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Abstract

Extremum graphs have become increasingly important in the field of topology, as they allow for

dimensionality reduction and exploratory analysis of high-dimensional scalar fields, while also

preserving local geometric structure. As the interesting features of a scalar field are mostly asso-

ciated with its extrema, this makes extremum graphs an appealing choice for high-dimensional

scalar field analysis. But various works define their own proper but different notions of ex-

tremum graphs and how to compute them. This causes a lot of research time to be spent on

designing and implementing common boilerplate code to compute extremum graphs for their

studies. It also causes difficulties in transferring and comparing results across different studies.

To solve these issues, we have created scalable library to compute extremum graphs utilizing

GPU parallelism.
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Chapter 1

Introduction

This section introduces the various challenges faced by researchers in computing extremum

graphs, followed by the motivation for the project, and the targeted goal.

1.1 Motivation

Topological analysis has become a key tool in all branches of scientific research. The topology of

scalar fields provide great insight into the inner workings of many natural phenomena. There

exist various tools to study the topology of scalar fields such as contour trees, Morse-Smale

complexes and extremum graphs. Each of these abstractions provide different perspectives to

analyze and interact with the same scalar field.

Extremum graphs have become on of the widely used tools in the field of topological analy-

sis. It provides an abstract yet intuitive representation of the underlying scalar field while also

preserving extrema connectivity. This key property of extremum graphs makes it very appeal-

ing tool and lends itself to a variety of applications. For example in feature tracking for cases

where many interesting features of a scalar field are extrema related. Also for time-varying

data where extremum graphs are computed for all time steps, the evolution of these graphs

over time uncovers insights about various key events within the data.

Extremum graphs are usually computed in two ways. One is to directly extract it from

the Morse-Smale complex, which is a super-set of the extremum graph. This method becomes

infeasible for higher dimensions as the extremum graph becomes a sparser subset of the MS

complex, besides the fact that computation of MS complex in higher dimensions by itself is a

highly cumbersome and non-trivial task.
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The other method is to perform a flood fill search to directly compute extremum graphs,

where one scans all iso-surfaces in decreasing order of function value. Creation of new compo-

nents in the iso-surfaces represents the birth of new extrema. Moving to lower valued iso-surfaces

will allow us to track the descending manifold of all existing extrema. The highest function val-

ued point found among the common boundary shared by the descending manifolds of adjacent

extrema correspond to an (n − 1)-saddle. This method is inefficient in higher dimensions due

to the number of data points needed to be tracked at all stages. The work of [7] employs the

use of this method to identify Morse cells.

1.2 Project Goal

For an algorithm which directly compute extremum graphs to be scalable, it must be able to

divide the total computation task evenly among all available processors. This is a non-trivial

task, considering how varied extremum graphs can be depending on the topology of the under-

lying scalar field. Another non-trivial task is to correctly identify gradient paths which span

across multiple partitions of data, in an external memory computation task.

The goal of this project is to directly compute extremum graphs via a path tracing method-

ology. This is an alternate method to the flood-fill approach. In this method, we first extract

the locations of extrema and (n − 1)-saddles directly by testing the upper link topology for

each data point. Then we find the gradient paths from the (n − 1)-saddles by traversing the

appropriate gradient vectors along adjacent regular points. This method has the advantage of

utilizing low memory resources as we never track all data points to obtain the critical points of

interest.
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Chapter 2

Related Work

This chapter discusses about the paper which introduces extremum graphs, existing

works for computing Morse-Smale complexes and applications of extremum graphs.

2.1 Extremum graphs

The notion of extremum graphs was first introduced in the work of Correa et. al. [2]. It

was introduced as a means of visualizing high dimensional data in two dimensions, while not

losing out on the topology and geometric properties of the original data. They also introduce

a serial algorithm to simplify extremum graphs. It works by computing the gradient flow

graph for the scalar field under study, then simultaneously performs persistence simplification

and identification of gradient paths from saddles to extrema. These extremum graphs are

augmented with geometric information such as volume under the descending manifold of its

adjacent extrema. This augmented extremum graphs is termed as topological spines.

