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Abstract

Molecular Dynamics simulations are indispensable tools for comprehending the dynamic

behavior of biomolecules, yet extracting meaningful molecular pathways from these simu-

lations remains challenging due to the vast amount of high dimensional data. In this work,

we present Molecular Kinetics via Topology (MoKiTo), a novel approach that combines

the ISOKANN algorithm to determine the membership function of a molecular system

with a topological analysis tool inspired by the Mapper algorithm. Our strategy efficiently

identifies and characterizes distinct molecular pathways, enabling the detection and visu-

alization of critical conformational transitions and rare events. This method offers deeper

insights into molecular mechanisms, facilitating the design of targeted interventions in

drug discovery and protein engineering.
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I. Introduction

The identification of reaction pathways in chemical processes such as protein folding, pro-

tein–ligand binding/unbinding and enzymatic reactions is fundamental to the development of novel

drugs and clinical treatments1–4. However, the long time scales of these processes, stemming from

the ruggedness of the underlying energy landscapes, make it challenging to resolve these pathways

via long Molecular Dynamics (MD) simulations. A widely adopted approach, which relies on the

sampling of short MD simulations, is the construction of a Markov State Model (MSM)5–8, from

which one can extract pathways linking the states of an initial macro-state to those of a target

macro-state, by applying tools such as Transition Path Theory (TPT)9–12 or MSMPathfinder13.

MSM-based methods often reveal a large number of transition pathways, offering detailed

mechanistic insight14. However, these pathways can be difficult to visualize and interpret without

clustering tools such as Path Lumping15 or Latent-space Path Clustering16, which aim to simplify

the network. Recently, new approaches that take advantage of machine learning techniques have

been developed17–19. Of particular interest is the method proposed in Ref.20, where MD trajecto-

ries connecting the macro-states are generated via enhanced MD simulations21 and clustered using

the Dynamic Time Warping (DTW) algorithm22. This novel approach does not rely on MSMs and

does not require dimensionality reduction, thereby resulting in a significant advancement over the

state-of-the-art.

However, it requires a priori knowledge of the system to configure the enhanced sampling

algorithm that generates the trajectories. Moreover, it relies on trajectory clustering, which is

substantially more complex than clustering static points because it operates in a high-dimensional

space where each object is a time series.

In this article, we propose a new but complementary framework called Molecular Kinetics via

Topology (MoKiTo) for identifying pathway networks using tools derived from Topological Data

Analysis (TDA). In MoKiTo, MD data can be generated either by conventional MD simulations

or by enhanced sampling techniques, and are subsequently ordered and partitioned according to

an ordering parameter χ : Γ → [0,1], where Γ denotes the state space of the molecular system.

The data are then connected through shared data points to form a graph which reveals macro-

states, transition states, and pathways. Additionally, MoKiTo generates free energy profiles of

individual pathways, facilitating their classification and the calculation of free energy differences

and transition rates by Square Root Approximation23–25.
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This method is inspired by the Mapper algorithm26, a TDA tool designed to capture topolog-

ical structure of large datasets by first ordering the data with respect to a parameter χ and then

clustering points within intervals of χ . As an illustrative example, originally presented in Ref.27,

Fig.1 shows a point cloud sampled from a human hand clustered and connected in a graph using an

ordering parameter that maps values from the wrist to the fingertips. Here, the wrist and fingertips

play the role of metastable basins, and the single scalar χ is sufficient to reveal multiple pathways

from a source to distinct targets. This example motivates our use of Mapper for MD data where

multiple metastable basins and intricate networks of pathways are often present.

In the MD setting, χ acts as a reaction coordinate, then it should vary monotonically along

the dominant slow mode of the system described by the second eigenfunction of the Koopman

operator. In two-state scenarios, the committor is the optimal reaction coordinate28–31 and a natural

choice for MoKiTo. Under reversibility and a clear spectral gap, the committor can indeed be

approximated by the leading non-trivial Koopman eigenfunction. Alternatively, in this work we

adopt as ordering parameter the so-called “membership function”, originally introduced in PCCA+
32. The membership function, hereafter the χ-function, is defined as an affine normalization of the

leading non-trivial Koopman eigenfunction to [0,1], thus describing the dominant slow mode of

the system. Unlike the committor, it operates without having to specify source and target sets but

is nevertheless consistent with the definition of natural reaction coordinate33. Aside from technical

details, which are clarified in the theory section, the significance of the χ-function is to describe

the probability that a system’s conformational state belongs or does not belong to a macro-state.

To estimate the χ-function, we use ISOKANN34–36, a data-driven method that trains an artifi-

cial neural network until convergence. The advantage of ISOKANN with respect to other methods

such as PCCA+32,37 is that it does not need to discretize the space neither a low-dimensional fea-

turization of the system. It operates directly on molecular coordinates and yields a smooth function

that generalizes out of sample and can be evaluated on arbitrarily many configurations.

In MoKiTo, the choice of the ordering parameter remains flexible and arbitrary. Other valid op-

tions are the minimum energy path38–40 or the minimum action path41–44. Alternatively, physical

coordinates such as interatomic distances, bond angles, and dihedral angles can also serve as order-

ing parameters in this context. Likewise, the algorithm used to determine the ordering parameter

is not fixed. Depending on the system and objectives, one may employ techniques such as Princi-

pal Component Analysis (PCA)45,46, Time-lagged Independent Component Analysis (TICA)47,48,

Time-lagged Autoencoders (TAEs)49, diffusion maps50, isometric feature mapping (ISOMAP)51,

3



FIG. 1. (A) Data points sampling a “hand” ordered according to a χ-function. (B) Graph realized with the

mapper algorithm.

sketch-map52, or others.

We applied MoKiTo to several molecular systems. Of particular interest is the fourth example,

where we studied the villin headpiece subdomain53–56, revealing both dominant and minor folding

pathways. This detailed mapping of the folding landscape not only highlights the complexity of

protein folding, but also emphasizes the importance of alternative routes that, despite being less

frequent, contribute significantly to the overall dynamics of the protein.

