
A Parallel and Memory Efficient Algorithm for
Constructing the Contour Tree

A Project Report

Submitted in partial fulfilment of the

requirements for the Degree of

Master of Technology

in

Computational Science

by

Aditya Acharya

Supercomputer Education and Research Centre

Indian Institute of Science

BANGALORE – 560 012

JULY 2014

c○Aditya Acharya

JULY 2014

All rights reserved

Acknowledgements

I am grateful to everyone who stood beside me during the course of my project and the

writing of my thesis. It would have been impossible to complete my project without

the unfledging support and invaluable help of the kind people around me, only some of

whom I can mention here.

First I would like to thank my project guide, Dr. Vijay Natarajan, without whose support

and patience, this thesis would not have been possible. Besides completing my project

under him, his guidance and suggestions have helped me gain an immense knowledge

about my research field and academic research in general.

I thank Dr. Yogesh Simmhan and Dr. Sathish Vadhiyar for their constructive criticisms

and helpful suggestions.

The library and the computing facilities of the Institute and my Department have been

indispensable.

I would like to thank my labmates especially Dilip, Nithin, Preeti, Talha and Vidya for

their help and support, throughout the duration of my project, and wish them all the

best for their future endeavors. I would badly miss the comfortable couch in my lab,

which enabled me to catch a quick nap on those long and arduous nights.

I would also like to thank all my classmates and colleagues for their unconditional support

throughout my course. I will cherish their friendship, for years to come.

Last but not the least, I would like to express my sincere gratitude to all those who have

directly or indirectly helped me in making this happen.

i

ii

To Paul, DP and Lucy, for giving me a reason

Abstract

The contour tree is a topological structure associated with a scalar function that tracks

the connectivity of the evolving level sets of the function. It efficiently stores the topo-

logical highlights of the scalar function and supports intuitive and interactive visual

exploration and analysis. This thesis describes a fast, parallel, and memory efficient al-

gorithm for constructing the contour tree of a scalar function on shared memory systems.

Comparisons with existing implementations show significant improvement in both the

running time and the memory expended. We observe near linear scaling of our implemen-

tation with increasing number of processors. The proposed algorithm is also particularly

suited for large data sets that do not fit in memory. For example, the contour tree for

a scalar function defined on a 8.6 billion vertex domain (2048X2048X2048 volume data)

can be efficiently constructed using less than 10GB of memory.

iii

Contents

Acknowledgements i

Abstract iii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Outline of the thesis . 4

2 Background 5

3 Related Work 9

4 Algorithm 12

4.1 Splitting into sub-domains . 13

4.2 Critical Point Identification . 13

4.3 Join and Split tree computation . 16

4.4 Pruning Join and Split Trees . 19

4.5 Stitching Join and Split Trees . 21

4.6 Merging Join and Split Trees . 24

4.7 Analysis . 25

5 Experimental Results 27

5.1 Experimental Setup . 27

iv

CONTENTS v

5.2 Single Core environment . 28

5.3 Multi-core environment . 28

5.4 Speedup and Scaling . 29

5.5 Memory Efficiency . 32

6 Conclusions 34

Appendix 35

Bibliography 36

List of Figures

1.1 Application of the contour tree to symmetry identification. 2

2.1 Visualizing an analytic function . 6

2.2 Illustrating level sets, Join tree and Split tree 8

4.1 Octree based division of domain . 13

4.2 Link of a vertex. 15

4.3 Points classified as saddle within a sub domain 16

4.4 Join tree construction . 18

4.5 Stitching Join trees of neighboring sub domains 23

5.1 Speedup obtained by DivCT . 29

5.2 Speedup for Join and Split tree of each sub domain 30

vi

List of Tables

5.1 Time taken (in seconds) for computing the contour tree on a single core.

DivCT outperforms both libtourtre and ParallelCT. 28

5.2 Time taken by ParallelCT for up to 64 cores. 31

5.3 Time taken by DivCT for larger data sets on up to 64 cores 31

5.4 Time taken (in seconds) for the computation of Join and Split trees of

individual sub domains by DivCT . 32

vii

List of Algorithms

4.1 ConstructJoinTree() . 17

4.2 PruneTrees() . 20

4.3 StitchJoinTrees(𝑡𝑗1, 𝑡𝑗2) . 22

4.4 MergeTrees() . 24

viii

Chapter 1

Introduction

Scientific data obtained from simulations and measurement devices is often represented

as a scalar function over a two, three, or higher dimensional domain. A scalar function,

also called as a scalar field, maps each point on the domain to a real value. A popular

method for visualizing scalar functions is via extraction of isosurfaces or level sets. A

level set of a scalar function consists of all points where it attains a given real value. The

contour tree tracks topology changes in level sets of a scalar function defined on a simply

connected domain, and therefore serves as a good abstract representation of the data.

In this paper, we propose a parallel algorithm for fast and memory efficient construction

of the contour tree for large data sets.

1.1 Motivation

Topological information about a data-set have been used in a variety of methods and

techniques in exploring and visualizing scalar functions. Contour trees have been widely

used to encode such information [1],[2]. Further, they are used to efficiently compute and

explore level sets and isosurfaces [3],[4] in three dimensional scalar functions. Flexible

isosurfaces [3] exploit the relation between an iso-surface and the arcs in a contour tree,

effectively visualizing different components of the iso-surface.

1

CHAPTER 1. INTRODUCTION 2

Contour trees have also been used in various other applications including topogra-

phy and GIS [5], in extraction of hierarchical landscapes[6], for surface segmentation

and parametrization in computer graphics [7], [8], [9], image processing and analysis of

volume data sets [10], [11], designing transfer functions for volume rendering in scientific

visualization [12], [13], [14], [15], and exploring high dimensional data in information

visualization [16], [17].

More recently, the contour tree has been used to identify and extract symmetric

patterns in 3D scalar functions [18]. Figure 1.1 shows symmetric structures in a tetra-

hedrane molecule (𝐶4𝐻4) that is extracted from an electron density distribution over

the molecule. The contour tree of the scalar function is analyzed to identify similar sub

trees. Each collection of similar sub trees corresponds to a set of symmetric regions in

the data. Symmetry plays an important role in defining “features” in this application.

The contour tree enables such a feature-directed exploration of scientific data that is

particularly useful when the data is large.

(a) (b) (c)

Figure 1.1: Application of the contour tree to symmetry identification. (a) Volume rendering

of electron density distributed in a 𝐶4𝐻4 molecule.(b) The contour tree of the electron density

function. Similar sub trees are colored cyan and purple. (c) The regions corresponding to the

similar sub trees are symmetric.

The exponential growth in compute power has facilitated the generation of higher

fidelity simulation data and higher resolution imaging data, which in turn has resulted

in a massive increase in the size of the data sets. Topology-based methods were developed

with the aim of enabling analysis and visualization of these large data sets by providing

abstract representations of the key features in the data. However, the construction of the

topological structures is now increasingly becoming a bottleneck. This necessitates the

CHAPTER 1. INTRODUCTION 3

development of efficient algorithms that can additionally handle large data sizes. With

multicore and many-core CPUs becoming ubiquitous, it is also essential to leverage their

power in computing topological structures such as the contour tree. Further, the memory

required for such an algorithm grows proportionally to the size of the input. So, it is

imperative to ensure that the algorithm is also memory efficient. We address the above-

mentioned challenges in this thesis.

1.2 Contributions

We describe a fast and memory efficient parallel algorithm for computing the contour

tree of a piecewise trilinear function defined over large structured grids, on a shared

memory system.

The input grid is first subdivided into blocks. The Join and Split trees for the

scalar function restricted to individual blocks are constructed in parallel via monotone

path computation. The Join trees (and Split trees) of the individual blocks are stitched

together, again in parallel, by identifying the nodes of the tree that lie on the common

boundary between the blocks. The contour tree of the input is constructed in a final

step by merging the Join and Split trees.