2.2 Morse-Smale complex

Work by Shivashankar et al. [5, 6] discuss about parallel computation for MS complex. This

algorithm also works on a similar idea as in [2] i.e. to compute the gradient flow graph to

identify critical points and gradient paths, but shows how to parallelize the inherently serial

problem of identifying gradient paths for a scalar field. They also show how to perform external

memory computations i.e. computing MS complex for large dataset which do not completely

fit in memory. This is very much required as the sizes of scientific datasets keeps getting larger

with the advent of increasingly sophisticated imaging devices.

3



2.3 Applications of extremum graphs

Various applications of extremum graphs have been described in literature since their inception.

We briefly describe about two works, [7, 4].

Firstly, the work by Thomas el. al. [7] involves using augmented extremum graphs to detect

symmetry in scalar fields. It utilizes the Morse decomposition of a scalar field into descend-

ing manifolds of extrema, which partitions the scalar field into Morse cells. Then a subset of

these cells are selected based on some parameters. These seeds are joined with their adjacent

qualifying seeds to form super-seeds. These super-seeds are again joined with their adjacent

seeds until no cells are left out. To extend existing seeds, all the adjacent cells of all seeds are

compared against each other using a similarity measure. The best matching cells are accepted

as the extension of their adjacent seeds. These disjoint collections of cells are the symmetric

regions that one would aim to find in the scalar field.

Another work utilizing extremum graphs is by Narayanan et. al. [4]. It shows how extremum

graphs can be used to study time-varying data. It first describes a distance metric between

two extremum graphs. This metric is then used to compute the distances between extremum

graphs computed for each time step. As extremum graphs capture extrema-related features,

the distance metric thus captures the evolution of various extrema-related events in the time

varying data. Therefore, one can utilize this information to identify key events and features in

the data.
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Chapter 3

Problem Description

This chapter states the problem definition and an overview regarding ways to solve the

problem. It also presents a summary of the major contributions.

3.1 Problem Statement

To efficiently compute the extremum graph for piece-wise linear scalar functions, utilizing GPU

parallelism and also allow for external memory computations for scalar functions with large

domain sizes.

The key challenge occurs in compiling partial gradient paths across multiple partitions of the

scalar field for an external memory computation case. Partial gradient paths must be correctly

identified and concatenated accordingly to finally report the set of gradient paths as if there

was no partitioning of the scalar field domain during the computation.

3.2 Solution Overview

Computation of extremum graphs is done for piece-wise linear scalar functions i.e. on datasets

where the underlying scalar field is sampled across a uniform grid of points. The computation

pipeline is divided into two stages,

1. Point Classification

2. Gradient Path Tracing

In the first step of point classification, we perform two tasks for each grid point in the

dataset. The first task is classifying a grid point as regular/critical. It is done by testing the

topology of the point’s neighborhood in the grid. If a point is classified as regular, the second
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task is to compute the gradient vector for it. If a point is classified as critical, the second task

is to identify its Morse-index. For a scalar field f : Rn → R, we are interested in identifying

critical points of Morse-index n and (n− 1) which are also called maxima and (n− 1)-saddles

respectively. Here we utilize GPU parallelism where each grid point is processed by a separate

logical GPU thread. Specifically speaking, we perform this on CUDA-enabled NVidia GPUs

where a single kernel invocation (In simple terms, a kernel is a GPU task sent from the CPU)

is used to spawn enough logical threads on the GPU so that there is a one-to-one mapping be-

tween grid points and the GPU threads. The GPU is responsible for the scheduling of threads

and we obtain computation results of step 1 after the kernel terminates.

The second step involves tracing gradient paths from (n − 1)-saddles towards maxima.

We first identify representative points among each of the upper link connected components of

(n−1)-saddles. These representative points are simply the highest function valued point among

all the points of the connected component it belongs to. For each such representative point of

a (n − 1)-saddle, we iteratively traverse gradient vectors until we encounter a maximum. The

sequence of points discovered by this iterative gradient vector traversal form the gradient paths

connecting a (n− 1)-saddle to one-or-more maxima.

For external memory computations where the dataset does not fit into GPU memory.

datasets are divided into contiguous blocks. These blocks are created by slicing the dataset

across the last dimension in its domain. This results in a linear arrangement of blocks where

each block is adjacent to two other blocks, except for the first and last which are adjacent to

exactly one block. We perform steps 1 and 2 as described above for each block independently.

