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A B S T R A C T

The Bay of Bengal (BoB) has maintained its salinity distribution over the years despite a continuous
flow of fresh water entering it through rivers on the northern coast, which is capable of diluting the
salinity. This can be attributed to the cyclic flow of high salinity water (g 35 psu), coming from Ara-
bian sea and entering BoB from the south, which moves northward and mixes with this fresh water.
The movement of this high salinity water has been studied and analyzed in previous work (Singh et al.,
2022). This paper extends the computational methods and analysis of salinity movement. Specifically,
we introduce an advection based feature definition that represents the movement of high salinity water,
and describe algorithms to track their evolution over time. This method allows us to trace the move-
ment of high salinity water caused due to ocean currents. The method is validated via comparison
with established observations on the flow of high salinity water in the BoB, including its entry from
the Arabian Sea and its movement near Sri Lanka. Further, the visual analysis and tracking frame-
work enables us to compare it with previous work and analyze the contribution of advection to salinity
transport.

1. Introduction31

The Bay of Bengal (BoB) is a complex ocean system ow-32

ing to its unique geographic setting and the combination of33

forcing by seasonally reversing monsoon winds and large34

quantity of freshwater supply to the bay from river runo�35

and rainfall (Shetye et al., 1996; Rao and Sivakumar, 2003;36

Behara and Vinayachandran, 2016). The flow of fresh water37

from rivers in the northern coast is capable of diluting the38

salinity in BoB. The large excess of freshwater input from39

rainfall and rivers, compared to loss by evaporation, makes40

the salinity of the bay far lower compared to the rest of the In-41

dian Ocean. Maintaining a long term steady state condition42

requires that the excess freshwater be flushed out and water43

of high salinity flow into the bay. The outflow of low salinity44

water occurs along its eastern and western boundaries (Be-45

hara and Vinayachandran, 2016; Jensen, 2001, 2003) and the46

inflow of high salinity water (g 35 psu) occurs during sum-47

mer monsoon in the southern BoB (Vinayachandran et al.,48

2013, 2018). Advection of the high salinity water along with49

the prevailing circulation and the ensuing mixing is well re-50

alized as the principal mechanisms for maintaining the salin-51

ity distribution in the BoB (Behara and Vinayachandran, 2016).52

Upon entering the BoB, high salinity water continuously53

evolves and changes its physical properties. A previous study54

(Singh et al., 2022) used geometric and topological descrip-55

tors to track high salinity water. The study showed that, upon56

entering BoB, the high salinity water mass splits in three57

major directions and advances towards Visakhapatnam, the58

coast of Andaman and Nicobar islands, and the centre of59

BoB. The study was carried out under the assumption that60
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the high salinity water moves northward. Observations of 61

the general trend of movement of high salinity water in the 62

BoB indicate that the assumption is valid. However, the as- 63

sumption does a�ect the robustness and applicability of the 64

method to other scenarios. Further, the tracks do not provide 65

additional information regarding the forces or natural phe- 66

nomenon responsible for the salinity movement, a question 67

of interest to oceanographers. In this paper, we track salinity 68

movement due to ocean currents as compared to other phe- 69

nomena (di�usion, dispersion, mixing of water). For study- 70

ing the movement of salinity due to currents, we consider 71

advection, which is defined as the mechanical transport of 72

solutes in the fluid along with the movement of the fluid. We 73

design and implement an advection-based tracking method 74

and use it to measure the transport of salinity through BoB 75

due to currents. The tracking method is supported by a defi- 76

nition of physical features in data that is based on advection. 77

The method is used to track the flow of high salinity water 78

in BoB, followed by a comparison against the movement of 79

high salinity water observed using the method of Singh et al.. 80

1.1. Related work 81

The source of high salinity water in the southern BoB is 82

the high salinity core (HSC) (Vinayachandran et al., 2013, 83

2018) that intrudes into the bay from the Arabian Sea along 84

with the Summer Monsoon Current (SMC). This water is 85

denser compared to the ambient water, and consequently sinks 86

and then spreads into the rest of the Bay. These movements 87

are a�ected by the Sri Lanka Dome (SLD) and the path of 88

the SMC. The SLD spins in an anticlockwise direction, up- 89

welling water from below. The SMC generally flows north- 90

eastward into the bay and its mean position shifts progres- 91

sively westward (Vinayachandran and Yamagata, 1998; Web- 92

ber et al., 2018) with the season along with the HSC. The 93

SMC often consists of eddies (Rath et al., 2019) and splits 94
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into multiple branches (George et al., 2019), carrying HSC95