II. Theoretical background

Molecular systems often exhibit a broad separation of time scales, with fast thermal fluctua-

tions that decay much faster than slow conformational rearrangements. A standard approach to

characterizing such systems is the spectral analysis of the Koopman operator Kτ . This operator

propagates bounded observables f : Γ→R, where Γ denotes the configuration space of the system,

over a lag time τ , or equivalently through its infinitesimal generator L :

ft+τ(x) = exp(τL ) ft(x) (1)

= Kτ ft(x) (2)

= E [ ft(xt+τ)|xt = x] , (3)

where the last line expresses the action of the Koopman operator as a conditional expectation over

trajectories. If the dynamics of the molecular system are governed by a confining potential energy
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function V (x) : Γ → R, such that the equilibrium density

π(x) =
1
Z

e−βV (x) , (4)

where Z is the normalizing constant, is well defined, then the operators Kτ and L are self-adjoint

in the weighted space L2(π), and the dynamics satisfies detailed-balance condition. Under these

conditions, the eigenvalues and eigenfunctions of the two operators solve the eigenvalue problems:

L ψi = κiψi (5)

Kτψi = λτ,iψi , (6)

with λτ,i = exp(τκi). The eigenvalues are sorted by decreasing magnitude, so that

κ0 = 0 > κ1 > κ2 ... (7)

λτ,0 = 1 > λτ,1 > λτ,2 ... > 0 , (8)

while the eigenfunctions form an orthonormal basis of L2(π) with respect to the weighted scalar

product ⟨ f ,g⟩π =
∫

f (x)g(x)π(x)dx. The trivial eigenfunction ψ0 is constant, representing the

equilibrium mode, whereas the leading non-trivial eigenfunction ψ1 is monotonic with a single

node. It encodes the dominant slow relaxation process, orthogonal to equilibrium and provides a

natural reaction coordinate for the system, as argued in Ref.57, since it satisfies the following key

properties: (i) it performs dimensionality reduction by mapping each state to a single real value;

(ii) it is uniquely determined by the system’s dynamics, without requiring an a priori definition

of macro-states; and (iii) it provides an optimal description of the dynamics by preserving both

the Markovianity and the dominant implied time scales encoded in the Koopman operator. These

properties make it convenient to introduce the normalized counterpart of ψ1, the so-called mem-

bership function (or χ-function), originally proposed in Ref.32 as solution to the PCCA+ problem.

The χ-function is defined as an affine rescaling of ψ1 to the interval [0,1]:

χ(x) = a0 +a1ψ1(x) , (9)

where 
a0 =

maxx ψ1(x)
maxx ψ1(x)−minx ψ1(x)

,

a1 =− 1
maxx ψ1(x)−minx ψ1(x)

,

(10)
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By construction, the χ-function satisfies the same properties as ψ1, while offering a natural prob-

abilistic interpretation: χ(x) can be seen as the degree of membership of state x to one of the two

metastable macro-states. Although its definition assumes the existence of two metastable states,

its applicability is not restricted to two-state systems. When multiple metastable states are present,

the leading non-trivial eigenfunction ψ1 still encodes the dominant slow relaxation process, distin-

guishing between two macroscopic sets of states separated by the slowest dynamical barrier. As

a result, the χ-function represents an ideal candidate for the ordering parameter in the MoKiTo

framework.

A valid alternative is the committor function q(x), solution of the backward Kolmogorov equa-

tion

Qq = 0 , (11)

with absorbing boundary conditions q(x) = 0 for x ∈ A and q(x) = 1 for x ∈ B, where A and B

denote two disjoint sets representing the macro-states of the system. The committor is acknowl-

edged as the optimal reaction coordinate for a two-state system with clearly defined boundary sets

A and B28–31, as its isosurfaces coincide with the transition surfaces of the dynamics of the system.

Furthermore, the committor admits the spectral representation

q = ∑
i

biψi (12)

≈ b0 +b1ψ1 , (13)

where bi = ⟨q,ψi⟩π are the expansion coefficients of the committor in the eigenfunction basis and

where the approximation holds for a two-state reversible system with a large spectral gap. In this

case, the committor reduces to an affine transformation of the leading non-trivial eigenfunction,

just as the membership function does. Therefore, both χ(x) and q(x) induce the same ordering

of configurations and essentially the same iso-surfaces. However, the χ-function can be obtained

without any prior specification of sets A and B, making it more general than the committor and

the preferred choice for the ordering parameter in MoKiTo. This advantage becomes particularly

relevant in multi-state landscapes, where suitable definitions of A and B may not exist, while the

χ-function remains unambiguously defined.
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Description of the method.

FIG. 2. (A) MoKiTo workflow diagram. Constructing the MKM using a three-stage procedure. (B) In the

case of unknown χ-function, it is necessary first to propagate short trajectories starting from x0,n, then to

apply an arbitrary function fk and estimate the average for each state x0,n, and then to apply the shift-scale

function S as in Eq. 17. (B) ISOKANN scheme. Given the exact χ-function, it is possible to calculate

χ(x0,n) as shown in the left panel. The states thus found are then connected via a function fitted with

an FNN. (C) Clustering and edge assignment scheme. The states representing the state space are first

subdivided into intervals according to the χ-function. Then, the states of the same interval are clustered by

CNN clustering algorithm and edges are found by overlapping the neighborhoods.

III. Methods

MoKiTo is a framework that allows one to extract kinetic information from a set of short MD

trajectories to construct graphs that highlight the dominant pathways between macro-states. This

procedure, as outlined in Fig. 2-(A), can be summarized in three stages:

• The first stage focuses on exploration of the state space and propagation of dynamics by

means of MD simulations.
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• The second stage involves definition of an ordering parameter, the so-called χ-function, by

means of the ISOKANN algorithm.

• The third stage uses a clustering algorithm to cluster the MD data filtered by the χ-function.

