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Fig. 1. Symmetric patterns identified using contour trees in electron microscopy data of RuBisCO molecule in complex with RuBisCO
large subunit methyltransferase (EMDB 1734). (a) Volume rendering of the molecule highlighting repeating structures in the scalar
field. (b) Four different types of regions, indicative of the different subunits in the molecule, identified by the symmetry detection
algorithm shown in cyan, magenta, brown, and violet. Regions with the same color are symmetric with respect to the scalar field
distribution. (c) Subtrees of the contour tree are classified into different groups based on similarity. Subtrees belonging to a common
group are shown with the same color and the corresponding regions are identified to be symmetric.

Abstract— Study of symmetric or repeating patterns in scalar fields is important in scientific data analysis because it gives deep
insights into the properties of the underlying phenomenon. Though geometric symmetry has been well studied within areas like
shape processing, identifying symmetry in scalar fields has remained largely unexplored due to the high computational cost of the
associated algorithms. We propose a computationally efficient algorithm for detecting symmetric patterns in a scalar field distribution
by analysing the topology of level sets of the scalar field. Our algorithm computes the contour tree of a given scalar field and identifies
subtrees that are similar. We define a robust similarity measure for comparing subtrees of the contour tree and use it to group similar
subtrees together. Regions of the domain corresponding to subtrees that belong to a common group are extracted and reported to
be symmetric. Identifying symmetry in scalar fields finds applications in visualization, data exploration, and feature detection. We
describe two applications in detail: symmetry-aware transfer function design and symmetry-aware isosurface extraction.

Index Terms—Scalar field symmetry, contour tree, similarity measure, persistence, isosurface extraction, transfer function design.

1 INTRODUCTION

Symmetric patterns are omnipresent in the world around us - be it
rotational symmetry in the layout of petals of a flower or symmetric
arrangement of atoms in a crystal. Symmetric patterns are used a lot
in art, design, and architecture since our sense of aesthetics and beauty
are greatly influenced by the presence of symmetry. Detecting and
characterizing symmetry is equally important in fields like engineer-
ing, biology, chemistry, and physics. Symmetry is important in areas
like engineering and manufacturing because it brings about structural
and cost efficiencies. For example, study of symmetry is central to the
design of mechanical and civil engineering structures. Body structure
of many multicellular organisms exhibit symmetry and deviation from
it helps in diagnosing abnormalities in the development of body or-
gans. Our understanding about atomic and molecular structures, and
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chemical reactions and bonding have also been greatly influenced by
principles of symmetry.

Symmetry in shapes is important in the area of shape processing
for tasks like object recognition and reconstruction, shape matching,
segmentation, and shape editing. Symmetry in the context of shapes
refers to geometric properties that remain invariant under transforma-
tions and is detected and characterized by studying the geometry of
shapes. Scientific data is often represented by a scalar field defined on
a domain of interest. The scalar field captures scientific measurements
or results of simulations, and studying its properties is important for
scientific data analysis. Symmetry in scalar fields refers to invariance
in the distribution of scalar field within different parts of the domain.
As much as study of symmetry in shapes is important in shape pro-
cessing, study of symmetry in scalar field distribution is important in
scientific data analysis because it leads to better understanding of the
underlying scientific experiment. For example, consider a bridge that
is subjected to a load test to determine its strength. Symmetry in the
shape and structure of the pillars is central to the strength of the bridge.
The load on the pillars can be measured and represented using a scalar
field. Asymmetry in the scalar field distribution is an indication of un-
even distribution of load on the pillars. Studying symmetry in scalar
field distribution can thus identify structural defects which may other-
wise be difficult to detect.

The topology of level sets of a scalar field has been successfully
used for studying the behaviour of the scalar field and a natural ques-
tion that arises is how similar is the topology of level sets in different



regions of the domain. In this paper, we study symmetry in scalar
fields with respect to the topology of its level sets. We present an algo-
rithm for robust detection of symmetry in scalar fields. Although sev-
eral algorithms exist for detecting symmetry of shapes, detecting sym-
metry in scalar fields is not as well studied. We use a topological data
structure called contour tree as an abstract representation of the under-
lying scalar field distribution. Using the contour tree as an abstraction
eliminates the need to examine the entire data set for detecting sym-
metry. The size of a contour tree is typically much smaller than the
size of the data from which it is computed. Thus working with con-
tour tree significantly reduces memory and processing requirements
and insulates our technique from the size of the data set. Each subtree
of the contour tree represents a region of the underlying domain and
captures the topology of its level sets. We define symmetry in scalar
fields based on similarity of the subtrees in the contour tree, which
correspond to regions in the domain with similar level set topology.
This leads to an algorithm that detects symmetry by classifying sub-
trees into different groups. The classification is directed by a similarity
measure that compares subtrees based on a topological measure called
persistence.

Figure 1(a) shows a volume rendered image of the electron density
distribution of RuBisCO protein molecule in complex with RuBisCO
large subunit methyltransferase (EMDB 1734). The volume rendering
highlights the symmetric or repeating patterns in the scalar field dis-
tribution. In Figure 1(b), four different groups of regions identified by
our symmetry detection algorithm are shown in cyan, magenta, brown,
and violet. Regions with the same color are symmetric. Figure 1(c)
shows the simplified contour tree for this data set. Our algorithm clas-
sifies subtrees of the contour tree into different groups based on simi-
larity. Subtrees that belong to the same group are shown with the same
color in Figure 1(c). We extract regions corresponding to subtrees be-
longing to the same group and report them to be symmetric.

The main contributions of our paper are the following:

• Modeling the problem of detecting symmetry in scalar fields
and computing the symmetric regions as a subtree classification
problem in contour trees.

• An algorithm for identifying symmetric regions in a scalar field.
The algorithm can detect symmetric patterns at multiple scales
and is efficient in terms of memory usage and computational
time.