along with these features. The HSC is located at shallow96

depths and the property that distinguishes HSC from the BoB97

is its higher salinity, prompting us to use salinity as the tracer.98

The large spatial gradients in salinity in the bay (compared to99

that of temperature) also makes it an ideal tracer for tracking100

movement of water parcels (Jensen, 2001; Benshila et al.,101

2014).102

The transport of temperature, salt, and other tracers in103

the ocean from one place to another is carried out to a great104

extent by advection. Recent studies suggest that ocean heat105

advection is a dominant process to predict high-latitude ice106

movement (Nakanowatari et al., 2022). The advection of107

heat by ocean currents controls the mixed layer heat bud-108

get and air-sea interaction in the southern ocean (Gao et al.,109

2022). In the BoB, advection plays an important role in110

maintaining the salt and freshwater budgets (Behara and Vinay-111

achandran, 2016; Jensen, 2001, 2003) in addition to con-112

trolling the heat budget (Vijith et al., 2020). The circula-113

tion patterns in regions close to the coast of Sri Lanka have114

been studied from various measurements to understand sea-115

sonal and year-to-year variations (Pirro et al., 2020; Anu-116

taliya et al., 2022; Rainville et al., 2022).117

E�ective representation of the HSC and e�cient meth-118

ods for tracking its movement are central to the study of119

movement of salinity within the BoB. The salinity data is120

represented as a scalar field defined over a volumetric do-121

main. Geometric and topological approaches toward the rep-122

resentation and tracking of features in scalar field data typ-123

ically begin with isosurface extraction. An isosurface of a124

scalar field is the preimage of a scalar value. It may consist125

of multiple connected components, each component enclos-126

ing a subvolume. An isovolume is the preimage of an interval127

of scalar values. It is essentially a collection of isosurfaces.128

The 35 psu isohaline envelopes the HSC in the BoB (Vinay-129

achandran et al., 2013, 2018) and hence the g35 psu isovol-130

ume is used to represent the HSC.131

Several methods have been developed within the visu-132

alization literature to track and explore spatio-temporal fea-133

tures. Most relevant to the problem of HSC movement track-134

ing are methods that utilize geometric and topological tech-135

niques that begin with the assumption that the features of136

interest are enclosed by individual components of the isosur-137

faces (Mascarenhas and Snoeyink, 2009). The connectivity138

of the isosurface over the entire range of scalar values is rep-139

resented using a topological structure called the Reeb graph,140

or its variants, such as the contour tree or merge tree (Edels-141

brunner and Harer, 2010; Doraiswamy and Natarajan, 2012).142

A time-varying extension of the Reeb graph (Edelsbrunner143

et al., 2008) or the contour tree (Sohn and Bajaj, 2006) helps144

represent the evolution of the entire collection of isosurfaces.145

Tracks of individual features may be extracted as paths within146

this time-varying graph. Several other approaches construct147

a track graph, a directed acyclic graph (DAG) consisting148

of all potential feature tracks (Bremer et al., 2010; Thomas149

and Natarajan, 2011; Widanagamaachchi et al., 2012; Do-150

raiswamy et al., 2013; Valsangkar et al., 2019; Pandey et al.,151

2020; Lukasczyk et al., 2020). The track graph records the 152

correspondences between features in consecutive time steps 153

by considering the spatial proximity of the critical points that 154

represent the features (Skraba and Wang, 2014; Soler et al., 155

2018), spatial overlap (Sohn and Bajaj, 2006; Saikia and 156

Weinkauf, 2017a,b), or by identifying the matches between 157

the subtrees of the contour trees or merge trees (Bremer et al., 158

2011; Oesterling et al., 2017; Sridharamurthy et al., 2020; 159

Sridharamurthy and Natarajan, 2023). 160

Other approaches to feature tracking include those based 161

on flow fields (Post et al., 2003), Temperature-Salinity (T- 162

S) diagrams (Talley et al., 2011; Berglund et al., 2017), and 163

transfer functions or color maps for constructing visual rep- 164

resentations of time-varying data considered as a 4D scalar 165

field (Fan-Yin Tzeng and Kwan-Liu Ma, 2005). Detection 166

and tracking have also been developed with a focus on in- 167

dividual phenomena such as upwelling (Nascimento et al., 168

2012, 2015; Artal et al., 2019). Several studies in oceanog- 169

raphy are supported by the development of e�cient feature 170

tracking methods, as mentioned above (Massey, 2012; Du 171

et al., 2015; Li et al., 2011; Liu et al., 2017; Gad et al., 2018). 172

Xie et al. present a taxonomy of ocean data and related data 173

processing tasks (Xie et al., 2019), including ocean phenom- 174

ena identification, tracking, and pattern discovery. Afzal et 175

al. survey the task requirements in the context of visual 176

analysis of ocean and atmospheric datasets in (Afzal et al., 177

2019), and discuss di�erent frameworks for data analysis and 178

knowledge discovery. 179

A recent paper (Singh et al., 2022) introduces two ap- 180

proaches to represent the HSC with a focus on its shape char- 181

acteristics – a surface front that indicates northward move- 182

ment and a skeleton that represents overall shape of the vol- 183

ume. The g35 psu isovolume is a coarse representation of 184

the HSC. The front is defined as a subset of the boundary 185

of the HSC volume. The front-based tracking method com- 186

putes a boundary surface component of the isovolume with 187

a predisposition to move north. This component is declared 188

as a front and a neighborhood analysis is used to track the 189

front over time. The skeleton-based method aims to capture 190

changes in the shape of the HSC and hence track its move- 191

ment. It also begins by computing the g35 psu isovolume. 192

Next, it constructs a skeletal structure (Sato et al., 2000) as a 193

collection of paths in the isovolume. The skeletal structure 194

serves as a descriptor of the isovolume shape, and is tracked 195

over time using a spatial neighborhood analysis. 196

Both front and skeleton-based representations help track 197

