at which the point is considered

with respect to the subsampled extremum points. If there is again a tie with respect

to the level, it can be broken by the closeness of the persistence. And if still there is a

tie, it is sure to be broken using the indexing of the subsampled extremum points i.e.

lower indexed point will get mapped to the disputed extremum from original mesh. This

leaves one of the subsampled extremum point unmapped which included in queue for the

mapping process again.

Note that in this mapping process, some of the extrema in subsampled and original

mesh may not get mapped. Once the mapping is done, the difference in the persistence of

the branches of the mapped points are collected and added up with the of persistences for

the unmapped extremum points to give the total persistence loss. The total persistence

loss value can be normalized per point by dividing it with the sum of total mapping and

unmapped points.
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This evaluation technique gives same importance to the retention of original topo-

logical structures as well as to the introduction of new topological structure based upon

persistence only.



Chapter 6

Results

The data have been obtained from the Volume Dataset Repository (http://www.volvis.org/ )

at the WSI/GRIS, University of Tübingen, Germany. All data have been subsampled

once i.e. the subsampled data is having half the dimension of the original on each axis.

6.1 Small sized Scalar Fields

In the small scalar fields segment, the algorithm which works best are KImp, LSWM,

LSEM and LSCM. Table 6.1 shows the comparison of branch details and persistence

loss per branch among the original and subsampled scalar fields.

For nucleon (figure 6.1), we find algorithms KImp, LSWM and LSEM are intro-

ducing new topological conveyed by the increased total branch persistence exceeding the

original. The algorithm LSCM resulted in total persistence below that of original but

the branch count is higher compared to others. All the algorithms are tied for this data.

Visually the outputs of algorithms KImp, LSWM and LSEM look nearly identical for

nucleon and they produced higher total branch persistence compared to LSCM.

For fuel (figure 6.2), the algorithm KImp, LSWM and LSEM works best. The algo-

rithm LSCM introduces less branches but the total branch persistence is high compared

to others, this and together with persistence loss per branch suggests that it introduces

topological error. Visually the outputs of algorithms KImp, LSWM and LSEM look

34
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nearly identical for fuel too.

For clayleycube (figure 6.3), due to simplicity of the scalar field the all the algorithm

fetches same total branch persistence. Even same branch count for the first 3 algorithms

and they look identical visually. The algorithm LSCM provides higher branch count

and is able to get best evaluation.

For neghip (figure 6.4), the algorithm LSEM fared well without exceeding others in

terms of branch details. The algorithm LSCM provides higher branch count but losses

some structures (the small lobes in the right and left) visible from the figure itself.

For silicium (figure 6.5), the results of last three algorithm look identical. The result

due to algorithm KImp shows some visual difference in the form of small bubbles at

different regions, it also exceeded the original total branch persistence. The algorithm

LSEM too exceeded original total branch persistence but it is closer to that value. In

this case algorithms LSWM and LSEM take the top positions.

In this segment, overall the algorithm LSEM did well. It topped in four cases and

came closer to the best in the rest.

Original KImp LSWM LSEM LSCM
Dataset
nucleon 3827 434 433 435 466
41× 41× 41 551.25 553.5 554.0 554.0 528.75

0.14 0.14 0.14 0.14
fuel 12103 2984 2983 2981 2961
64× 64× 64 1005.0 914.25 914.0 912.75 921.0

0.062 0.062 0.062 0.064
clayleycube 17172 4133 4133 4133 4206
64× 64× 64 442.0 442.0 442.0 442.0 442.0

0.029 0.029 0.029 0.022
neghip 16507 2789 2810 2802 2895
64× 64× 64 4571.25 3933.25 3922.75 3920.75 3914.75

0.28 0.26 0.25 0.26
silicium 3578 1028 996 996 1009
98× 34× 34 12503.2 14043.8 13329.2 13329.0 13433.2

0.66 0.54 0.54 0.77

Table 6.1: Branch count, total branch persistence and persistence loss per branch for
small scalar fields



Chapter 6. Results 36

Figure 6.1: Volume rendered images of nucleon data: (from left) original, algorithms
KImp, LSWM, LSEM and LSCM

Figure 6.2: Volume rendered images of fuel data: (from left) original, algorithms KImp,
LSWM, LSEM and LSCM



Chapter 6. Results 37

Figure 6.3: Volume rendered images of clayleycube data: (from left) original, algorithms
KImp, LSWM, LSEM and LSCM

Figure 6.4: Volume rendered images of neghip data: (from left) original, algorithms
KImp, LSWM, LSEM and LSCM

Figure 6.5: Volume rendered images of silicium data: (from left) original, algorithms
KImp, LSWM, LSEM and LSCM
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6.2 Medium sized Scalar Fields

The subsampling methods favoring the test dataset in medium sized scalar fields segment

are algorithms LSWM, LSEM and LSCM. Table 6.2 shows the comparison of branch

details among the original and subsampled scalar fields.