• A comparison measure for identifying similar subtrees of a con-
tour tree. The similarity measure is robust in the presence of
noise and uses a compact representation of the contour tree hier-
archy, called the hierarchy descriptor, for efficient computation.

• Applications of symmetry identification in scalar fields to visual-
ization, data exploration, and feature detection. In particular, we
describe applications to transfer function design and isosurface
extraction.

The rest of the paper is organised as follows. Section 2 discusses
related work. Section 3 defines the terms used in this paper. Section 4
discusses how contour trees are used in our analysis. Section 5 de-
scribes the details of our algorithm. Section 6 discusses results of our
implementation. Section 7 shows applications of symmetry detection
and Section 8 concludes the paper.

2 RELATED WORK

Symmetry has been primarily studied in the context of geometry pro-
cessing. Fewer techniques are available for identifying symmetry in
scalar fields and these techniques are computationally expensive. In
this section, we provide a brief overview of techniques for detecting
symmetry in geometric models and in scalar fields. We also describe
the importance of contour trees in the analysis and visualization of
scientific data sets.

2.1 Symmetry in Geometric Shapes
Automated detection of symmetric patterns is a challenging task since
there is no prior information about what symmetric patterns one should
look for in an object. Several algorithms exist in literature that detects
symmetry in shapes. Early work studied detection of perfect symme-
try [1, 47]. Typically, geometric properties of shapes, like location of
points, are used to identify axis of symmetry [6, 20, 26]. Perfect sym-
metry is usually rare and there is a need for robust methods that detect
partial and approximate symmetry in the presence of noise. Several
techniques have been proposed for robust symmetry detection - voting
procedure in a transformation space [24, 28, 34, 36, 48], shape de-
scriptors based on spherical harmonics [23, 25, 38], and graph match-
ing [2, 4]. Change in pose, and non-rigid shapes and transformations
make symmetry identification difficult and requires detection of sym-
metry with respect to non-rigid transformations [8, 27, 31, 37, 48].

Exploiting symmetry information is a well researched topic within
geometry processing, computer graphics, and computer vision com-
munities. Symmetry in shapes can be represented using symmetry
aware shape descriptors and is used to identify correspondence be-
tween models for shape matching and object recognition [23, 36].
Approximate symmetry present in a mesh can be enhanced through
remeshing and symmetrization by modifying the mesh in a manner
that retains the overall geometry of the mesh [15, 16, 29, 35]. Detect-
ing symmetry helps in decomposition of a model into different parts
and can be used for segmentation [36, 40] and to detect redundan-
cies in the model for compression [25, 34, 40]. Symmetry in models
is used for scan completion and surface reconstruction by correcting
distortions present in noisy and incomplete data acquired through 3D
scanners [34, 41].

2.2 Contour Tree for Data Exploration and Visualization
Contour tree is a topological data structure that tracks topology
changes in the level sets of a function and has been extensively used
in designing tools that assist users in data exploration and visualiza-
tion [44]. Contour trees enable fast computation of isosurfaces and
interactive exploration of large data sets by tracking the evolution of
contours [7, 10, 11]. Contour trees partition data into different re-
gions based on the topology of level sets. This property is used in de-
signing spatially aware transfer functions for volume visualization by
assigning distinct transfer functions to different branches of the con-
tour tree [46] and automatic transfer function generation by assigning
opacity values to branches using a fluid flow model [53]. These meth-
ods do not exploit repeating patterns in the scalar field. We demon-
strate how these methods can be extended to design a transfer function
that explicitly highlights similar regions. Identifying repeating pat-
terns in scalar fields can also be used to enhance applications that use
the contour tree for segmentation [7, 21, 42, 49] and shape matching
[3, 5, 18, 43].

The lifetime of a level set component can be represented as an in-
terval and has been used to design a barcode shape descriptor [12].
Two families of intervals are compared using a similarity measure that
captures the degree of overlap between the intervals. We extend this
measure to compare subtrees of a contour tree. Contour trees provide
an abstract representation of a scalar field and have been recently used
to explore high dimensional data via a two-dimensional terrain rep-
resentation called the topological landscape [17, 30, 45]. Since our
symmetry detection is essentially based on the contour tree, it can be
used to identify repeating patterns in any dimension.

2.3 Symmetry in Scalar Fields
Although symmetry in geometric shapes is a topic of research that has
been explored in detail, study of symmetry in scalar fields is a rela-
tively new topic. Hong et al. [19] use a parallel algorithm to detect
reflective symmetry in 3D scalar fields. Their work extends earlier
work on reflective symmetry descriptors for shapes [22, 36] and esti-
mates, for every plane, the distance between the given scalar function
and its closest perfect symmetric function. This measure of symmetry
is used to detect a plane of symmetry. Their method requires compu-
tation of symmetry distance by examining the entire data set for all



planes passing though the volume and is computationally expensive.
Our algorithm, on the other hand, requires only an abstract representa-
tion of the underlying data to be examined and does not require explicit
examination of all planes for symmetry. Further, our method is not re-
stricted to reflective symmetry and can detect repeating patterns in the
scalar field at multiple scales.

Bruckner et al. [9] determine similarity between different isosur-
faces by computing an information theoretic measure of data inde-
pendence called mutual information. This method is computationally
expensive since it requires calculation of mutual information between
all pairs of isosurfaces. Further, this method is restricted to identify-
ing if two isosurfaces are similar and is not suited for extracting re-
gions in the domain with similar scalar field distribution. Schneider
et al. analyze the similarity between different scalar fields defined on
a common domain using comparison measures based on spatial over-
lap of contours [39]. While this method studies different scalar fields
defined on a common domain, we focus on the detection of repeating
patterns within a single scalar field. Several methods for shape match-
ing compare scalar fields using a multi-resolution discrete version of
the contour tree and estimate a measure of similarity using geomet-
ric, topological, and functional attributes [18, 50, 51, 52]. Though
these methods analyse similarity between scalar fields, their goal is to
identify the overall similarity between two domains, which is differ-
ent from our goal of identifying symmetry within a single scalar field.
Further, we aim to identify symmetry at multiple scales. We also note
that our focus is on identifying similarity in scalar field topology and
hence we use a similarity measure based on topological persistence.
However, our comparison framework can be used with other attributes
also.