Then the edges of the graph are assigned according to the overlap of neighborhoods.

A. State space exploration and dynamics propagation

The objective of this stage is to identify N representative states of the state space Γ, which

can be achieved through different methods depending on the system under investigation. As we

will show in our numerical experiments, for systems characterized by low energy barriers, e.g.,

short chains of amino acids, conventional Molecular Dynamics or Monte Carlo simulations are

the most convenient solution. Instead, for bigger systems such as proteins, we recommend the

use of enhanced techniques, such as Simulated Tempering MD (STMD) simulations58, replica

exchange MD59, umbrella sampling60, or metadynamics61–63. Here, in the fourth example of

chicken villin headpiece protein, we opted for STMD simulations, where the problem of getting

stuck in local minima is overcome by dynamically adjusting the temperature during the simulation.

STMD simulations are advantageous over the other proposed methods because they do not require

a set of collective variables to be chosen a priori. However, states generated by STMD simulations

require further minimization and equilibration to ensure they represent the equilibrium distribution

of the canonical ensemble.

Once a set of N representative states has been built, it is necessary to propagate the dynamics.

For this purpose, we perform M conventional MD simulations of length τ for each representative

state. It is important to emphasize that, at this stage, the simulations must accurately reflect the

true dynamics of the system under investigation. Consequently, enhanced sampling techniques

that modify the potential energy surface or alter the system’s temperature are not applicable. From

now on, we will use the notation X0 to denote the set of N initial states and Xτ to denote the set of

N ×M final states of MD trajectories of length τ .
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B. ISOKANN

To compute the χ-function for a multidimensional system, we use ISOKANN34, an iterative

algorithm inspired by the Von Mises iteration method64, that proceeds according to the update rule

fk+1(x) = SKτ fk(x) , (14)

where S is a linear transformation, Kτ is the Koopman operator and fk(x) is a real-valued function.

The function S, based on the definition of χ-function in Eq. 9, is known as shift-scale function:

SKτ fk(x) =
Kτ fk(x)−min(Kτ fk(x))

max(Kτ fk(x))−min(Kτ fk(x))
. (15)

This transformation prevents the convergence of Kτ fk(x) to the dominant trivial eigenfunction,

ensures that the updated function remains within the interval [0,1], and guides the convergence

toward the desired χ-function:

lim
k→∞

fk+1(x) = χ(x). (16)

Since we do not know an analytical expression of Kτ , nor a matrix representation of it, we

approximate the conditional expectation in Eq. 3 as

fk+1(x0,n) = S
1
M

M

∑
m=1

fk(xτ,n,m|x0 = x0,n) , (17)

where xτ,n,m ∈ Xτ is the final state of the mth trajectory started in x0,n ∈ X0.

In this formulation, we assume an analytical expression for fk(x). However, the application

of Eq. 17 yields only the scalar values fk+1(x0,n) at the sample points x0,n. Since we do not

have an explicit analytical form for fk+1(x), the question arises: how can we apply the Koopman

iteration at the next step? To address this, we seek an analytical function that best fits the N scalar

values fk+1(x0,n)
N
n=1 using regression techniques. For low-dimensional systems, methods such as

spline interpolation or radial basis functions are often preferable due to their simplicity and low

number of trainable parameters. In contrast, for high-dimensional systems, Feedforward Neural

Networks (FNNs) are recommended due to their superior computational power and scalability. In

the examples presented in this manuscript, we employed an FNN, whose training procedure is

described in the SI. Fig. 2-(B) summarizes the ISOKANN procedure.

9



C. Clustering and edge assignment.

We subdivide the χ-function into NI disjoint intervals containing states with similar χ-value.

The number of intervals into which the χ-function is subdivided is arbitrary, but ideally there

should be a sufficient number of states representing similar macroscopic behavior, i.e. macro-

states and transition states. This partial clustering based on the χ-function is useful to reduce the

complexity of the data while preserving important properties such as Markovianity65.

Once the intervals of the χ-function have been defined, we cluster states in state space Γ. Sev-

eral algorithms could be used. Here, we chose the Common Nearest Neighbor (CNN) clustering

algorithm66, an unsupervised clustering algorithm that uses local density information to identify

clusters of data points without prior knowledge of the number of clusters. CNN clustering tends

to work well with non-linearly separable data and has already been shown to be suitable for the

study of molecular systems67,68. The key assumption of this algorithm is that two states are more

likely to belong to the same cluster if they share a significant number of neighbors. The algorithm

is then controlled by two key parameters: the radius of the neighborhood ε and the number of

nearest neighbors θ . Two states are considered neighbors if they are less than a distance ε apart

from each other:

xi and x j are neighbors if |xi − x j|< ε . (18)

Then, for every pair of states, the intersection of their respective nearest neighbor sets is deter-

mined: if xi and x j share at least θ neighbors, they belong to the same cluster. The algorithm de-

termines K clusters Ω1, Ω2, ..., ΩK , where K is an output parameter, however, like many density-

based methods, its performance is sensitive to the choice of θ and ε . Following the indications in

Refs.66,67, the parameters should be chosen on the basis of the histogram of pairwise Root Mean

Square Distances (RMSDs) between the states in the dataset: ε should be set to a value slightly

smaller than the first maximum of this histogram, while θ is varied until adequated sized clusters

are found.

The last step in the construction of the graph is the assignment of edges, i.e. finding the con-

nections between pairs of clusters Ωi and Ω j ∀i, j = 1, 2, ..., K. For this purpose, we assume that

a transition in an infinitesimal time span can only take place between similar conformations, both

macroscopically and microscopically. Thus, to determine edges, we look for clusters belonging to

consecutive intervals that have common states in their neighborhood. Indeed, a transition between
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clusters in consecutive intervals indicates a transition between states with similar macroscopic

properties and clusters that share states in their neighborhood, ensuring that the transition occurs

between states with similar conformational structure. In practice, the procedure begins by aligning

the states within a cluster to minimize the RMSD and computing the average structure of the clus-

ter. Then, the neighborhood of the cluster, whose size is determined by a threshold rn, is identified

by calculating the RMSD between the average structure and all the states in the X0 dataset. The

procedure to determine the clusters and the edges is schematized in Fig. 2-(C).