The algorithm is output sensitive i.e., the running time depends on the number of

nodes in the final contour tree. We report results that demonstrate significant improve-

ments in terms of time and memory over the existing parallel algorithms. The contour

tree for a data set containing 8.6 billion points (2048 × 2048 × 2048 volume) can be

constructed within 3 minutes in a 64-core shared memory environment. In an 8-core

environment, the algorithm uses no more than 10GB of memory and computes the tree

in approximately 14 minutes.

CHAPTER 1. INTRODUCTION 4

1.3 Outline of the thesis

Chapter 2 provides the necessary background for rest of the thesis, where we introduce

necessary definitions and terms. Chapter 3 describes the related work and the exist-

ing algorithms for computation of the contour tree. Next we describe our algorithm in

Chapter 4 providing details of our implementation and data structures used. The ob-

servation and results, along with the experimental setup is described in Chapter 5. We

conclude with Chapter 6, by providing future directions towards further improvements

in the computation of the contour tree.

Chapter 2

Background

In this chapter, we introduce the necessary definitions and terms used in this paper. For

a detailed discussion readers can refer to texts on computational topology and algebraic

topology [19, 20, 21, 22].

If 𝑆 is a simplicial complex, and 𝑉 its vertex set, then the scalar function 𝑓 is a

function, from the set 𝑉 to R, mapping every vertex to a real value. Denote by 𝑓 the

continuous analog of 𝑓 which extends 𝑓 by assigning real values to every point in the

connected space containing 𝑆. If 𝑆 is a structured grid, then the function is extended into

the interior of the cells via trilinear interpolation. A level set is given by 𝑆𝑎 = 𝑓−1(𝑎),

set of all the points in 𝑆 having function value 𝑎. For 𝑥, 𝑦 ∈ 𝑆, the continuous analog

of 𝑆 we say 𝑥 ∼ 𝑦 iff they belong to the same level set, i.e., 𝑓(𝑥) = 𝑓(𝑦) and belong to

the same component of the level set 𝑓−1(𝑓(𝑥)). Then the Contour tree is the quotient

space 𝑆/ ∼ which glues all the points equivalent under the relation ∼. Or in other words

every connected component of a level set is represented by a point on the contour tree.

A sub-level set is the set 𝑆𝑎= 𝑓−1 ((−∞, 𝑎]), which contains every point in 𝑆 having

function value less than or equal to 𝑎. Similarly a super-level is given by the set 𝑆�̄�=

𝑓−1 ([𝑎,∞)).

As we sweep across a range of function value the corresponding level set undergoes

change in connectivity. Points at which the topology of the level sets change during

this evolution are known as critical points. Points that are not critical are called regular

5

CHAPTER 2. BACKGROUND 6

points. The contour tree expresses the evolution of the connected components of these

level sets as a graph whose nodes correspond to critical points of the function. The

Join tree tracks the evolution of sub-level sets while the Split tree tracks the evolution

of super-level sets.

Figure 2.1: An analytic function sampled on a structured grid and visualized using multiple

level sets. Each level set consists of one or more connected components;

Figure 2.1 shows multiple level sets extracted from a synthetic scalar function defined

on a structured grid. Figure 2.2 shows the contour tree, Split tree, and Join tree for this

scalar function. Each connected component of the level set, called a contour maps to a

CHAPTER 2. BACKGROUND 7

different arc in the contour tree. The maxima are shown in red and the minima in blue.

The other critical points are shown in green, which are called saddles where a single

component of level set either splits or multiple components merge.

If all critical points of 𝑓 are isolated and non-degenerate, then 𝑓 is a Morse function

[22, 21]. Critical points of a Morse function can be classified based on the behavior of

the function within a local neighborhood. This condition typically does not apply for

piecewise trilinear functions, like a scalar function defined on a 3D grid. However, a

simulated perturbation of the function [19, Section 1.4] imposes a total order on the

vertices and helps in consistently identifying the vertex with the higher function value

between a pair of vertices. Consequently, critical points can be identified and classified

based on local information about the function.

CHAPTER 2. BACKGROUND 8

(a) (b) (c) (d)

Figure 2.2: The contour tree for the analytic function shown in Figure 2.1. (a) Level sets at

different function values (b) The contour tree tracks the evolution of connected components of

the level sets. (c) The Split tree tracks connected components of the super-level sets (d) The

Join tree tracks connectivity of sub-level sets

Chapter 3

Related Work

de Berg and van Kreveld [23] were among the first to develop an algorithm for com-

putation of the contour tree and apply it to GIS and elevation queries. Using divide

and conquer strategies they compute the contour tree of a scalar function defined over

a two dimensional space in 𝑂(𝑛 log 𝑛) time, 𝑛 being the number of triangles. van Krev-

eld et al. [4] developed an algorithm that maintained evolving level sets in order to

compute the contour tree in 𝑂(𝑛 log 𝑛) for two-dimensional input, and 𝑂(𝑛2) time for

three-dimensional input.

Tarasov and Vyalyi[24] described an 𝑂(𝑛 log 𝑛) algorithm that computes the contour

tree of a three-dimensional scalar function by performing two sweeps over the input

in decreasing and increasing order of function value to identify the joins and splits of

the level set components. The contour tree is computed by merging the results of the

first two sweeps. Carr et al.[1] simplified this approach to develop an algorithm which

is arguably the most elegant and widely used algorithm for computation of a contour

tree. In two sweeps over the input, their algorithm computes a Join tree and a Split

tree, which tracks the evolution of sub-level and super-level sets respectively. These two

trees are then merged to obtain the contour tree. This algorithm has a running time of

𝑂(𝑣 log 𝑣 + 𝑛𝛼(𝑛)), where 𝑣 is the number of vertices in the input, 𝑛 is the number of

tetrahedras and 𝛼 is the inverse Ackermann function.

Chiang et al.[25] proposed an output sensitive approach that first finds all component

9

CHAPTER 3. RELATED WORK 10

critical points that represent the nodes in the contour tree, using the local neighborhood

information. Monotone paths are constructed from these critical points, and later com-

bined to give us the Join and Split tree containing only the component-critical points.

Their algorithm has a running time of 𝑂(𝑡 log 𝑡 + 𝑛), where 𝑡 is the number of critical

points of the input. Van Kreveld et al.[4] showed a Ω(𝑡 log 𝑡) lower bound for the con-

struction of contour trees. Since reading the input takes 𝑂(𝑛) time, the output sensitive

algorithm is optimal.

Pasucci and Cole-McLaughlin [26] proposed the first known parallel algorithm that

computes the contour tree of a piecewise trilinear function defined on a three dimensional

structured mesh. It was also the first output sensitive algorithm for computing the

contour tree. The sequential version for a 3D structured grid has a time complexity of

𝑂(𝑛 + 𝑡 log 𝑛), where 𝑛 is the no. of vertices and 𝑡 is the no. of critical points. This

contour-tree algorithm is based on the divide-and-conquer paradigm. At each step, the

volume is recursively subdivided into two halves of roughly equal number of vertices, with

the common boundary (the separator) having 𝑂(𝑛
2
3) vertices and edges. In other words

they compute the contour tree on each voxel and recursively merge them to eventually

obtain the contour tree over the entire domain. They claim to have obtained near linear

speedup but do not report the actual timings. Although their algorithm is well suited for

coarse grained parallelism, computing the contour tree for each voxel individually may

result in huge overheads.

Maadasamy et al [27] provide an output sensitive, work efficient parallel implemen-

tation which modifies the monotone paths algorithm [25] suitably to make it efficient for

parallel architectures. They compute the monotone paths in parallel and arbitrary order

rather than sequentially to compute the contour tree. Although the method scales well

for small unstructured grids, there is a significant dip in the speedup for large structured

grids as the number of available processors increase. Moreover the required memory to

compute the contour tree is huge owing to the additional auxiliary structures needed to

compute the Join and Split tree.