The blocks are processed in increasing order of last dimension value, the same dimension across

which the dataset was sliced on. This greatly simplifies gradient path tracing as the number of

boundaries between blocks is linear to the number of blocks themselves. Thus the number of

boundary crossing required for path tracing is expected to be less when compared to a scenario

where the dataset is sliced across all n dimensions of its domain.

3.3 Major Contributions

The novel contributions of our work can can be summarized as:

• Identifying critical points by testing upper link topology on GPU, thus leveraging strong

scaling provided by them.

• External memory computation of extremum graphs.
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Chapter 4

Background and Definitions

Given a scalar field f : Rn → R, we say a point x ∈ Rn is critical iff ∇f(x) = 0 and regular

otherwise.

∇f = (
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn
)

The set of critical points of f , can be further partitioned based on their Morse-index. The

Morse-index of a critical point x, is the number of negative eigenvalues present in the Hessian

matrix Hf evaluated at x, where

Hf =


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n


n×n

Thus, critical points can have an index from {0, 1, . . . , n}. Critical points with index 0 are

the minima of f and critical points with index n are the maxima of f . Other critical points

with index k are called k-saddles. Hence, f has (n− 1) types of saddles.

Another class of scalar functions exist: Piece-wise Linear functions. The domain for such

functions is restricted to vertices on a uniform n-dimensional grid. Thus, we do not have the

complete definition of the scalar field and must perform interpolation across a tessellated mesh

to retrieve the function value at any point not on the grid. Scientific datasets are examples of

PL functions and we will shortly discuss how to perform tessellation.
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4.1 Morse-Smale Complex

The Morse-Smale Complex for a scalar field f is a directed graph where the vertex set is the set

of all its critical points and the edge set being gradient paths connecting critical points differing

in index by 1.

At each regular point, we can define a gradient vector as the direction along which increase

in function value is the greatest. A gradient path between two critical points p, q differing in

index by 1, is defined as a sequence of points where for each adjacent pair of points (r, s), s is

the terminal of the gradient vector at v.

As an example for a 2D scalar field, its Morse-Smale complex would consist of minima, 1-

saddles and maxima, with gradient paths connecting maxima and 1-saddles, along with gradient

paths connecting 1-saddles and minima.

Computing Morse-Smale complex for scalar fields with high dimensionality becomes com-

putationally difficult as the number of critical points and gradient paths grow exponentially.

Additionally, these inter-saddle gradient paths cause severe occlusion problems when the goal

is to visualize extrema-related features.

4.2 Extremum Graphs

Extremum graphs are a subset of the Morse-Smale complex. Any scalar field f : Rn → R has

two extremum graphs,

1. Maximal extremum graph: Collection of maxima and (n − 1)-saddles, along with their

connecting gradient paths.

2. Minimal extremum graph: Collection of minima and 1-saddles, along with their connect-

ing gradient paths.

By definition of critical points, maxima of scalar field −f would be the minima of f . Sim-

ilarly (n − 1)-saddles of −f would be the 1-saddles of f , and thus an algorithm to compute

Maxima extremum graphs can be used to compute the Minimal extremum graph. Due to their

characteristics, the collection of both maxima and minima is referred to as extrema in litera-

ture. Thus the name of extremum graphs which refers to both Maximal/Minimal extremum

graphs. For brevity of naming, we shall refer to maxima as extrema, (n− 1)-saddles as saddles

and Maximal extremum graphs as extremum graphs throughout our work.

By definition (discussed shortly), the number of extrema a saddle is connected to is at least

two in any extremum graph, but the number of saddles shared by a pair of adjacent extrema
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is arbitrary. This could lead to a pair of extrema sharing a large number of saddles, which

could lead to occlusion problems in visualization tasks. To rectify this, we define the notion

of a edge-bundled extremum graph. This is a subset of extremum graphs where, for each non-

empty intersection of adjacent saddles for a pair of extrema, exactly one saddle is chosen as a

representative for the entire set and the rest discarded. Our implementation selects the saddle

with highest function value.
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Chapter 5

Computation of Extremum Graphs

In this section, we describe how we compute extremum graphs. All datasets are the result of

sampling a scalar field at points on a uniform grid i.e. piece-wise linear functions. Thus we

must work with the function values at the grid points. The computation can be broken down

into two major steps:

1. Critical Point Identification: In this step, all grid points are classified as critical/regular.

If a point is classified as critical, we also note if it is a maximum or saddle.