The resulting graph, referred to as the Molecular Kinetics Map (MKM), consists of clusters

ordered according to the values of the χ-function. The initial cluster Ω0 (with χ ≈ 0) and the final

cluster ΩK (with χ ≈ 1) represent the dominant macro-states of the system; typically reactants and

products in a chemical reaction, or, in the context of biomolecules, the unfolded-folded states of

a protein, bound-unbound conformations, and so on. The MKM can then be used to identify the

principal pathways connecting the macro-states. We define an arbitrary pathway χ p connecting

the initial cluster Ω1 to the final cluster ΩK as a sequence of clusters along the reaction coordinate

χ as

χ
p = {Ωp1,Ωp2, ...,ΩpL} , (19)

where L is the length of the pathway, Ωp1 = Ω1 and ΩpL = ΩK are the initial and final clusters of

the MKM respectively, and each Ωp j = Ω2,Ω3, . . . ,ΩK−1.

D. Free energy profiles and calculation of transition rates.

We assume that the N initial states x0,n ∈ X0 are distributed according to the canonical equilib-

rium distribution

π(x) =
1
Z

exp
(
− 1

β
V (x)

)
, (20)

where Z is the canonical partition function that normalizes the distribution and β = 1/kBT , with

temperature T and Boltzmann constant kB. Then, given a pathway χ p as defined in Eq. 19, the

probability distribution projected onto the clusters Ωpi of the pathway is defined as

π(Ωpi) =

∫
Γ

δ [Ωpi(x)−Ωpi]exp(−βV (x)) dx∫
Γ

exp(−βV (x)) dx
, (21)
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where δ is the Dirac δ -function. Eq. 21 describes the Boltzmann weight of each cluster of the

pathway and it is associated with the free energy

E(Ωpi) =− 1
β

logπ(Ωpi) . (22)

Plotting the free energy along each pathway as a function of the reaction coordinate χ provides

a natural way to classify pathways according to their thermodynamic likelihood; i.e., pathways

traversing lower free energy barriers are more probable. In addition, applying the Square Root

Approximation method (SqRA)23–25 we approximate the transition rate between adjacent clusters

of the same pathway as

kpi,pi+1 ∝

√
πpi+1

πpi

, (23)

Furthermore, we calculate the effective transition rate from the initial to the final state of a pathway

as

kp =

(
L−1

∑
i=1

1
kpi,pi+1

)−1

, (24)

which corresponds to the harmonic mean of the inverse transition rates along the pathway, and

provides a coarse-grained estimate of the overall kinetics.

IV. Results

A. Two-dimensional system

As an illustrative example, we considered a two-dimensional system governed by overdamped

Langevin dynamics and defined by the potential energy function

V (x,y) = 10(x2 −1)2 +5xy+10(y2 −1)2 +2.2x , (25)

illustrated in Fig. 3-(A). The potential is characterized by 4 local minima of different height: the

deepest is corner C1 = (−1,1), followed by C4 = (1,−1), C3 = (−1,−1) and C2 = (1,1), in

order from lowest to highest . To give physical meaning to the problem, we assumed that the

potential has energy units kJmol−1, and that generates forces −∇xV and −∇yV on a fictitious

particle of mass m = 1amu that moves on a flat surface. We also assumed standard thermody-

namic parameters: the temperature of the system was T = 300K with molar Boltzmann constant
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FIG. 3. Results of the two-dimensional system. (A) Potential energy function of the two-dimensional

system; (B) States of the two-dimensional system extracted from a trajectory and colored according to the

membership function χ(x,y). (C) MKM of the two-dimensional system projected onto the Cartesian space.

The black dots represent the initial states X0; (D) Free energy profiles of the two-dimensional system.

kB = 8.314×10−3 kJK−1 mol−1. This choice of the parameters makes sure metastability, indeed

the system’s thermal energy β−1 = kBT = 2.49kJmol−1 is significantly smaller than the height

of the barriers along x and y. The interaction of the particle with the environment is modeled

via a friction coefficient γ = 1ps−1 and a diffusion constant D = kBT/mγ = 2.49nm2 ps−1 in each

direction.

State space exploration and dynamics propagation. We solved the overdamped Langevin dy-

namics equations of motiondxt =−βD∇xV (xt ,yt)dt +
√

2DdWx

dyt =−βD∇yV (xt ,yt)dt +
√

2DdWy

, (26)

where Wx and Wy are two independent and uncorrelated Wiener processes, applying the Euler-

Maruyama scheme69 with a timestep of ∆t = 0.001ps.

First, we generated a sufficiently long trajectory of 1×107 timesteps which covers the relevant

regions of the potential. Then, we extracted 4000 initial states equally spaced from the trajectory,

i.e. one each 1000 timesteps, and carried out 10 short trajectories of 10 timesteps from each initial

state.

As suggested in the Methods section, we organized the data into two arrays: X0 of shape
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(4000,2) containing the coordinates of the initial states, and Xτ of shape (4000,10,2) containing

the coordinates of the final states of the short trajectories.

ISOKANN. To construct the χ-function, we applied ISOKANN. For regression, we used an FNN

with three layers and the sigmoid function as activation function. The FNN was implemented using

PyTorch70, the input layer had 2 nodes, one for each coordinate of the system, the hidden layer

had 128 nodes and the output layer had 1 node corresponding to the χ-value. The optimization of

the FNN parameters was performed using the Stochastic Gradient Descent (SGD) algorithm71 and

minimizing the mean squared error (squared ℓ2-norm). At each ISOKANN iteration, we trained

for 15 epochs, iterating over randomly generated batches of size 100, with an initial learning rate of

0.001. This choice of hyperparameters is the result of a random search and leads to a convergence

of the χ-function in 4 iterations (SI, Fig. S1). To validate the model, we monitored training and

validation losses and observed that they decrease in parallel without an increase in the gap or a

rebound in validation loss, indicating no evidence of overfitting.