CHAPTER 3. RELATED WORK 11

Another recent approach towards computing the join/Split tree in parallel, by Moro-

zov et al.[28] proceeds by constructing the local Join tree or Split tree on each processor

and merging them across sub domains, but keeping only a certain part of the tree rele-

vant to the sub domain. Every merging is followed by a pruning of unimportant vertices,

a process they call sparsifying. So eventually the merge tree is spread across all pro-

cessors which in turn helps in parallel processing of queries on the tree.Their method is

best suitable for distributed memory systems with the final Join and Split trees being

distributed across nodes. The final computation of the contour tree and even the appli-

cations requiring a contour tree have to be significantly modified to work in a distributed

memory paradigm.

Chapter 4

Algorithm

We now describe our parallel algorithm for the computing the contour tree. We assume

that the input is available in the form of a structured grid with scalar values associated

with each vertex. We further assume that the vertices have unique function values. This

may be achieved via a simulated perturbation using the vertex index that imposes a

total order on the vertices.

Major steps involved in our algorithm are as follows

1. Split the domain into sub domains of appropriate size and assign each sub domains

to a different processor.

2. Identify the critical points in each sub-domain

3. Compute the Join tree, which tracks the connectivity of the sub-level sets, and the

Split tree, which tracks the connectivity of the super-level sets, for each sub-domain.

4. Prune each Join and Split tree by removing nodes that do not represent a change

in the number of connected components of the level set.

5. Stitch the trees across neighboring sub domains hierarchically to construct the Join

and Split tree for the entire domain.

6. Merge the global Join and Split tree to give the global contour tree.

12

CHAPTER 4. ALGORITHM 13

Figure 4.1: Octree based division of domain

4.1 Splitting into sub-domains

We decompose our domain into sub domains following an octree based division. Figure

4.1 illustrates this division.

In other words we halve the sub domain every iteration along the largest dimension of

the block but sharing a common plane across both sub domains. For example if a domain

𝐷 has dimensions (𝑑𝑖𝑚𝑥, 𝑑𝑖𝑚𝑦, 𝑑𝑖𝑚𝑧) with 𝑑𝑖𝑚𝑥 ≥ 𝑑𝑖𝑚𝑦 ≥ 𝑑𝑖𝑚𝑧 we divide 𝐷 into 𝐷1

and 𝐷2 with dimensions (⌈𝑑𝑖𝑚𝑥/2⌉ , 𝑑𝑖𝑚𝑦, 𝑑𝑖𝑚𝑧) and (𝑑𝑖𝑚𝑥−⌈𝑑𝑖𝑚𝑥/2⌉+ 1, 𝑑𝑖𝑚𝑦, 𝑑𝑖𝑚𝑧)

essentially sharing the YZ plane having the x coordinate ⌈𝑑𝑖𝑚𝑥/2⌉. The 𝐷𝑖s are further

subdivided and by the end of 𝑖 iterations we have 2𝑖 sub domains which are processed in

parallel by different processors.

4.2 Critical Point Identification

We classify the points as critical or regular depending upon the local neighborhood

information. Edlesbrunner et al. [29] provide a combinatorial description of the critical

CHAPTER 4. ALGORITHM 14

points of a piecewise linear function, which are always located at the vertices of the mesh.

But to define an appropriate mesh for a structured grid additional points on the faces

of the cells and within the body of a cell need to be taken care of. These face saddles

and body saddles can be explicitly computed by the information about the face or the

body as shown by [26]. For every face and body saddle we add it to the vertex list and

connect it with the vertices on their respective face or body. We extend the edge set of

the grid by inserting the above-mentioned edges.

The local neighborhood link of a vertex 𝑢 in the original structured grid is described

by the triangulation of its neighboring six vertices. The link of a body/face saddle 𝑣 is the

set of its neighboring vertices on the mesh along with the induced edges and triangles.

Adjacent vertices with lower function values along with their induced simplices form

the lower link while the same with higher function values together with their induced

simplices form the upper link.

A vertex is regular if its upper-link and one lower-link have exactly one component

or in other words, there is no change in the connectivity of the level set when we sweep

through the function value of the vertex. All other vertices are called critical. A critical

point is identified as maximum if its upper link is empty, and as a minimum if its lower

link is empty. All other critical points are classified as saddle. Every upper link and

lower link is represented by a point contained within the respective link.

Since we divide our domain into sub domains it is essential to classify as critical, those

points on the boundary, which would otherwise have been classified as critical when the

entire domain is processed as a whole. It is easy to see that a vertex is a saddle only

when its lower (upper) link lies on a plane normal to one of the axes and its upper (lower)

link consists of two isolated vertices on either side of it. Figure 4.3(a) illustrates such a

point, along with the separating plane. A major consequence of the observation is that

a saddle can have at most two upper-link and lower-link components.

A point that is critical in the global domain would not be classified as such in the sub

domain using the classification scheme of the previous paragraph, only if the separating

plane lies on the boundary. Such a boundary point is an extremum on the boundary.

CHAPTER 4. ALGORITHM 15

Figure 4.2: The triangulation of the adjacent vertices of 𝑢 forms the link of the vertex
𝑢. Adapted from [27]

CHAPTER 4. ALGORITHM 16

(a) (b)

Figure 4.3: Points classified as saddles in a sub domain. The cubes represent the sub domain

(a) The green point represents an interior saddle with two upper link components(red points)

and one lower link component (blue plane). The lower link component lies on a plane normal

to one of the axes, with two upper link component on either side of it. (b) A point on the

boundary with one upper link component (red plane) and one lower link component (blue

point), within the sub domain. It is classified as critical because it is a boundary minimum

Hence, we add all the boundary extrema to the list of critical points. We note that some

of them may be superfluous, as they might not appear in the final contour tree. Figure

4.3(b) represents such a boundary extremum.

4.3 Join and Split tree computation

For computing the Join and Split tree over each sub-domain we follow the output sensitive

algorithm by Chiang et al. [25]. They compute the Join and Split tree by walking

monotone paths from the critical points and combining them appropriately. We next

discuss this computation in Algorithm 4.1

Before processing the sub domain the points are classified as described above. As

a first step in the procedure ConstructJoinTree() the critical points are sorted in

increasing order of their function values. For maintaining the connected components,

a Union-Find data structure is used. The critical points form the ground set for the

procedure and are processed in increasing order of their function values. The highest

CHAPTER 4. ALGORITHM 17

Algorithm 4.1 ConstructJoinTree()

Input: Set of critical points 𝐶=∪𝑐𝑖
Input: Mesh 𝑀
Output: Join tree 𝑇𝐽

1: Initialize 𝑇𝐽 as set of all critical points
2: 𝑈𝐹 ← empty union find data structure
3: Sort 𝐶 the set of critical points in ascending order of their function values
4: for i ← 1 to |𝐶| do
5: Mark vertex 𝑐𝑖 as visited
6: NewSet(𝑐𝑖, 𝑈𝐹)
7: 𝑐𝑖.representative ← 𝑐𝑖
8: for each Lower Link component 𝐿𝑗 of 𝑐𝑖 do
9: Let 𝑅𝑗 be the representative vertex of 𝐿𝑗

10: Follow a descending path 𝑃 from 𝑅𝑗 along the mesh until a visited vertex 𝑣 is
hit

11: Point every vertex on 𝑃 to 𝑐𝑖
12: Let 𝑐𝑟 be the vertex 𝑣 is pointing to
13: 𝑐′𝑟 ← Find(𝑐𝑟, 𝑈𝐹)
14: 𝑐′𝑖 ← Find(𝑐𝑖, 𝑈𝐹)
15: if 𝑐′𝑟 == 𝑐′𝑖 then
16: continue
17: end if
18: 𝑐𝑧 ← 𝑐′𝑟.representative
19: Add edge (𝑐𝑖,𝑐𝑧) to 𝑇𝐽

20: Union(𝑐′𝑟,𝑐
′
𝑖,UF)

21: Let 𝑐𝑞 be the parent of the newly formed set.
22: 𝑐𝑞.representative ← 𝑐𝑖
23: end for
24: end for
25: return Join tree 𝑇𝐽

valued vertex or the latest added vertex for a set is chosen as the representative of that

particular set.