2. Gradient Path Tracing: All identified saddles are collected and path tracing begins at

these points. The terminal of each path is a maximum.

5.1 Point Classification

As a consequence of working with scalar fields sampled on a uniform grid, we cannot use

the Hessian Matrix to classify a grid point as critical/regular. Thus we resort to infer this

classification by processing the neighborhood of the point. The neighborhood is also referred

to as Link in literature, as it represents the set of points a given grid point is linked/adjacent to.

Let Dn be the graph representation of the uniform n-dimensional grid, where the vertices

are the grid points and edges are from the point adjacency in the grid. The edge set of Dn,

E(Dn) will be formally defined in section 5.2, and

V (Dn) = { v | v ∈ Z× Z× . . .× Z︸ ︷︷ ︸
n

}

.
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We define the link of a point p as:

Lk(p) = { v | v ∈ V (Dn) ∧ (p, v) ∈ E(Dn) }

Further we define two notions based on the Link, upper link(Lk+) and lower link(Lk−) of

a point p:

Lk+(p) = { v | v ∈ Lk(p) ∧ f(v) ≥ f(p) }

Lk−(p) = { v | v ∈ Lk(p) ∧ f(v) < f(p) }

We also define C(S) as the number of connected components in the sub-graph induced on

the set of grid points S ⊆ V (Dn).

(a) (b) (c) (d) (e)

Figure 5.1: Various classification of a point in a 3D grid.
Each sphere represents the link of the point in a 3D grid at its center. Upper link is

highlighted in pink, lower link in white. Link of a (a) regular point, (b) maximum, (c),
2-saddle, (d) 1-saddle and (e) minimum. Notice the empty upper link for the maximum and 2

connected upper link components for the 2-saddle. Picture credits [3].

Arriving at the problem of point classification, a point p is regular if and only if C(Lk+(p)) =

C(Lk−(p)) = 1. Point p is a maximum iff Lk+(p) = φ. This definition is intuitive, as all points

adjacent to a maximum must be lower in function value compared to the maximum itself. A

similar classification for minima follows where the lower link must be empty.

Classification for saddles requires some insight. For this, we define the descending manifold

for a maximum m as the collection of points, whose gradient paths terminate at m. The

saddles can now be identified as the highest function valued point among the intersection of

descending manifolds for two or more extrema. Intuitively, these are points where their upper

link is not a single connected component, as it represents the intersection of two or more disjoint

collections of points i.e. descending manifolds. Thus, for a grid point p classified as a saddle,

C(Lk+(p)) ≥ 2.

Examples of the link topology for various point classifications in a 3D grid are shown in

Figure 5.1. Note that in a 3D grid, orientation and position of the upper link components is

11



dictated by the function value of its constituent points. Thus the upper link components may

not be at the top of the link’s diagram.

5.2 Grid Tessellation

For an n-dimensional uniform grid, the size of the neighborhood of a point is at most 2n (Exactly

2n for points not on the boundary of the grid). Now consider the number of points contained

in all the n-hypercubes in which the same point lies in. The total is 3n−1 by a simple counting

argument. We can make a trivial observation that, the size of the neighbourhood of a point

becomes increasingly sparse for larger values of n. This makes point classification based on its

neighborhood inaccurate for higher dimensional grids.

Thus we resort to a standard method of tessellating the uniform grid into irregular n-

simplices. Here a simplex (simplices, plural) is the generalization of tetrahedron in 3D to

higher dimensions. It represents the simplest polytope which can be created in a specified di-

mension. Thus, a point is a 0-simplex, a line segment is a 1-simplex, a triangle is a 2-simplex,

a tetrahedron is a 3-simplex, and so on.

The tessellation gives rise to additional edges in the uniform grid. Adjacency between any

two grid points in this tessellated grid can be tested using algorithm 1. The algorithm essen-

tially dictates that two distinct points are adjacent if and only if the difference vector between

the two points must entirely constitute of non-negative or non-positive values and magnitude

of non-zero values must be exactly 1.