The χ-function, evaluated at each initial point X0, is illustrated in Fig. 3-(B). The corners C1

and C4, colored by blue (χ ≈ 0) and red (χ ≈ 1) respectively, are the two main macro-states,

i.e. the regions of state space most visited by the particle. Corners C3 and C2 are colored with a

gradient of colors blue-yellow (χ ≈ 0.5), and can be interpreted as transition state states.

MKM construction. To construct the MKM representing the macro-states and the main pathways

of the dynamics, we proceeded in two steps: first we grouped the states by dividing the χ-function

into 3 regular intervals and finding for each interval 1703, 32 and 263 states (x,y) respectively, then

we applied the CNN clustering algorithm to group the states into smaller clusters having similar

χ-value. For the CNN clustering algorithm, we chose as radius of the neighborhood ε = 1.0 and as

number of nearest neighbors θ = 5, finding Nc = 4 clusters. To connect the clusters, we searched

for areas of overlap between neighborhoods of clusters belonging to consecutive intervals, using

as a threshold the Euclidean distance rn = 0.6. The MKM is shown in Fig. 3-(C).

Observations. The potential energy function has four macro-states and by means of the χ-function

we identify two macroscopic regions at corners C1 and C4, and one transition region that includes

both corners C2 and C3. There are two main pathways from corner C1 to corner C4 and vice versa.

In Fig. 3-(D), we show the free energy profiles as defined in Eq. 22. Since the blue and red clusters
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FIG. 4. Results of 33-Dichloroisobutene molecule. (A) 33-Dichloroisobutene molecule; (B) χ-function

projected onto the main torsion angle of the 33-Dichloroisobutene; (C) MKM projected onto the main

torsion angle of the 33-Dichloroisobutene; (D) Free energy profiles of the 33-Dichloroisobutene molecule.

are the largest, their energy levels are low, the yellow clusters, instead, are higher and correspond

to transition states. From this graph, we also deduce that the red path (C1 −C3 −C4) is the most

likely path, as the system needs less energy to visit corner C3 than corner C2. By SqRA (eqs. 23,

24), we estimated the effective transition rates of the two paths: kr
+ = 0.07 and kb

+ = 0.15 for the

red and blue path respectively. Thus the reaction along the blue path is about 2.14 times faster

than the red one. We estimated also the transition rates for the reverse reactions: kr
− = 0.18 and

kb
− = 0.40 respectively.

B. 33-Dichloroisobutene

As the first molecular system example, we studied 3,3-Dichloroisobutene (C4H6Cl2), a dichloro

derivative of isobutene, represented in Fig. 4-(A). The compound has 12 atoms, for a total of 36

dimensions, and the rotation around the torsion angle Ψ (C3-C2-C4-Cl1) is known to be the slowest

process of the system. Thus, we used the torsion angle Ψ as relevant coordinate to visualize the

results.

State space exploration and dynamics propagation. We performed MD simulations using the

package OpenMM72 with the Generalized Amber Force Field73. To simulate an explicit solvent,

we used the TIP3P-FB water model74 with a padding distance of 1.4 nm which generates a box of

682 water molecules for 33-Dichloroisobutene. We assumed Langevin dynamics and applied the

Langevin leapfrog integrator75 with γ = 1.0ps−1 as friction coefficient, and ∆t = 2fs as integrator
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timestep. Non-bonded interactions between atoms, such as Coulomb forces and Lennard-Jones

forces, were calculated by Particle-Mesh Ewald (PME) method76 and interactions between atoms

more than 1 nm apart were truncated. The lengths of all bonds involving a hydrogen atom have

been constrained. Before doing the first simulation, we brought the system to a local energy

minimum, then we equilibrated the system with a 20 ps simulation to obtain a state belonging to

the NVT ensemble, with temperature equal to 300±6K.

From a trajectory of 40 × 106 timesteps, corresponding to 80 ns, we extracted 4000 states

x0 = {r0,v0} (positions and velocities of each atom including the solvent) every 8 ps. Then the

states x0 have been used as initial states for 10 new short trajectories of length 0.02 ps.

ISOKANN. The procedure for constructing the χ-function via ISOKANN was the same as in the

previous example. However, instead of providing the Cartesian coordinates of the atoms, we used

the pairwise distances between all the atoms of the system (without the water). This increases the

number of dimensions of the χ-function to 12·(12−1)/2 = 66, but ensures that χ is invariant with

respect to translations and rotations. As a model to approximate the χ-function, we used an FNN

with 4 layers (2, 66, 33, 1 nodes), however, as activation function we used Leaky ReLU which

performs better than sigmoid in high-dimensionality regression tasks. We set the initial learning

rate for the SGD algorithm to 0.01 and applied a weight decay of 0.01 for regularization. The

model converged after 279 iterations, achieving training and validation losses smaller than 10−3

; no train–validation divergence or validation-loss rebound was observed, and χ was stable over

ISOKANN iterations (SI, Fig. S2).

The χ-function, evaluated in each initial point x0, is reported in Fig. 4-(B). For ease of reading,

we have projected the χ-function onto the unit circle, i.e. the values cos(Ψ) and sin(Ψ), where

Ψ is the torsion angle. We clearly distinguish macro-states colored with red and blue, and the

transition states colored with yellow. The correlation between χ-function and torsion angle Ψ is

equal to 0.9, confirming that the latter is a good choice as a relevant coordinate to describe the

slowest process of the system.

