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Fig. 1. Studying cloud systems at different scales. Our framework is used to study the movement of the equatorial Madden Julian
Oscillation (MJO) over the Indian Ocean. Given the IR brightness temperatures over the island of Borneo, we first identify the set of
clouds. Users can select clouds of interest and track their movement. Smaller scale cloud systems embedded in a MJO move in a
westward direction. The manifestation of a convectively coupled kelvin wave results in a temporary eastward movement of parts of
the cloud cluster. Such movement can be easily obtained using the querying ability of our framework. The rightmost figure shows a
subset of the clouds that move eastward for at least 90 minutes. The temporary movement is indicated by the fact that the movement
reverts to its original westward direction after a short duration. Our framework also helps quantify the overall eastward propagation of
the MJO.

Abstract— We describe a framework to explore and visualize the movement of cloud systems. Using techniques from computational
topology and computer vision, our framework allows the user to study this movement at various scales in space and time. Such
movements could have large temporal and spatial scales such as the Madden Julian Oscillation (MJO), which has a spatial scale
ranging from 1000 km to 10000 km and time of oscillation of around 40 days. Embedded within these larger scale oscillations are
a hierarchy of cloud clusters which could have smaller spatial and temporal scales such as the Nakazawa cloud clusters. These
smaller cloud clusters, while being part of the equatorial MJO, sometimes move at speeds different from the larger scale and in a
direction opposite to that of the MJO envelope. Hitherto, one could only speculate about such movements by selectively analysing
data and a priori knowledge of such systems. Our framework automatically delineates such cloud clusters and does not depend on
the prior experience of the user to define cloud clusters. Analysis using our framework also shows that most tropical systems such
as cyclones also contain multi-scale interactions between clouds and cloud systems. We show the effectiveness of our framework to
track organized cloud system during one such rainfall event which happened at Mumbai, India in July 2005 and for cyclone Aila which
occurred in Bay of Bengal during May 2009.

Index Terms—Cloud clusters, tracking, computational topology, split tree, weather and climate simulations.

1 INTRODUCTION

Clouds play a very important role in tropical circulation. They are a
source of heating through latent heat release. They also interact and
modify radiation by reflecting and absorbing radiation. Cloud systems,
sometimes known as Mesoscale Convective Systems (MCS), consist
of a collection of clouds of varying heights. These include tall growing
and mature Cumulonimbus(Cb) clouds surrounded by a stratus (lower
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clouds) [19]. The tall clouds are the mature cumulus cells and could be
as high as 15 km, which is the typical tropopause height in the tropics.
The cloud systems could also move, grow and decay. These MCS in
turn could be embedded in larger systems such as a tropical cyclone.
Considerable amount of rain can occur in association with such MCS.

Movements of cloud systems could have large temporal and spa-
tial scales such as the Madden Julian Oscillation (MJO), which has a
spatial scale ranging from 1000 km to 10000 km and time of oscil-
lation of around 40 days. Embedded within these larger scale oscilla-
tions are a hierarchy of cloud clusters which could have smaller spatial
and temporal scales such as the Nakazawa cloud clusters [34]. These
smaller cloud clusters, while being part of the equatorial MJO, some-
times move at speeds different from the larger scale and in a direction
opposite to that of the MJO envelope.

The complex movement of clouds within a cloud system can be
used to identify if a merger is likely between clouds. A merged cloud
could indicate more unstable weather. The merger and movement of
such cloud clusters can also lead to high intensity rainfall events dur-
ing the monsoon season. Techniques to track and visualize such cloud
system interactions could therefore be effective for nowcasting, where
using near-real time satellite data, merger and movement of cloud sys-
tems could be used for forecasting high intensity rainfall events.



Advent of better technology has affected in increasing the avail-
ability of high resolution data (spatial resolution ∼ 4 km and temporal
resolution ∼ 30 mins). Therefore, the amount of data that is to be
processed when considering even a short time period such as a single
day is large. A query-driven visualization framework [20, 49, 50] will
therefore be useful for performing analysis and visualization on these
datasets, which are both large and complex.

1.1 Problem Statement
Given the infrared (IR) brightness temperatures over a particular re-
gion, clouds present in the atmosphere over that region are captured
as sub-level sets of a given temperature threshold. These clouds are
then tracked over time in order to study various phenomena. Exist-
ing methods that track movement of cloud clusters fail to capture local
movement within such a system. Also, when using existing meth-
ods, in addition to the threshold required for identifying clouds, both
the identification and tracking require the users to input additional pa-
rameters. The movement obtained is dependant on the value of these
parameters. Eliminating these additional parameters will not only sim-
plify the operations performed by the user, but will also help provide
consistent results that can be reproduced. Tracking clouds at different
thresholds convey different information about the phenomena being
studied. It is therefore important to be able to efficiently track move-
ment of clouds at various thresholds.

In addition to the computational effort required to process the large
amount of data available, manual analysis of such data over long time
periods without a priori knowledge of the system is not practical.
This necessitates the development of tools to query and explore cloud
movements using this data.