Algorithm 1: GridPointAdjacency

Input: p, q : Points to test adjacency for

Result: True if p, q are adjacent and False otherwise

U ← { (pi − qi) | i ∈ {1, 2, · · · , n} } pi represents the ith component of vector p

if U = {0, 1} or U = {0,−1} then
return True

end

else
return False

end

12



Using algorithm 1, we can define E(Dn) for a tessellated grid as

E(Dn) = { (u, v) | u, v ∈ V (Dn) ∧ GridPointAdjacency(u, v) }

Thus, size of the Link for a grid point is twice the number of possible difference vectors

which are not zero vectors i.e. 2× (2n − 1) = 2n+1 − 2. Tessellation of a few 2D and 3D grids

is shown in Figure 5.2.

(a) (b) (c)

(d) (e) (f)

Figure 5.2: Grid tessellation in 2D and 3D grids.

Tessellation of (a) 2x2 grid, (b), 3x3 grid, (d) 2x2x2 grid and (e) 3x3x3 grid. Neighborhood

graph (highlighted in blue) of the central point in a (c) 3x3 grid and (f) 3x3x3 grid. Notice

there are 6 and 14 neighbors for the central points in (c) and (f) respectively.

5.3 Point classification for boundary points

In practice, we work with piece-wise linear versions g of any continuous scalar field f where

the domain D′n is a finite sized uniform n-dimensional grid. This is a subset of Dn we defined

before. As we work with a finite sized sub-grid, we define a notion of boundary grid points in

the sub-grid which are adjacent to points not belonging to the sub-grid D′n.

In a tessellated grid, the Link for boundary points is smaller than for non-boundary points.

If upper link topology testing is used for critical point identification for these boundary points,

it is possible to falsely classify an (n − 1)-saddle as a regular point if one of its upper link

could completely lie outside the sub-grid D′n. To remedy this, we define g(x) = ∞, ∀ x ∈
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V (Dn)\V (D′n). Now we can include these exterior grid points in the neighborhood of boundary

points and correctly classify them.

5.4 Gradient Path Tracing

We begin gradient path tracing from the saddles and continue till all paths approach an ex-

tremum. This is done from saddles to extrema and not in the reverse direction of gradient,

since an extremum can be connected to an arbitrary number of saddles. But a saddle has an

outgoing gradient path through each of its upper link component. This follows from the fact

that saddles are the first intersection point among the descending manifolds of two or more

extrema. Thus, the gradient path from the saddle to all these extrema must pass through each

of the upper link components. An example in a 3D grid with 2-saddle to maximum path tracing

is depicted in Figure 5.3.

Figure 5.3: Gradient path tracing in a 3D grid
. A 2-saddle with its link is depicted at the bottom and two gradient paths emerging from each
of its upper link components in pink. A regular point with its link is depicted midway on the
left path and a maximum with its link on the terminal of the right path. Picture credits [3].

5.5 Persistence Simplification

Persistence simplification is the process of canceling adjacent pairs of critical points based on

their persistence value. Here, canceling refers to removing the pair if the criterion is satisfied

and persistence is usually the difference in function value of the point pair. The criterion is

usually a threshold value, where all adjacent critical point pairs are removed if their persistence
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falls below the threshold. This allows one to remove noisy features for e.g. low persistence ex-

trema (small bumps in an overall bigger feature) and enable clearer visualization of important

features without clutter.

In the simplification of extremum graphs, a lot of gradient paths are left back by the standard

persistence simplification algorithm. This occurs, since many adjacent critical point pairs would

usually be canceled in a Morse-Smale complex. But in the extremum graph, there are no (n−2)-

saddles, (n − 3)-saddles, etc. to remove many occluding and unnecessary features connected

to saddles. Thus we use a modified Simplification algorithm presented in the work of [2]. It

allows one to remove long and non-intuitive saddle - extrema gradient paths from the extremum

graph, as many such paths are expected to be a result of non-cancellation due to absence of

other non (n− 1)-saddles.
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Chapter 6

Design and Implementation

Computing extremum graphs for large datasets requires a large amount of parallelism to re-

duce the execution time. Thus we have leveraged the CUDA architecture of NVidia GPUs to

achieve massive parallelism in our library. CUDA allows a subset of the standard C++ code

to be compiled as GPU code. This allows integration into existing C++ code, while enjoying

the same features and guarantees the language standards provides.

