
An Adaptive Framework for Simulation and Online
Remote Visualization of Critical Climate

Applications in Resource-constrained Environments
Preeti Malakar∗, Vijay Natarajan∗†, Sathish S. Vadhiyar†

∗Department of Computer Science and Automation
†Supercomputer Education and Research Centre

Indian Institute of Science, Bangalore, India
preeti@csa.iisc.ernet.in, vijayn@csa.iisc.ernet.in, vss@serc.iisc.ernet.in

Abstract—Critical climate applications like cyclone tracking
and earthquake modeling require high-performance simulations
and online visualization simultaneously performed with the simu-
lations for timely analysis. Remote visualization of critical climate
events enables joint analysis by geographically distributed climate
science community. However, resource constraints including lim-
ited storage and slow networks can limit the effectiveness of such
online visualization. In this work, we have developed an adaptive
framework that simultaneously performs numerical simulations
and online remote visualization of critical climate applications
in resource-constrained environments. Our framework considers
both application and resource dynamics to adapt various appli-
cation and resource parameters including simulation resolutions,
resource configurations and amount of data for visualization.
We have developed two algorithms for processor allocation for
simulations and the frequency of data for visualization. We show
that our optimization method is able to provide about 30% higher
simulation rate and consumes about 25-50% lesser storage space
than the greedy approach.

Index Terms—climate simulation; remote visualization; pro-
cessor allocation; adaptation;

I. INTRODUCTION

Critical climate applications like cyclone or hurricane track-
ing, earthquake modeling and tsunami predictions require
high-performance and high-fidelity simulations to obtain real-
time forecasts and high-resolution visualization by the climate
scientists for subsequent analysis and scientific discovery. For
timely analysis and rapid response, these applications require
simultaneous and online/“on-the-fly” visualization simultane-
ously performed with the simulations. This will enable the
scientists to provide real-time guidance to policy and decision
makers, and feedback control for refining the simulations.
Remote visualization, where the visualization is performed at
a location different from the site of simulations, can enable
geographically distributed climate scientists to share vital
information, perform collaborative analysis, and provide joint
guidance on critical climate events, and hence can help harness
the expertise of a large climate science community.

Such high performance simulations and simultaneous visu-
alization involve the use of large stable storage or disk for
storing the climate data and networks for shipment of the

Fig. 1: Illustration of simultaneous simulations and remote visualiza-
tion using stable storage

data from the stable storage to the remote visualization site
as shown in Figure 1. However, constraints on the size and
capacity of the stable storage and the network can limit the
effectiveness of online and simultaneous remote visualization
of critical climate events. In this work, we assume that the data
that is transferred to the visualization site is removed from the
simulation site thereby increasing the available free disk space
at the simulation site.

Contemporary climate simulations have demonstrated very
high scalability on large number of modern-day processors
[1]. Simulations running on thousands of cores take less than
a second of execution time per time step [1]. Parallel I/O
can enable very high I/O bandwidth of the range of 5 – 20
GBps on large number of cores [2], [3]. A combination of
high simulation rate and high I/O bandwidth leads to high
rate of generation of gigabytes of climate data as output
and hence rapid accumulation of data in the stable storage.
This gives rise to the critical problem of storage limitation
for long-running climate applications. The network bandwidth
between the simulation and visualization site impacts the rate
at which data is moved out from the simulation site and
hence determines the amount of remaining disk space available
for simulation output. The continuous development of high
resolution simulation models for fine-grained analysis also
increases the climate data volume and hence exacerbates the

c©2010 IEEE Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1-4244-7558-2/10/$26.00

TABLE I: Illustration of Disk Space Limitation. Climate simulation of
grid size 4486x4486 points, 10 KM resolution, execution on 16,384
cores with 1.2 seconds of execution time per time step, and I/O
bandwidth of about 5 GBps

Disk
Space

Network
Bandwidth

Time when
storage
becomes full

5 TB 1 Gbps 25 minutes
10 Gbps 36 minutes

100 TB 1 Gbps 8 hours
10 Gbps 12 hours

300 TB 1 Gbps 24.5 hours
10 Gbps 36 hours

500 TB 1 Gbps 41 hours
10 Gbps 60 hours

problem of storage space limitation for climate simulations.
Eventual unavailability of storage for simulations, due to the
disk becoming completely full, can result in either the stalling
of the simulations or loss of visualization of critical climate
events.

The problem is illustrated in Table I that shows the estimated
time when the stable storage becomes unavailable for climate
simulations (last column) for a climate simulation of grid size
4486 x 4486 points, 10 KM resolution resulting in about
31 GB of output per frame, execution time of 1.2 seconds
for a simulation time step on 16,384 processor cores, I/O
bandwidth of about 5 GBps, and for various total disk spaces
and network bandwidths. The values for simulation grid sizes
and resolutions, parallel I/O bandwidths and execution time
on about 16,000 cores are reported and projected in recent
research efforts [1]–[3]. We find that even the presence of
large disk spaces, and fast networks can result in the storage
becoming unavailable within few minutes to hours of high-
resolution climate simulations that are envisaged to execute
for few days to weeks on large-scale machines. This in
turn hampers effective remote visualization of critical climate
events. Hence it is highly essential to adaptively use the
processor space and adjust the frequency of output based
on the application and resource dynamics. Such a dynamic
solution will ensure that the disk space is always available to
store the output of the simulation and the climate scientists
are able to constantly monitor progress of the simulation.