1.2 Contributions
We use techniques from computational topology and computer vision
to design a framework that allows users to interactively visualize and
explore the movement of cloud systems at various scales in space and
time. Our framework has the following capabilities:

1. Compute and explore clouds at different thresholds. This is ac-
complished using the split tree of the input at each time step.

2. Compute a good threshold range to identify clouds of interest.
This is accomplished using the persistence diagram.

3. Visualize cloud movement at different level of detail – from its
local intra cloud-cluster movement to long term inter-cloud sys-
tem interactions. Local movement is tracked using an optical
flow computation. The local movement together with the com-
puted clouds is then used to compute a cloud motion graph,
which tracks the interaction between clouds.

4. Support queries on both the properties of individual clouds, as
well on their motion patterns.

5. Support queries on entire cloud systems.

A precipitation distribution captures the amount of rainfall over that
region at a given time. Since IR brightness temperature and precipita-
tion are inversely related, by reversing the values of the precipitation
of a region, we show that the same techniques used for IR bright-
ness temperature works for this input as well. The production of such
data includes additional information from microwave channels, which
is absent in IR brightness temperatures, and hence a combination of
these two datasets could lead to better tracking of multiple scale cloud
systems.

Finally, we show the utility of the developed framework through the
following use case scenarios:

• Study and track the equatorial MJO over the Indian ocean.

• Study events that lead to intense rainfall over Mumbai, India, in
July 2005.

• Study the movement of clouds during the period that the tropical
cyclone Aila made landfall.

2 RELATED WORK

We describe the related work in two categories – those related to fea-
ture tracking and visualization, and those related to the study of cloud
systems.

2.1 Feature Tracking and Climate Visualization
Several efforts in the past use computational topology to identify and
track features of a spatio-temporal input. Laney et al. [28] and later
Bremer et al. [8] use the Morse decomposition to identify features of
the input and track these features across time using the geometric prop-
erties of the features. Pascucci et al. [37] identify features using merge
trees, and track burning cells during turbulent combustion by comput-
ing the overlap of the features. Widanagamaachchi et al. [48] extend
this technique and design a framework to explore time-varying data.
Kasten et al. [26] map critical points of the input scalar function across
time steps and create a merge graph that is used to track unsteady flow
fields. While these methods track the movement of features, they do
not capture orthogonal movement that might be present within the fea-
ture.

Directly related to this work, Gambheer and Bhat [19] track clouds
by considering the overlap of sub-level sets across time steps. More
recently, Fiolleau and Roca [17] consider the time varying two dimen-
sional input as a three-dimensional volume, and track clouds by track-
ing seed points within this volume. In addition to the threshold used
to identify clouds, these techniques also require users to specify other
parameters as input. Again, these techniques while capturing cloud
movement, miss any different movement that is present within cloud
systems.

There has been some recent work on developing visualization
frameworks for the exploration of climate and weather data. Lund-
blad [29] design a software for visualizing weather and ship data.
Ladstädter et al. [27] design a framework to explore the variables of
climate model data. Santos et al. [42, 43] propose a work flow based,
provenance enabled system, called UV-CDAT, that integrates climate
data analysis libraries and visualization tools into a single application.
Work on visualizing clouds focus on accurately rendering clouds [39].
To the best of our knowledge, there exists no work that allows for ex-
ploring and querying patterns of cloud motion.

2.2 Cloud Systems
Occurrence of an MJO is typically identified in a meteorological
dataset by using the spectral analysis technique of Wheeler and Ki-
ladis [47], which relates spatial frequency with spatial scale of the
harmonic. A variable such as outgoing longwave radiation (OLR) is
generally averaged over a large latitudinal extent such as 15◦N-15◦S
and space-time harmonic analysis conducted for the entire latitudinal
belt. An MJO is identified if power exists at a global wave number of
3-5 and time-period corresponding to 40-50 days. Tracking of merid-
ional oscillations on the intra-seasonal scale has been attempted by
using continuous space-time wavelets and searching of significant en-
ergy on the spatial scale of 4000 km and a related peak in the 40-50
day scale [10, 38]. Neither of these bring out the rich structure of
multi-scale interactions which our proposed framework attempts.

3 BACKGROUND

In this section, we briefly introduce the necessary background on tech-
niques from computer vision and computational topology that form the
mathematical and algorithmic basis of the proposed framework for vi-
sualizing and exploring cloud systems. Comprehensive discussions on
these concepts is available in several textbooks [14, 21, 32, 45].

3.1 Scalar functions and Level sets
A scalar function is a function that maps points in a spatial domain to
the set of real values R. Scalar functions are used to represent tempera-
ture or precipitation data from satellite images or weather simulations.
Figure 2(a) shows an example of a scalar function defined on a plane.
The function is visualized using a colour map, where white denotes a
zero function value and the colour progresses towards dark red as the
function value increases.
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Fig. 2. Scalar function and split tree. (a) A scalar function with three min-
ima labelled A, B, and C. It is visualized using the colour map shown on
the left. A low function value corresponds to white colour, and the colour
progresses towards dark red as the function value increases. Level sets
at two function values are shown as red and black lines respectively. A
sub-level set corresponds to the region within the level set and a super-
level set corresponds to the region outside the level set. (b) The split
tree tracks the components of the sub-level sets of a scalar function as
the function value increases.