3 DEFINITIONS

Let f : M→R be a scalar field defined on a simply connected domain
M. The set f−1(α), for α ∈ R, is called a level set of f . A contour
is a connected component of a level set. Consider the equivalence re-
lation defined by contours: x,y ∈M are equivalent if they belong to
the same contour. The contour tree is the quotient space induced by
this equivalence relation. Contour trees track changes in the connec-
tivity of components in level sets when α varies over the range of the
function. It is obtained by continuously collapsing each contour in the
level set to a single point, see Figure 2(a) - 2(b). Since the domain is
simply connected, the contour tree does not contain loops. The nodes
of a contour tree correspond to critical points of the function. Critical
points are further classified as minima, maxima, and saddles. Min-
ima and maxima, also referred to as extrema, correspond to leaf nodes
of the contour tree. Saddles correspond to interior nodes where two
or more contours merge into one or a single contour splits into many
contours. Pairs of critical points represent the evolution of a contour.
The difference in function value between such pairs of critical points,
called persistence, is a measure of the importance of the corresponding
topological feature [14].
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Fig. 2. Contour tree and branch decomposition. (a) Height function de-
fined on a volumetric domain and its level sets and (b) the corresponding
contour tree. (c) A contour tree and (d) its branch decomposition repre-
sentation. The branch dm is the longest monotonic path and hence the
root branch. Branches b f and kg are its children.

A branch decomposition [32] is an alternate representation of con-
tour trees that is obtained by organizing its edges into a hierarchy based
on persistence. A branch is a path in the graph with non-decreasing
(or non-increasing) value of the function f . The branch decomposi-

tion representation is obtained by first assigning the longest branch as
the root branch. Other branches are attached recursively to the par-
ent branch such that each branch connects one leaf node to an interior
node of its parent branch. A branch represents the evolution of a con-
tour from a minimum where it is created to a saddle where it merges
into a second contour, or from a saddle to a maximum where it is de-
stroyed. The persistence of the end points (saddle and extremum) is
equal to the difference between the function values at these points.
Figure 2(c) - 2(d) shows a contour tree and its branch decomposition.
The path d f gm in the contour tree is the root branch in the branch de-
composition. The paths be f and ghik are child branches of the root
branch. Removing all branches whose end points have persistence be-
low a threshold results in a simplified contour tree. Each arc between
two nodes in the contour tree represents a set of contours associated
with the function values that lie between the corresponding pair of crit-
ical points. The subdomain corresponding to a branch is extracted as
a union of subdomains corresponding to its constituent arcs and high-
lighted in a volume rendering using a spatially aware transfer func-
tion [46], see Figure 3(a) - 3(d).
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Fig. 3. Each arc in the contour tree represents a region of the underlying
domain. (a) Radial layout of the branch decomposition of (b) the Fuel
data set. (c) Subvolume corresponding to the orange branches (d) Two
isosurface components extracted within the subvolume corresponding
to cyan branches. (e) Symmetry in scalar field topology does not nec-
essarily capture symmetry in geometry. Elliptic and circular contours
are treated symmetric since they have the same level set topology.

Scalar fields can be considered to be exactly symmetric when their
branch decompositions are identical. However, real world data is never
perfect and scalar fields often contain noise. Hence, we need a more
general definition that captures approximate symmetry. When two
branch decompositions are not exact, a natural measure of approxi-
mate symmetry is the amount of overlap between their branches. Con-
sider a level set sweep of the domain in the increasing order of func-
tion values. Level set components are created at minima, they merge
or split at saddles, and are destroyed at maxima. A branch corresponds
to the lifetime of a contour and can be represented as an interval whose
end points are the function values at the extremum and the saddle end
points of the branch. Thus the length of the interval is the persistence
of the branch. The barcode metric compares two families of such in-
tervals by measuring the extent of overlap between intervals [12]. Our
similarity measure is similar to the barcode metric and can, in addition,
handle hierarchical relationship among the intervals.

Consider two branch decompositions BDs and BDt and a pairing of
branches {(bs,bt)}, where bs ∈ BDs and bt ∈ BDt . Let Is and It be the
intervals corresponding to branches bs and bt respectively. The over-
lap in persistence between bs and bt is zero if the extremum of bs is a
minimum and that of bt is a maximum or vice versa. If the extrema of
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Fig. 4. Symmetry detection pipeline. Branch decomposition of input data is computed and converted to a representation that is stable in the
presence of noise. A similarity measure is used to compare subtrees and classify them into different groups based on similarity during a bottom up
traversal of the branch hierarchy. Group assignment is then refined and regions belonging to the same group are reported as symmetric regions.

bs and bt are both maxima or minima, then the overlap between them is
twice the length of the interval Is∩It . Each such pair of branches in the
pairing identifies a correspondence between the branches of BDs and
BDt . To ensure that the pairing is consistent with the branch decompo-
sition hierarchy, we require that each branch can be paired only once
and whenever bs and bt are paired, the corresponding parent branches
are also paired, provided both the parent branches exist. The total
overlap in persistence of such a pairing is the sum of overlaps of the
paired branches and the percentage of overlap is computed by normal-
izing the total overlap by sum of persistence of all branches of BDs and
BDt . We define the similarity between BDs and BDt as the percentage
of overlap that is maximum over all possible pairings of branches. We
define two domains to be exactly symmetric with respect to scalar field
topology if the percentage of overlap of their branch decompositions
is 100%. This corresponds to the branch decompositions being identi-
cal. Since our definition of symmetry is purely topological in nature,
it may not capture symmetry with respect to the geometry of the level
sets, as shown in Figure 3(e).