In this paper, we have developed an adaptive framework
that simultaneously performs numerical simulations and online
continuous remote visualization of critical climate applications
in resource-constrained environments. The objective of our
framework is to enable continuous progress in simulation and
maximize temporal resolution in visualization considering the
limitations in storage and network capacities. We define tem-
poral resolution as the frequency at which successive frames
are visualized. High temporal resolution would mean that more
number of successively produced frames are visualized. Our
framework considers both application and resource dynamics

including the intensity of climate events, available disk space
and the network bandwidth to adapt various application and
resource parameters including simulation resolutions, selecting
the number of processors for simulations, and the frequency
of data output for visualization. We have developed two
algorithms for processor allocation and the frequency of data
output for visualization. The first algorithm is a greedy strategy
that attempts to maximize the simulation rate and frequency
of output while the second algorithm is based on linear
optimization that attempts to provide steady-state simulation
and visualization rate. We have applied our framework for
large-scale and long-range tracking of cyclones. We conducted
experiments with our framework using our algorithms for three
experiment settings corresponding to inter-department, intra-
country and cross-continent visualizations. We show that our
optimization method is able to provide about 30% higher
simulation rate completing the entire simulations for all net-
work configurations, consumes about 25-50% lesser storage
space completely avoiding the disk overflow problem and the
resulting stalling of simulations, and provides higher and more
consistent rate of visualization than the greedy approach.

Section II describes related work in large-scale simulations
and visualizations of scientific data. Section III presents our
adaptive framework including the components and interac-
tions. Section IV explains our adaptive algorithms for deciding
processor allocation and output frequency. Section V presents
our experiments involving different network bandwidths and
results including simulation rates. Section VI gives conclu-
sions and enumerates our future efforts.

II. RELATED WORK

The analysis and study of time-varying output data, ob-
tained from numerical simulations, is integral to the scientific
process. Currently climate scientists have been analyzing the
output of climate simulation in an offline “post-processing”
step after the simulation is completed. There have been
strategies on offline visualization for earthquake simulations
[4]. However, these strategies cannot be applied for online
visualization, which is very important for critical climate
applications.

Tu et al. [5] and Ma et. al. [6], [7] proposed tightly-coupled
execution of the simulation and visualization components
where simulation is followed by visualization on the same
set of processors. They have considered the simulation of
earthquake ground motion. The simulation and visualization
cycles alternate executions on the same set of processors using
the same shared data, minimizing the cost of communication
from the simulation to the visualization component. Due to
alternate executions, the simulation component is stalled while
the visualization is performed. The simulation component
is generally more compute-intensive than the visualization
component. Hence, stalling simulation while the visualization
component runs would cause the subsequent output of simu-
lation to be produced after a considerable delay.

Another effort from NASA [8] uses shared memory as
a medium of communication between simulation and visu-

alization. They have conducted weather simulation of the
2005 Hurricane season using a global climate model. Though
this approach decouples the set of processors on which each
component runs, it requires large amount of shared memory.
In their work, 1TB of shared memory was used. This approach
is clearly not suitable for long running high-resolution climate
simulation dealing with large amount of data due to limitation
on the sizes of shared memory.

All the above efforts consider critical climate applications
in tightly-coupled environments. Ours is the first work that
adaptively performs simultaneous simulations and online re-
mote visualization for these applications.

III. ADAPTIVE INTEGRATED FRAMEWORK

Critical climate application simulations require immediate
attention on the occurrence of critical events. Hence executions
of these applications require efficient processor allocation and
a robust disk-space management because of the sheer amount
of data produced by the simulations. The absence of such
a middleware can lead to problems including disk overflow,
stalling of simulation, and low temporal resolution.

We have developed an adaptive framework that performs
efficient processor allocation and robust disk-space manage-
ment to handle the large amount of data produced by the
simulations to enable continuous online visualization at the re-
mote visualization engine. Our framework, shown in Figure 2,
consists of the following components to perform coordinated
simulations and online remote visualizations: an application
manager that determines the application configuration for
climate simulations based on resource characteristics, a job
handler that coordinates the execution of climate simulations,
a simulation process that performs climate simulations with
different application configurations, frame sender and receiver
daemons that deal with transport of frames from simulation
to visualization sites, and a visualization process for visu-
alization of the frames. For our work, we use a mesoscale
numerical weather forecast model, WRF (Weather Research
and Forecasting Model) [9], [10] in the simulation process for
simulating climate events. The following subsections describe
in detail the components and their interactions.

A. Application Manager

The application manager is the primary component that
makes our framework adaptive to resource configuration
changes. It invokes a decision algorithm periodically or at
specified times. The decision algorithm considers as input
the bandwidth of the network between the climate simula-
tion and visualization sites, the available free disk space,
and the resolutions of climate simulations. The application
manager periodically (in our work, every 1.5 hours) monitors
the available disk space using the UNIX command df. The
application manager also uses the average observed bandwidth
between the simulation and visualization sites, obtained by
using the time taken for sending about 1 GB message across
the network. The decision algorithm then determines the
number of processors for execution of climate simulations

and the frequency of output of climate data for continuous
visualization. The application manager stores these parameters
to an application configuration file. The application manager
also notifies the other components in our framework if the
available free disk space becomes significantly low by setting
a CRITICAL flag in the application configuration file.

The efficiency of the decision algorithm used in the ap-
plication manager impacts the rate of simulations and online
visualization in our framework. We have developed two deci-
sion algorithms for the application manager. These algorithms
are described in Section IV.

B. Job Handler and Simulation Process

The job handler component is responsible for scheduling
the WRF climate simulation application with the application
configuration determined by the application manager. The
WRF climate simulation process is executed on a certain num-
ber of processors with a simulation resolution and frequency
of output of the climate data specified in the application
configuration. The job handler starts, stops and restarts the
simulation process whenever the application configuration
changes. The simulation process simulates the climate over a
specified period of time and produces output for visualization.

The simulation process continuously simulates the climate
events across time steps and outputs climate data to disks as
long as the available disk space is sufficient for accommodat-
ing the output. The WRF simulation process also periodically
reads the application configuration file written by the applica-
tion manager. If the available free disk space is significantly
low, the application manager sets the CRITICAL flag. In this
case, the simulation process stalls execution, and periodically
checks the application configuration file. When the free disk
space becomes sufficient again, the application manager resets
the CRITICAL flag, and WRF continues execution. When the
application configuration specified in the configuration file
changes from the current configuration used for the WRF
execution, the WRF process stops. The job handler then
restarts WRF using WRF checkpointed data with the new
application configuration and continues execution.