The scalar function is typically represented using a structured grid
G, together with a piecewise bilinear function f : G→R. The function
is defined on the vertices of the grid and the function value at a point
within a cell of the grid is computed using bilinear interpolation.

The preimage f−1(a) of a real value a of a scalar function f is
called a level set. It is the set of all points on the domain having func-
tion value equal to a. A sub-level set of a real value a is defined as the
preimage of the interval (−∞,a]. It is the set of all points having func-
tion value less than or equal to a. Similarly, the super-level set of a is
the preimage of the interval [a,+∞). The closed red and black curves
in Figure 2(a) denotes two level sets of the input function. The region
inside these curves denote sub-level sets, while the region outside the
curve denotes super-level sets.

3.2 Join tree and Split tree
Consider a sweep of the input function f in increasing order of func-
tion value. The nature of topological change to the sub-level sets of f
when the sweep encounters a vertex determines the vertex type.

1. The vertex is regular: The topology of the sub-level sets do not
change.

2. The vertex is a minimum: A new sub-level set component is cre-
ated. The scalar function shown in Figure 2(a) has three minima
A,B, and C.

3. The vertex is a split saddle: Two sub-level set components merge
into one. This is equivalent to one of the components being de-
stroyed. The point D in Figure 2(a) represents one such saddle
where the sub-level set components created at minima A and C
merge into one.

The split tree tracks the changes in the connectivity of sub-level sets
of the input scalar function. Nodes of the split tree correspond to the
set of minima and split saddles of f . Figure 2(b) shows the split tree
corresponding to the input function shown in Figure 2(a).

The join tree of f is defined similarly, and tracks the connectivity of
the super-level sets of f . Nodes of the join tree correspond to the set
of maxima and join saddles of f . A maximum is a vertex where a new
super-level set component is created during the sweep of the input in
decreasing order of function value, and a join saddle is a vertex where
two super-level set components merge into one.

A vertex that is not regular, such as a minimum or a saddle, is called
critical. Efficient algorithms to compute join and split trees of an input
scalar function can be found in [9, 11, 30, 36]. Regular vertices are
often inserted into the join / split tree as degree-2 nodes to obtain an
augmented join tree / augmented split tree. Clouds may be represented
as sub- or super-level set components of an appropriate scalar function.
The split and join tree help extract and analyse individual clouds.

3.3 Topological persistence
Consider the sweep of the input function f in increasing order of func-
tion value. As mentioned above, the topology of the sub-level sets
change when this sweep encounters a critical point. A critical point is
called a creator if a new component is created and a destroyer oth-
erwise. It turns out that one can pair up each creator v1 uniquely
with a destroyer v2 that destroys the component created at v1. The
persistence value of v1 and v2 is defined as f (v2)− f (v1), which is
intuitively the lifetime of the feature created at v1, and is thus a mea-
sure of the importance of v1 and v2. In this paper, we are only in-
terested in the persistence of the set of minima or the set of maxima.
For an appropriately chosen scalar function, the persistence is a mea-
sure of the size of the corresponding cloud. Given an input domain of
size n, the persistence of such features can be computed efficiently in
O(n logn+ nα(n)) time using the union-find data structure, as com-
pared to the cubic-time required by the algorithm to compute general
topological persistence [13, 15]. The persistence diagram [12, 15]
plots the features of the input function as set of points on a 2D plane,
where the x− and y−coordinates of a feature corresponds to its birth
and death time respectively.

3.4 Optical flow
Given a sequences of images over time, the optical flow is the apparent
motion of the brightness patterns in the image [22, 23]. It is computed
as a velocity field, which provides the velocity with which every pixel
of an image moves. Studying the optical flow helps understand the
motion of objects in the images. In the context of weather data, we
aim to use it to understand the motion of features such as clouds. The
basis of most optical flow computation algorithms is the assumption of
brightness constancy, which states that when a pixel flows from one
image to another, its intensity or colour does not change. Let I(x,y, t)
denote the intensity of the pixel (x,y) at time t. Let the pixel have flow
(u(x,y, t),v(x,y, t)). Then, the brightness constancy can be written as

I(x,y, t) = I(x+u,y+ v, t +1).

Linearizing by applying a first-order Taylor expansion to the right hand
side yields the approximation

I(x,y, t) = I(x,y, t)+u
δ I
δx

+ v
δ I
δy

+1
δ I
δ t

.

This gives the optical flow constraint equation

u
δ I
δx

+ v
δ I
δy

+1
δ I
δ t

= 0.

Both the brightness constancy equation and the optical flow con-
straint equation provide just one constraint on two unknowns for each
pixel. Algorithms computing the optical flow introduce additional
constraints in order to solve the above equations. We refer the reader
to multiple surveys on the topic for a comprehensive discussion of al-
gorithms for computing the optical flow [4, 5, 6, 18, 33, 35, 44, 46].

4 TRACKING CLOUD MOVEMENT

Clouds are masses of condensed water vapor floating in the atmo-
sphere. They are spatial features that evolve over time. This section
describes methods for efficient identification of clouds and tracking of
cloud movement based on techniques presented in the previous sec-
tion.