the HSC despite its irregular shape transformations. The 198

front and skeleton-based tracking enables detailed and new 199

observations on the forking behavior of the HSC near the 200

centre of the BoB and a long track describing movement to- 201

wards the coast. The e�ect of individual ocean dynamics 202

processes like ocean currents, di�usion, and mixing on HSC 203

movement is not studied in these works. 204

1.2. Contributions 205

Front and skeleton-based HSC tracking methods (Singh 206

et al., 2022) were used to document the HSC path within 207

Upkar Singh et al.: Preprint submitted to Elsevier Page 2 of 12



Advection-Based Tracking and Analysis of Salinity Movement in the Indian Ocean

the BoB. However, this movement of the HSC is a result208

of complex ocean dynamics that includes advection, di�u-209

sion, and mixing. This paper presents computational meth-210

ods to study HSC movement that can be attributed to advec-211

tion. This finer grained analysis helps explain the processes212

that direct the HSC movement and its path within the BoB.213

The constantly evolving shape of the HSC, the continuously214

changing non-uniform distribution of salinity levels within215

the HSC, and the dynamic current make it di�cult to study216

the e�ect of advection on the salinity movement. While ad-217

vection may be directly visualized using pathlines of the ve-218

locity field, there exists no clear feature descriptor based on219

advection to support the finer-grained analysis. The follow-220

ing is a list of key contributions of this paper:221

• Introduction of a novel feature of the HSC, called the222

advection front, that helps track its movement as di-223

rected by the velocity field.224

• Parallel algorithms and methods to compute, track,225

and analyze the advection front.226

• A visual analysis tool to study salinity transport due227

to advection in the BoB.228

• New results and inferences on salinity transport due to229

ocean currents in the BoB.230

2. Data preparation231

Data used in this study is from the GLORYS12V1 : Global232

Ocean Physics Reanalysis repository (Copernicus, 2012). This233

data is from a reanalysis product and provides multiple fields234

including salinity, horizontal velocities across latitude and235

longitude in netCDF format. All fields are available on a236

3D rectilinear grid, regularly sampled horizontally with a237

latitude-longitude resolution of 1_12˝ and irregularly sam-238

pled across depth at 50 levels. The data is available at daily239

resolution for 122 days during the period June 2016 – Septem-240

ber 2016. We resample the salinity at regular depth levels241

1 m apart up to 200 m using linear interpolation. This re-242

sults in a regular 3D grid data that enables e�cient volume243

processing and visualization.244

The data is processed using Climate Data Operators (CDO)245

command line tools (Schulzweida, 2019) and a geographical246

region corresponding to the BoB is extracted using bounds247

on longitude (75˝E to 96˝E) and latitude (5˝S to 30˝N).248

The resampling computation is scheduled in parallel, where249

each pair of consecutive depth slices from the input 3D recti-250

linear grid is processed concurrently to compute interpolated251

slices between them. Further, salinity and velocity data is252

considered only up to a depth of 200 m. HSC movement is253

observed only in relatively shallow waters (Anutaliya et al.,254

2017) and hence the restriction. The resulting netCDF file255

is used for all further processing and analysis. Vertical ve-256

locities are not available in the data and need to be estimated257

based on the available fields.258

Vertical velocity estimation. If a fluid is incompressible
(such as the ocean water), it satisfies the following equation

of continuity (Pond and Pickard, 1983):

)up,t

)x
+

)vp,t

)y
+

)wp,t

)z
= 0, (1)

where Vp,t = (up,t, vp,t,wp,t) is the given velocity along x,
y, and z axis at a 3D point p in space and at time t. The
coordinates are chosen to correspond to longitude, latitude,
and depth, respectively. So, the vertical velocity component
can be expressed in terms of the horizontal components as

)wp,t

)z
= *

0

)up,t

)x
+

)vp,t

)y

1

. (2)

When the point p lies at the location of a vertex of the cube
grid, it is represented as p = (xi, yj , zk). Here, i, j, and k

denote the index of the vertex on the 3D grid. Note that
zk is zero on the ocean surface and negative elsewhere, and
*zk represents the depth below the sea surface. Assuming
that the horizontal velocity is available at a total of d depth
levels {z1 = 0, z2,… , zk,… , zd}, the vertical velocity at
depth *zk below the surface can be computed as an integral
over the slab between layers z = zk and z = zk*1:

w(xi,yj ,zk),t*w(xi,yj ,zk*1),t =  
zk

zk*1

*
0

)up,t

)x
+

)vp,t

)y

1

)z.

(3)

The vertical velocity at depth *zk*1 is recursively computed
using the integral over the slab between layers z = zk*2 and
z = zk*1, and so on, until the slab whose top layer is the sur-
face of the ocean. The vertical velocity wp,t on the surface
of the ocean, namely at depth z1 = 0, is equal to 0. The di-
vergence may be assumed to be a constant within each slab
and is set to be equal to the value at the centre of the slab,
at depth 1

2 (zk + zk*1). So, the integral is equal to the prod-
uct of the divergence and the height of the slab. Since the
data is available as a discrete sample, the partial derivatives
at a given point is estimated as the average of forward and
backward di�erences:

)up,t

)x
= 1

2

0

u(xi+1,yj ,zk),t * u(xi,yj ,zk),t

D((xi+1, yj , zk), (xi, yj , zk))

+
u(xi,yj ,zk),t * u(xi*1,yj ,zk),t

D((xi, yj , zk), (xi*1, yj , zk))

1

(4)

)vp,t

)y
= 1

2

0

v(xi,yj+1,zk),t * v(xi,yj ,zk),t

D((xi, yj+1, zk), (xi, yj , zk))

+
v(xi,yj ,zk),t * v(xi,yj*1,zk),t

D((xi, yj , zk), (xi, yj*1, zk))

1

(5)

Here, D() is the Euclidean distance between two points 259

in the volume. Each time step is processed independently, 260

resulting in a parallel method for computing wp,t. After this 261

computation, we resample the velocity at regular depth lev- 262

els 1 m apart so that all variables are available on the regular 263

grid mentioned above. 264
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3. Advection and salinity transport265