4 SYMMETRY USING CONTOUR TREES

The topology of level sets of a scalar field in different regions of a
domain often show repeating patterns due to similarity in their scalar
field distribution. To detect such regions efficiently, our algorithm rep-
resents the contour tree hierarchy using a descriptor and uses it to es-
timate the percentage of overlap between the subtrees of the contour
tree.

4.1 Overview
The pipeline used for symmetry identification is shown in Figure 4.
In the first step, we compute the branch decomposition representation
of the contour tree. Since branch decomposition is not stable in the
presence of noise, we generate a stabilised branch decomposition rep-
resentation. Next, we traverse the branches in the order of increasing
persistence. During this bottom up traversal, subtrees are collected
together into groups. Each subtree encountered during the traversal
is compared with existing groups, using a similarity measure based
on persistence. If the subtree is similar to one of the existing groups,
then it is added to that group, else it is assigned to a new group. To
compare subtrees efficiently, we use the group information to gener-
ate a descriptor that compactly represents the branch decomposition
hierarchy. Once the group to which each subtree belongs is identi-
fied, the subtrees are revisited to refine the group assignment in a post-
processing step. After this refinement, all regions of the domain that
correspond to subtrees of a given group are reported as symmetric.

4.2 Representing Contour Tree Hierarchy

When two subtrees are compared to determine if they are similar, ide-
ally the entire branch hierarchy should be examined for an accurate
similarity estimation. However, since our algorithm frequently com-
pares subtrees, this is computationally expensive. We propose a de-
scriptor, called the hierarchy descriptor, as a computationally efficient
representation of subtree hierarchy for matching subtrees. Each sub-
tree of the contour is assigned to a group. Each group represents a
class of similar subtrees identified by the percentage of overlap which
in turn corresponds to regions with similar level set topology. The de-
scriptor uses group assignment of lower level subtrees encountered
during the bottom up traversal to generate a vector, called the fre-
quency vector. For a given parent branch, we examine the group to
which each of its children subtrees belong and the frequency vector
is generated based on the number of times each group is encountered.
Since the group to which each subtree is assigned to depends on the
groups of its children subtrees, the frequency vector representation
captures the tree hierarchy of children branches implicitly. Together
with the frequency vector, the hierarchy descriptor also stores the ex-
tremum and saddle values of the parent branch, resulting in a complete
representation of the tree hierarchy of the parent branch.

Consider a subtree rooted at r, whose extremum and saddle values
are r.ext and r.sad. Let r have ni children subtrees (possibly zero)
belonging to Group i. Then the frequency vector representation of the
subtree is < n1,n2, . . . ,ni, · · · >. The hierarchy descriptor of branch
r is [r.ext,r.sad,< n1,n2, . . . ,ni, · · · >]. For example, in Figure 5(a),
the frequency vector of branches ae and ce is <> since they have
no children branches. Let ae and ce be assigned to Group 1. The
frequency vector of branch bg is < 2 > because bg has two children
belonging to Group 1. Let bg be assigned to Group 2. The frequency
vector of branch dl is < 0,1 > because dl has no child belonging to
Group 1 and one child belonging to Group 2. The branches ae, ce, hk
and jk in Figure 5(b), share the same extremum and saddle values, say
ext1 and sad1, and have no children. Hence their hierarchy descriptor
is [ext1,sad1,<>]. Let the extremum and saddle values of branches
bg and ig be ext2 and sad2. The hierarchy descriptor for bg and ig
will be [ext2,sad2,< 2 >]. The hierarchy descriptor is also used to
represent a group, thus making it possible to compare a subtree with a
group. When a subtree differs from all existing groups, a new group
is created and the hierarchy descriptor of the subtree is used as the
descriptor for the group.

Hierarchy descriptors can be used to find exact matches between
subtrees by assigning two subtrees to the same group if they have iden-
tical descriptors. For example, consider a bottom up traversal of the



branch decomposition in Figure 5(b). Let ae be the first branch en-
countered and let it be assigned to Group 1. Hierarchy descriptor of
Group 1 is equal to that of ae. Branches ce, hk, and jk are identical to
ae and hence they have the same hierarchy descriptor as ae. Since the
hierarchy descriptors of these branches match with that of Group 1,
they are assigned to Group 1. Hierarchy descriptor of bg differs from
that of Group 1, hence it is assigned to a new group, Group 2. The de-
scriptor of ig matches with that of Group 2 and hence ig is assigned to
Group 2. However, such a matching is not robust - once two branches
are assigned to different groups, their parent branches are always as-
signed to different groups, no matter how similar the parent subtrees
are. For example, in Figure 5(c), jk is assigned to Group 1 and hk to
Group 2, and hence frequency vector of ig is < 1,1 >, which is differ-
ent from that of bg. So, ig and bg are necessarily assigned to different
groups even though they are very similar. We next propose our simi-
larity measure that is robust to small changes in branch hierarchy and
assigns subtrees to the same group if the overall hierarchy is similar,
but not necessarily identical.
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Fig. 5. Groups and frequency vectors. (a) Frequency vector repre-
sents the frequency of groups to which children branches are assigned
(b) Branches bg and ig match exactly and have the same frequency vec-
tor. (c) Extrema of children branches hk and jk are different, hence they
belong to different groups, Group 1 and Group 2. Frequency vector of
ig differs from that of bg.

4.3 Similarity Measure for Grouping Subtrees
For the exact computation of overlap between subtrees, the maximum
overlap over all possible pairing of branches needs to be computed.
Since this is computationally expensive, we use a heuristic to estimate
the overlap between two branch decompositions. Instead of exam-
ining the entire branch hierarchy, we estimate the amount of overlap
between the corresponding hierarchy descriptors. The overlap is cal-
culated in two steps. The first step determines the overlap between par-
ent branches. The second step determines the overlap between groups
in the two frequency vectors by estimating, for each group in one de-
scriptor, the group that overlaps the most from the other descriptor.