In our framework, the WRF simulation process is made to
stall if the available free disk space is very low. This is a
reasonable strategy since our framework is primarily intended
for online and continuous remote visualization. Hence contin-
uing the simulation without generating the output will result
in large time “gaps” in the visualization of climate events.

The modifications to the WRF climate application for our
application are minimal. Whenever WRF finds the values of
its certain variables drop below a certain threshold, it stops
and the job handler reschedules it using a new configuration
input from the application manager. WRF also stops and
is rescheduled on different number of processors when job
handler signals change in the number of processors. WRF also
changes the frequency of output whenever it receives a signal
from the job handler.

APPLICATION MANAGER

Periodic Invocation

SIMULATION

PROCESS

VISUALIZATION

PROCESS

Stall if no disk space

F
R

A
M

E
S

E
N

D
E

R

F
R

A
M

E
R

E
C

E
IV

E
R

Network (Intranet/Internet)

APPLICATION

CONFIG

JOB HANDLER

Output Frequency
Processors

Application
Configuration

Output
Frames

VISUALIZED FRAMES

Fig. 2: Adaptive integration framework

C. Frame Sender and Receiver, and Visualization Process

Critical climate applications require continuous visualiza-
tion of the simulated output. The frame sender daemon con-
tinuously checks for the availability of climate data output
frames and sends the available frames over the network to the
remote visualization site. The frame receiver daemon at the
remote visualization site receives the frames and invokes the
visualization process for visualization of the frames.

IV. DECISION ALGORITHMS FOR APPLICATION MANAGER

The decision algorithm invoked by the application manager
determines

1) the number of processors, and
2) the frequency of output of climate data

for execution of climate simulations for a given
1) resolution of simulation,
2) the bandwidth of the network connecting the simulation

and visualization sites, and
3) the available free disk space at the simulation site.

The objective of the decision algorithm is to maximize the
rate of simulations and to enable continuous visualization with
maximum temporal resolution. However, these objectives are
contradictory. Visualization of maximum number of output
frames can be achieved by increasing the frequency of output
of climate data by simulations but this can increase the time
for I/O and hence decrease the rate of simulations. Increasing
the frequency of output can also lead to rapid accumulation
of output data and hence rapid decrease in the available free
disk space, eventually stalling the simulations. Decreasing the
frequency of output can increase the simulation rate, but will
result in visualization of fewer frames.

Faster networks with high bandwidths result in faster trans-
fer of output frames from the simulation to visualization sites
and hence results in large-scale freeing of disk space at the
simulation site. Also, unlike traditional scheduling, executing

the simulations on large number of processors corresponding
to the maximum simulation rate may not be the optimum
strategy. Sometimes, the simulations may have to be “slowed
down” if a large number of output frames corresponding to
previous time steps has not been transferred to the visualiza-
tion site, resulting in lesser available free disk space.

Thus a decision algorithm has to carefully consider these
various dependent impacting factors to achieve a good balance
between its contradictory objectives of maximizing simulation
rate and the temporal resolution for visualization. The decision
algorithm considers both application and resource parameters
as inputs. The simulation resolution is an application-specific
parameter and impacts the visualization quality. For example,
in the case of cyclone tracking, a climate scientist may want
to visualize with coarser resolutions during the initial stages
of cyclone formation and with finer resolutions when the
cyclone intensifies. The bandwidth and the free disk space
are resource parameters. The algorithm also takes as input the
execution times or simulation rates of WRF simulations for
different number of processors and simulation resolutions. The
execution times of a subset of configurations have been exper-
imentally found by running sample WRF runs for simulation
time of 1 hour for different discrete number of processors,
spanning the available processor space and using performance
modeling or curve fitting tools [11] to interpolate for other
number of processors. This has been done for each of the
experimental set-ups. The decision algorithm also considers
lower bound for frequency of output or upper bound for
interval between outputs, upper output interval. This upper
bound corresponds to the minimum frequency with which the
climate scientist would want to visualize the climate events.

We have devised two decision algorithms: a greedy al-
gorithm that uses thresholds for modifying parameters, and
an optimization-based approach. The following subsections
describe these algorithms.

A. Greedy-Threshold Algorithm

This algorithm attempts to employ the maximum number
of processors for maximum simulation rate and output every
simulated time step for maximum temporal resolution. How-
ever, since this greedy strategy can result in rapid decrease in
available free disk space, the algorithm also uses thresholds
for free disk space to dynamically adjust the frequency of
output and number of processors for execution. The algorithm
considers two sets of thresholds, lowdiskspace-thresholdset
when the remaining disk space is low and highdiskspace-
thresholdset when the remaining disk space is high. For our
current work, we set lowdiskspace-thresholdset = {50, 25},
and highdiskspace-thresholdset = {60} When the remaining
disk space is less than an upper bound of lowdiskspace-
thresholdset, the algorithm first decreases the frequency of
output i.e. increases the interval of output, output interval.
If the output interval is already equal to its maximum value,
upper output interval, and if the free disk space is still less
than the thresholds in lowdiskspace-thresholdset, the algorithm
“slows down” the simulation or increases the execution time
by decreasing the number of processors used for simulation.
If the free disk space is less than the lowest threshold in
lowdiskspace-thresholdset, the algorithm sets the CRITICAL
flag in the application configuration file, thereby leading to
stalling of the simulations.

The observation is that decreasing the rate of simulation and
the frequency of output may eventually lead to freeing up of
disk space. At some point when the remaining free disk space
increases sufficiently, the algorithm follows a reverse process
using the thresholds in highdiskspace-thresholdset, whereby
it increases the simulation rate by increasing the number of
processors for execution first. If the maximum simulation rate
is achieved and the remaining free disk space is sufficient,
then the algorithm decreases the output interval. Thus this
algorithm gives more preference to maximizing the simulation
rate than to maximizing the output frequency.