BoB is a complex system of various physical phenom-266

ena, many of which influence salinity transport. In previ-267

ous work (Singh et al., 2022) we studied the overall move-268

ment of salinity in BoB, which is the result of all phenom-269

ena working in tandem. The surface front tracking based ap-270

proach to study HSC movement is direct, simple, e�ective,271

and amenable to e�cient computation. Our objective is to272

determine the role of advection in salinity transport by com-273

paring the tracks obtained via surface front tracking against274

those obtained based on advection. An advection-based ap-275

proach helps us focus on salinity movement caused due to the276

ocean currents. As mentioned above, the horizontal compo-277

nents of the velocity are available for the region of BoB in278

the dataset considered in this study. We estimate the vertical279

velocity component and use it to compute advection.280

3.1. Overview281

The data consists of a salinity field and a 3D vector field,282

all sampled over a regular grid. Two components of the vec-283

tor field are available as input, and the third (vertical) com-284

ponent is computed at grid vertices and interpolated within285

each cell. The g 35 psu isohaline is a coarse representation286

of the HSC in the BoB (Vinayachandran et al., 2013, 2018).287

We incorporate an allowable tolerance ✏ for ocean measure-288

ments (Durack and Wij�els, 2010). As a first step, we extract289

the 35 ± ✏ psu isovolume (Figure 1), which serves as an en-290

velope of the high salinity water packets. Subsequent steps291

focus on computing advection of salinity in this isovolume292

with the aim of capturing the movement of the HSC due to293

ocean currents. This is achieved by locating points in the294

isovolume where the current drives salinity transport, com-295

puting clusters of such points, and constructing a graph that296

consists of tracks of the clusters over time. We introduce297

a feature representation called advection front, a subset of298

the 35 ± ✏ psu isovolume, and track this front across time to299

determine HSC movement caused by the velocity field. All300

steps mentioned above can be computed in parallel to im-301

prove runtime performance. We first describe the individual302

steps and discuss the strategy for parallelization later in the303

section.304

3.2. Advection front305

Advection is defined as the mechanical transport of so-
lutes due to the movement of solvent. The advection of salin-
ity due to ocean currents at a point p and time t is expressed
as

Ap,t = up,t

)Sp,t

)x
+ vp,t

)Sp,t

)y
+wp,t

)Sp,t

)z
. (6)

This analytic expression for advection is applicable for a dif-
ferentiable salinity function. In practice, the salinity func-
tion is available as a sample over a 3D grid. We use the
average of the forward and backward di�erence to estimate
the partial derivatives.

)Sp,t

)x
= 1

2

H

S(xi+1,yj ,zk),t * S(xi,yj ,zk),t

D((xi+1, yj , zk), (xi, yj , zk))

+
S(xi,yj ,zk),t * S(xi*1,yj ,zk),t

D((xi, yj , zk), (xi*1, yj , zk))

I

(7)

)Sp,t

)y
= 1

2

H

S(xi,yj+1,zk),t * S(xi,yj ,zk),t

D((xi, yj+1, zk), (xi, yj , zk))

+
S(xi,yj ,zk),t * S(xi,yj*1,zk),t

D((xi, yj , zk), (xi, yj*1, zk))

I

(8)

)Sp,t

)z
= 1

2

H

S(xi,yj ,zk*1),t * S(xi,yj ,zk),t

D((xi, yj , zk*1), (xi, yj , zk))

+
S(xi,yj ,zk),t * S(xi,yj ,zk+1),t

D((xi, yj , zk), (xi, yj , zk + 1))

I

(9)

Henceforth, we will use the phrase advection to refer to the 306

advection of salinity as expressed above for a discretely sam- 307

pled salinity function. 308

Advection point and advection ratio. We use the advec-
tion value to locate points in the BoB where the movement
of salinity is almost entirely due to ocean current. We char-
acterize such points as those where the advection value is al-
most equal to the total salinity movement. Define advection

ratio at a point p as the ratio of magnitude of advection to
the magnitude of total salinity movement due to all physical
phenomenon at p. The total salinity movement is not equal to
the net salinity change over time at p, �t(Sp,t) = Sp,t*Sp,t+1.
This is because some of the physical phenomena may oppose
each other and the value of total salinity movement may be
larger than net salinity change. Total salinity movement at a
point is equal to the salinity change due to all physical phe-
nomena, including advection, either supplementing or act-
ing against one other. It is calculated as the sum of absolute
values of advection and salinity movement due to other phe-
nomena, Ap,t + �t(Sp,t) * Ap,t. Therefore, the advection
ratio

ARp,t =
Ap,t

Ap,t + �t(Sp,t) * Ap,t

. (10)

We use a threshold on this ratio in order to extract the set 309

of advection points. Figure 1 shows the advection ratio and 310

advection points in a small region within the BoB at depth 311

100 m. Movement of these advection points in the BoB is 312

a representation of salinity movement due to currents. Our 313

initial experiments with advection points using velocity vec- 314

tors and pathlines show that advection points tend to move 315

in groups throughout the BoB (see video adv-pathlines ac- 316

companying this paper). This observation motivates the idea 317

to track and analyze their movement via these groups. 318

319

Advection cluster. We define a feature advection cluster as 320

a group of advection points clustered together using a neigh- 321

borhood criterion. This feature helps represent the move- 322

ment of advection points as a spatial curve and has a smaller 323

memory footprint when compared to pathlines for the set of 324

all advection points. The cluster is determined using a 3D 325
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(a) Isovolume rendering of 35 ± ✏, ✏ = 0.05 (b) Isovolume at depth d = 100