Let the hierarchy descriptor for branches bs and bt be

Hs = [bs.ext,bs.sad,< nbs
1 , . . . ,nbs

i , · · ·>]

Ht = [bt .ext,bt .sad,< nbt
1 , . . . ,nbt

i , · · ·>].

Let Is and It be the intervals corresponding to bs and bt respectively, as
described earlier. Overlap between Hs and Ht is zero if the extremum
of bs is a minimum and that of bt is a maximum or vice versa. Overlap
between parent branches can be computed using their interval repre-
sentation. The overlap between the children groups in the frequency
vector of bs and bt is estimated as the maximum weight matching of a
complete bipartite graph that we construct. The vertices of this graph
correspond to groups in the frequency vector of bs and bt and its edges
are weighted with the overlap between pairs of groups.

Consider a complete bipartite graph, G, where V1 and V2 are the set
of vertices in the first and second partition, respectively, of the vertex
set of G. The vertex sets V1 and V2 represent the frequency vectors of
Hs and Ht respectively. We construct G with ∑nbs

i vertices in V1 and

∑nbt
i vertices in V2. Each vertex in the graph represents an occurrence

of a group and the overlap between groups in Hs and Ht is computed
via a maximum weight matching of G. Consider an edge between a
vertex corresponding to Group l in Hs and Group m in Ht . Let Hl

and Hm be the hierarchy descriptors for Group l and Group m respec-
tively. The edge is weighted by the overlap between Hl and Hm. Once
matching is computed and the overlap between Hs and Ht is estimated,
we calculate the percentage of overlap with respect to sum of persis-
tence of all branches in the subtrees rooted at bs and bt and use this
percentage to determine if Hs and Ht are similar. Intuitively, for each
occurrence of a group in Hs, we try to determine which group in Ht is
most similar to it. The edges in the matching give the correspondence
between groups and the maximum weight matching gives the overall
similarity between groups in Hs and Ht . Although we have defined
overlap recursively, for efficiency reasons, our implementation uses a
table that stores overlap between groups and computes the overlap in
an iterative procedure. We summarise the computation of the similar-
ity measure in Algorithm 1.

Algorithm 1 Computing Similarity Measure (branch bs, branch bt )
1: Represent branches bs and bt using the hierarchy descriptor.
2: Let the overlap between parent branches bs and bt be O1.
3: Construct a complete bipartite graph G with vertices representing

groups of children branches of bs and bt and edge weights repre-
senting their overlap.

4: Compute maximum weight matching of G. Let the weight of this
matching be O2.

5: Let ps and pt be the sum of persistence of all branches in the
subtrees rooted at bs and bt .

6: Similarity measure =
O1 +O2

ps + pt
·100.

Consider the branches bg and ig in Figure 5(c). Let f (x) denote the
value of the scalar field at vertex x. Let

ext1 = f (a) = f (c) = f ( j),
ext2 = f (b) = f (i),
ext3 = f (h),

sad1 = f (e) = f (k),
sad2 = f (g).

Overlap between bg and ig is f (g)− f (b) + f (g)− f (i) = 2(sad2−
ext2). The bipartite graph construction of bg and ig for matching
groups in the frequency vector is shown in Figure 6. The vertices on
the left correspond to the frequency vector of bg and has two instances
of Group 1, whereas the vertices on the right correspond to ig and has
one instance each of Group 1 and Group 2. An edge from Group 1 to
Group 2 has weight 2(sad1− ext3) and an edge from Group 1 to itself
has weight 2(sad1− ext1). The maximum weight matching pairs the
first instance of Group 1 from bg to Group 1 from ig and the second in-
stance of Group 1 from bg with Group 2 from ig, indicated by the green
edges in Figure 6. Thus, the overlap between frequency vectors is
2(sad1−ext1)+2(sad1−ext3) and the total overlap is 2(sad2−ext2)+
2(sad1−ext1)+2(sad1−ext3). The similarity measure correctly iden-
tifies that the two hierarchies overlap except for ext3− ext1. The per-
centage of overlap is 2(sad2−ext2+sad1−ext1+sad1−ext3)

2(sad2−ext2+sad1−ext1)+(sad1−ext3+sad1−ext1)
·100.

Since there is considerable overlap, bg and ig are assigned to the same
group. Our similarity measure is robust in the presence of noise be-
cause it identifies overlap between the children groups even when chil-
dren branches are assigned to different groups. Parent branches are
assigned to the same group when their hierarchies are similar but not
necessarily equal.

5 ALGORITHM

We now describe the algorithm that groups subtrees of the contour
tree. The contour tree is preprocessed to ensure that the group compu-
tation is robust in the presence of noise. A post-processing step allows
further refinement of groups.

5.1 Stabilising Branch Decomposition Representation
The branch decomposition of a contour tree cannot be directly pro-
cessed for detecting symmetry because it is highly sensitive to noise
in the input scalar field. We pre-process the branch decomposition



through simplification and rearrangement of branch hierarchy to get a
more stable representation. Branches whose persistence is less than
a small threshold are first removed. A lower threshold helps detect
small repeating patterns at the cost of more computation. If the saddle
value of a child branch is very close to that of the parent branch, then
a small change in saddle values can alter the parent-child relationship.
To make the branch hierarchy stable with respect to small perturba-
tions in the scalar field, we move the child branch up the hierarchy and
make it a sibling of its erstwhile parent branch. We continue moving
the child branch up the hierarchy until the saddle values of the child
branch and parent branch are significantly different.

Consider a level set sweep that results in the branch decomposition
shown in Figure 7(a). The level sets corresponding to branch c merge
with that of branch p and in turn merge with that of branch g. Note
that the function value corresponding to the saddle of branch c is lower
than that of branch p and this could be an artifact of the noise in the
data. If the saddle value of branch c was higher than that of branch p,
then branch c would have been a child of branch g instead of branch p.
We consider such parent-child relationships to be unstable since small
perturbations in the scalar field can change the branch decomposition
hierarchy. In Figure 7(a), the topology of level sets of branches c, o and
p are similar. However, if this unstable branch decomposition is used,
our algorithm will treat them to be different since the subtree rooted
at branch p is different from the subtree corresponding to branch o.
For robust detection of similar subtrees, we require a stable branch
decomposition.