4.1 Identifying Clouds
Two scalar functions commonly used by climate scientists to study
clouds are infrared (IR) brightness temperature and precipitation, re-
spectively. The function is sampled on a grid representing the geo-
graphic region of interest. We now describe how a cloud is identified
using these two functions. Clouds are extracted from both types of
data using level set analysis.
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Fig. 3. Identifying and tracking clouds using IR brightness temperature data. (a) The input scalar function represents the IR brightness temperature
over the east coast of India (8◦ to 20◦ latitude, 80◦ to 95◦ longitude) at 15:00 hours UTC on 1 June, 2006. (b) The set of clouds computed as a
sub-level set at threshold 205K. (c) The set of clouds computed as a sub-level set at threshold 235K. (d) The vector field obtained using the optical
flow algorithm. The flow around the large cloud on the left in (b) is shown.
4.1.1 IR brightness temperature

The IR brightness temperature data that we use in this work is the
CPC-merged dataset [1]. This dataset has been prepared by merging
pixel resolution IR brightness data from GOES/8/10, METEOSAT-7/5
and GMS geostationary satellites at a spatial resolution of 4km and
temporal resolutions of 30 minutes. The data is available from Febru-
ary 2000 to present. This is a unique dataset that allows study of trop-
ical systems such as Cyclone and Monsoons at multiple scales from
the local cloud scale to the planetary scale with a single comprehen-
sive dataset.

Given the IR brightness temperature distribution, the set of clouds
over the corresponding geographical region is identified as the col-
lection of sub-level set components for a given temperature threshold
t. Commonly used thresholds are approximately in the temperature
range t ∈ [192K,235K]. Figure 3(a) shows the IR brightness tempera-
ture over the east coast of India at 15:00 hours UTC on June 1, 2006.
Figures 3(b) and 3(c) show the clouds during that period computed at
thresholds t = 205K and t = 235K, respectively.

The threshold values usually depend on whether the clouds of inter-
est are tall or short. Colder temperatures (≤ 210K) indicate tall clouds
with cloudtops at 7.5 km or higher and are associated with Cumu-
lonimbus (Cb) cells, while higher temperatures indicate short clouds
that are associated with Stratus clouds [31]. However, there is no sin-
gle good value for t. We propose the use of the persistence diagram to
identify the threshold of interest.

A cloud is represented by the smallest minimum contained in the
corresponding sub-level set component. We generate the persistence
diagram of the set of all minima of the IR brightness temperature. The
persistence of a cloud is represented in the persistence diagram as the
height of the corresponding point above the x = y line. Clouds of
interest often correspond to high persistent features. The persistence
diagram helps locate highly persistent minima whose temperature lie
within a larger feasible interval of values. The search space for the
threshold is now reduced to the smaller temperature range containing
these minima. Figure 4 shows the persistence diagram for the input
shown in Figure 3(a). The most prominent clouds correspond to those
formed in the threshold range [200K,210K]. This is also validated by
the fact that there are no new significant clouds in Figure 3(c), which
was generated using a higher threshold of 235K.

4.1.2 Precipitation

While IR brightness temperature is a continuous function, precipita-
tion is more discrete (zero or non-zero) in nature. Additionally using
only IR brightness temperature could have problems in separating high
level cirrus from tall Cb clouds. However, the use of precipitation data
in combination with the IR brightness temperatures could differenti-

Fig. 4. Using persistence diagram of the input function shown in Fig-
ure 3(a) to identify a good threshold range to compute clouds. Note that
the main concentration of high persistence clouds correspond to the
threshold range [200K,210K]. Also, we do not see any new significant
clouds when a threshold of 235K is used to identify clouds (Figure 3(c)).

ate between tall Cb clouds which precipitate, and cirrus clouds (in the
form of an anvil to tall Cb clouds) which could have low IR tempera-
ture but would not precipitate.

We use the 3B42 dataset [2] in our experiments, which combines
data from TRMM precipitation radar, TRMM microwave image and
infrared scanner merged with IR brightness from geostationary satel-
lites. It has a spatial resolution of 0.25 degrees (approximately corre-
sponding to 25 km in the deep tropics). The temporal resolution is 3
hours. This dataset spans December 1997 - present and is one of the
widely used datasets for studying tropical convection at various tem-
poral and spatial scales ranging from comparison with modelling stud-
ies at monthly scale to obtaining diurnal signatures of rainfall. More
details about the creation of this dataset can be found in [24, 25].

When using precipitation as input, a higher value of precipitation
corresponds to tall clouds since Cb cells are likely to produce more
rain than stratus. Given the precipitation over a geographical region
of interest, the set of clouds is computed as the collection of super-
level sets for a given precipitation threshold p. Figure 5(a) shows the
precipitation of the same region over the east coast of India as shown in
Figure 3. Figures 5(b) and 5(c) show the set of clouds obtained using
two different thresholds. We again use the persistence diagram of the
set of maxima of the precipitation to identify an appropriate threshold
and compute the clouds of interest. Unless otherwise specified, the
examples in the remainder of this paper use IR brightness temperature
as their input scalar function.
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Fig. 5. Identifying clouds using precipitation data. (a) The input scalar function represents the precipitation over the east coast of India. Note that
the colour map is now reversed. Zero precipitation corresponds to dark red, and the colour tends to white with increasing function value. (b) The
set of clouds computed as a super-level set at a precipitation threshold=4. (c) The set of clouds computed as a super-level set at a precipitation
threshold=1.