The psuedocode for this is shown in Algorithm 1. This
algorithm is invoked periodically every 1.5 hours. In the
pseudocode, OI refers to the output interval. oldOI and
newOI refer to the old and new values of output interval.
minOI and maxOI refer to the minimum and maximum
values of output interval. mintime and maxtime refer to
the minimum and maximum values of execution time per
time step of simulation, and correspond to execution with
maximum number of processors and minimum simulation rate
respectively. The algorithm calculates the new execution time
newtime for simulation from the previous value oldtime in
lines 7 and 11 and determines the corresponding number of
processors using the benchmark profiling runs with WRF.

B. Optimization Method

The primary objective of a traditional scheduling problem
for parallel simulations is to maximize the rate of simulations.
The rate of simulations is typically high for large number of
processors and large I/O bandwidth. However faster execution
time and larger I/O bandwidth can lead to faster consumption

Input: oldOI, minOI, maxOI, oldtime, mintime, maxtime

D ← Remaining free disk space;1
if (D ≤ 10%) then set CRITICAL flag;2
else if (D ≤ 50%) then3

if (D ≥ 25%) then4
newOI ← oldOI +

(50−D)
25

· (maxOI − oldOI);5
else if (oldOI = maxOI) then6

newtime← oldtime +
(25−D)

15
· (maxtime− oldtime);7

end8
else if (D ≥ 60%) then9

if (oldtime > mintime) then10
newtime← oldtime− (D−60)

40
· (oldtime−mintime);11

else if (oldOI > minOI) then12
newOI ← oldOI − (D−60)

40
· (oldOI −minOI);13

end14

Output: newOI and corresponding number of processors for
newtime to application configuration file

Algorithm 1: Greedy-Threshold Algorithm

of storage space by the simulations. In addition, if the network
bandwidth from the simulation to the visualization end is
low, then the disk can overflow soon. It is also interesting
to note that the fastest rate of simulation can be achieved
and the disk space limitation or problem can be avoided
in spite of high I/O bandwidth, slow network and small
execution time, if the output frequency is 0, i.e. output is not
generated by the simulations at all. But for critical climate
applications, it is vital to output as frequently as possible
in order to perform continuous visualization of the output.
However frequent I/O can decrease the simulation rate and
also leads to faster accumulation in the storage. Thus we can
think of our problem as an optimization problem that primarily
attempts to maximize the simulation rate within the constraints
related to continuous visualization, acceptable frequency of
output, I/O bandwidth, disk space and network speed.

We formulate our problem as a linear programming problem
with constraints to obtain the number of processors and the
frequency of output for simulations. Since we want the best
possible throughput of the simulation in spite of the resource
constraints, we express the objective of our optimization
problem as

minimize t

where t is the execution time to solve a time step. The
parameters used in the formulation are listed in Table II.
Among these parameters, the decision variables involved in
the formulation are S, F , T and t. In the table, a frame
is the simulation output of one time step of simulation and
corresponds to the smallest unit of simulation output that can
be visualized. Interval corresponds to some fixed execution
time for the simulations. The following sub-sections describe
the formulation of the constraints.
Time Constraint: For minimum stalling at the visualization
end, it is desirable to transfer frames continuously. Consider
an interval I when T frames are transferred, S frames are
solved and F frames are output. For continuous visualization,

TABLE II: Problem Parameters

t Time to solve one simulation time step
S Number of frames solved in an interval
F Number of frames output in an interval
T Number of frames transferred in an interval
O Size of one frame output in one time step
D Total remaining free disk space
TIO Time to output one time step
b Network bandwidth

the time to produce F frames should be less than the time to
transfer T frames since the next set of frames should be ready
for transfer by the time the transfer of current frames is over.
If the next set of frames are not available, the continuity of the
visualization will be affected and the visualization process will
incur idling. The time to produce a frame corresponding to a
time step includes the time to solve the time step and the time
to write the frame onto the disk. Thus, the time to produce
F frames includes the time to solve S frames and to write
F frames onto the disk. This gives Equation (1) where tts is
the time to solve, tto is the time to output and ttt is the time
to transfer. Expanding Equation(1), we obtain the constraint
specified in Equation (2).

tts + tto ≤ ttt (1)

S · t + F · TIO ≤
O
b
· T (2)

The relation between S and F is determined by the output
frequency for the simulation. For example, if the output
frequency is 1 then S = F , i.e. every frame that is solved
is written to the disk.
Disk Constraint: Assuming that the rate of input to the disk
from the simulation is greater than the rate at which the data is
transferred to the visualization, then the time n in which the
disk will overflow is given by Equation (3) where Rin and
Rout are the rate of input to the disk and rate of output from
the disk respectively. Rin is calculated using the solve time
t, the output data size O and the interval of output (inverse
of frequency expressed in simulated time units) OI , and Rout

is calculated using network bandwidth b. From this we derive
Equation (4).

n ≤ D
(Rin)− (Rout)

(3)

O · F
t · S + TIO · F

− b ≤ D
n

(4)

Linearizing the Constraints: To linearize the non-linear
constraints (2) and (4), we divide both sides of these
equations by S to obtain the constraints specified in Equations
(5) and (6). Here, z and y are substituted for FS and T

S ,
respectively. Depending on the total number of processors,
t also has a lower bound TLB , as specified in constraint (7).
We have specified the upper bound for output frequency to be

25 simulated minutes1 i.e. the interval between visualization
of climate events is maximum of 25 simulated minutes. This
gives a lower bound for z. Since the output frequency OI can
at the minimum be 1 simulated minute, this gives an upper
bound for z. These constraints are specified in (8).

t + z · TIO ≤
O
b
· y (5)

t ≥ O
(Dn + b)

− TIO · z (6)

t ≥ TLB (7)
LB ≤ z ≤ UB (8)

