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1 PL MORSE FUNCTIONS 

Definition 1.1 (PL Manifold). A topological manifold M is called a PL (piecewise linear) manifold if it is equipped with a covering (Mi)i∈I 
by charts such that all coordinate transition maps between overlapping charts are piecewise linear homeomorphisms between open subsets of 
Euclidean space. 

A triangulation of a manifold M refers to a simplicial complex K such that the geometric realization |K| is homeomorphic to M. Any 
compact PL d-manifold admits a triangulation such that the link of every k-simplex is homeomorphic to a (d − k −1)-sphere. Such a triangu-
lation is called a combinatorial d-manifold. 

Given a triangulation, assigning values to the vertices determines a continuous PL function on M via linear interpolation over each sim-
plex. 

The lower link of a vertex u, with respect to a PL function f , is the subcomplex of the link lk(u) consisting of simplices all of whose 
vertices have function values less than or equal to f (u). That is, 

lk−(u) = {τ ∈ lk(u) | ∀v ∈ τ, f (v) ≤ f (u)}. 

PL Morse functions are piecewise linear analogues of smooth Morse functions on combinatorial manifolds. However, not all PL functions 
are PL Morse. To understand the structure of PL Morse functions, we first introduce a broader class of functions. 

Definition 1.2 (Generic PL Function). Let M be a combinatorial d-manifold. A function f : M → R is called a generic PL function if: 

• f is linear on each simplex of the triangulation; 

• f (v) ̸= f (w) for any two distinct vertices v,w of M. 

Given a generic PL function, one can define critical and regular points. In contrast to the smooth setting, a critical point in the PL setting 
can have a multi-index. In practice, we often encounter functions with multi-saddles for which generic PL functions provide a convenient 
framework. 

We define regularity and criticality using the homology of the lower link of a generic PL function [2]. 

Definition 1.3 (Regular Point). A vertex v with f (v) = a is called homologically regular for f if 

dimF Hi(lk−(v);F) = 0 for all − 1 ≤ i ≤ n − 1, 

for some (equivalently, any) field F. We adopt the convention: 

H−1(lk−(v)) = 

 
0 if lk−(v) ̸= /0, 
F if lk−(v) = /0. 

Definition 1.4 (Critical Point and Multi-Index). A vertex v with f (v) = a is called homologically critical for f with multi-index (k0,k1, . . . ,kn) 
if 

dimF Hi−1(lk−(v);F) = ki for all 0 ≤ i ≤ n. 

A critical point v is said to be non-degenerate if its multi-index satisfies: exactly one ki = 1, and all other k j = 0 for j ̸= i. 

Definition 1.5 (PL Morse Function). A generic PL function is called a PL Morse function if all of its critical points are non-degenerate. 

Figure 1 shows an illustration of the type of critical points in a 2-manifold. The criticality is determined by the homology of the lower 
link. 
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(a) Regular, β = (0,0,0) (b) Minimum, β = (1,0,0) (c) 1-Saddle, β = (0,1,0) (d) Maximum, β = (0,0,1) 

Figure 1: Types of critical points and their homological index β for a combinatorial 2-manifold. The lower star of the vertex (black dot) is 
shown in blue. 

2 ECC AS SUM OF LOCAL ECC CONTRIBUTIONS 

Let M be a combinatorial d–manifold and f : M → R a generic PL function. A PL function on a combinatorial manifold with generic 
property is called “Morse” in Bestvina’s [1] terminology; however, it is important to note that this terminology differs from the definition of a 
PL Morse function in contemporary literature which is more restrictive. For each vertex v ∈M0 and real number s ∈ R define the local Euler 
Characteristic Curve (local-ECC) 

χv(s) := 

   

d 

∑ 
i=0 

(−1)i βi−1 
 
lk−(v) 

 
, if f (v) ≤ s, 

0, otherwise. 

For s ∈ R, define the sub-level set Ms := f −1 
(−∞,s] 

 
. 

The Euler characteristic curve (ECC) [3] is a topological descriptor of the scalar field f . It is defined as the following map 

E : R −→ R, E (s) := χ 
 
Ms 

 
. 

Theorem 2.1. Let M be a combinatorial d–manifold and f : M → R a generic PL function whose image lies in a compact interval J ⊂ R. 
Then, for every s ∈ R, 

E (s) = ∑ 
v∈M0 

χv(s). 

Proof. Label the vertices of M by v1, . . . ,vN such that f (v1) < f (v2) < · · ·< f (vN). 