4.2 Tracking cloud movement
Climate scientists are often interested in studying the temporal prop-
erties of a cloud system such as its origin, how it interacts with other
clouds, and its movement. Given the set of clouds at two consecutive
time steps, we track the movement of clouds using the optical flow
between the pair of IR brightness temperature images. In particular,
our software uses an implementation of the Farneback algorithm [16]
provided by OpenCV [7]. Figure 3(d) shows the velocity field for a
time-step obtained using this algorithm. The advantage of using opti-
cal flow is two-fold: 1) by not explicitly representing each cloud with a
single point, it captures intra-cloud system movements that are missed
by existing methods, and 2) it results in a time-varying vector field that
captures the smooth local motion of the clouds. As we show later in
Section 6, the local motion can help visualize the cloud movement and,
more importantly, it can also be used as a powerful tool for querying
and identifying interesting patterns in cloud movements.

The velocity field obtained as the output of the optical flow algo-
rithm is used to construct a cloud motion graph, that maps clouds from
one time step to clouds in the next time step. This graph captures the
movement and interaction between clouds over time. It essentially
captures when clouds originate, how they merge and split with other
clouds, and when they cease to exist. We use this graph to obtain a
higher level representation of the cloud system.

5 VISUALIZATION OF CLOUD SYSTEMS

We now describe our software framework which allows users to ex-
plore and visualize the movement of cloud systems. For ease of expla-
nation, we assume the input function is specified as IR brightness tem-
peratures. Note that the same techniques described below will work
for a precipitation input by reversing the function values. Also note
that in order to use this system, users do not require knowledge of the
underlying representation.

5.1 Exploring the data
Given the input data for different time steps, we first compute the set
of clouds at each time step. We then compute the optical flow between
consecutive time steps, and use the obtained velocity field to construct
the cloud motion graph. The different data structures present in our
framework can be used to support various queries over the given input.
We now describe the different ways in which users can explore the
input data.

5.1.1 Explore different thresholds
As mentioned in Section 4.1, there is no universally correct thresh-
old to be used. Depending on the goal, climate scientists use different

thresholds to identify clouds. Without a priori knowledge of the sys-
tem being studied, a trial and error method to obtain the right thresh-
old becomes very cumbersome. While using the persistence diagram
helps narrow this search space, computing the clouds at different pos-
sible thresholds is still computationally expensive. Moreover, since
the search space is continuous, there are theoretically infinite possible
thresholds that can be used.

The split tree (Section 3.2) captures threshold ranges in which there
is no change to the structure of a cloud. If we order the critical points in
increasing order of function value, then there is no topological change
in the structure of clouds between the function values corresponding
to two consecutive critical points. This provides a way to discretize
the search space. Also, by storing the augmented split tree it is easy to
recover the clouds at a threshold t± ε given the set of clouds at t by
moving up / down the arcs of the split tree.

We therefore first compute the set of split trees for the given in-
put, and use this as a data structure to identify clouds. In addition to
providing a set of discrete function intervals that the users might be
interested in, the split tree also allows us to efficiently compute clouds
with changing threshold values.

5.1.2 Query the input

Both the velocity field obtained from the optical flow algorithm, and
the cloud motion graph encode information about the motion of cloud
systems. This enables us to support queries on the input, which greatly
eases the effort of users to find patterns in cloud movements. Our
framework supports queries on individual clouds as well as on cloud
systems. The different queries supported by our system with respect
to individual clouds are:

1. Query clouds based on direction of movement. Users are often
interested in finding clouds that move in certain directions. Using
the optical flow, we allow users to search for clouds that move in
the four principal directions, i.e. north, south, east, and west.

2. Query clouds based on its longevity. This allows users to identify
clouds that are alive for a given duration. The lifetime of a cloud
is measured similar to persistence, based on its mergers and splits
over time.

3. Query clouds based on its size. The user can view only those
clouds that have a given size. While we currently use the area
of the cloud as a measure of its size, it can be easily extended to
support other measures of size as well.
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Fig. 6. Visualization of cloud movement. (a) The set of clouds at a particular time step. Clouds having the same colour correspond to those that
have either interacted earlier, or will interact with each other in the future. (b) The different trajectories show the local movement of a selected cloud.
Red arrows depicts the past trajectory, while the yellow arrows depicts the future trajectory. (c) The long term movement of the large green cloud
present in (a). The position of the cloud at discrete time steps is visualized by varying the colour from yellow to blue over time. The approximate
trajectory of this movement is also shown.

4. Query clouds based on its velocity. Knowing the rate at which
clouds are moving, wind patterns can be estimated (generally
known as Cloud Motion Vectors).

We also support queries based on movement, lifetime, size and veloc-
ity of cloud systems, which are represented as connected components
of the cloud motion graph. In addition to this, we also support the
queries on cloud systems based on their behaviour over time. An ex-
ample of such query is when a user wants to identify cloud systems
which is involved in a lot of merge / split activity between clouds. If
two cloud systems merge, they are likely to form bigger systems which
could result in higher rainfall / more unstable weather. Conversely
splitting and moving away could indicate weakening of the system.