(c) Advection ratio at depth d = 100 (d) Advection clusters at depth d = 100

(e) Advection clusters at depth d = 100

Figure 1: Advection ratio, points, and clusters. (a) The advection study focuses on the envelope of the high salinity water,
which is represented by the 35 ± ✏ isovolume. (b) Focus on a particular depth slice and a small region in the BoB near Sri
Lanka. (c) Advection ratio within the selected region. (d,e) The advection points are identified as those where the advection
ratio exceeds a threshold.

neighborhood N3(p;m) of size mùmùm, a subgrid centered326

at a point p in the grid consisting ofm3*1 points. The advec-327

tion cluster serves as a front for studying and tracking salinity328

movement due to advection. The surface represented by the329

collection of points from an advection cluster is called the330

advection front. We use the terms advection front and advec-331

tion cluster interchangeably, one representation may be con-332

verted into another. Computing the advection fronts plays333

a key role in capturing the coherent movement of advection334

points.335

Formally, the advection cluster is a maximal set of advec-336

tion points present in the isovolume of 35± ✏ such that each337

point in the set lies within the N3(p;m) neighborhood of at 338

least one other advection point within the cluster. We use a 339

simple connected component labeling method on advection 340

points to compute advection clusters. The advection front 341

is computed as the envelope surface of spheres centered at 342

each point within the corresponding advection cluster. Each 343

advection front AFt,i at time t has a unique label i and can 344

be tracked over time using velocity vectors. 345

3.3. Track graph 346

We introduce the track graph, a graph that consists of 347

arcs between advection fronts to represent their local move- 348
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ment from one time step to the next. Nodes of the track349