Let ti = f (vi). Given s ∈ J, let R := max{ i | ti < s }. Choose numbers s0,s1, . . . ,sR ∈ R satisfying 

si−1 < ti < si , (si−1,si) ∩ f (M0) = {ti} ( for 1 ≤ i < R) and sR := s ≥ tR. 

For 1 ≤ i ≤ R define 
Ai := f −1(si−1), Ji := [si−1,si], Bi := f −1(Ji). 

(Notice A0 = ∅ and BR = Ms.) 
By Proposition 2.7 of [1], there is a homotopy equivalence rel Ai, 

(Bi,Ai) ≃ (Ai ∪Ci,Ai), 

where Ci is the cone on lk− vi (with cone point vi and base contained in Ai). 

We will denote cone of X by Cone(X) and suspension of X by ΣX . For each k ∈ N0, 

Hk 
 
Ai ∪Ci, Ai 

 ∼= Hk 
 
(Ai ∪Ci)/Ai 

 
(excision for a good pair) 

∼ = Hk 
 
Σ lk−(vi) 

 
since Cone(X)/X ∼= ΣX 

∼ = Hk−1 
 
lk−(vi) 

 
because Hk(ΣX) ∼= Hk−1(X). 

Therefore, 

Hk(Bi,Ai) ∼ = Hk−1 
 
lk−(vi) 

 
for all k ≥ 0, 

so that 

χ(Bi,Ai) = 
d 

∑ 
k=0 

(−1) k βk−1 
 
lk−(vi) 

 
= χvi (ti). 



For each CW pair (X ,A), the Euler characteristic is additive: χ(X) = χ(A) + χ(X ,A). 

Therefore, by expressing χ(Ms) as a sum of the relative Euler characteristics χ(Bi,Ai), we obtain 

E (s) = χ(Ms) = 
R 

∑ 
i=1 

χ(Bi,Ai) = 
R 

∑ 
i=1 

χvi (ti) = ∑ 
v∈M0 

χv(s). 

3 COMPUTING THE CERF DIAGRAM 

Algorithm 1 computes the Cerf diagram of a PL time-varying scalar field defined on a simplicial complex K. The time-varying scalar field 
ft is available as a sample at T time steps and the function value at a vertex is specified at each time step, { ft (v)}, t ∈ {0, . . . ,T −1},v ∈ V . 
For any t − 1 < t ′ < t, ft ′(v) is assumed to be linearly interpolated between ft−1(v) and ft (v), resulting in a time-varying scalar field over 
a continuous time interval where the function value at each vertex is a PL function of time. The vertex curves in the vertex diagram are 
therefore PL curves, and their crossings can be computed efficiently. Further, since criticality is determined by the lower link, we only need 
to examine crossings between pairs of vertices that lie in the link of each other. We assume that each ft is generic for t ∈ {0, . . . ,T −1}. We 
further assume that the family { ft } is generic. For a positive integer m, [m] denotes the set {0, . . . ,m}. 

Algorithm 1: Compute Cerf Diagram 

Input : K, T (#timesteps), { ft (v)}, t ∈ [T −1],v ∈V 
Output: Set of line segments C in the Cerf diagram of { ft } 

1 Procedure compute-cerf-diagram(K,{ ft }) 
2 Compute Sv ←{((t, ft (v)),(t + 1, ft+1(v))) | t ∈ [T −2],∀v ∈V } // Sv stores the graph of v as a collection of 

line segments represented by their end points. 

3 Compute all intersections between Su,Sv, where u,v are in the link of each other. Let 
Iv ←{(t,u,v, ft (v)) | k < t < k + 1,k ∈ [T −2], ft (u) = ft (v), fk(u) > fk+1(v),u ∈ lk(v)} // Iv records all 
instances when a vertex u in the link of v crosses over and enters the lower link of v. 

4 I = ∪v∈V Iv ∪{(t,v, fk(v)) | t ∈ [T −1]} // Tuples of the form (t,v, fk(v)) are required as the graph of v 
changes at time steps t ∈ [T −1] 

5 Sort I with respect to t 
6 lk(0)−(v) ←{u ∈V (lk(v)), f0(u) < f0(v)} // Tracks vertices in lk−(v) 

7 for (t,u,v, ft (v)) ∈I , t /∈ [T −1] do 
8 lk(0)−(v) ← lk(0)−(v) ∪{u} // u enters lk−(v) 
9 lk(0)−(u) ← lk(0)−(u)\{v} // v exits lk−(u) 

10 Update lk−(v), lk−(u) 
11 for z ∈ {u,v} do 
12 if H∗(lk−(z)) ̸= 0 and next tuple in I containing z occurs at t ′ then 
13 add (t, ft (z), t ′ , ft ′ (z),z,β (z)) to C 

We note that the algorithm does not require the time-varying family to be PL Morse, since the Cerf diagram records the entire homological 
index of each critical vertex, thereby also taking into account degenerate critical points. 