Our system also supports temporal queries, which the user can use
to find time intervals that contain clouds or cloud systems having any
of the above given properties.

In addition to the above queries on the movement of clouds, we also
support queries to gather various statistics of the cloud system such as
the area covered by the clouds and the frequency distribution of cloud
heights. The latter is particularly of interest for climate scientists. The
change in such a frequency distribution within a cloud system could
indicate whether the cloud system is intensifying (having more taller
clouds) or decaying (having less taller clouds). If multiple cloud sys-
tems with tall clouds are seen in a region, then more unsettled weather
is highly likely over that region. One can also get an overview of the
frequency distribution of cloud heights using the persistence diagram.
Thus, such queries can be used as a now-casting tool.

5.2 Visualizing cloud movement
In addition to exploring the data, our framework also supports visu-
alizing the interactions between clouds and their movement. We pro-
vide three ways in which this movement of clouds can be visualized
– (a) by showing inter-cloud interactions, (b) by showing local move-
ment of select clouds, and (c) by showing long term movement of
select clouds. We now describe each of these visualizations in detail.

5.2.1 Cloud interactions
Users are interested in understanding how clouds interact with each
other over time. In particular, they are interested in identifying clouds
that belong to the same cloud system. Such interactions are captured
by the connected components of the cloud motion graph, which repre-
sents the set of cloud systems. Let the edges of this graph be directed
towards nodes having a later time step. Then, a node having more than
one incoming edge would correspond to multiple clouds merging into

a single cloud, while a node having multiple outgoing edges would
correspond to a cloud splitting to multiple clouds.

In order to show such interaction between clouds, we assign a
unique colour to clouds that belong to a common component. Thus,
when the user selects a time step, clouds having the same colour would
correspond to those within a cloud system. Figure 6(a) shows clusters
of clouds at a particular time step. Clusters are determined by the
cloud interactions either in the past or in future.

5.2.2 Local cloud movement

The intra-cloud system movement can easily be overlooked when
viewing an animation of the cloud system movements. This is es-
pecially true for potentially interesting short term movements which
could identify interesting phenomena. Climate scientists are therefore
interested in viewing such intra-cloud system movement of a cloud of
interest as a static image. The velocity field obtained using the optical
flow algorithm, which tracks the motion of individual pixels forming
a cloud, may be processed to identify the intra-cloud system interac-
tions.

We use the streak lines of the computed velocity field to visualize
such movement. The user first selects a cloud of interest at a particular
time step. We then sample points within this cloud depending on the
required density specified by the user. Using the sampled points as
seed points, we compute and display the streak lines. Climate scien-
tists also want to differentiate between the history and future of these
trajectories. We therefore colour code the streak lines depending on
the time step of the selected cloud. Figure 6(b) shows the local move-
ment of one such cloud. With respect to the time step of the selected
cloud, the past movement of the cloud is represented using a red tra-
jectory, while the future movement is represented using a yellow tra-
jectory.

5.2.3 Long term cloud movement

Users are also interested in viewing the long term movement of clouds
in a single frame, rather than keeping track of the clouds by either
explicitly changing time steps, or through an animation of their move-
ment. In addition to the long term direction of movement, they are
also interested in tracking the size of the clouds over time, since this
provides a sense of whether the cloud system is growing or decaying
over time.

As mentioned in Section 4.2, this movement is stored in the cloud
motion graph. When the user selects a cloud of interest, we trace the
evolution of that cloud as a set of nodes in the cloud motion graph. A



Fig. 7. Movement of Nakazawa cloud clusters over the Indonesian region during the period 2 January 2007 to 8 January 2007. The normal
movement of the cloud cluster is to move in a westward direction. The local movement of two such clouds are shown.

Fig. 8. The graph plots the longitude at different times over a period
of 6 days. The plot implies a gradual eastward movement of the west
moving cloud concentration, thus verifying the eastward propagations of
the MJO.

uniform sample of the time steps are then selected. The clouds corre-
sponding to the nodes in these time steps are then displayed so that the
change of size over time can be visualized. In order to differentiate be-
tween the different time steps, the clouds are colour coded over time.
Note that having a dense sampling of time steps could clutter the vi-
sualization. In addition to displaying the clouds, the general direction
of movement is also displayed as a glyph. This direction is computed
as the vector that transforms the center of the cloud system from one
time step to the next. Figure 6(c) shows the long term movement of
the green cloud in Figure 6(a).

6 USE CASE SCENARIOS

In this section, we demonstrate the utility of our framework through
three use case scenarios.

6.1 Implementation and Experimental Setup
We first describe the implementation of our prototype software and the
experimental setup. Experiments are performed on the CPC-merged
dataset [1]. The data is available as a set of 62 MB binary files, where
each file stores the data for the two 30 minute intervals within the
corresponding hour. We first crop the data based on the given time
period and the spatial range of interest. We then pre-process this in-
put in order to support interactive exploration and visualization. Pre-
processing includes computing and storing the split trees for the differ-
ent time periods. We also compute the birth temperature, death tem-
perature, and persistence of various clouds when computing the split
tree. The optical flow associated with each time step is also stored
while pre-processing the input.