We assume the required data structures will fit in main memory along with the dataset

itself. To support external memory computation i.e. for datasets which do not fit in the GPU

memory, we perform division of the dataset into contiguous blocks. For each block we perform

point classification and then gradient path tracing. All results are collated after the final block

is processed.

6.1 Simulation of Simplicity

Processing flat regions in a dataset, i.e. a subset of grid points forming a single connected

component whose function value is the same, must be done carefully. Consider the following

scenario where these points are classified.

By definition of Lk+(·), all points in this flat region will be marked as an extrema. This

should never happen as two extrema can never be immediately adjacent to each other. There

must always exist a saddle in-between the intersection of adjacent extrema’s descending mani-

folds. To resolve this dilemma, we resort to using an overloaded point comparison operator as

shown in algorithm 2. Essentially, the tie breaking on comparison of a pair of points with equal

function value is done by comparison on the points indices within the dataset grid. With the
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use of the overloaded point comparison, exactly one point in a flat region will be identified as

an extrema.

Algorithm 2: SoSPointCompare

Input: f : Dataset, p, q : Points to compare

f : V (Dn)→ R, p, q ∈ V (Dn)

Result: Overloaded result for p < q

if f(p) = f(q) then
return index(p) < index(q)

end

else
return f(p) < f(q)

end

index (·) is a grid point to numeric index bijective map i.e. index : V (Dn) → [0, N) ∩ Z,

where N = |V (Dn)| is the number of points in the dataset.

6.2 Point Classification

For the first step, a CUDA thread is spawned for each point of the dataset. Due to the underly-

ing hardware design of CUDA, threads do not execute asynchronously as conventional threads

do on a general purpose CPU. Threads execute in groups of 32, in a lockstep manner and hence

if the execution paths across all threads is nearly identical, execution time for the group of

32 threads will be same as a single thread’s execution time. Essentially granting a speedup of

nearly 32 for the work done by the thread group. On the contrary, a delay/hazard within a

single thread of a group will halt execution of the entire group.

Thus to find the connected components of the upper link, a conventional Breadth First

Search traversal algorithm is inefficient in practice as it creates significant divergence in the ex-

ecution paths of threads within a same group. We resort to using a Union-Find based approach

to find connected components.

Additionally as an optimization step, each point also computes its highest function valued

neighbor. This step creates negligible execution divergence, as a majority of points have the

same neighborhood size of 2n+1 − 2 (boundary points will have a smaller neighborhood size).

This simplifies gradient path tracing as described in the next section. Overview of the algorithm
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executed in CUDA is shown in algorithm 3.

As the code is written in C++, our library also allows machines without GPUs supporting

CUDA architecture to perform the point classification step on the CPU. This allows extremum

graph computation on any machine regardless of it being fitted with a GPU.

Algorithm 3: CUDA Kernel Pseudocode

Input: f : Dataset block, p : Point

Result: pclass : Point index by classification, p∗ : Highest function valued neighbour

point

uf data← ConnectedComponentIdentification(f, p) Ref algorithm 4

return PointClassification(f, p, uf data) Ref algorithm 5
.

Algorithm 4: ConnectedComponentIdentification

Input: f : Dataset block, p : Point

Result: uf data : Union find data strcuture, containing connected component

information for the link of p

uf data← Init Union-Find structure.

Part 1: Union-Find Component Identification

for i = 0 to 2n+1 − 2 do
pi ← i’th neighbour of p.

pilower ← pi < p

for j = i+ 1 to 2n+1 − 2 do
pj ← j’th neighbour of p.

pjlower ← pj < p

if GridPointAdjacency(pi, pj) ∧ (pilower = pjlower) then
pi, pj are adjacent and both belong to the same upper or lower link component

Union(uf data, i, j)

end

end

end
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Algorithm 5: PointClassification

Input: f : Dataset block, p : Point, uf data : Union find data structure containing

information on connected components of the link of p.