We used GLPK (GNU Linear Programming Kit) [12] to
solve the above linear programming problem and obtain the
values for t, z and y. From the value for t, we determine
the corresponding number of processors using the benchmark
profiling runs with the WRF simulations. From the value for
z, we determine the frequency of output, OI , as follows. It
is clear that OI depends on the ratio between the number of
frames solved by the simulations and the number of frames
output to the disk as explained above. Let ts denote the
integration time step associated with the resolution of a climate
simulation. This is the amount of time simulated or solved
per time step and is constant for a given simulation. OI is
a multiple of ts. A frame is solved after every ts simulated
time and a frame is output to disk after every OI simulated
time. Thus the total time simulated in an interval of execution
time, where S frames are solved and F frames are output to
the disk, is given as

OI · F = ts · S (9)

Substituting for z = F
S and ts in the above equation, the

interval of output, OI , and the corresponding frequency can
be obtained.

This decision algorithm is invoked every 1.5 hours during
the simulation run period. Given the inputs D, TIO, b and O,
this algorithm outputs t and OI to the application configuration
file. The job handler reads the file to look for changes with
the current configuration and accordingly reschedules WRF
with the new configuration. Due to changing disk space, it
might give a different set of outputs, namely the number of
processors and the output interval OI , at different points of
time during the simulation run-period.

Although the threshold values used in the algorithms are
specific to our experiment settings and WRF simulations, the
general principles of our threshold-based greedy heuristic and
optimization-based strategy are generic and applicable to other
applications.

V. EXPERIMENTS AND RESULTS

In this section we present our experimental setup including
the details of the climate application used for simulation and
visualization, the resource configuration used for simultaneous

1Simulated time units denote the time that is simulated and does not
represent the execution time.

simulations and online remote visualization involving net-
works of different bandwidths, and the results.

A. Climate Application: Tracking Cyclone Aila

We have applied our framework for large-scale and long-
range tracking of cyclones that involves high amount of paral-
lel computations with large data sets, subsequent data analysis
and high-resolution visualization for scientific discovery. Vi-
sualization of cyclones is vital for subsequent data analysis
and to help scientists comprehend the huge volume of data
output. Visualization can be helpful in identifying important
aspects of the modeled region. For example, the development
of low pressure or the appearance of high vorticity can be
easily detected.

In our experiments, we used our framework for tracking
a tropical cyclone, Aila, in the Indian region. Aila was the
second tropical cyclone to form in the Northern Indian Ocean
during 2009 [13]. The cyclone was formed on May 23, 2009
about 400 kms south of Kolkata, India and dissipated on May
26, 2009 in the Darjeeling hills. There were 330 fatalities,
8,208 reported missing and about $40.7 million estimated
damage. We simulated Aila upto a finest resolution of 3.33
km using WRF (Weather Research and Forecasting Model)
[9], [10].

The modeled region of forecast is called a domain in WRF.
The WRF simulations involve one parent domain which can
have child domains, called nests. WRF supports nesting to
perform finer level simulations of cyclonic regions of interest.
To track the lowest pressure region or eye of the cyclone
Aila, we employ a finer resolution nest on the region of our
interest inside the parent domain as shown in Figure 3. We
have performed the simulations for an area of approximately
32×106 sq. km. from 60◦E - 120◦E and 10◦S - 40◦N,
comprising of the region of formation and dissipation of Aila
over a period of 2.5 days. The nesting ratio i.e. the ratio of the
resolution of the nest to that of the parent domain, was set to
1:3. The 6-hourly 1-degree FNL analysis GRIB meteorological
input data for our model domain was obtained from CISL
Research Data Archive [14].

Fig. 3: Windspeed visualization in finer resolution nest inside parent
domain

As WRF is a regional model, with each level of refinement,
it needs input data at a finer resolution. Before executing

TABLE III: Resolutions for different Pressure Values
Pressure (hPa) 995 994 992 990 988 986
Resolution (km) 24 21 18 15 12 10

Fig. 4: Visualization of Perturbation Pressure at 18:00 hours on 23rd,
24th and 25th May, 2009

WRF, the WRF Preprocessing System (WPS) is executed to
interpolate the meteorological data onto the domain of interest.
For tracking cyclones, our framework contains mechanisms
for identifying the formation of cyclones in addition to the
functionalities described in the earlier sections. Our framework
forms the nest dynamically based on the lowest pressure
value in the domain and monitors the nest movement in the
parent domain along the eye of the cyclone. Our framework
spawns a nest when the pressure drops below 995 hPa. The
nest is centered at the location of lowest pressure in the
parent domain. We also use a configuration file that specifies
the different resolutions for simulations and visualization for
different pressure gradients or intensity of the cyclone. This
can be specified by the climate scientists who typically use
coarser resolutions for the initial stages of cyclone formation
and finer resolutions when the cyclone intensifies. As and
when the cyclone intensifies i.e. the pressure decreases further,
our framework changes the resolution of the nest multiple
times to obtain a better simulation result from the model. Table
III shows the pressure values used for different resolutions.

WRF outputs data in form of NetCDF [15] files. Each
NetCDF file contains output of a number of simulation time
steps. We have visualized the output using volume rendering,
vector plots employing oriented glyphs, pseudocolor and con-
tour plots of the VisIt [16] visualization tool. We have devel-
oped a plug-in for VisIt to directly read NetCDF output files,
eliminating the cost of post-processing before data analysis.

The track of Aila as produced by simulation can be seen in
Figure 4. It can be observed from the figure that the depression
was formed in the central Bay of Bengal region (around 14◦N)
and traversed north-east upto Darjeeling (27◦N).