The teddy bear data (figure 6.6) shows high susceptibility to subsampling. The

persistence loss per branch is more than one unit. The algorithm LSCM kept branch

details low and still managed to be at the top. Visually the amount of distortion increases

as we move from left to right.

For the bonsai data (figure 6.7), the algorithm LSEM bettered from others. The

algorithm LSCM kept low on branch details. The algorithm LSEM produce more

branches than the others. Visually all of them differ.

The shockwave data (figure 6.8) is the least affected by the subsampling algorithms

and is visible from the images too. The algorithms LSWM and LSEM share the top

place here by greater margin from others. Interestingly the subsampled outputs produced

by them were identical when compared using hash function. Visually the 3rd and 4th are

close to 1st.

The engine data (figure 6.9) is subsampled well by algorithms KImp, LSWM and

LSEM. The algorithm LSCM produced most non smooth result compared to others.

Visually the 2nd 3rd and 4th have little dissimilarity.

Like in small segment, here too the algorithm LSEM scored better than others.

Figure 6.6: Volume rendered images of teddy bear data: (from left) original, algorithms
KImp, LSWM, LSEM and LSCM
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Original KImp LSWM LSEM LSCM
Dataset
shockwave 80659 19709 19748 19748 19916
64 × 64 × 512 546.5 550.25 550.75 550.75 551.25

0.0066 0.0003 0.0003 0.0067
Teddybear 198634 28122 28380 28488 27361
128 × 128 × 62 292169.0 107024.0 100607.0 97164.8 87691.0

1.35 1.33 1.32 1.31
bonsai 850181 243253 244752 244120 231835
256× 256× 128 889336.0 509469.0 516423.0 505964.0 477885.0

0.74 0.74 0.73 0.80
engine 746683 145761 145186 145042 144332
256× 256× 128 165761.0 106724.0 108251.0 107186.0 95036.0

0.16 0.16 0.16 0.18

Table 6.2: Branch count, total branch persistence and persistence loss per branch for
medium sized scalar fields

Figure 6.7: Volume rendered images of bonsai data: (from left) original, algorithms
KImp, LSWM, LSEM and LSCM

Figure 6.8: Volume rendered images of shockwave data: (from left) original, algorithms
KImp, LSWM, LSEM and LSCM
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Figure 6.9: Volume rendered images of engine data: (from left) original, algorithms
KImp, LSWM, LSEM and LSCM

6.3 Appropriate Subsampling Algorithm Selection

According to the results, we suggest some appropriate subsampling algorithms depending

on the type of the scalar field resulting from the data. The scalar field with simple

structures such as in the nucleon data should be should be subsampled with algorithm

LSCM or average based subsampling method. For scalar fields with very low or very

high critical points count with uniform distribution, the algorithm LSCM is better (for

example clayley cube and teddy bear). The scalar fields having small number of critical

points concentrated at one or more regions, the algorithm LSEM holds good (example

shockwave) in this case. For any other type of scalar fields, the algorithm LSEM is

appropriate.

If the least computation requirement is the only concern, then average value based

subsampling algorithm is the best. In addition if the quality is a concern but with

lesser priority compared to the computation, the algorithm KImp is appropriate. The

increasing order based on the amount of computation required is as follows: KImp,

LSWM, LSEM and LECM.
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Conclusions and Future Work

The evaluation method described by us correctly maps the original topological features

with that of the subsampled data. It is sensitive to the noises introduced as well as

original structures retained in the subsampled data. Our point selection method based

on minor loss followed by appropriate modification of the L-regular point’s value provides

a better subsampling solution in most of the cases. All the three algorithms have both

time complexity and space complexity of O(n). Thus they can be used on mobile devices.

All the three algorithms are based on locally optimal solution, thus they do not guarantee

globally optimal solution.

The future work can be finding globally optimal subsampling algorithm which pro-

duces minimum topological loss for any scalar field. Such algorithm may have high

computation and memory requirements. Making it suitable for mobile devices reducing

floating point calculations will be another challenge. When OpenCL will be supported

by mobile device’s GPU[13], a subsampling algorithm can use it to reduce subsampling

time. The evaluation method is extensive and takes long processing time for large data.

The possibility to have more efficient evaluation method with the same degree of ac-

curacy can be a problem to work on. Noises are inherent in data. Thus incorporating

noise correction in subsampling as well as in the evaluation method will be challenging.

The classification of scalar fields resulting from the data and based on that appropriate

subsampling algorithm selection is another problem to venture upon.

41
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