If 𝑣 is a critical point, descending paths are constructed from each of the lower link

components of 𝑣 until an already visited vertex 𝑤 is met. Every vertex on the paths are

provided a pointer to 𝑣. Next the pointer from 𝑤 is followed to find the critical point 𝑧

which already had a descending path to 𝑤. Finally we unify the sets containing 𝑣 and

𝑧 and add an edge from 𝑣 to the representative of the component containing 𝑧. Figure

4.4 illustrates this process. Essentially after 𝑣 is processed all parts of the Join tree from

CHAPTER 4. ALGORITHM 18

−∞ to 𝑓(𝑣) are constructed. Therefore, after processing the final vertex we have the

entire Join tree.

≡

v

w

z

Figure 4.4: Illustrating the construction of the Join tree for a particular iteration when
critical vertex 𝑣 is processed.

The construction of the Split tree is analogous to the construction of the Join tree,

and proceeds by processing the vertices in decreasing order of their function values and

constructing ascending paths from the critical points. Another way of looking at Split

tree is that it is the inverted Join tree of −𝑓 defined over the same grid.

For optimal performance and low memory utilization, we store the Join and Split

tree as parent arrays. For example if 𝐽𝑡 is the array corresponding to Join tree then 𝐽𝑡[𝑖]

gives us the parent of the 𝑖𝑡ℎ critical point.

Moreover, we also store the corresponding children array 𝐶𝑗𝑡 for faster access of the

children nodes of a vertex, which comes in handy in the later stages of the algorithm.

Since each critical point has at most two upper-link or lower-link components, the max-

imum number of children a vertex in the Join tree can have is, two. Hence we can store

𝐶𝑗𝑡 as a fixed size array with 𝐶𝑗𝑡[2𝑖] and 𝐶𝑗𝑡[2𝑖+1] representing the two children of the

CHAPTER 4. ALGORITHM 19

𝑖𝑡ℎ critical point in the Join tree. we maintain similar arrays for the Split tree as well.

For maintaining and updating the union find data structure we use both path com-

pression and union by rank.

4.4 Pruning Join and Split Trees

In this step, we prune the Join tree and Split tree for each sub domain in parallel.

The pruning removes nodes that do not represent a change in the number of connected

components. If 𝑣 is a degree-2 node in the Join tree then the number of connected

components of the sub-level set does not change when it crosses 𝑓(𝑣). Similarly, a degree-

2 node in the Split tree contributes no additional information regarding the number of

super-level set components. Hence, a node that is neither a join vertex nor a split vertex

can be safely pruned away. We note that such nodes might represent other topological

changes such as a change in genus. However, our aim is to only capture the number of

connected components and we remove them as shown in Algorithm 4.2.

We do not prune the Join and Split trees independently. In other words, we do

not remove all degree-2 vertices from the Join and Split trees. This is because, we

would require this information while merging the two trees to construct the contour

tree. Pruning the tree on-the-fly, when it is being constructed, is difficult. Therefore, we

schedule the pruning after constructing the Join and Split tree for each sub domain. We

do preserve the boundary points because they are required for correct stitching of the

trees across the sub domains.

The pruning step contributes to the huge memory savings achieved by our algorithm.

In our experiments, we observe a significant number of degree-2 nodes classified as crit-

ical. We find that the size of the tree reduces by a factor of 5-10 depending upon the

data set after the pruning step. If the domain is divided into 𝑑 sub domains and pro-

cessed using 𝑝 processors, then the memory requirement of our algorithm is 𝑝/𝑑 times

the maximum memory utilized by any algorithm that does not partition the domain. We

choose 𝑑 such that it is significantly larger than 𝑝 and hence require only a fraction of the

CHAPTER 4. ALGORITHM 20

maximum memory utilized by other algorithms. The memory required for subsequent

steps of the algorithm further reduces due to the pruning.

Algorithm 4.2 PruneTrees()

Input: List of critical points 𝐶, Join Tree 𝑇𝐽 and Split tree 𝑇𝑆

Output: Pruned trees 𝑡𝑗 and 𝑡𝑠
1: for every vertex 𝑐𝑖 ∈ 𝐶 do
2: if 𝑐𝑖 is a degree two node in both 𝑇𝐽 and 𝑇𝑆, and is not on the boundary then
3: Remove 𝑐𝑖 from 𝐶
4: end if
5: end for
{Prune Join Tree}

6: for every vertex 𝑐𝑖 ∈ 𝐶 do
7: if 𝑐𝑖 is the root of 𝑇𝐽 then
8: continue
9: end if

10: 𝑝𝑖 = 𝑐𝑖.𝐽𝑜𝑖𝑛𝑃𝑎𝑟𝑒𝑛𝑡
11: while 𝑝𝑖 /∈ 𝐶 do
12: 𝑝𝑖 = 𝑝𝑖.𝐽𝑜𝑖𝑛𝑃𝑎𝑟𝑒𝑛𝑡
13: end while
14: Add edge (𝑝𝑖, 𝑐𝑖) to 𝑡𝑗
15: end for
16: Delete 𝑇𝐽

{Prune Split Tree}
17: for every vertex 𝑐𝑖 ∈ 𝐶 do
18: if 𝑐𝑖 is the root of 𝑇𝑆 then
19: continue
20: end if
21: 𝑝𝑖 = 𝑐𝑖.𝑆𝑝𝑙𝑖𝑡𝑃𝑎𝑟𝑒𝑛𝑡
22: while 𝑝𝑖 /∈ 𝐶 do
23: 𝑝𝑖 = 𝑝𝑖.𝑆𝑝𝑙𝑖𝑡𝑃𝑎𝑟𝑒𝑛𝑡
24: end while
25: Add edge (𝑝𝑖, 𝑐𝑖) to 𝑡𝑠
26: end for
27: Delete 𝑇𝑆

28: return 𝑡𝑗 and 𝑡𝑠

CHAPTER 4. ALGORITHM 21

4.5 Stitching Join and Split Trees

Join and Split trees of sub domains that share a common boundary are stitched together

in parallel. A union-find data structure is again used to maintain connectivity. However,

only the portions of the trees affected by the boundary nodes are updated. The remaining

portions of the trees are carried over from the sub domain onto the next iteration.

Algorithm 4.3 describes the stitching procedure for the Join tree. Split trees are stitched

together using a similar procedure.

Let 𝑡𝑗1 and 𝑡𝑗2 denote the Join tree of the adjoining sub domains 𝐷1 and 𝐷2. Let 𝑇1

and 𝑇2 be the set of nodes on 𝑡𝑗1 and 𝑡𝑗2. The nodes in 𝑇1 and 𝑇2 are already sorted.

We merge these sorted lists in linear time to obtain a sorted list of nodes from 𝑇1 ∪ 𝑇2.

Duplicate nodes are retained to avoid reorganizing the data structures. The duplicate

nodes would appear next to each other in the sorted list. We insert an edge between

these duplicate nodes essentially creating a new mesh 𝑀12 whose vertex set equals the

nodes in 𝑇1 ∪ 𝑇2 and whose edge sets are the union of the arc sets of 𝑡𝑗1 and 𝑡𝑗2 together

with the newly inserted edges.

The Join tree of the scalar function restricted to 𝐷1 ∪ 𝐷2 is computed as the Join

tree of 𝑀12 by maintaining a union-find data structure 𝑈𝐹 . First, the nodes and arc

sets of 𝑡𝑗1 and 𝑡𝑗2 are merged. The vertices of 𝑀12 are processed in sorted order. The

first set is created in 𝑈𝐹 when the first boundary node is processed. Subsequently, a

new set is created only when another boundary node is processed or when a child of

the node being processed belongs to 𝑈𝐹 . Union operations are triggered in both cases.

Note that the several nodes of 𝑡𝑗1 and 𝑡𝑗2 are not inserted into 𝑈𝐹 because they remain

unaffected after stitching. We again use union by rank and path compression for the

union find operations, although we observe little to no improvements in case of union by

rank acceleration. We observe in our experiments that the time required for stitching is

indeed roughly proportional to the number of boundary nodes on the sub domains.