graph correspond to the advection fronts. An arc between350

two nodes represents a correspondence between advection351

fronts from two consecutive time steps. No two advection352

fronts from the same time step are connected by an arc. The353

track graph collects all paths followed by the advection fronts354

over time and serves as a useful data structure to visual-355

ize, explore, understand, and analyze the tracks of advection356

fronts over time. Individual arcs in the graph are computed357

as follows. For a given advection point p within an advection358

front AFt,i, we compute all points reachable from p follow-359

ing the velocity vector at p. Next, we check if any of these360

reachable points belongs to the advection front AFt+1,j from361

the t + 1 time step. If yes, we have identified a correspon-362

dence between AFt,i and AFt+1,j and insert an arc to repre-363

sent the correspondence.364

Nodes with degree-1 represent a creation or termination365

event, degree-2 nodes represent a continuation event, and366

degree-3 and higher degree nodes represent a merge/split367

event. All arcs are directed forward in time and the result-368

ing graph does not contain any cycle. This directed acyclic369

graph (DAG) is visualized by rendering each node as a point370

or as a small sphere centered at the advection point closest371

to the centroid of all points from the cluster. Arcs are ren-372

dered as straight line edges between the nodes. This visual373

representation of tracks helps understand salinity movement.374

Since the track graph is a DAG, it contains at least one375

source and one destination node. The salinity transport due376

to advection in the BoB is thus captured as the collection377

of source to destination paths in this track graph. We can378

extract meaningful paths from this graph for further analysis.379

In the following, we propose two methods for path extraction380

from the track graph.381

3.4. Advection track382

Paths within the track graph are representations of advec-383

tion front movement. We call them advection tracks. They384

help locate movements of interest from within the BoB. For385

example, movement over an extended period of time, move-386

ments of large volumes, movements between a specific source387

and destination, etc. We use two criteria to filter tracks of388

interest from the track graph: length and source-destination389

location. Long tracks are indicative of a significant salinity390

movement due to advection, particularly if the correspond-391

ing advection fronts correspond to a large volume of high392

salinity water. Each arc of the track graph is assigned a cost393

depending on the desired optimality criterion – say unit cost394

for lifetime, Euclidean distance between end points for track395

length, or number of points in the advection clusters for vol-396

ume spanned by advection front. Optimal cost paths origi-397

nating at all source nodes are computed using Dijkstra’s sin-398

gle source shortest path algorithm. The tracks are binned399

according to the location of the destination node. Each bin400

stores the top-k paths and reports them according to user re-401

quirements. These tracks together with the advection clus-402

ters for each track are stored as a group of VTI files, a Par-403

aview file format, for further analysis and visual exploration404

in Paraview. 405

3.5. Parallelism 406

All time steps are processed concurrently to compute ad- 407

vection and advection ratio, identify advection points, and 408

construct advection clusters. The computations within each 409

time step are independent of each other and hence these time 410

steps may be processed in parallel without any communica- 411

tion. Similarly, a time step t is processed concurrently with 412

other steps to compute arcs of the track graph that originate 413

at t. Each advection point can be independently processed to 414

identify points that are reachable by following the velocity 415

vector and checking whether the reachable points belong to 416

the advection front from time step t+1. The advection tracks 417

are computed e�ciently using the Dijkstra’s single source 418

shortest path algorithm executed concurrently for all source 419

nodes in the track graph. 420

4. Implementation and visualization tool 421

design 422

All methods discussed above for processing the data and 423

computing the advection tracks are implemented in Python 3, 424

some execute independently and others within Paraview (Ahrens425

et al., 2005). The code and scripts are made available in 426

the public domain. Several of the methods are amenable to 427

parallel execution, as discussed above, because the computa- 428

tions depend on local neighborhoods and values. The Python 429

code uses a multiprocessing library for parallel computation 430

across depth levels or across time steps. These concurrent 431

processes do not need to interact with each other. They read 432

data directly from di�erent input files or streams and write 433

outputs into a unique files. So, while di�erent steps required 434

to compute advection tracks are necessarily executed in a 435

serial order, the individual steps are executed in parallel. In 436

this section, we will discuss the implementation of all meth- 437

ods described above. The visualizations are generated using 438

a Python script that execute within Paraview. 439

4.1. Advection front and track graph 440

All computations, beginning from data preparation un- 441

til the construction of the track graph, are implemented in a 442

script TrackGraph.py. It resamples the data using linear inter- 443

polation on the depth slices, estimates vertical velocities, and 444

uses Numpy (Harris et al., 2020) to extract points in space 445

with salinity value 35±✏ psu, the required isovolume. Next, 446

it computes advection, advection ratio, advection points, ad- 447

vection clusters, and finally constructs the track graph by 448

identifying individual arcs between advection clusters. The 449

script processes two input files, the GLORYS12V1 data in 450

netCDF format and a parameter file that specifies di�erent 451

thresholds, including the advection ratio, to classify advec- 452

tion points and the value of ✏ for isovolume computation. We 453

discuss the parameter file and its contents later in this sec- 454

tion. Data is represented as 2D or 3D matrices in the script 455

and Numpy is used for all arithmetic computations. Numpy 456

provides fast implementations for arithmetic operations on 457
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Figure 2: Track graph representing the collection of all advection tracks in the BoB. Arcs are colored based on their depth. A
dense collection of tracks in the south of the BoB at 50 m depth dips down as it moves northward. Fewer tracks appear to
progress towards the Andaman and Nicobar islands. Representative tracks may be extracted from this graph to study movements
between specific regions in the BoB.

matrices and improves the e�ciency of the serial steps. The458

script uses a smoothing filter and a threshold on minimum459

size of an advection cluster for noise reduction. The output460

consists of three groups of files. The first group contains arcs461

of the track graph, second group stores the advection clusters462

together with their labels, and the third group stores cluster463

representatives to be used for visualizing the advection clus-464

ters. Finally, a single file in the native VTP format stores the465

graph so that it can be rendered directly in Paraview.466

Theoretically, the size of the track graph can be linear in467

the number of advection points. The worst case occurs when468

each cluster contains a single advection point. In practice,469

a larger number of advection points form a cluster, result-470

ing in a small number of nodes in the track graph. Loading471

the entire data into main memory may result in low memory472

availability for each process, and lead to a higher execution473

time. So, each process spawned by the script loads data from474

secondary storage as required and releases the memory im-475

mediately after use.476

4.2. Advection track computation477

The groups of files generated by TrackGraph.py are pro-478

cessed by the script LongPaths.py to extract multiple paths479

from the track graph. The choice of tracks is governed by a480

set of parameter values specified in the input parameter file.481

The paths are grouped based on the location of the source482

and destination in the BoB. The output consists of a collec-483

tion of VTP files, one file for each group of paths, which484

may be rendered using Paraview. The track graph is rep- 485

resented as a DAG using the DiGraph data structure from 486

NetworkX (Hagberg et al., 2008), which stores the graph 487

as adjacency lists using the dictionary of dictionaries. This 488

“dict-of-dicts” structure allows fast insertion, deletion, and 489

lookup of nodes and neighbors in large graphs, and also sup- 490

ports fast graph algorithms such as shortest path computa- 491

tion, identification of sources and destination in a directed 492

graph. The maximum number of paths within each group is 493

a user-defined parameter. All computations in this script are 494

parallelized across the set of all source nodes by leveraging 495

the fact that the computation of paths from each source is 496

independent of paths from other sources. 497

4.3. Visualization 498

The scripts described above store the track graph and 499

paths using data structures from the VTK library that is avail- 500

able with Paraview. Nodes and arcs of the graph in this data 501

structure have associated weights, which may be mapped 502

to colors for useful visualizations. The files containing the 503

track graph are loaded into Paraview and analyzed using builtin 504

filters and colormaps. Paraview supports saving a collection 505

of views to a state file. All visualizations discussed in the 506

results are saved as individual state files and loaded on de- 507

mand. The state file trackgraph.pvsm may be used to visual- 508

ize the track graph and tracks.pvsm for visualizing the track 509

groups. 510
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3: Advection track and advection fronts. Tracks are displayed using a blue-red color map that indicates time measured in
days, ranging from June 1, 2016 (Day 0, blue) to September 30, 2016 (Day 121, red), for a total of 122 time steps (122 days).
Nodes of the track are located at the advection point closest to the centroid of the advection cluster in each time step. (a-j) A
long advection track that extends approximately 60 days, between July 27 and September 27, provides a visual representation of
the movement of advection fronts (shown on every sixth day) towards the coast of India at Visakhapatnam. The size and spatial
extent of the advection front evolves over time. The accompanying video shows a split in the advection front in September,
which results in the track branching into three directions.