B. Resource Configuration

For all our experiments, visualization was performed on
a graphics workstation in Indian Institute of Science (IISc)
with a Intel(R) Pentium(R) 4 CPU 3.40 GHz and an NVIDIA
graphics card GeForce 7800 GTX. We used hardware ac-
celeration feature of VisIt for faster visualization. We ex-
ecuted the simulations on three different sites resulting in
three different remote visualization settings, namely, inter-
department, intra-country and cross-continent visualizations.
In the inter-department configuration, the WRF simulations

were executed on a dual-core AMD Opteron 2218 cluster,
fire, in Indian Institute of Science (IISc). In the intra-country
configuration, the simulations were performed on quad core
Intel Xeon X5460 cluster, gg-blr, in Centre for Development of
Advance Computing (C-DAC), Bangalore, India. The transfer
between simulation and visualization site for this intra-country
configuration was carried out on the National Knowledge Net-
work (NKN) [17] with the maximum bandwidth of 1Gbps. In
the cross-continent configuration, the WRF simulations were
conducted on the dual-core AMD Opteron 265 cluster, moria,
in Innovative Computing Lab of University of Tennessee,
Knoxville, USA. Table IV gives the detailed specifications
of the three resource configurations including the maximum
cores used for simulations, the maximum disk space used by
our adaptive framework for the experiments, and the average
available bandwidth between the simulation and the visualiza-
tion sites for each of the configurations. WRF simulations have
limitations in the number of cores that can be used depending
on the grid size. Specifically, each MPI process should have at
least 6x6 parent domain grid points and 9x9 nest domain grid
points to process. For our simulations, we used a minimum
nest grid size of 100x127 that is appropriate for the region of
interest of cyclone Aila. This imposed the limitation on the
number of cores for simulations.

C. Results

Figure 5(a) shows the simulation rate in the inter-
department configuration. The graph plots the times simulated
with the progress in executions. We find that the optimization
method provides steady and faster rate of simulations. The
optimization approach resulted in about five hours of less
execution time than the greedy-threshold algorithm for the
same total simulated time. The optimization approach, due
to its solution for maximization of simulation rate within the
resource constraints, is able to provide steady-state solution
for the simulation rate. The greedy-threshold algorithm, due
to its reactive behavior, shows inconsistent rates of simulations
throughout the simulation period.

Similar results for the progress of simulation for the intra-
country and cross-continent are shown in Figures 5(b) and 5(c)
respectively. In the cross-continent case, since the bandwidth
was only 60 Kbps, the disk got filled at a faster rate and
hence in the greedy approach, WRF simulation had to be
stalled even before the completion of the simulation time-
period. This is shown by means of dotted lines in the graph
after the wall clock time value of 24 hours. However, using the
optimization approach, WRF simulation was able to complete
without stalling. It is also clear from this result that a non-
adaptive solution would result in stalling of the simulation
much earlier than in the greedy algorithm.

Figure 6(a) shows the rate of disk consumption for the
inter-department configuration. The graph plots the percentage
of available free disk space with progress in simulation. The
greedy-threshold algorithm, due to its emphasis on minimizing
the execution time and maximizing the frequency of disk
output in initial stages, results in high rate of storage space

consumption in the initial stages. The available free disk
space becomes less than 40% within 4 hours of execution
time. The algorithm then tries to take corrective action and
consumes less storage by decreasing the simulation rate and
the frequency of output to the disk. Nevertheless, the greedy
algorithm consumes about 90% of the disk space by the end
of the simulations. The optimization method, due to its steady
state behavior, is able to determine the appropriate simulation
rate and the frequency of disk output considering the different
constraints and arrive at a global solution over a longer period
of time. The efficiency of the method results in about 25% less
consumption of storage space than the greedy algorithm.

The rate of disk consumption for intra-country configuration
is shown in Figure 6(b). In the greedy-threshold heuristic, the
disk space is quickly consumed and the free disk space falls
below 20% because of faster solve time and slower network.
In the optimization approach, the free disk space never drops
below 50% during the entire run of the simulation because of
the consideration of the global solution by this method.

The storage space decreases rapidly for the cross-continent
configuration for the greedy-threshold heuristic because it tries
to maximize the number of frames output without considering
available disk space in the initial stages. Since the network
bandwidth is very low, this approach suffers from disk over-
flow (less than 5%) before completion of simulation as shown
in Figure 6(c). The optimization method is able to complete
simulation with more than 20% of the disk space remaining.
This is because though the disk is filled faster due to slower
network, the optimization method tries to adjust the output
frequency and number of processors from the beginning of
the simulation.

Figures 7(a), 7(b) and 7(c) show the progress of visual-
ization at the visualization site for the three configurations.
On the x-axis, the wall-clock time progression is shown
when different frames are visualized and on the y-axis, the
corresponding simulation time steps represented by the frames
are shown. Any given point in the graphs corresponds to the
time when a simulation frame was visualized. For example, in
Figure 7(a), at time 12:00 hours corresponding to the x-axis,
the frame corresponding to 23rd May, 9:00 hours simulation
time step is visualized in the optimization-based approach.2

It can be seen in the figures that the visualization progress is
much faster for the optimization method whereas the greedy
heuristic approach lags behind in visualizing frames because
it tries to send every time step from the simulation to the
visualization site in the intial stages. It can be seen that even
after 21 hours, the greedy heuristic is able to visualize less
than 10 hours of simulation frames for intra-country and
cross-continent simulations. Since the optimization method
outputs frames depending on the resource constraints, in all
three cases reasonable visualization progress were made. The
optimization method is able to visualize about a day of
simulation progress in inter-department and cross-continent

2The visualization was stopped after simulation time of May 23, and not
upto May 25, to facilitate completion of experiments involving slow networks.