Figure 4.5 illustrates the stitching procedure where 𝑣′ and 𝑣′′ are the duplicated

boundary vertices across neighboring sub domains. The final sub figure gives the Join

tree over the union of the two sub domains.

CHAPTER 4. ALGORITHM 22

Algorithm 4.3 StitchJoinTrees(𝑡𝑗1, 𝑡𝑗2)

Input: Sorted list of nodes 𝑇1 and 𝑇2

Output: Join tree 𝑡𝑗
1: Initialize 𝑡𝑗 ← 𝑡𝑗1 ∪ 𝑡𝑗2
2: 𝑈𝐹 ← empty union find data structure
3: 𝑇 ←𝑀𝑒𝑟𝑔𝑒(𝑇1, 𝑇2)
4: for i ← 1 to |𝑇 | − 1 do
5: if 𝑣𝑖 and 𝑣𝑖+1 are boundary duplicate points then
6: NewSet(𝑣𝑖,UF)
7: NewSet(𝑣𝑖+1,UF)
8: Union(𝑣𝑖,𝑣𝑖+1,UF) making 𝑣𝑖+1 as the head
9: 𝑣𝑖.JoinParent ← 𝑣𝑖+1

10: Add 𝑣𝑖 to 𝑣𝑖+1.JoinChildrenList
11: end if
12: for each child 𝑐𝑗 of 𝑣𝑖 do
13: if 𝑐𝑗 is present in UF then
14: if 𝑣𝑖 is not present in UF then
15: NewSet(𝑣𝑖,UF)
16: end if
17: Delete 𝑐𝑗 from 𝑣𝑖.JoinChildrenList
18: 𝑐′ ← FIND(𝑐𝑗,UF)
19: if 𝑣𝑖 ̸= 𝑐′ then
20: 𝑐′.JoinParent ← 𝑣𝑖
21: Add 𝑐′ to 𝑣𝑖.JoinChildrenList
22: Union(𝑐′,𝑣𝑖,UF) ensuring 𝑣𝑖 as the head
23: end if
24: end if
25: end for
26: end for
27: return Join tree 𝑡𝑗

We keep stitching the trees across adjoining sub domains hierarchically, traveling

up the domain decomposition octree. Independent stitching processes are performed in

parallel. But as we proceed with the iterations and move up the octree the number of

parallel jobs keep decreasing. As such, the stitching process is a top heavy one and does

not scale well with the number of processors. In the final iteration, we merge the trees

across two halves of the global domain, and by the end of it we have the Join and Split

tree for the entire domain.

Split trees can be similarly processed and stitched across the sub-domains. In fact, if

CHAPTER 4. ALGORITHM 23

v′ v′′

1 23
4

7
8

9

10

v′ v′′

1 23
4

7
8

9

10

v′ v′′

1 23
4

7
8

9

10

v′ v′′

1 23
4

7
8

9

10

Figure 4.5: Stitching Join trees of neighboring sub domains:

𝑣′ and 𝑣′′ are the duplicated boundary vertices across neighboring sub domains. 𝑣′′ is initially

made the parent of 𝑣′. The vertices are then processed in increasing order of their function

values. The orange nodes represent the nodes present currently in the union-find data structure.

The red node indicates the vertex currently being processsed.

In the second second sub figure, when vertex 8 is processed, it queries the representative of its

child 𝑣′ in the union find data structure. Since 7 is the representative of 𝑣′ we add an edge

(8,7) and remove (8,𝑣′) from the Join tree.

Next when it is the turn of the final vertex 10 to be processed it finds out that vertex 9 is the

representative of its child 7. Hence (10,7) is removed and (10,9) is added to the Join tree.

there are available processors the stitching of the Split tree can be carried out in parallel

with the stitching of the Join tree. We do not prune the duplicate vertices at the end

of the step and defer it to the final stage just before computing the contour tree. In

practice, the final pruning reduces the number of points in split and Join tree by only

about 5%. It is expensive to scan the entire tree to find degree-2 nodes and therefore we

avoid pruning the trees after every Stitch operation.

CHAPTER 4. ALGORITHM 24

4.6 Merging Join and Split Trees

The final contour tree is constructed from the Join and Split tree using a procedure similar

to that described by Carr et al.[1], one that is amenable to a parallel implementation.

Algorithm 4.4 describes this procedure.

Each iteration of this procedure identifies an arc of the contour tree that is incident

on a leaf, removes the arc from the Join and Split tree, and inserts it into the contour

tree. The procedure terminates when all arcs of the Join and Split trees are processed.

The running time of the sequential version is linear in the number of critical points. The

set of growing nodes 𝐺 is processed in parallel with removal of nodes being processed

atomically.

The final contour tree is stored as an abstract graph specifically as a set of nodes and

edges.

Algorithm 4.4 MergeTrees()

Input: Join tree 𝑇𝑗 and Split tree 𝑇𝑠

Output: Contour tree 𝑇𝑐

1: 𝐺 = Set of leaves in 𝑇𝑗 and 𝑇𝑠

2: while 𝐺 ̸= 𝜑 do
3: if 𝑐𝑖 is a leaf in 𝑇𝑗 or 𝑇𝑠 then
4: Process 𝑐𝑖 and Remove it from 𝐺
5: T = tree in which 𝑐𝑖 is a leaf
6: while 𝑐𝑖 ̸= 𝑇 .root and 𝑐𝑖 is not processed do
7: 𝑛𝑖 = 𝑐𝑖
8: 𝑐𝑖 = parent vertex of 𝑐𝑖 in 𝑇
9: end while

10: Remove 𝑛𝑖 from 𝑇 and 𝐺
11: Add arc(𝑛𝑖,𝑐𝑖) to 𝑇𝑐

12: if 𝑐𝑖 is either a leaf in 𝑇𝑗 or 𝑇𝑠 then
13: Add 𝑐𝑖 to 𝐺
14: end if
15: end if
16: end while

CHAPTER 4. ALGORITHM 25

4.7 Analysis

We assume there are 𝑣 vertices in the structured grid and 𝑡 critical points in the complete

domain, with 𝑑 being the number of sub domains. By 𝑡𝑖, 𝑖 = 1 to 𝑑, we denote the number

of critical points present in the 𝑖𝑡ℎ sub domain. Let 𝑏𝑖 represent the number of boundary

nodes classified as critical in the 𝑖𝑡ℎ sub domain

Classifying the grid and finding the face and body saddles take 𝑂(𝑣) time as it takes

constant amount of time for every vertex to find the number of upper link and lower

link components. Chiang et al. [25] show it takes 𝑂(𝑣 + 𝑡 log 𝑡) time for constructing

the Join and Split tree where 𝑡 is the number of critical points. Since each sub do-

main has a maximum of 𝑡𝑖 + 𝑏𝑖 points, the computation of the Join and Split tree for

each sub domain takes 𝑂 (𝑣/𝑑 + (𝑡𝑖 + 𝑏𝑖) log(𝑡𝑖 + 𝑏𝑖)) time. Pruning the Join and Split

trees again takes time proportional to the number of critical points in each sub do-

main. While stitching sub domain 𝐷𝑖 and 𝐷𝑗 we perform at maximum (𝑡𝑖 + 𝑡𝑗 + 𝑏𝑖 + 𝑏𝑗)

unions and finds which can be implemented using union-by-rank and path compression

in (𝑡𝑖 + 𝑡𝑗 + 𝑏𝑖 + 𝑏𝑗)𝛼 (𝑡𝑖 + 𝑡𝑗 + 𝑏𝑖 + 𝑏𝑗) where 𝛼 is the inverse Ackermann function [30].

This is a very conservative estimate since the majority of the nodes remain unaffected

and hence do not feature in the union find operations. The merging of the two sorted

lists takes 𝑂 (𝑡𝑖 + 𝑡𝑗 + 𝑏𝑖 + 𝑏𝑗) time. The final cleanup and the merging of the Join and

Split tree to form the final contour tree is proportional to the number of critical vertices.