Clustering and edge assignment. To construct the MKM, we discretized the χ-function into 5

equal intervals, then applied the CNN clustering algorithm. Clustering was done by pre-computing

the Root Means Square Distance (RMSD) matrix. Then, after analyzing the distribution of

RMSDs, we identified the CNN clustering parameters: ε = 0.09, 0.08, 0.09, 0.07, 0.09, and θ = 5
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(for each interval). With this setting, we obtained 8 clusters, 2 for macro-states and 6 for transition

states. To find edges, we used as threshold for the neighborhoods rn = 0.05. The MKM projected

onto the unit circle of the angle Ψ is shown in Fig. 4-(C).

Observations. We observe two main clusters: the red one (Ψ ≈ π/4) corresponds to a conforma-

tional state where both chlorines are staggered with the methylene group; the blue one (Ψ ≈ 3π/4)

corresponds to a conformational state where both chlorines staggered with the methyl group. The

two macro-states are connected by two pathways that correspond to the rotations of the torsion

angle Ψ. The free energy profiles, illustrated in Fig. 4-(D), also reveal the energy barriers of the

paths. Since the system is perfectly symmetrical with respect to the rotation of the Ψ angle, the

two pathways overlap. In other words, no direction is preferred, and the system can rotate clock-

wise or counterclockwise with the same probability. However, we observe that there is a higher

barrier between the red cluster and subsequent orange clusters than between the blue cluster and

subsequent light blue clusters. Then the configurational states belonging to the red cluster are the

most stable of the system. The effective transition rates of the two pathways are: kr
+ = 0.11 and

kb
+ = 0.11 for the red and blue path respectively; while for the reverse reactions are: kr

− = 0.16

and kb
− = 0.16 respectively. This confirms the symmetry of the system and the equivalence of the

two pathways.

C. Hexapeptide VGVAPG

The VGVAPG is an elastin-derived hexapeptide77, already used to test methods for MD

simulations78,79. The peptide has 73 atoms, corresponding to 219 dimensions in the Euclidean

space. As relevant coordinate, denoted by ree in the figures, we used the Euclidean distance be-

tween the nitrogen atom of the N-terminus and the carboxyl-carbon of the C-terminus (Fig. 5-(A).

State space exploration and dynamics propagation. The MD simulations were carried out

with the same settings as for 33-Dichloroisobutene, but the water box was increased to 782 water

molecules and the force field was the AMBER ff-14sb80. The length of the first simulation was

500× 106 timesteps, corresponding to 1 µs, from which, we extracted 1000 initial states for the

short trajectories. For each initial state, we produced 10 short trajectories of 1000 timesteps,

corresponding to 2 ps.

17



FIG. 5. Results of VGVAPG hexapeptide. (A) VGVAPG molecule; (B) χ-function projected onto the

end-to-end distance of the molecule. (C) MKM with representative structures of the VGVAPG; (D) MKM

projected onto the end-to-end distance of the VGVAPG. (E) MKM projected onto the Ramachandran plot of

the second residue (Glycine 1); (F) Free energy profiles of VGVAPG. The colors of the molecular structure

represent the residues: Val (yellow), Gly (red), Pro (blue) and Ala (green).

ISOKANN. We performed a random search to find the best hyper-parameters of the neural net-

work and determined as optimal parameters, 1752 nodes in the hidden layer, 0.001 as initial learn-

ing rate and 0.005 as weight decay. The ISOKANN algorithm was performed for 57 iterations,

training and validation losses stabilized around 4×10−4 with no train–validation divergence, and

χ remained stable (SI, Fig. S3). The χ-function is plotted in Fig. 5-(B). We observe a large macro-

state, corresponding to χ ≈ 0.0 (blue), which includes configurations whose relevant coordinate

ree ranges from 0.7 to 2 nm; the transition states, with χ ≈ 0.5 (yellow), range from 0.35 to 1.7

nm and the macro-state corresponding to χ ≈ 1.0 (red), includes configurations whose relevant

coordinate ranges from 0.25 to 0.35 nm. The correlation between χ and ree is 0.98.
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MKM construction. We divided the χ-function into 5 equal intervals between 0 and 1. Then,

by analyzing the distribution of RMSDs, we determined the parameters for the CNN clustering:

ε = 0.3,0.23,0.15,0.17,0.3 and θ = 5 for each interval. Thus, we found 1, 2, 2, 2 and 1 cluster

for each interval respectively. The MKM, obtained with rn = 0.3, is reported in Fig. 5, where we

propose different representations: in Fig. 5-(C), we show the complete MKM projected onto the

end-to-end distance of the peptide; in Fig. 5-(D) we show the MKM projected onto the Ramachan-

dran plot of the first Glycine (G1) of the peptide; in Fig. 5-(E), we show the free energy profiles;

in Fig. 5-(F), we show the main representative structures of the backbone of the peptide (omitting

the less relevant clusters of the MKM);

Observations. The blue cluster (χ ≈ 0) comprises completely open structures with ree > 1.5nm,

while the red cluster (χ ≈ 1) represents closed structures with ree ≈ 0.3nm. Since distance ree

is highly correlated with χ , we cannot distinguish multiple paths from Fig. 5-(C). Thus, to better

characterize the dynamics and describe the opening-closing mechanism of the peptide, we ana-

lyzed the Ramachadran plot of each residue. Here, in Fig. 5-(D), we report the Ramachadran plot

of the second residue (the first Glycine in the chain VGVAPG), as it shows the most interesting dy-

namics. First, we observe that most of the clusters, in particular the clusters belonging to the blue

path, are located in quadrant II and III where Φ < 0. We therefore deduce that the closure of the

hexapeptide along the blue pathway does not lead to a significant rotation of the Glycine torsion

angles. However, one orange cluster (χ ≈ 0.7) is located in quadrant IV (Φ ≈ 0.95), indicating

that the red pathway involves a wide rotation of the Φ torsion angle of the Glycine: first about 120

degrees anti-clockwise, then again about 110 degrees clockwise. The effective transition rates of

the two pathways are: kr
+ = 0.09 and kb

+ = 0.23 for the red and blue path respectively; while for

the reverse reactions are kr
− = 0.12 and kb

− = 0.24 respectively. We conclude that the red pathway

is more energy-intensive and, consequently, less probable.