We consider a parent-child relationship to be unstable if the ratio
of the difference in the saddle values to the persistence of the parent
branch is less than a tunable threshold. Since the branches c and p are
unstable, we move the branch c up the hierarchy and make it a child
of g, see Figure 7(b). We do this rearrangement for each branch en-
countered during the bottom up traversal of the branch decomposition.
Note that the parent of c may further change while processing branch
g if the parent-child relationship of branch c and branch g is unstable.
Similarity between the subtrees corresponding to branches c, o, and p
can now be identified by our algorithm from the stable branch decom-
position in Figure 7(b). A higher threshold for stabilising branches
makes the branch hierarchy more stable in the presence of noise and
leads to more repeating patterns being detected at the cost of a less
faithful representation of the branch decomposition hierarchy. Fig-
ure 8(a) shows the branch decomposition of RuBisCO molecule. Sim-
plification removes low persistence branches that appear as flat edges
in a radial layout, see Figure 8(b). The stable branch decomposition
after changing branch hierarchy is shown in Figure 8(c).

5.2 Comparing Subtrees To Form Groups
We traverse the stable branch decomposition bottom up and assign a
group to each subtree encountered during the traversal. Groups are
numbered in increasing order beginning with 1. Initially, no groups
exist and Group 1 is created from the first leaf branch. A subtree is
processed by generating its hierarchy descriptor and comparing it with
the hierarchy descriptor of each of the existing groups, as described
in Section 4. We determine the group for which the percentage of
overlap is maximum and if this overlap is greater than a threshold,
we assign the subtree to the group. If the percentage of overlap is
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Fig. 6. A complete bipartite graph is constructed to match groups in the
frequency vectors of bg and ig from Figure 5(c). A vertex is created for
each occurrence of a group and edges are weighted with the amount of
overlap between the groups. The total overlap between the frequency
vectors is defined to be the maximum weight matching of the graph,
shown in green.
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Fig. 7. Pre-processing and post-processing of branch decomposition.
(a) Parent-child relationship of branch c and branch p is not stable.
(b) We stabilize the branch decomposition by changing the parent-child
relationship. Branch c is moved up the hierarchy to become a sibling
of p and a child of g. The low persistence branch s is also removed.
(c) Subtree rooted at branch ah is split further to identify similar sub-
trees. Subtree rooted at partial branch ag is similar to cg and the partial
branches a f and ce are similar to b f and de.
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Fig. 8. Simplifying and stabilising the branch decomposition. (a) Branch
decomposition of RuBisCO molecule. (b) Simplification removes low
persistence branches. (c) Unstable branches are made stable by chang-
ing parent-child relationship.

lower than the threshold, we create a new group, assign the subtree
to this group, and store the hierarchy descriptor of the subtree as the
hierarchy descriptor for the group. Figure 9(a) shows the assignment
of subtrees to different groups. The hierarchy descriptor of a subtree is
compared with the hierarchy descriptor of all existing groups. When
a new group is created, the overlap of the group with each existing
group is stored in a table and used for determining the weight of edges
during the bipartite graph construction.

5.3 Refining Groups
Groups to which subtrees are assigned to during the bottom up traver-
sal of branches require further refinement before symmetric regions
can be identified. Subtrees are assigned to groups on-the-fly during
the bottom up traversal. For a given subtree, it is possible that a group
created later during the traversal is a better match than what it was
initially assigned to. Since all groups are created after the bottom up
traversal, we fix this issue by traversing the branch hierarchy again,
and assigning each subtree to the best group by comparing the hierar-
chy descriptor of each subtree with that of all groups.

During the refinement stage, each subtree is assigned to a single
group. However, parts of a subtree may better match other subtrees.

(a) (b)

Fig. 9. Computing and refining groups of subtrees of the branch decom-
position. (a) Subtrees in the stable branch decomposition are classified
into different groups based on similarity between the hierarchy descrip-
tors. Branches with the same color belong to the same group. (b) The
root branch is split and is assigned to groups corresponding to magenta
and yellow branches.
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Fig. 10. Symmetric regions identified within four data sets - Buckyball (first row), Vortex simulation (second and third row), Neghip (fourth row), and
Fuel (fifth row).

Consider branch ah in Figure 7(c). The branch hierarchy of branch ah
has several repeating parts - the subtree rooted at branch cg is similar to
the subtree rooted at the partial branch a f g and its child b f . Similarly,
the partial branch a f and ce match with b f and de. Hence, if b f
and de are assigned to one group then the partial branches a f and
ce also should be assigned to the same group. Similarly, the subtree
rooted at the partial branch ag should be assigned to the same group
as the subtree rooted at cg. In order to identify all repeating regions
corresponding to a group, each subtree is analysed to detect if a part
of it is similar to the group. We sweep each subtree from extrema
to saddle and generate the hierarchy descriptor for the partial subtree
encountered. If the partial subtree is similar to a group, then the partial
subtree is assigned to that group and the sweep continues. Since the
root branch has two extrema it requires two sweeps, in the direction of
increasing and decreasing function values. The upper and lower end
of the root branch in Figure 9(a) is split and regrouped as shown in
Figure 9(b). Now, for each group, all similar subtrees belonging to
the group are identified and the region of the domain corresponding to
each subtree is extracted and reported to be symmetric.