We assume that the size of the link of a vertex is upper bounded by l. Between two successive time steps, the number of intersections 
encountered while processing a vertex is at most O(l). Hence, all intersections are identified in O(nl) time. Each intersection triggers a 
computation of homology of the lower link, which requires O(lω ) time. Here, ω is the exponent used to express the time complexity of 
matrix multiplication. So, the total runtime is O(T nlω+1), where T is the number of time steps. 

4 TV-ECC: STABILITY AND COMPUTATION 

For generic PL functions f and g, we define 

∆({ f },{g}) := 
 

R 

 E f (s) −Eg(s) 
 ds. 

Theorem 4.1. For generic PL functions, ∆ is stable with respect to the L∞ norm. 

Proof. Let f ,g be two generic PL functions on K. Consider the one–parameter family 

F : K × [0,1] −→ R, F(x, t) = (1 − t) f (x) + t g(x). 

Assume F is generic; otherwise perturb it arbitrarily slightly so that it is. Let 0 < t1 < · · · < tm < 1 be the instants at which F fails to be 
generic, i.e. some pair of vertices share the same function value. Fix one such instant tk for which F(v, tk) = F(w, tk). 



Continuity of EFt at tk. Take t < tk < t ′ sufficiently close to tk. Write 

EFt = ∑ 
x∈V (K) 

1{Ft (x)≤s} χx(t). 

Between t and t ′ the summands χx remain unchanged for x /∈ {v,w}, hence 

EFt − EF t ′ = ∑ 
x/∈{v,w} 

 
1{Ft (x)≤s} −1{Ft ′ (x)≤s} 

 
χx(t) + 

 
1{Ft (v)≤s}χv(t) + 1{Ft (w)≤s}χw(t) 

 
− 
 
1{Ft ′ (v)≤s}χv(t ′ ) + 1{F t ′ (w)≤s}χw(t ′ ) 

 
. 

Let 
a = lim 

|t−t ′ |→0 
Ft (v) = Ft (w) = Ft ′ (v) = Ft ′ (w). 

Using Theorem 3.4 of the main paper, it follows that EFt − EFt ′ −→ 0 as t → t ′ . Thus EFt extends continuously to [0, 1]. 

Assume (without loss of generality) that f (v) > g(v). Then  1{Fti+1 (x)≤s}χv(ti+1) − 1{Fti (x)≤s}χv(ti) 
  ≤ 1{Fti+1 (x)≤s<Fti (x)} l, 

where l is an upper bound on the number of simplices in the link of a vertex. 
Therefore 

|E f − Eg| ≤ 
m

∑ 
i=0 

 EFti+1 
− EFti 

  ≤ ∑ 
x 

f (x)>g(x) 

1{g(x)≤s< f (x)} l + ∑ 
x 

g(x)> f (x) 

1{ f (x)≤s<g(x)} l. 

Hence, under the L1 norm, 
|E f − Eg| ≤ n l ∥ f − g∥∞. 

As a consequence we obtain the following stability result for the following distance measure between time–varying scalar fields. 

∆ 
 
{ ft },{gt } 

 
:= 

 1 

0 

 

R 

 E ft (s) − Egt (s) 
 ds dt. 

Theorem 4.2. Let { ft }, {gt } be two generic PL families on a complex K with n vertices and with upper bound l on the size of the link of each 
vertex. Then 

∆ 
 
{ ft },{gt } 

 
≤ nl 

 1 

0 
∥ ft − gt ∥∞ dt. 

Computation of TV-ECC. For two generic PL functions f , g, ∆( f ,g) = 
 
R 

E f (s) − Eg(s) 
ds can be computed exactly for E f ,Eg, and 

therefore |E f − Eg|, are piecewise constant functions. If c is an upper bound on the number of critical points of f ,g then ∆( f ,g) can be 
computed in O(c) time. For two generic families { ft }, {gt }, t ∈ I the outer integral of ∆({ ft },{gt }) is approximated using Monte-Carlo 
integration in O(mc) time, where m is the number of samples taken. 
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