D. Villin headpiece subdomain

As a last example, to demonstrate the applicability of our approach to large systems, we studied

the villin headpiece subdomain53–56 which is one of the most studied protein for understanding

protein folding. Villin consists of 35 residues (582 atoms), and in its folded structure, it forms 3

α-helices as shown in Fig. 6-(A): residues 4-8 form helix H1 (green), residues 15-18 form helix
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FIG. 6. Results of villin headpiece subdomain. (A) The X-ray crystal structure of villin headpiece solved

at pH 6.7, green, yellow and orange colors identify the helix H1 (green), H2 (yellow) and H3 (orange)

respectively; (B) χ-function projected onto the RMSD of segments A and B. (C) MKM with representative

structures of the villin protein; (D) MKM projected onto the RMSD of segments A and B of the villin

protein; (E) Free energy profiles of the villin protein.

H2 (yellow), residues 23-32 form helix H3 (orange). To have a 2-dimensional representation of the

molecular system, we used the RMSD of the segment A (residues 3–21), which includes H1 and

H2, and segment B (residues 15–33), which includes H2 and H3, with respect to the correspond-

ing segments of the X-ray crystal structure solved at pH 6.7 deposited in the RCSB protein data

bank repository (PDB ID: 1YRF81) as done in Ref.55. Thus, a structure with low RMSD values

corresponds to a folded structure, a structure with high RMSD values is an unfolded structure, and

partially folded structures correspond to a situation where only the RMSD of one segment has low

values.
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State space exploration and dynamics propagation. The folding timescale of the villin protein

is 2.8 µs, but a complete exploration of the space of states requires a conventional MD simulation

of more than 2.8 µs56. Alternatively, we carried out STMD simulations utilizing the dedicated

OpenMM module for exploring the state space and selecting representative structures. First, we

prepared a complete extended structure with PyMol82. Then, we minimized the structure and

equilibrated the system for 20 ps reaching a partially folded structure. At this point, we carried

out 6 independent replicas of 1 µs with temperatures ranging from 273 K to 500 K. All the other

parameters and options were as in the previous examples, the box contained 2713 water molecules.

From each replica, we extracted 1000 structures, for a total of 6000 structures, which constitute the

set X0 of initial states. However, since temperature was a dynamic variable, we further equilibrated

these structures for 100 ps to have a sample representing the Canonical Ensemble at T = 300K.

Afterward, we ran 10 short MD simulations of 1000 timesteps (0.2 ps) for each initial state.

ISOKANN. The ISOKANN algorithm was applied as before, but we changed the input coordi-

nates. Indeed, since the system has 582 atoms, the number of pairwise distances is 582·(582−1)/2 =

169071. Modern neural networks are able to handle this dimensionality, however, as a matter of

efficiency and to show the versatility of the method, we preferred to reduce the dimensionality

by using the internal coordinates (bonds, angles and torsion angles) of the backbone (140 atoms).

In this way, we reduced the number of dimensions to 1716. We used a neural network with four

layers (1716, 858, 429, 1), the initial learning rate of the SGD algorithm was 0.01 and the weight

decay 0.005. Convergence of the training occurred in 95 iterations with a training and validation

loss in the order of 10−3 (SI, Fig. S4). Convergence was reached within 95 iterations, training and

validation losses settled on the order of 10−3, decreasing in parallel with no divergence, and χ

remained stable across iterations (SI, Fig. S4).

In Fig. 6-(B), we report the χ-function projected onto the two collective variables. The bottom

left corner (small values of RMSDs), contains folded structures with χ ≈ 1 (red). As we move

away from the corner, we observe transition structures with χ ≈ 0.5 (yellow) up to a large area

containing unfolded structures with χ ≈ 0 (blue).

MKM construction. We divided the χ-function into 5 equal intervals and determined the optimal

parameters ε = 0.9,0.5,0.3,0.5,0.5 and θ = 10,60,50,150,20 for the CNN clustering algorithm

and rn = 0.6 to determine the edges. Thus we found 10 clusters, two clusters correspond to fully
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folded and unfolded structures, while the others contain partially folded structures. The MKM is

shown in Fig. 6 in several representations: Fig. 6-(C) shows the projection onto the RMSDs of

the segments A and B; Fig. 6-(D) shows the free energy profiles as function of the χ-values. (E)

shows the edges between the most relevant representative structures of the protein (omitting the

less relevant clusters of the MKM);

Observations. We identify multiple folding pathways in the transition from unfolded to folded

state, each with a distinct energetic profile. We have highlighted in blue the pathway that requires

less energy, and in red the one that requires more, then the blue pathway is the most likely folding

route. This pathway corresponds to a scenario in which helix H3 reaches its folded state more

rapidly than the other two helices. Conversely, the red pathway exhibits a process in which helix H1

stabilizes prior to helices H2 and H3. In both cases, the formation of helix H2 is the slowest process

and it starts at χ > 0.5. The effective transition rates of the two pathways are: kr
+ = 0.21 and

kb
+ = 0.26 for the red and blue pathway respectively; while for the reverse reactions are kr

− = 0.18

and kb
− = 0.22 respectively.