6 RESULTS AND DISCUSSION

We now present results from our analysis of the performance of the
symmetry detection algorithm. We also describe our extensive exper-
iments on several data sets that demonstrate the wide applicability of
the symmetry detection algorithm. Branches whose persistence is less
than 1% of the root branch are simplified. A branch is considered to be
unstable if the difference in saddle values of parent and child branches

is less than 1% of the persistence of the parent branch. Subtrees are
assigned to a group if the similarity between the corresponding hier-
archy descriptors is more than 90%. The above mentioned parameter
values are used uniformly for all data sets. The threshold for sim-
plification and stabilisation depends on the noise in the data and we
estimate this by plotting the number of branches in the contour tree
against increasing simplification ratio as shown in the supplemental
material. Initially, there is a sudden drop in the number of branches as
the low persistence branches corresponding to noise in the data are re-
moved. The simplification ratio and stabilisation ratio that we choose
corresponds to the value at which the initial drop in the number of
branches tapers off. We identify symmetry at different scales - regions
that correspond to leaf branches are at the smallest scale and larger
scale symmetric regions correspond to subtrees that are higher in the
branch decomposition hierarchy.

Table 1. Time taken to group subtrees of the contour tree for various
data sets. All experiments were performed on a workstation with a
2 GHz Intel Xeon processor.

simplified time memory
Data set vertices branches branches groups (sec) (MB)

Buckyball 5093 309693 61 8 0.18 8.51
Vortex 643 1014 321 21 0.41 0.20
Neghip 5053 24437 112 51 0.20 0.70

Fuel 5053 2788 45 19 0.03 0.09
RuBisCO 803 41150 1703 126 27.7 6.67



6.1 Performance Analysis
The computational cost of our algorithm is dominated by the time
spent in the bottom up traversal to identify similar subtrees. During
this traversal, each subtree is compared with all existing groups. Since
each subtree can be assigned to a different group, the maximum num-
ber of groups can be as high as the number of branches in the branch
decomposition. Maximum weight matching for a bipartite graph can
be computed in O(n2 +mn logn) time, where m and n denote number
of edges and vertices respectively. The algorithm works on a complete
bipartite graph where the vertices correspond to groups. Let t be the
number of branches, then m is quadratic in t and hence matching can
be computed in O(t2 + t3 log t) time. The number of comparisons done
in the bottom up traversal is quadratic in t, hence the worst case run-
ning time of our algorithm is O(t5 log t). Note that t is much smaller
than the size of the input data set and hence our algorithm performs
well in practice. Table 1 shows the time taken and memory used for
grouping subtrees of the contour tree. We assume that the contour tree
is available as input. The contour tree of a scalar field can be computed
efficiently in terms of computational time and memory usage [13, 33].
Since our method only examines the contour tree, it is insulated from
the size of the data. The time taken and memory used by our imple-
mentation depends only on the size of the contour tree and the number
of groups identified.

6.2 Visualization
Figure 10(a) shows the Buckyball data set that contains sixty carbon
atoms shown in red. Each maximum corresponds to a carbon atom.
We identify the scalar field distribution of the spatial region corre-
sponding to each of these atoms to be symmetric. The extracted re-
gions are shown in Figure 10(b). With our default threshold of 1% for
identifying unstable branches, we see that some of the atoms merge to-
gether in groups of two while others merge in groups of three as shown
in Figure 10(c). Increasing the threshold to 2% results in five carbon
atoms merging together to form a ring as shown in Figure 10(d) and
we detect twelve symmetric rings. If the threshold is increased to 8%
then all children branches merge with the root branch and we do not
identify any relationship among the carbon atoms with respect to the
way they merge. The contour trees corresponding to these thresholds
are shown in supplemental material. Figure 10(e) shows two regions
grouped together, one of which is occluded by a spherical envelope.
Though the geometry of these regions are different, we report them
to be symmetric since the scalar field distribution of these regions are
similar. The corresponding branch decomposition is included as a fig-
ure in the supplemental material.

Figure 10(f) shows a volume rendering of the Vortex data set, which
shows the temperature distribution in a vortex flow. There are several
repeating patterns at different scales. Figures 10(g) - 10(k) show repe-
titions at small scales, where as Figures 10(l) - 10(m) show repetitions
at a larger scale, and Figures 10(n)- 10(o) show the symmetric regions
at the largest scale. Though the regions shown in Figure 10(g) are
symmetric geometrically, they are classified into two groups since the
difference in scalar field distribution is significant at the smallest scale.
However, the similarity measure is robust and correctly identifies that
at larger scales the difference is not significant and these regions are
grouped together as shown in Figure 10(m).

Figure 10(p) shows the Neghip data set and reflective symmetry
present in it. Figure 10(q) shows four different reflective symmetric
regions identified by our algorithm. Figures 10(r) - 10(s) show sym-
metric regions at larger scales. We also identify eight small symmetric
regions as shown in Figure 10(t). Figure 10(u) shows the Fuel data set
which is devoid of symmetric regions in the subvolume corresponding
to the shaft. We identify different symmetric regions in the subvolume
corresponding to the crown as shown in Figures 10(v) - 10(w). All
regions repeat four times except the blue region in Figure 10(v) which
repeats eight times. The blue regions merge to form a larger symmet-
ric region shown in Figure 10(x). Figure 1(b) shows four symmetric
regions in RuBisCO data set identified using simplification and sta-
bilization threshold of 7%. A higher simplification ratio was used to
reduce the number of groups for ease of illustration.

6.3 Limitations
The main limitation of our method is that symmetry detection is solely
based on the structure of contour trees and our method fails when sym-
metric regions do not manifest as repeating subtrees of the contour
tree. Hence, our method does not perform well if the scalar field is
noisy and branches of the contour tree corresponding to noise have
high persistence or when the scalar field has large flat regions. The
hierarchy descriptor and the similarity measure we use for subtree
matching is a good estimate but not as accurate as examining the com-
plete branch hierarchy. Further our method ignores the geometry of
repeating regions. Hence it is possible that regions with different ge-
ometry are grouped together and regions with similar geometry are
grouped differently. These limitations present interesting challenges
that we plan to address in future work.

7 APPLICATIONS

We utilize the symmetric patterns to enhance the classical visualiza-
tion techniques, volume rendering and isosurface extraction, and to
facilitate data exploration. The data used to illustrate all applications
is a 3D Taylor-Green vortex flow simulation on a Cartesian grid.