Result: pclass : Point index by classification, p∗ : Highest function valued neighbour

point

ucount← 0 Number of upper link connected components

p∗ ← p Highest function valued neighbor i.e. gradient vector terminal

pclass← −1 Assume regular pt index is (-1)

Part 2: Count components by checking set representatives

for i = 0 to 2n+1 − 2 do

if i = Find(uf data, i) then

if (p < pi) then
ucount + = 1

if p∗ < pi then
p∗ ← pi Update gradient vector terminal

end

end

end

end

Part 3: Point classification

if ucount = 0 then
pclass← n Extrema

end

else if ucount ≥ 2 then
pclass← (n− 1) Saddle

end

return (pclass, p∗)

6.3 Gradient Path Tracing

This step is completed on the CPU and not on the GPU. Again, the reasoning is divergence in

execution of a thread group. Each path traced can be of arbitrary length, hence each thread
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will take varying amounts of time to execute. Path tracing on the CPU was found to be faster

and the reasoning is compounded by the trend of increasing core counts in CPUs.

For each saddle, BFS is performed again on the CPU, while noting highest function valued

points among each upper link components (not across entire neighborhood). For each such

point among the upper links, algorithm 6 is called with itself as the starting point for the gra-

dient path. phi arr is constructed from the output of point classification step.

Parallelism is achieved using the C++11 thread library. The collection of saddles are equally

divided among all threads. The same is done with the collection of pending path tracings in

external memory computation runs. As a majority of (n−1)-saddle are not multi-saddles, their

upper link has exactly two connected components. Thus the number of paths traced by all the

threads is roughly equal to one another.

Algorithm 6: SingleGradientPathTracing

Input: p : Starting point,

phi arr : Array of gradient vectors p∗ from algorithm 3,

D′n : Sub-grid of the block being processed

Result: path vector : Gradient path points

path vector ← φ

partial termination← False

q ← p

while true do

if q 6∈ V (D′n) then
partial termination← True

break Path tracing leaves current block. Save this for future processing

end

path vector ← path vector ‖ q Append

if phi arr[index(q)] = q then
break Gradient vectors at extrema point to themselves.

end

q ← phi arr[index(q)]

end

return (path vector, partial termination)
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For internal memory computations, D′n = Dn as computation happens over the entire

dataset as a single block.

6.4 External Memory Algorithm

To enable division of datasets into sizable blocks which fit in GPU memory, we resort to slicing

the dataset across its last dimension. For eg, a 3D dataset would be sliced along its Z-axis. A

visual example of this for a 3D volume is shown in Figure 6.1. This enables two benefits,

• Individual blocks are contiguous in the dataset.

• Trivial indexing of points within a block w.r.t. to the entire grid.

Figure 6.1: External memory computation: Block division of a 3D dataset.
Example of block division of a cuboid shaped 3D dataset into 3 blocks. Notice block 1 and 2

are of same size, while block 3 is smaller.

The expected size of each block is based on a linear regression model derived from statistics

of experiments on datasets which fit in GPU memory. The model describes a linear relationship

between the number of points in the dataset vs the amount of GPU memory used.

But for points on the boundary of a block but not on the boundary within the entire

dataset, point classification maybe wrong due to their missing neighborhood. To solve this

issue, point classification occurs for points not on a block’s boundary, unless they lie on the

dataset’s boundary. These two different n-rectangles for a block are referred to as bounding and
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compute rectangles respectively in the library implementation i.e. bounding rectangle simply

represents the collection of points in the block and compute rectangle represents the subset of

points for which point classification must happen. For internal memory computations, both

bounding and compute rectangles are the same.
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Chapter 7

Results

Experiments were run on a high end workstation on datasets of varying sizes from 64 x 64 x

64 to 2048 x 2048 x 2612. These datasets were obtained from the Klacansky scivis repository

[1]. Experiments were run on a workstation with a Intel(R) Xeon(R) Gold 6230 @ 2.10GHz,

20 Core/40 Thread CPU, 384GB main memory and a GeForce RTX 2080 Ti GPU with 11GB

GDDR6 ECC memory. Runtime averages were taken on 5 samples after dropping the best and

worst timings out of 7 runs. GPU temperatures were also kept within optimal operating ranges

of < 85oC.

7.1 Internal Memory Computations

All datasets which completely fit in memory were tested on for this experiment. These datasets

did not require division into contiguous blocks, thus the point classification was complete in

a single GPU run. 28 datasets were tested and results for the 7 largest ones are visualized in

Figure 7.1. Details of the plot are show in Table 7.1.