4.4. Parameter tuning511

The parameter.txt file contains a list of parameters that512

the user can specify and tune depending on the user task re-513

quirement. The user may specify the name of the input file514

in the netCDF format together with the spatial resolution as515

a parameter. The threshold for advection ratio and the value516

of ✏ are set to default values of 0.95 and 0.05, respectively.517

They may be edited depending on the requirements of the ex-518

periment and data set. The value of the smoothing filter, the519

minimum size of advection cluster required, and the neigh-520

borhood size may also be edited. All experiments in this521

paper use an N3(p; 5) neighborhood, which may be edited522

to any other size (odd number). The user may also edit the523

parameters used for grouping the paths, namely the specifi-524

cation of the region containing the source and destination of525

the track and the maximum number of tracks within a group.526

5. Results527

We now discuss the results of our study of the BoB us-528

ing the advection-based tracking method described above.529

We present visualization of the advection tracks and com-530

pare them against previously documented observations. We531

set ✏ = 0.05 and use an advection ratio threshold of 0.95 in532

all experiments. We choose a small value of ✏ to compute533

the isovolume while ensuring that the resulting collection of534

advection points is of considerable size to make meaning-535

ful observations. A high advection ratio threshold ensures536

that salinity movement at advection points may be clearly537

attributed to advection.538

5.1. Salinity advection using pathlines 539

We first generate a simple pathline based visualization 540

with the aim to study and understand how the ocean current 541

transports salt within the BoB. We extract the 35 ± ✏ iso- 542

volume, compute advection, and identify advection points 543

within the isovolume. A set of seed points are chosen at ev- 544

ery 5th time step, pathlines are traced from the seeds for 7 545

time steps, and the tracing is terminated later. The pathlines 546

provide an overview of the movement of advection points 547

in the BoB, as shown in the video adv-pathlines accompa- 548

nying this paper. Paths are colored based on their depth to 549

better distinguish between shallow and deep advection. We 550

observe that the advection points tend to move in groups and 551

the paths followed by them are similar to those observed in 552

a previous study on HSC movement identification that used 553

a front tracking approach (Singh et al., 2022). Further, their 554

movement is similar to the pathlines generated by selecting 555

all points within the 35± ✏ isovolume as shown in the video 556

adv-vs-high-salinity-pathlines. This leads us to a hypoth- 557

esis that movement of the HSC in the BoB is primarily due 558

to advection and the contribution of di�usion and mixing is 559

small. We aim to verify this hypothesis by computing ad- 560

vection tracks in the BoB and comparing them with the pre- 561

viously observed HSC front tracks. 562

5.2. Advection tracks 563

The track graph (Figure 2) shows a dense collection of 564

paths in the south of BoB at approximately 50 m depth which 565

slowly dips down to a depth range of 150-200 m as they move 566

northward. This is expected as the high salinity water has 567

higher density than the relatively fresh ambient water and 568

slowly slides down as it moves northwards (Vinayachandran 569
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et al., 2013). The number of tracks heading towards the coast570