Our software then uses the stored split trees and optical flow to com-
pute the set of clouds and the cloud motion graph using the threshold
specified by the user. The software allows the user to view the move-
ment of clouds as an animation. Alternatively, the user can view a
specific time instant. The software also allows the selection of clouds
of interest in order to view either the local or long term movement of
the clouds. The user can also specify the density of sampling and the
density of time intervals that are used to generate the resultant visual-
izations. The visualizations are generated using the pre-computed data

structures, which are small compared to the entire input data. Also,
given a time step of interest, we load only the data corresponding to
neighbouring time steps into memory. This helps reduce the memory
overhead and hence the software can handle very large time periods.

In our current implementation, querying of cloud systems is sup-
ported via a command interface. Querying is currently performed us-
ing a brute-force search. Due to this, queries over a large time range
(typically greater than two weeks) requires time in the order of min-
utes to finish. Adding specialized data structures would potentially
improve the querying time. In all the reported experiments, no filter
corresponding to the size or lifetime of the clouds were applied.

6.2 Analysis of movement of the equatorial MJO over In-
dian Ocean

Nakazawa [34] used 3-hourly IR data and showed that within the intra-
seasonal Madden Julian Oscillation there exists super cloud clusters of
spatial size of thousands of kilometres moving eastward at 10-15 ms−1

and had a time scale of less than 10 days. Embedded inside these were
cloud clusters of 100 kms and time scale 1-2 days moving westwards.
We could verify the existence of such cloud clusters over the Indone-
sian region using our framework. Figure 7 shows the local movement
of a couple of selected clouds of the MJO on 2 January 2007, which
shows a general westward movement of the cloud clusters.

The eastern movement of the super cloud clusters was speculated to
be due to the successive cloud cluster formation east of an older one,
leading to an overall eastward propagation. Since the actual clouds
move westwards, identifying the eastward propagation of the west-
ward moving clouds would normally require the user to manually anal-
yse cloud movements over a longer time period. Also, such analysis
would only provide qualitative verification of the phenomena. Using
our query framework it is possible to obtain a quantitative verification
of such phenomena as follows.

The idea behind the following experiment is to study the concentra-
tion of west moving clouds over a long time interval. We first query
for the set of west moving cloud systems at regular intervals in time.
We used an interval range of 6 hours in our experiment. We then use
the geometric centre of all the clouds of the obtained cloud system to
approximate the concentration of the west moving clouds.

Figure 8 plots the longitude of these centres at different times. Note
that initially, the concentration of west moving clouds also moves
westward. Then, as a new set of west moving clouds are formed to
the east of existing cloud clusters, the cloud concentration begins to
move eastward until the new cloud clusters are fully formed. As these
newly formed clouds moves westward, the cloud concentration again
moves to the west. The above process keeps repeating with every new
cloud cluster that is formed to the east, which implies a gradual east-
ward motion of the MJO. The plot also indicates the time scale of the
west moving cloud clusters, the time between the formation of one
cloud cluster and the next, to be around 1-2 days.

While the expected movement of clouds within these cloud clusters
is in a westward direction, it is also possible that there are exceptions,
wherein there is an occasional short term eastward movement due to a
convectively coupled kelvin wave [40]. Manually searching for such



Fig. 9. Parts of the cloud cluster move in an eastward direction as opposed to the normal westward direction. Querying for such anomalies results
in 4 such movements on 2 January. Note that the eastward movement is short term due to a convectively coupled kelvin. The clouds then resume
their normal westward course.

(a) (b) (c)

Fig. 10. Movement of clouds during the 2005 Mumbai rainfall. (a) Clouds at the beginning of the rainfall phenomena. (b) Local movement of the
two clouds that was responsible for this event. (c) Long term movement of the large cloud shows that it moved in from east of West Bengal. Also,
this cloud splits into two clouds, one merging with the smaller cloud, while the other moves in the north west direction.

possibilities is difficult. It is also possible that only parts of a large
cloud moves eastward. In addition to the size of such east moving
clouds being small, the duration of this eastward movement is short. It
is therefore possible to miss such movement through manual analysis.
Using our framework, we query the input for clouds that move east-
ward. The result of this query is shown in Figure 9, which shows the
eastern moving clouds for one time step.

Our analysis indicates the asymmetry of the embedded cloud clus-
ters. Westward moving clusters are more and of longer duration while
eastward moving clusters are of shorter duration and fewer. Further it
indicates that MJO are a multi-scale phenomena with each scale hav-
ing a characteristic signature, that is, a larger scale envelope that gives
the eastward moving MJO and shorter scale cloud clusters that move
westward within the envelope. These short term westward moving
cloud clusters in turn contain smaller clouds that move eastward. Our
analysis also indicates that the movement of envelope is associated
with an eastward movement of the position of genesis of westward
moving cloud clusters. This insight has been easily obtained from our
present analysis.