Time taken for the gradient path tracing step is proportional to the number of 2-saddles

identified in the datasets, whereas there is a linear relationship between the time for point

classification to the number of points in the datasets. This is expected as classification for

a point is independent of the process for other points and the number of points as well. To

summarize, all datasets which did fit in GPU memory completed execution under a minute.
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Dataset Size
Computation Time

Point Classification Gradient Path Tracing Total

Magnetic Reconnection 512x512x512 2.12 4.46 9.44

Marmoset Neurons 1024x1024x314 5.37 7.85 18.88

Pawpawsaurus 958x646x1088 11.07 12.21 31.14

Spathorhynchus 1024x1024x750 10.99 6.48 23.58

Kingsnake 1024x1024x795 11.99 8.21 27.10

Chameleon 1024x1024x1080 16.23 7.24 31.11

Beechnut 1024x1024x1546 18.40 23.30 57.92

Table 7.1: Timings for internal memory computation

(All times in seconds)

Figure 7.1: Internal memory computation experiment results

7.2 External Memory Computations

Large datasets which do not fit in GPU memory but fit in main memory are scarce to find, as

the sizes of datasets increases exponentially. Thus the number of datasets available which fit

this criterion are exactly 3. The computation times are depicted in Figure 7.2 and details of
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Dataset Size
Computation Time

Point Classification Gradient Path Tracing Total
Woodbranch 2048x2048x2048 141.78 380.57 837.63
3D Neurons 2048x2048x2384 130.83 650.78 1233.21
Pig Heart 2048x2048x2612 142.85 237.89 574.41

Table 7.2: Timings for external memory computation
(All times in seconds)

Figure 7.2: External memory computation experiment results

the plot are show in Table 7.2.

Time taken by the Point classification step is nearly identical across all datasets as the num-

ber of points in each of them is very close to one another. This also shows that, our CUDA code

is well optimized and does not suffer from divergent execution among thread groups. There

is a significant increase in the gradient path tracing time for 3D Neurons. This is due to an

increased number of path tracings being partially terminated and waiting for the point classi-

fication of the next contiguous block.

Number of maxima and (n − 1)-saddles identified for all datasets from both internal and

external memory algorithms is shown in Figure 7.3.
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Dataset Size Num Extrema + Saddles
Magnetic Reconnection 512x512x512 31195066

Marmoset Neurons 1024x1024x314 56101022
Pawpawsaurus 958x646x1088 43713113

Spathorhynchus 1024x1024x750 47569170
Kingsnake 1024x1024x795 32483997
Chameleon 1024x1024x1080 49325513
Beechnut 1024x1024x1546 159472969

Woodbranch 2048x2048x2048 1520839571
3D Neurons 2048x2048x2384 1913765935
Pig Heart 2048x2048x2612 906730898

Table 7.3: Number of critical points identified for various datasets

Figure 7.3: Strong Scaling results for point classification

7.3 Strong Scaling

Point classification for the same dataset (Zeiss, Size: 680 x 680 x 680) was performed on differ-

ent workstations fitted with distinct NVidia GPUs. The average point classification time was

computed for runs on each workstation.

The ideal performance for each GPU is computed as the number of available CUDA cores

multiplied by its base clock frequency. This gives us a rough estimate to the total number of

instructions executed by the GPU per second. Scaling calculated from experimental observa-

tions nearly matches the ideal performance across all GPUs, but the general downward trend

is observed. This result is depicted in Figure 7.3.
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Chapter 8

Conclusions & Future Work

8.1 Conclusions

A library to directly compute extremum graphs was successfully created. Its main features are

summarized below:

• The library scales well with increasing number of CUDA cores i.e. strong scaling holds.

• Supports external memory computation of datasets too large to fit in GPU memory.

• Dimension generic and supports datasets with dimensionality below 32.

• Exports a fast algorithm which allows for user interactive simplification of extremum

graphs.

8.2 Future Work

Currently, our library supports utilization of exactly one GPU, but our goal is to leverage

multi-GPU setups for point classification. Another possible extension is to support distributed

computation, where multiple workstations work on blocks of the same dataset.
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