of the Andaman and Nicobar islands is smaller than those571

progressing in other directions, which suggests that the ad-572

vection driven salinity movement toward the Andaman coast573

is relatively small.574

We extract individual advection tracks from the track graph575

for detailed analysis. Figure 3 shows a particularly long ad-576

vection track together with the advection fronts represented577

by the track over time. The track extends over 60 days, and578

the figure shows the advection front on every sixth day. The579

advection front evolves by increasing and decreasing in size580

as it moves northwards. This may be due to variations in the581

velocity. We also observe that the track geometry is tortu-582

ous and noisy, which can be fixed by using a post-processing583

smoothing filter. The video adv-tracks accompanying this584

paper shows three tracks and the corresponding advection585

fronts. A split in the advection front in August results in the586

tracks branching into three directions.587

Figure 4 shows five tracks extracted from the track graph.588

Each track is representative of a group of tracks whose ori-589

gin and destination are within a common neighborhood. All590

advection tracks in Figure 4 whose origin is in south BoB591

have a similar structure until they reach the centre of BoB.592

They branch in three directions from the source located near593

Sri Lanka.594

The first and most prominent among them is towards the595

coast of India, see Figures 4(a) and 4(b). Eddies appear to596

have a major role in the vertical and horizontal movement597

of the advection tracks along the east coast of India as ob-598

served in the video adv-pathlines. The analysis shows that599

the higher salinity water generally sinks to deeper depths of600

lower velocity regimes and vertical movements are associ-601

ated with eddies, consistent with existing inferences in the602

literature. A second branch is in the open bay in a north-603

eastward direction, see Figure 4(d). The movement occurs604

in pulses and thus disconnected from the source at intervals.605

The third branches towards the east which occurs from the606

branching of the SMC, see Figure 4(c).607

We also observe some tracks along the Indian coast, which608

refers to a movement of high salinity water along the coast609

of India from Visakhapatnam towards north (Figure 4(e)).610

However, this movement is observed during the month of611

June (see the color map), before the high-salinity water reaches612

the coast of Visakhapatnam from the south BoB.613

5.3. Advection tracks vs. HSC front-based tracks614

We compare the advection tracks against those generated615

using the HSC front-based method with the aim of testing the616

hypothesis that advection drives the salinity transport in the617

BoB. The forking of paths into three major directions near618

Sri Lanka Dome was also observed in the HSC front-based619

tracks. Similar to what was observed in the case of advec-620

tion tracks, one of the branches bends westwards and move621

towards the coast of India at Visakhapatnam and another622

bends eastwards and move towards the coast of Andaman623

and Nicobar islands. One branch continues northward. The624

HSC front-based tracks were similar to the advection tracks,625

even in terms of the shape of the tracks. The track located 626

along the Indian east coast is observed in early time steps in 627

both studies. 628

The qualitative observations above are supported by a 629

quantitative comparison of the tracks obtained by the two 630

methods. Each one of the five representative advection tracks 631

in Figure 4 corresponds to a track computed using the HSC 632

front-based method, namely the representative track whose 633

origin and destination lie within the same latitude-longitude 634

interval. We compute the root mean squared error (RMSE) 635

between these pairs of tracks. The RMSE varies between 636

90 km – 115 km, which indicates that the tracks are close to 637

each other. In summary, there is a close match between the 638

tracks in Figure 4 and those from the previous study (Singh 639

et al., 2022, Figure 7). 640

Jensen et al. have investigated salinity exchanges be- 641

tween the equatorial Indian Ocean and the BoB, and report 642

that salt is transported northward into the BoB between 83˝E 643

and 95˝E (Jensen et al., 2016). Their simulations show a 644

strong subsurface current and an intrusion of high salinity 645

water into the BoB during the southwest and northeast mon- 646

soon. This is also in agreement with previous observations 647

of the subsurface intrusion of the southwest monsoon cur- 648

rent into the BoB (Vinayachandran et al., 2013) 649

All similarities and strong correlation between the re- 650

sults from advection-based and HSC front-based methods 651

suggest that the salinity movement in the BoB is mostly driven 652

by advection. The contribution of other physical phenomenon, 653

such as mixing and di�usion, in this process is relatively 654

small. One di�erence is the upward movement towards shal- 655

lower water near the centre of BoB in advection tracks, see 656

Figure 4(d,i). This was not observed in the HSC front-based 657

tracks (Singh et al., 2022, Figure 7(b,g)). 658

5.4. Performance analysis 659

The use of the Numpy multiprocessing library for par- 660

allel computation results in a considerable speedup of all 661

steps of the method. All experiments are performed on a 32- 662

core Intel Xeon CPU with 386 GB RAM, running Ubuntu 663

Linux. On average, the TrackGraph.py script computes the 664

track graph in 16.2 minutes, compared to 80.7 minutes using 665

a sequential implementation. Similarly, the script LongPaths.py 666

has a running time of 8.36 minutes, compared to a sequen- 667

tial running time of 28.6 minutes. The peak memory usage 668

of TrackGraph.py is 5 GB and that for LongPaths.py is 1 GB. 669

The data is loaded onto main memory only when required 670

and removed subsequently, which may lead to additional sec- 671

ondary memory accesses and potentially larger runtimes. In- 672

deed, there is a trade-o� between memory usage and run- 673

time. Faster runtimes are achievable if the entire dataset can 674

be loaded onto main memory. 675

All intermediate results are stored onto the disk — 56 GB 676

for the interpolated field, 23 GB for storing the advection 677

values, 45 GB for the advection fronts and their labels, and 678

150 MB for storing arcs of the track graph and the individual 679

tracks. Again, we free memory soon after the intermediate 680

values are processed. The time and space complexity of the 681
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: Five tracks extracted from the track graph that indicate significant movements of the HSC after originating from
south BoB and reaching the centre of BoB. Tracks are displayed using a blue-red color map that indicates time measured in
days, ranging from June 1, 2016 (Day 0, blue) to September 30, 2016 (Day 121, red), for a total of 122 time steps (122 days).
(a,b,f,g) Movement towards the coast of India at Visakhapatnam. (c,h) Movement towards the coast of Andaman and Nicobar
islands. (d,i) Movement northward from the centre of BoB. All movements are observed during the time period between July 27
and September 27 (time steps 56-118). (e,j) A short early movement starting at time step 0 (June 1) along the coast of India.
(a,b,c,d,e) Top view. (f,g,h,i,j) Corresponding side view from east.

algorithm is O(n), where n is the number of points in the682

input across all time steps. The size of the input can be ex-683

pressed as n = t ù d ù lt ù ln, where t, d, lt, and ln are684

number of time steps, depth slices, and dimension in the lat-685

itude and longitude, respectively. Each point is accessed a686

constant number of times.687

6. Conclusions688

This paper introduced a novel advection front-based method689

to track the HSC and study its evolution due to the e�ect of690

ocean currents. The method is applied to further the study of691

salinity movement within the BoB. It helped infer the fate of692

HSC after it enters the southern BoB, subsequent northward693

movement towards the coast and farther north is directed by694

advection.695

An inflow of high salinity water is required to maintain696

the salt and freshwater balance of the Bay of Bengal. The697

major supply of high salinity water into the Bay of Bengal698

takes place during the summer monsoon. The fate of the699

HSC after entering the Bay of Bengal has remained largely700

unknown. Our previous and the present study sheds light on701

this problem. Analysis of climatological data (Vinayachan-702

dran et al., 2013) suggested that the high salinity water pro-703

gressively dives deeper as it flows northward. Our analysis,704

on the other hand, suggests that a certain amount of high705

salinity water flows in the upper layers which has large im-706

plications to the maintenance of salinity levels in the Bay of707

Bengal.708

Future work includes the application of the proposed meth-709

ods towards the study of other water masses such as the North710

Atlantic Deep Water (Dickson and Brown, 1994) and the711

flow of Mediterranean Sea Water in the Atlantic Ocean (Richard-712

son et al., 2000). The method is not specific to the BoB and 713

may be applied to other water masses. It requires the user to 714

tune parameter values depending on the data set under con- 715

sideration and the nature of the study. The value of advection 716

ratio, neighborhood and ✏ are user defined and can be altered 717

to study data from another geographical location. Our algo- 718

rithm for advection front identification and tracking runs in 719

a shared memory multicore environment and has a reason- 720

ably small memory footprint. However, scaling the algo- 721

rithm to work on higher resolution data and to study salin- 722

ity movement on a global scale requires the development of 723

distributed parallel methods with a low communication over- 724

head. 725
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