With 𝑑 sub domains there are log 𝑑 number of of stitching iterations. At worst

case each of the iterations, process 𝑧 = 𝑡 + 3𝑑
1
3 · 𝑣 2

3 points and hence take 𝑂(𝑧𝛼(𝑧))

time. Hence the net complexity is 𝑂(𝑣 +
∑︀𝑑

𝑖=1(𝑡𝑖 + 𝑏𝑖) log(𝑡𝑖 + 𝑏𝑖) + log 𝑑 · 𝑧𝛼(𝑧)) =

𝑂(𝑣 + 𝑧 log 𝑧 + log 𝑑 · 𝑧𝛼(𝑧)). Hence if 𝑑 is much smaller than 𝑣 and 𝑡, we can write the

final sequential running time as 𝑂
(︁
𝑣 +

(︁
𝑡 + 𝑣

2
3

)︁
log

(︁
𝑡 + 𝑣

2
3

)︁)︁
. In our experiments, we

observe that in a number of data sets, 𝑡 is more than 10% of the number of vertices, 𝑣,

and hence is much more than 𝑣
2
3 for larger data sets. So the final complexity can be

further simplified to 𝑂 (𝑣 + 𝑡 log 𝑡), which is the optimal running time for construction

of the contour tree.

If we assume perfect load balance among all processors with number of available

CHAPTER 4. ALGORITHM 26

processors 𝑝 equal to the number of sub domains 𝑑, we have a parallel running time of

𝑂(𝑣/𝑝+(𝑧/𝑝) log(𝑧/𝑝)+𝑧𝛼(𝑧)). The first two terms, representing the time complexity for

constructing the trees for each sub domain, scale linearly. But 𝑧𝛼(𝑧) term, a consequence

of the stitching operations is independent of the number of processors and hence scales

poorly.

Chapter 5

Experimental Results

5.1 Experimental Setup

We evaluate our algorithm on shared memory system with 64 cores. For that purpose,

we use an AMD opteron 6274 processor with each of its 64 core running at 2.2GHz, with

64 GB of RAM. We use the data sets from volvis [31] for our experiments. All of the

data sets are in binary .raw format, storing the function value for each of the points in

an 8-bit unsigned integer format, ordered in an X by Y by Z layout, i.e. x-coordinate

changes rapidly when stepping through consecutive memory locations. After reading in

the data sets, we store the function values in float format. Details of the data sets are

presented in Appendix.

Firstly, we report run times for the sequential version of our algorithm where the

entire data is processed by a single processor. Then we report run times for increasing

number of processors and compare it with an existing parallel algorithm ParallelCT

[27], which computes the contour tree in a shared memory system without partitioning

the domain. We call our procedure DivCT.

27

CHAPTER 5. EXPERIMENTAL RESULTS 28

5.2 Single Core environment

On a single core environment DivCT behaves exactly like the output sensitive algorithm

by Chiang et al. [25], but applied to the modified mesh corresponding to the structured

grid input. libtourtre [32] is a publicly available and widely used serial implementation

of the Carr et al. sweep algorithm of computing contour tree. The comparison between

libtourtre, ParallelCT and DivCT is shown in Table 5.1. Both the DivCT

and ParallelCT are faster than libtourtre for structured grids. This is expected

since both DivCT and ParallelCT are output sensitive. It is clearly evident that

DivCT outperforms ParallelCT. This can be attributed to ParallelCT’s extra

computational tasks of constructing the auxiliary data structures.

Model #Vertices libtourtre ParallelCT DivCT
Aneurism 256× 256× 256 15.2 9.4 7.7

Bonsai 256× 256× 256 21.9 18.9 16.1
Foot 256× 256× 256 31.5 19.8 17.2

Table 5.1: Time taken (in seconds) for computing the contour tree on a single core.
DivCT outperforms both libtourtre and ParallelCT.

5.3 Multi-core environment

For processing a data set on 𝑝 number of processors we divide our domain into at least 8𝑝

sub domains. If the sub domains are still large and do not fit in memory, they are further

partitioned into blocks. Ensuring a minimum of 8𝑝 sub domains results in a reasonable

balance of load among the cores while computing the Join and Split trees. In practice,

we observe that this step scales almost linearly with increasing number of processors

with an additional, but small, expense of handling greater number of boundary vertices.

We observe in our experiments that the total number of boundary vertices including the

duplicate points that are misclassified as critical points is roughly equal to 5% of the

final size of the Join and Split trees. Therefore, the increase in number of sub domains

does not adversely affect the computation time. Note that the domain is not partitioned

CHAPTER 5. EXPERIMENTAL RESULTS 29

for the serial execution, for data sets of size up to 1024 × 1024 × 1024. For even larger

data sets, for serial execution we partition the domain into 8 sub domains, as we do not

have sufficient memory for processing entire data sets as huge as 2048× 2048× 2048.

5.4 Speedup and Scaling

1 2 4 8 16 32 64
No. of cores

1

2

4

8

16

32

64

Sp
ee

du
p

Ideal
Vertebra512 (512× 512× 512)
Colon512 (512× 512× 442)
Vertebra1024 (1024× 1024× 1024)
Colon1024 (1024× 1024× 884)
Vertebra2048 (2048× 2048× 2048)
Colon2048 (2048× 2048× 1768)

Figure 5.1: Speedup for large data sets with increasing number of cores, for the entire procedure

of DivCT. It exhibits close to linear scaling behavior.

Figure 5.1 shows the scaling behavior of DivCT with respect to increasing number of

processors on large data sets. The graph plots indicate that we achieve close to the ideal

speedup shown in blue. As expected, the task of computation of the Join and Split trees

for sub domains scales linearly and very close to the ideal speedup. This is primarily

responsible for the overall near-linear speedup. Figure 5.2 shows the scaling result for

CHAPTER 5. EXPERIMENTAL RESULTS 30

1 2 4 8 16 32 64
No. of cores

1

2

4

8

16

32

64

Sp
ee

du
p

Ideal
Vertebra512 (512× 512× 512)
Colon512 (512× 512× 442)
Vertebra1024 (1024× 1024× 1024)
Colon1024 (1024× 1024× 884)
Vertebra2048 (2048× 2048× 2048)
Colon2048 (2048× 2048× 1768)

Figure 5.2: Speedup obtained for the computation of Join and Split trees of individual
sub domains

CHAPTER 5. EXPERIMENTAL RESULTS 31

this particular sub procedure. As evident, the scaling is linear and extremely close to

the ideal speedup.

On the other hand, stitching the trees scales poorly. It is the primary contributor

to the deviation from the ideal linear speedup in 5.1. For experiments run on 64 cores,

the time taken for stitching together with the final merge to compute the contour tree

is comparable to the time taken to compute the Join and Split trees for the all the sub

domains.

We compare the performance of DivCT with ParallelCT over 64 cores in Table 5.2

and Table 5.3. We observe significant improvements both in terms of running time and

speedup over ParallelCT. We observe a saturation in ParallelCT with increasing

number of processors whereas DivCT exhibits good scaling.

Model #Vertices
ParallelCT time (in seconds)

1 core 8 cores 64 cores
Vertebra 512× 512× 512 91.4 19.8 (4.6×) 8.8 (10.4×)

Colon 512× 512× 442 182.6 52.9 (3.5×) 15.4 (11.9×)
Vertebra1024 1024× 1024× 1024 - - -

Colon1024 1024× 1024× 884 - - -

Table 5.2: Time taken (in seconds) by ParallelCT for computing the contour tree in a

many-core system. The speedup factor is shown within parenthesis. ParallelCT is unable

to process larger data sets because it requires more memory than available.