6.3 2005 Mumbai Rainfall

The heavy rainfall event at Mumbai (Bombay), India was of unprece-
dented intensity. It occured on 26-27 July 2005. It was a highly lo-

calized event with Santa Cruz (Mumbai Airport) receiving 94.4 cm of
rainfall within 24 hours. In constrast, Colaba in South Mumbai re-
ceived a scant 7.3 cm during the same period. Most of the 94 cms fell
within a few hours. If we examine the large-scale features we note that
prior to this event, monsoon was in an inactive phase from 19-22 July
2005. On 23 July a low pressure area formed over Northern Bay of
Bengal, intensified into a well-marked low, and moved westward [41].

Fig. 11. Persistence diagram for Mumbai rainfall data. Note the pres-
ence of high persistence clouds formed at a higher threshold range.



(a) (b) (c)

Fig. 12. Movement of cyclone Aila. (a) Clouds of the cyclone before landfall. (b) Cloud corresponding to the eye shows a spiral local movement.
(c) Long term movement of the cloud corresponding to the eye of the cyclone. Note that after landfall, the clouds corresponding to the eye splits
into two (highlighted in red), one moving in the north-eastern direction, while the other in the north-western direction.

Figure 10(a) shows the set of clouds during the start of the rainfall
phenomenon over Mumbai. Note that there is a large cloud just east of
Mumbai, while there is a small cloud directly over Mumbai. The local
movement of these clouds (Figure 10(b)) show that the large cloud
is moving from the west towards Mumbai. On the other hand, the
smaller cloud was formed over Mumbai, and it moves west towards
the Arabian sea. Looking at the long term movement in Figure 10(c)
shows that the larger cloud has travelled across the breadth of India
after originating in the region east of West Bengal. This cloud then
splits into two, one part moving in the north west direction, while the
other merges with the small cloud that has formed over Mumbai.

Figure 11 shows the persistence diagram corresponding to this in-
put. Note that the presence of high persistence clouds that were created
in the threshold range [215K,225K] suggests using a high threshold.
We therefore use a threshold of 220K. The validity of the range sug-
gested was also verified using a lower threshold of 210K. In this exper-
iment, we couldn’t capture the merger between the large west moving
cloud and small cloud that was born over Mumbai.

The use of higher threshold to capture high rainfall around Mumbai
could be related to the fact that quite a bit of rainfall are orography
related. That is, when moist flow faces an obstruction such as the
Western Ghats, copious rainfall can occur even with relatively shorter
clouds. Mahani et al. [31] have also commented on the problems re-
lated close to regions of high orography.

The breaking of the MCS with a part going north-westward and
another part moving towards Mumbai has not been documented in the
previous study of Sahaney et al [41]. They used conventional methods
of manually tracking low pressure systems (Figure 1 in their paper).

6.4 Cyclone Aila

One generally reads only about the movement of the entire cyclonic
system. In this use case, we show the rich structure of cloud move-
ments within a cyclone whose motion could be very different from
that of the larger envelope, which in this case is the cyclone. Figure 12
shows the movement of clouds when cyclone Aila made landfall on
May 2009. Figure 12(b) shows the local movement of the cloud cor-
responding to the eye of the cyclone, which indicates a spiral pattern.
The long term movement, shown in Figure 12(c) of this cloud system
corresponds to a movement towards West Bengal. Note that the cloud
splits after landfall.

This again shows the occurrence of multi-scale interactions, the
smaller cloud systems embedded in the larger scale cyclone with dif-
fering life cycles and direction of movement. While the splitting of
the system is mentioned in the IMD report [3], no supporting satel-
lite pictures are shown. Our framework easily tracks this splitting of

the system. Such a split in the cloud, which results in the split clouds
moving away from each other, indicates that the system is likely to
weaken. Such observations from real time data could again be used
for now-casting.

7 CONCLUSIONS

In this paper, we proposed a framework to identify and explore cloud
systems. It uses techniques from computational topology to efficiently
identify clouds at different thresholds. The motion of clouds are then
tracked using optical flow. Our framework allows for various queries
on cloud systems that helps to easily and effectively analyse cloud
systems without any knowledge of the underlying techniques.

Our framework clearly brings out that most tropical convective phe-
nomena such as the Madden Julian Oscillation and tropical cyclone
are multi-scale phenomena with smaller scale cloud systems embed-
ded in the larger envelope. The movement of the envelope could be
very different from that of the individual cloud systems. For MJO,
our method clearly brings out that the envelope moves eastward due
to the eastward movement of the genesis region of westward moving
cloud clusters. Multiple cloud systems over a region could indicate se-
vere weather while splitting of a convective system and their drifting
away could indicate weakening of the larger system. These indicate
that our framework has potential as a now-casting tool. We intend to
release this framework for use by meteorologists and climate scientists
to facilitate their study of cloud systems.

Currently, the cloud motion graph is used only for supporting
queries. In future, we intend to use it as a user interface to interact
with the visualization system. Additional visualizations of the cal-
culated statistics such as distribution of cloud sizes could help guide
users to explore the data. While queries on the input are processed
quickly for smaller time intervals, this is not true when the data is
available over large time periods. It will be interesting to consider in-
dexing data structures to support interactive querying over large data
sets. A web based interface for the framework that accesses real-time
data will help complement existing now-casting tools.
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