TABLE IV: Simulation and Visualization Configurations

Configuration Simulation Configuration Maximum
Cores for
Simulation

Maximum
Disk Space
Used

Average
Sim-Vis
Bandwidth

inter-department fire: 12x2 dual-core AMD Opteron 2218 based 2.64 GHz
Sun Fire servers, CentOS release 4.3, each with 4 GB RAM,
250 GB Hard Drive, and connected by Gigabit Ethernet

48 182GB 56 Mbps

intra-country gg-blr: HP Intel Xeon Quad Core Processor X5460, 40
nodes, 320 3.16 GHz cores, RHEL 5.1 on Rocks 5.0
operating system, each with 16 GB RAM and 500 GB
SATA based storage, and connected by Infiniband

90 150GB 40 Mbps

cross-continent moria: dual AMD Opteron 265 (Dual Core) 1.8GHz cores,
RHEL 5, each with 4GB RAM and 1 x 80GB SATA Hard
Drive, and connected by Gigabit Ethernet

56 100GB 60 Kbps

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00

Wall clock time

22-May 16:00

23-May 00:00

23-May 08:00

23-May 16:00

24-May 00:00

24-May 08:00

24-May 16:00

25-May 00:00

25-May 08:00

S
im

u
la

ti
o
n
 t

im
e

Optimization Method

Greedy-Threshold

(a) inter-department configuration

00:00
02:36

05:12
07:48

10:24
13:00

15:36
18:12

20:48
23:24

26:00

Wall clock time

22-May 16:00

23-May 00:00

23-May 08:00

23-May 16:00

24-May 00:00

24-May 08:00

24-May 16:00

25-May 00:00

25-May 08:00

S
im

u
la

ti
o
n
 t

im
e

Optimization Method

Greedy-Threshold

(b) intra-country configuration

00:00
02:30

05:00
07:30

10:00
12:30

15:00
17:30

20:00
22:30

25:00

Wall clock time

22-May 18:00

23-May 02:00

23-May 10:00

23-May 18:00

24-May 02:00

24-May 10:00

24-May 18:00

25-May 02:00

S
im

u
la

ti
o
n
 t

im
e

Optimization Method

Greedy-Threshold

(c) cross-continent configuration

Fig. 5: Simulation times with progress in executions for different configurations. The graphs show faster rate of simulation for Optimization-
based approach in all the configurations. Greedy-Threshold (red) and Optimization-based Approach (blue)

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00

Wall clock time

0

20

40

60

80

100

R
e
m

a
in

in
g
 f

re
e
 d

is
k

sp
a
ce

 %

Optimization Method

Greedy-Threshold

(a) inter-department configuration

00:00
02:36

05:12
07:48

10:24
13:00

15:36
18:12

20:48
23:24

26:00

Wall clock time

0

20

40

60

80

100

R
e
m

a
in

in
g
 f

re
e
 d

is
k

sp
a
ce

 %

Optimization Method

Greedy-Threshold

(b) intra-country configuration

00:00
02:24

04:48
07:12

09:36
12:00

14:24
16:48

19:12
21:36

24:00

Wall clock time

0

20

40

60

80

100

R
e
m

a
in

in
g
 f

re
e
 d

is
k

sp
a
ce

 %

Optimization Method

Greedy-Threshold

(c) cross-continent configuration

Fig. 6: Free disk space with progress in executions for different configurations. The graphs show the decrease in available disk space as
simulation progresses in time. Greedy-Threshold (red) and Optimization-based Approach (blue)

configurations. Among the three configurations, the progress is
fastest in the inter-department case because of the availability
of highest bandwidth.

Figures 8(a) and 8(b) show the adaption of the number
of processors and the output interval of the simulations by
the framework based on the application and resource con-
figurations with the progress in execution times for inter-
department and cross-country configurations. In all cases, the
greedy method starts with the maximum number of processors
in order to have the best simulation rate. It also starts with

a lowest output interval of 3 minutes in order to output as
many time steps as possible. However with time, as the free
disk space decreases, the output interval is increased and the
number of processors is decreased as shown in Figure 8(a).
The optimization method adjusts output frequency as and
when needed according to the remaining disk space. Thus
it adapts the frequency of output to the best possible value
for the given resource constraints from the beginning of the
simulations. Since it is able to satisfy the upper bound of
output interval without altering the number of processors, it

00:00
02:24

04:48
07:12

09:36
12:00

14:24
16:48

19:12
21:36

Wall clock time of visualization

22-May 17:00

22-May 20:00

22-May 23:00

23-May 02:00

23-May 05:00

23-May 08:00

23-May 11:00

23-May 14:00

23-May 17:00

S
im

u
la

ti
o
n
 t

im
e

Optimization Method

Greedy-Threshold

(a) inter-department configuration

00:00
02:24

04:48
07:12

09:36
12:00

14:24
16:48

19:12
21:36

24:00

Wall clock time of visualization

22-May 16:00

22-May 19:00

22-May 22:00

23-May 01:00

23-May 04:00

23-May 07:00

23-May 10:00

23-May 13:00

23-May 16:00

S
im

u
la

ti
o
n
 t

im
e

Optimization Method

Greedy-Threshold

(b) intra-country configuration

00:00
03:48

07:36
11:24

15:12
19:00

22:48
26:36

30:24
34:12

38:00

Wall clock time of visualization

22-May 18:00

22-May 21:00

23-May 00:00

23-May 03:00

23-May 06:00

S
im

u
la

ti
o
n
 t

im
e

Optimization Method

Greedy-Threshold

(c) cross-continent configuration

Fig. 7: Progress at the visualization end for different configurations. Greedy-Threshold (red) and Optimization-based Approach (blue)

uses the maximum number of processors since its primary
objective is to minimize the solve time. In the cross-continent
configuration, when the greedy approach cannot take either
of these actions and the disk space is sufficiently low, the
WRF simulations have to stall. Whereas in the optimization
approach, it tries to avoid stalling from the beginning by
considering the various impact factors for smooth simulation
and visualization. We also find that the disk output interval
is almost constant and variation is less for the optimization
method when compared to the greedy-threshold heuristic.
Thus, the optimization method is able to provide a consistent
“quality-of-service” for visualization by the climate scientists,
which is very essential for remote visualization of critical
climate science applications.