Model #Vertices
DivCt time (in seconds)

1 core 8 cores 64 cores
Vertebra 512× 512× 512 76.7 12.1 (6.3×) 2.7 (28.4×)

Colon 512× 512× 442 156.5 25.2 (6.2×) 5.5 (27.5×)
Vertebra1024 1024× 1024× 1024 532.5 74.0 (7.2×) 14.3 (37.2×)

Colon1024 1024× 1024× 884 1142.5 156.4 (7.3×) 32.5 (35.2×)
Vertebra2048 2048× 2048× 2048 6513.8 868.5 (7.5 ×) 173.3 (37.5 ×)

Colon2048 2048× 2048× 1768 12890.7 2113.2 (6.1 ×) 493.9 (26.1 ×)

Table 5.3: Time taken (in seconds) by the entire procedure of DivCT for computing the

contour tree in a many-core system. The speedup factor is shown within parenthesis. DivCT

exhibits better scaling and is faster in terms of total running time compared to ParallelCT,

given in Table 5.2. It also processes larger data sets that ParallelCT cannot handle.

Table 5.4 shows the time taken and speedup obtained for the computation of Join and

CHAPTER 5. EXPERIMENTAL RESULTS 32

Split trees restricted to individual sub domains. As observed in Figure 5.2 the speedup

is extremely close to the ideal linear speedup.

Model #Vertices
DivCt Time (in seconds)

1 core 8 cores 64 cores
Vertebra 512× 512× 512 76.7 10.2 (7.5×) 1.4 (54.8×)

Colon 512× 512× 442 156.5 20.2 (7.7×) 2.6 (60.2×)
Vertebra1024 1024× 1024× 1024 532.5 68.4 (7.8×) 10.1 (52.7×)

Colon1024 1024× 1024× 884 1142.5 146.1 (7.8×) 23.6 (48.4×)
Vertebra2048 2048× 2048× 2048 6404.7 804.4 (7.9 ×) 126.9 (50.5 ×)

Colon2048 2048× 2048× 1768 12491.2 1814.6 (6.9 ×) 284.8 (43.9 ×)

Table 5.4: Time taken (in seconds) for the computation of Join and Split trees of individual
sub domains by DivCT in a many-core system with speedup values in bracket

5.5 Memory Efficiency

We also observe significant improvements in terms of memory consumption. For example

ParallelCT requires approximately 12GB of memory to compute the contour tree for

the Vertebra (512×512×512) data set. However DivCT requires only one-fifth as much

because the data is partitioned into sub domains. In the case of larger data sizes, it is

infeasible to use ParallelCT. For example, it requires more than 60GB of memory

for a 1024× 1024× 1024 data sets. DivCT consumes at most 11GB of memory for the

same data set.

The maximum memory required by DivCT to construct the trees can be reduced by

further subdividing the sub domains. In fact, the minimum available memory required

by DivCT is comparable to the size of the final contour tree. The final contour tree can

be computed for the Vertebra1024 (1024×1024×1024) data set using 2.5GB of memory

on an 8-core machine by partitioning it into 512 sub domains of size 128 × 128 × 128

each.

For data sets even larger in size, say a 2048×2048×2048 containing about 8.6 billion

points, we similarly divide the domain into 512 sub domains of size 256 × 256 × 256.

We compute the final contour tree in less than 14 minutes consuming roughly 10GB

CHAPTER 5. EXPERIMENTAL RESULTS 33

of memory on 8 cores. With 64 cores, the computation time drops to approximately 3

minutes.

Chapter 6

Conclusions

We have presented a simple and memory efficient algorithm for parallel construction of

the contour tree for a scalar function defined over a 3D structured grid in shared memory

systems. We compute the the contour tree for extremely large data sets, that do not fit in

memory, of size up to 2048×2048×2048. The near linear speedup obtained over various

data sets indicates that our implementation scales well with number of processors. We

also report significant improvements in memory usage over existing shared memory based

parallel algorithms for computing the contour tree.

It would be interesting to see if we can utilize GPUs or a CPU-GPU hybrid envi-

ronment for faster computation of the contour tree. However, it is highly non trivial to

design and implement such an algorithm in a GPU like environment to handle such large

data sets.

One obvious way to improve upon our implementation is to parallelize the individual

stitch operations themselves. However they might involve drastic changes in the data

structures we use.

34

Appendix

Details of data sets used from volvis.org [31] for our experiments

∙ Aneurism (256 × 256 × 256): Rotational C-arm x-ray scan of the arteries of the

right half of a human head. A contrast agent was injected into the blood and an

aneurism is present.

∙ Bonsai (256× 256× 256): CT scan of a bonsai tree

∙ Foot (256× 256× 256): Rotational C-arm x-ray scan of a human foot. Tissue and

bone are present in the data set.

∙ Vertebra (512 × 512 × 512): Rotational angiography scan of a head with an

aneurysm.

∙ Colon (512×512×442): CT scan of a Colon phantom with several different objects

and five pedunculated large polyps in the central object.

∙ Vertebra1024 (1024 × 1024 × 1024) and Vertebra2048 (2048 × 2048 × 2048) are

up-sampled versions of Vertebra data set. Interpolation is done using a trilinear

interpolant.

∙ Colon1024 (1024×1024×884) and Colon2048 (2048×2048×1768) are up-sampled

versions of Colon data set. Interpolation is done using a trilinear interpolant.

35

Bibliography

[1] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in all dimensions,”

Computational Geometry, vol. 24, no. 2, pp. 75 – 94, 2003, special Issue on

the Fourth {CGC} Workshop on Computational Geometry. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0925772102000937

[2] C. L. Bajaj, V. Pascucci, and D. R. Schikore, “The contour spectrum,” in

Proceedings of the 8th Conference on Visualization ’97, ser. VIS ’97. Los Alamitos,

CA, USA: IEEE Computer Society Press, 1997, pp. 167–ff. [Online]. Available:

http://dl.acm.org/citation.cfm?id=266989.267051

[3] H. Carr and J. Snoeyink, “Path seeds and flexible isosurfaces using

topology for exploratory visualization,” in Proceedings of the Symposium

on Data Visualisation 2003, ser. VISSYM ’03. Aire-la-Ville, Switzerland,

Switzerland: Eurographics Association, 2003, pp. 49–58. [Online]. Available:

http://dl.acm.org/citation.cfm?id=769922.769927

[4] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore,

“Contour trees and small seed sets for isosurface traversal,” in Proceedings

of the Thirteenth Annual Symposium on Computational Geometry, ser. SCG

’97. New York, NY, USA: ACM, 1997, pp. 212–220. [Online]. Available:

http://doi.acm.org/10.1145/262839.269238

[5] S. Takahashi, “Algorithms for extracting surface topology from digital elevation

models,” in Topological Data Structures for Surfaces: An Introduction to

36

http://www.sciencedirect.com/science/article/pii/S0925772102000937
http://dl.acm.org/citation.cfm?id=266989.267051
http://dl.acm.org/citation.cfm?id=769922.769927
http://doi.acm.org/10.1145/262839.269238

BIBLIOGRAPHY 37

Geographical Information Science. John Wiley & Sons, 2006, pp. 31–51. [Online].

Available: http://dx.doi.org/10.1002/0470020288.ch3

[6] D. Demir, K. Beketayev, G. H. Weber, P.-T. Bremer, V. Pascucci, and B. Hamann,

“Topology exploration with hierarchical landscapes,” in Proceedings of the

Workshop at SIGGRAPH Asia, ser. WASA ’12. New York, NY, USA: ACM, 2012,

pp. 147–154. [Online]. Available: http://doi.acm.org/10.1145/2425296.2425323

[7] F. Hètroy and D. Attali, “Topological quadrangulations of closed triangulated

surfaces using the reeb graph,” Graphical Models, vol. 65, no. 1-3, pp. 131–148,

2003, special Issue: Discrete Topology and Geometry for Image and Object

Representation. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1524070303000055

[8] M. Mortara and G. Patane, “Affine-invariant skeleton of 3d shapes,” in Shape

Modeling International, 2002. Proceedings, 2002, pp. 245–252. [Online]. Available:

http://dx.doi.org/10.1109/SMI.2002.1003552

[9] E. Zhang, K. Mischaikow, and G. Turk, “Feature-based surface parameterization

and texture mapping,” ACM Trans. Graph., vol. 24, no. 1, pp. 1–27, Jan. 2005.