E. Sensitivity analysis to χ-discretization and CNN parameters

To assess the robustness of MoKiTo, we quantified how the MKMs depend on the number

of χ-intervals NI and on the CNN parameters (ε,θ). Instead of directly comparing the paths,

which is difficult due to changes in the number of clusters and edges as the parameters vary, we

examined the spectrum of the infinitesimal generator Q. To this end, we used the Square Root

Approximation (SqRA) of the infinitesimal generator23,24, which allows the operator Q to be

discretised into a rate matrix Q, whose entries Qi j are proportional to the transition rates between

connected clusters and are defined as

Qi j ∝

√
π j

πi
, (27)

where πi and π j are the Boltzmann weights of the clusters. Then, we have solved the eigenvalue

problem for the rate matrix Q, for each system under investigation. The first three eigenvalues

κ1,κ2,κ3 show weak sensitivity to the parameters (SI, Figs. Fig. S5, S6, S7). As NI increases,

with fixed ε and θ , the eigenvalues quickly reach a plateau: for the two-dimensional example, the

plateau is already reached with NI = 3, while for molecular systems, NI = 5 is sufficient. Varying
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ε and θ , with fixed NI , reveals that the number of clusters decreases monotonically with ε , and the

corresponding eigenvalues shift toward zero until convergence. The parameter θ has only a minor

effect on both cluster count and eigenvalue spectrum. Therefore, within wide ranges, the main

dynamic characteristics detected by MoKiTo are stable, with ε representing the most influential

parameter as it controls the granularity of the MKM.

V. Discussion

The dynamics of a molecular system are highly complex and can be represented as a network

of pathways connecting clusters of similar configurational states. The idea behind MoKiTo is that

molecular dynamics can be decomposed into dynamic processes, known also as Koopman modes,

associated with different relaxation time scales. The process associated with the leading non-trivial

Koopman eigenfunction ψ1 represents long-term transitions, such as protein folding/unfolding or

biomolecular binding/unbinding events, and indicates that the molecular system evolves over time

along a preferred direction. Then, we use the χ-function, a transformation of ψ1 via Eq. 9, to

order the data according to their macroscopic features, facilitating subsequent clustering based on

structural similarities.

The first example is particularly useful in showing the power of MoKiTo. The potential energy

function has four macro-states and the χ-function reveals correctly the two macroscopic regions

and the transition region. Although it would be possible to cluster the initial states X0 without using

the χ-function, the reaction coordinate facilitates the clustering of states with similar macroscopic

properties by quantifying how far the intermediate states are away from the starting state (χ-value

0) or close to the end state (χ-value 1).

The other examples show that MoKiTo also applies well to molecular systems of several orders

of size. Dichloroisobutene is a small molecule with two macro-states and two possible pathways,

the clockwise and counterclockwise rotation of the torsion angle Ψ. MoKiTo captures these prop-

erties and reveals that the red configurational states in Fig. 4-(D), i.e. with both chlorine atoms

staggered with the methylene group, are the most stable states of the system. This is the expected

result, since strain is minimized by distancing chlorines and the methyl group, which is more

sterically demanding than the methylene group due to an additional hydrogen.

The third example shows that MoKiTo can be used to assess the quality of a reaction coordinate.

The dynamics of VGVAPG are characterized by the opening and closing of the salt-bridge between
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the positively charged N-terminus and the negatively charged C-terminus. Intuitively, one might

think that the distance between the extreme atoms of the peptide is a sufficient reaction coordinate.

Instead, via MoKiTo we revealed more complex dynamics involving two possible rotations of the

second residue of the hexapeptide.

Finally, the fourth example shows how to use MoKiTo to identify pathways in the fold-

ing/unfolding process of a protein. In contrast to previous examples, where we used conventional

MD simulations to sample the representative states of the state space, we used STMD simulations.

Indeed, the key requirement for MoKiTo is to have a broad representative set of states regardless

of how these were sampled. By contrast, to estimate the χ-function, the short trajectories should

respect the true dynamics of the system, but it is not necessary that these trajectories reach a state

of thermodynamic equilibrium. We identified two dominant pathways from the unfolded to the

folded state. In the pathway highlighted in blue in Fig. 6, helix H3 bends earlier than H1 and H2;

by contrast, the red pathway exhibits an earlier bend of H1. These observations are consistent

with previous results in Ref.55. From Fig. 6-D, we estimated the difference between the activation

free energy barriers of the two pathways to be 4.5kBT , in close agreement with the value 4.8kBT

reported in Ref.83. Also, mixed pathways appear from the MKM in Fig. 6, where helices form

cooperatively at similar time scales, confirming the more recent findings in Ref.84.

VI. Conclusion

Traditional tools to pathway analysis such as MSMs and TPT are rigorous and widely used,

but they typically require explicit discretization and dimensionality reduction. MoKiTo offers a

topology perspective: given an ordering parameter χ representing the leading slow mode, it con-

structs an MKM and identifies reaction pathways as graph objects, together with energy diagrams

to weigh the pathways. We learn χ with ISOKANN, which can be trained on short trajectories that

do not reach thermal equilibrium and does not require prior definition of macro-states as discrete

state space subsets, eliminating the need for detailed prior knowledge of the system. Across our

tests, MoKiTo recovered known mechanisms of villin headpiece subdomain, confirming previous

results obtained by other methods.

MoKiTo alone does not provide absolute kinetics (rates, MFPT, flows) and still requires the

support of external tools, e.g. SqRA, to calculate relevant kinetic quantities. For this reason,

MoKiTo should be considered a complementary tool that elucidates the mechanism and topology
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of pathways by interacting with established kinetic models.

There is room for improvement for MoKiTo. First, the backward Kolmogorov equation for

the χ-function can be turned into a variational principle. This would provide a formulation of

the problem that depends only on equilibrium expectations that can be evaluated from indepen-

dently sampled Boltzmann configurations, including enhanced-sampling or Monte Carlo data,

hence trajectory-free. Second, the user parameters in MoKiTo can be chosen more objectively

by analyzing the eigenvalue spectrum of the generator on the MKM. For this purpose, we envision

automated selection of (NI,ε,θ) based on spectral stability and robustness of the leading eigen-

vectors. This development would turn MoKiTo into a self-tuning tool providing greater confidence

in the recovered pathways.

Data Availability Statement

The software used for this study is openly available on GitHub at https://github.com/

donatiluca/MoKiTo. The complete dataset, including original MD trajectories and torch ar-

rays representing pairwise distance matrices, is archived on Zenodo (DOI: 10.5281/zenodo.

14229803) and securely stored on the Zuse Institute Berlin server, and can be made available

upon reasonable request.
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