VI. CONCLUSIONS AND FUTURE WORK

We have described an adaptive integrated framework for
simulation and visualization of critical climate applications
like cyclones. We show how we are able to simultaneously
visualize the output without having to wait for the whole
simulation to complete. Our framework adapts the simulation
rate and the output interval based on the disk space and
network speed constraints. In the process, the framework also
considers the dynamics of the changing resource configura-
tions. As shown in Section V, a simple and intuitive greedy
approach may lead to low throughput, stalling of simulation
and disk overflow. This shows the importance of considering
network bandwidth, execution time and output frequency for a
smooth online visualization. Our optimization method is able
to provide about 30% higher simulation rate completing the
entire simulations for all network configurations, consumes
about 25-50% lesser storage space completely avoiding the
disk overflow problem and the resulting stalling of simulations,
and provides higher and more consistent rate of visualization
than the greedy approach. Hence we claim that it is very im-
portant to consider the currently available network bandwidth,
and disk space to be able to do online visualization with best
throughput and best temporal resolution.

In future work we would like to extend our framework for
a larger grid and on different configuration settings. We intend
to parallelize the visualization process as well. We also intend

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00

Wall clock time

0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f

p
ro

ce
ss

o
rs

0

5

10

15

20

25

30

35

40

O
u
tp

u
t

in
te

rv
a
l
(s

im
u
la

ti
o
n
 m

in
u
te

s)

Optimization Method: Number of Processors

Optimization Method: Output Interval

Greedy-Threshold: Number of Processors

Greedy-Threshold: Output interval

(a) inter-department configuration

00:00
02:30

05:00
07:30

10:00
12:30

15:00
17:30

20:00
22:30

25:00

Wall clock time

0

10

20

30

40

50

60

70

80

N
u
m

b
e
r

o
f

p
ro

ce
ss

o
rs

0

5

10

15

20

25

30

35

40

O
u
tp

u
t

in
te

rv
a
l
(s

im
u
la

ti
o
n
 m

in
u
te

s)

Optimization Method: Number of Processors

Optimization Method: Output Interval

Greedy-Threshold: Number of Processors

Greedy-Threshold: Output interval

(b) cross-continent configuration

Fig. 8: Adaptivity of the framework showing variation in number of
processors (Left y-axis) and output interval (Right y-axis)

to investigate interactive simulation/visualization, so that user
input based on the visualization can steer the simulation.

VII. ACKNOWLEDGEMENTS

We would like to thank Prof. Ravi S. Nanjundiah, CAOS,
IISc for his help regarding climate simulations. We would
also like to thank C-DAC, Bangalore, India and Innovative
Computing Lab, University of Tennessee, Knoxville, USA, for
providing their resources for simulations.

REFERENCES

[1] J. Michalakes, J. Hacker, R. Loft, M. O. McCracken, A. Snavely, N. J.
Wright, T. E. Spelce, B. C. Gorda, and R. Walkup, “WRF Nature

Run,” in SC ’07: Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, 2007, p. 59.

[2] H. Yu, R. K. Sahoo, C. Howson, G. Almsi, J. G. Castaos, M. Gupta,
J. E. Moreira, and J. J. Parker, “High Performance File I/O for The
Blue Gene/L Supercomputer,” in Proceedings of the 12th International
Symposium on High-Performance Computer Architecture, 2006.

[3] S. Lang, P. H. Carns, R. Latham, R. B. Ross, K. Harms, and W. E.
Allcock, “I/O performance challenges at leadership scale.” in SC ’09:
Proceedings of the 2009 ACM/IEEE conference on Supercomputing,
2009.

[4] H. Yu, K.-L. Ma, and J. Welling, “A Parallel Visualization Pipeline for
Terascale Earthquake Simulations,” in SC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing, 2004, p. 49.

[5] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma,
and D. O’Hallaron, “From Mesh Generation to Scientific Visualization:
an End-to-End Approach to Parallel Supercomputing,” in SC ’06:
Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
2006, p. 91.

[6] K.-L. Ma, C. Wang, H. Yu, and A. Tikhonova, “In Situ Processing and
Visualization for Ultrascale Simulations,” Journal of Physics (Proceed-
ings of SciDAC 2007 Conference), vol. 78, 2007.

[7] K.-L. Ma, “In Situ Visualization at Extreme Scale: Challenges and
Opportunities,” IEEE Computer Graphics and Applications, vol. 29,
no. 6, pp. 14–19, 2009.

[8] D. Ellsworth, B. Green, C. Henze, P. Moran, and T. Sandstrom, “Concur-
rent Visualization in a Production Supercomputing Environment,” IEEE
Transactions on Visualization and Computer Graphics, vol. 12, no. 5,
pp. 997–1004, 2006.

[9] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Ska-
marock, and W. Wang, “The Weather Reseach and Forecast Model:
Software Architecture and Performance,” in In proceedings of the 11th
ECMWF Workshop on the Use of High Performance Computing In
Meteorology, October 2004.

[10] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker,
W. Wang, and J. G. Powers, “A Description of the Advanced Research
WRF version 2,” NCAR Technical Note TN-468, 2005.

[11] “LABFit Curve Fitting Software,” http://www.angelfire.com/rnb/labfit.
[12] “GNU Linear Programming Kit,” http://www.gnu.org/software/glpk.
[13] “Cyclone Aila,” http://en.wikipedia.org/wiki/Cyclone Aila.
[14] “UCAR CISL Research Data Archive,” http://dss.ucar.edu.
[15] R. Rew and G. Davis, “The Unidata netCDF: Software for Scientific

Data Access,” in 6th International Conference on Interactive Information
and Processing Systems for Meteorology, Oceanography, and Hydrology,
California, American Meteorology Society, 1990.

[16] “VisIt Visualization Tool,” http://www.llnl.gov/visit.
[17] “National Knowledge Network, Department of Information

Technology, Government of India,” http://www.mit.gov.in/content/
national-knowledge-network.