[Online]. Available: http://doi.acm.org/10.1145/1037957.1037958

[10] J. Cox, D. Karron, and N. Ferdous, “Topological zone organization of scalar

volume data,” Journal of Mathematical Imaging and Vision, vol. 18, no. 2, pp.

95–117, 2003. [Online]. Available: http://dx.doi.org/10.1023/A%3A1022113114311

[11] S. Takahashi, I. Fujishiro, and Y. Takeshima, “Interval volume decomposer: a

topological approach to volume traversal,” in Proc. SPIE, 2005, pp. 103–114.

[Online]. Available: http://dx.doi.org/10.1117/12.584257

[12] I. Fujishiro, Y. Takeshima, T. Azuma, and S. Takahashi, “Volume data

mining using 3d field topology analysis,” IEEE Computer Graphics and

Applications, vol. 20, no. 5, pp. 46–51, 2000. [Online]. Available: http:

//doi.ieeecomputersociety.org/10.1109/38.865879

http://dx.doi.org/10.1002/0470020288.ch3
http://doi.acm.org/10.1145/2425296.2425323
http://www.sciencedirect.com/science/article/pii/S1524070303000055
http://www.sciencedirect.com/science/article/pii/S1524070303000055
http://dx.doi.org/10.1109/SMI.2002.1003552
http://doi.acm.org/10.1145/1037957.1037958
http://dx.doi.org/10.1023/A%3A1022113114311
http://dx.doi.org/10.1117/12.584257
http://doi.ieeecomputersociety.org/10.1109/38.865879
http://doi.ieeecomputersociety.org/10.1109/38.865879

BIBLIOGRAPHY 38

[13] S. Takahashi, Y. Takeshima, and I. Fujishiro, “Topological volume skeletonization

and its application to transfer function design,” vol. 66, no. 1, 2004, pp.

24 – 49. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1524070303000997

[14] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann, “Topology-

controlled volume rendering,” IEEE Trans. Vis. Comput. Graph., vol. 13, no. 2,

pp. 330–341, 2007. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2007.47

[15] J. Zhou and M. Takatsuka, “Automatic transfer function generation using contour

tree controlled residue flow model and color harmonics,” IEEE Transactions on

Visualization and Computer Graphics, vol. 15, no. 6, pp. 1481–1488, 2009. [Online].

Available: http://dx.doi.org/10.1109/TVCG.2009.120

[16] W. Harvey and Y. Wang, “Topological landscape ensembles for visualization of

scalar-valued functions,” Computer Graphics Forum, vol. 29, no. 3, pp. 993–1002,

2010. [Online]. Available: http://dx.doi.org/10.1111/j.1467-8659.2009.01706.x

[17] P. Oesterling, C. Heine, H. Janicke, G. Scheuermann, and G. Heyer,

“Visualization of high-dimensional point clouds using their density distribution’s

topology,” Visualization and Computer Graphics, IEEE Transactions on,

vol. 17, no. 11, pp. 1547–1559, Nov 2011. [Online]. Available: http:

//dx.doi.org/10.1109/TVCG.2011.27

[18] D. M. Thomas and V. Natarajan, “Symmetry in scalar field topology,” IEEE

Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2035–

2044, Dec. 2011. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2011.236

[19] H. Edelsbrunner and J. Harer, Computational Topology: An Introduction. Amer.

Math. Soc., Providence, Rhode Island, 2009.

[20] A. Hatcher, Algebraic Topology. New York: Cambridge U. Press, 2002.

http://www.sciencedirect.com/science/article/pii/S1524070303000997
http://www.sciencedirect.com/science/article/pii/S1524070303000997
http://dx.doi.org/10.1109/TVCG.2007.47
http://dx.doi.org/10.1109/TVCG.2009.120
http://dx.doi.org/10.1111/j.1467-8659.2009.01706.x
http://dx.doi.org/10.1109/TVCG.2011.27
http://dx.doi.org/10.1109/TVCG.2011.27
http://dx.doi.org/10.1109/TVCG.2011.236

BIBLIOGRAPHY 39

[21] Y. Matsumoto, An Introduction to Morse Theory. Amer. Math. Soc., 2002, trans-

lated from Japanese by K. Hudson and M. Saito.

[22] J. Milnor, Morse Theory. New Jersey: Princeton Univ. Press, 1963.

[23] M. de Berg and M. van Kreveld, “Trekking in the alps without freezing or

getting tired,” Algorithmica, vol. 18, no. 3, pp. 306–323, 1997. [Online]. Available:

http://dx.doi.org/10.1007/PL00009159

[24] S. P. Tarasov and M. N. Vyalyi, “Construction of contour trees in 3d in o(n log

n) steps,” in Proceedings of the Fourteenth Annual Symposium on Computational

Geometry, ser. SCG ’98. New York, NY, USA: ACM, 1998, pp. 68–75. [Online].

Available: http://doi.acm.org/10.1145/276884.276892

[25] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote, “Simple and optimal output-

sensitive construction of contour trees using monotone paths,” Computational

Geometry, vol. 30, no. 2, pp. 165 – 195, 2005, special Issue on the

19th European Workshop on Computational Geometry. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0925772104000811

[26] V. Pascucci and K. Cole-McLaughlin, “Parallel computation of the topology of

level sets,” Algorithmica, vol. 38, no. 1, pp. 249–268, 2004. [Online]. Available:

http://dx.doi.org/10.1007/s00453-003-1052-3

[27] S. Maadasamy, H. Doraiswamy, and V. Natarajan, “A hybrid parallel algorithm

for computing and tracking level set topology,” in High Performance Computing

(HiPC), 2012 19th International Conference on. IEEE, 2012, pp. 1–10. [Online].

Available: http://dx.doi.org/10.1109/HiPC.2012.6507496

[28] D. Morozov and G. Weber, “Distributed merge trees,” in Proceedings of the 18th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

ser. PPoPP ’13. New York, NY, USA: ACM, 2013, pp. 93–102. [Online]. Available:

http://doi.acm.org/10.1145/2442516.2442526

http://dx.doi.org/10.1007/PL00009159
http://doi.acm.org/10.1145/276884.276892
http://www.sciencedirect.com/science/article/pii/S0925772104000811
http://dx.doi.org/10.1007/s00453-003-1052-3
http://dx.doi.org/10.1109/HiPC.2012.6507496
http://doi.acm.org/10.1145/2442516.2442526

BIBLIOGRAPHY 40

[29] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “Morse-smale complexes

for piecewise linear 3-manifolds,” in Proceedings of the Nineteenth Annual

Symposium on Computational Geometry, ser. SCG ’03. New York, NY, USA: ACM,

2003, pp. 361–370. [Online]. Available: http://doi.acm.org/10.1145/777792.777846

[30] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. MIT

Press, 2001.

[31] D. Bartz, “Volren and volvis homepage,” URL: http://www. volvis. org, 2005.

[32] libtourtre: A contour tree library. [Online]. Available: http://graphics.cs.ucdavis.

edu/∼sdillard/libtourtre/doc/html/

http://doi.acm.org/10.1145/777792.777846
http://graphics.cs.ucdavis.edu/~sdillard/libtourtre/doc/html/
http://graphics.cs.ucdavis.edu/~sdillard/libtourtre/doc/html/

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Contributions
	Outline of the thesis

	Background
	Related Work
	Algorithm
	Splitting into sub-domains
	Critical Point Identification
	Join and Split tree computation
	Pruning Join and Split Trees
	Stitching Join and Split Trees
	Merging Join and Split Trees
	Analysis

	Experimental Results
	Experimental Setup
	Single Core environment
	Multi-core environment
	Speedup and Scaling
	Memory Efficiency

	Conclusions
	Appendix
	Bibliography