7.1 Symmetry-aware Transfer Function Design
A good transfer function assigns color and opacity values to each point
of a volume in a manner that highlights important features of the vol-
ume. Designing good transfer functions is a challenging problem in
visualization. Transfer functions that are typically used assign color
and opacity values based on scalar field value at each point of the vol-
ume. Such transfer functions will not be able to highlight different
features of the volume if they belong to the same range of function
values. To overcome this problem, contour trees have been used to de-
sign spatially aware transfer functions by assigning different transfer
functions to different branches of the contour tree [46, 53]. However,
these methods do not detect repeating patterns in the domain while
assigning different transfer functions. Our method can be used to clas-
sify regions into different groups based on symmetry. Distinct regions
belong to different groups and can be assigned different transfer func-
tions while repeating regions within the same group can be assigned
the same transfer function, thus highlighting repeating patterns in the
domain.

Figure 11(a) shows a volume rendered image of the 3D Taylor-
Green vortex flow data. Rendering the entire volume to show all fea-
tures often results in visual clutter. We identify symmetric regions in
the domain and assign different transfer functions to different patterns
in the scalar field distribution, as shown in Figure 11(b). These repeat-
ing regions can also be examined in isolation, see Figures 11(c) - 11(f).
Classification of regions of the domain into different groups allows the
user to examine similar regions of interest in the context of the rest of
the volume while remaining unobstructed by other features in the vol-
ume. We achieve this by assigning a high opacity transfer function to
regions that belong to the group and a low opacity transfer function to
the rest of the volume, see Figures 11(g) - 11(h). Similarly, it is pos-
sible to hide repeating occurrences of a feature, thereby allowing the
user to focus on the unique features in the volume.

7.2 Symmetry-aware Isosurface Extraction
Volumetric data is often analysed by extracting different isosurfaces
and studying their properties. The number of components in the iso-
surface for a given isovalue can be quite large. Data exploration via
isosurfaces often becomes difficult because the larger components may
occlude the smaller components. For instance, if an inner component
is nested within a bigger outer component, then a user may miss the in-
ner component as it is completely hidden. Users could use cut-section
views to clearly see the components of interest, see Figures 12(a) -
12(b). Such steps often hinder the data exploration process since users
have to manually hide parts of the isosurface that are not of interest.

Our classification of regions into different groups can be used for
effective isosurface extraction. Each component of an isosurface be-
longs to a unique branch of the contour tree. We use the group in-
formation of the branches of the contour tree to classify the different
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Fig. 11. Symmetry-aware transfer function design. (a) Volume rendering of a 3D Taylor-Green vortex flow simulation data set. Traditional volume
rendering makes it difficult to distinctly highlight different features belonging to the same function range. (b) Symmetric or repeating patterns are
detected and highlighted by using a distinct transfer function for each symmetric group. (c) - (f) All occurrences of a single pattern can be examined
in isolation. (g) - (h) A pattern can be examined in the context of the rest of the volume without being obstructed by other features of the domain.

(a) (b) (c) (d)

Fig. 12. Symmetry-aware isosurface extraction. (a) Oval-shaped isosurface components are occluded by the surrounding isosurface components.
(b) Cut-section view of the isosurface that shows some of the oval components. (c) Group information computed by our method can be used to
highlight the oval-shaped components in blue, or (d) Hide rest of the components that occlude the oval-shaped components.

(a) (b) (c) (d) (e)

Fig. 13. Symmetry-aware isosurface extraction. (a) Traditional isosurface visualization extracts all isosurface components for a given isovalue
without differentiating between the various isosurface components. (b) Isosurface components are classified into different groups. Components
that are similar are shown with the same color. (c) - (e) Tools can be designed to allow the user to select a component and automatically show or
hide similar components.

components of a given isosurface. Highlighting the isosurface compo-
nents based on the group to which they belong can avoid problems of
occlusion and visual clutter while visualizing them, see Figure 13.

Our method can also be used for designing user interface tools that
can aid users in interacting with isosurfaces. For example, a user can
select an isosurface component and query for all components that are
similar to the selected component. All the selected components could
then be optionally shown or hidden. Such tools are popular in image
manipulation software and extending them to isosurface visualization
will help users effectively explore their data. Attention can be easily
directed towards components of interest without having to navigate
through components that are not relevant.

8 CONCLUSIONS AND FUTURE WORK

We have described a method for detecting symmetry in scalar field
topology. Our method analyses the contour tree of a data set and uses
a similarity measure based on persistence to group together similar
subtrees of the contour tree. Symmetric regions are then extracted
from subtrees belonging to the same group. Our method is efficient
in terms of computational time and memory usage. We show appli-
cations of scalar field symmetry detection to transfer function design
and isosurface extraction. We believe that our method will find several
more applications in areas related to data exploration and visualiza-
tion. A possible application is to automate the process of identifying
the presence of a predefined feature in a dataset. The contour tree for
the predefined feature can be generated and our similarity measure can
be used to identify if the feature is present by comparing each subtree

of the contour tree of the input dataset with the contour tree corre-
sponding to the predefined feature. Such an automated matching can
be quite beneficial when manual analysis is tedious as in the case of
identifying all occurrences of a given pattern or searching through a
repository of data sets for the occurrence of a predefined pattern.

Since our method for symmetry detection is based on contour trees,
it fails to detect symmetric patterns in the domain that do not manifest
as similar subtrees in the branch decomposition hierarchy. Another
limitation of our method is that it is restricted to identifying regions
in the domain with similar level set topology and is insensitive to its
geometry. In such cases, an alternate representation of the scalar field
distribution may be able to detect symmetric patterns better. Identify-
ing symmetry in the geometry of the level sets is a direction for future
work and appears to be challenging. We are currently investigating
alternate methods for identifying symmetry based on a combination of
geometric and topological properties of the scalar field.
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