Distance between Extremum Graphs

Vidya Narayanan*

Dilip Mathew Thomas

Vijay Natarajan*

Indian Institute of Science, Bangalore

ABSTRACT

Scientific phenomena are often studied through collections of re-
lated scalar fields generated from different observations of the same
phenomenon. Exploration of such data requires a robust distance
measure to compare scalar fields for tasks such as identifying key
events and establishing correspondence between features in the
data. Towards this goal, we propose a topological data structure
called the complete extremum graph and define a distance measure
on it for comparing scalar fields in a feature-aware manner. We
design an algorithm for computing the distance and show its appli-
cations in analysing time varying data.

Keywords: scalar field topology, extremum graphs, distance mea-
sure.

Index Terms: 1.3.5 [COMPUTER GRAPHICS]: Computational
Geometry and Object Modeling

1 INTRODUCTION

Many scientific experiments and simulations measure physical
quantities over a domain of interest. The data thus generated is
commonly represented as scalar fields. In the past, there has been a
lot of research focus to develop methods to explore scalar field data
and to identify important features in the data. Collections of closely
related scalar field datasets like time varying data and ensemble data
are often generated by scientists to better understand the underlying
scientific phenomenon of interest. Newer paradigms are needed to
analyse such datasets. An important step in this direction is to de-
velop robust methods to compare similar scalar fields. In this paper,
we study the problem of quantifying the similarity between scalar
fields and show its applications in exploring time varying data.

The features present in a scalar field dataset play a key role in
understanding the properties of the scientific phenomenon being
studied. Therefore, it is pertinent to design similarity measures
for comparing scalar fields in a feature-aware manner. Topologi-
cal methods using abstract representations of the scalar field have
been quite successful in the exploration and visualization of scalar
fields. Hence, it is natural to examine similarity between scalar
fields based on the similarity between their topological abstractions.
This has led to the development of distance measures like the bar-
code metric, the bottleneck distance, the interleaving distance, and
the functional distortion distance.

The extremum graph is a topological data structure introduced
by Correa et. al. to design a visual representation of scalar fields
called topological spines and captures the proximity between the
extrema in the scalar field [10]. We construct a complete extremum
graph that captures the proximity between every pair of extrema.
To compare two scalar fields, we design a distance measure based
on the maximum weight common subgraph between their complete

*e-mail:sercvidya@ssl.serc.iisc.in
Te-mail:dilip@csa.iisc.ernet.in
fe-mail:vijayn @csa.iisc.ernet.in

extremum graphs. Since computing the maximum common sub-
graph is costly, we leverage the hierarchical structure of the com-
plete extremum graph to compute the distance measure. Before we
describe the proposed method, we briefly review existing methods
for comparing scalar fields.

® W)

i

@®©@ @) @)

Figure 1: A merge tree, and its superset, the contour tree, captures
the nesting structure of level sets. For the two functions shown
above (blue and red), no branch decomposition of the merge tree
(below) reflects the correspondence between both maxima b to b’
and ¢ to ¢’. The extremum graph (dashed) captures proximity be-
tween the extrema and can provide a more intuitive correspondence
between them.

1.1 Related Work

The size and complexity of scalar field datasets make it impracti-
cal to compare them directly in a feature-aware manner. Several
distance measures defined on topological abstractions have been
proposed in the literature to compare them indirectly. Topologi-
cal methods associate a notion of importance, called persistence,
with topological features in scalar fields [13]. Persistence diagrams
encode the persistence of features as points in a plane [9]. The
persistence diagrams of two scalar fields may be compared and the
similarity between them can be measured using a distance function
like the bottleneck distance. For this, the maximum of the supre-
mum distance between a point and its image under L., norm is con-
sidered for a given mapping between the points. The bottleneck dis-
tance considers distances measured by all possible mappings and is
the infimum among them. It is known that the persistence diagram
is stable under perturbations of the underlying function. Therefore,
a large bottleneck distance implies that the underlying functions
are also dissimilar. Closely related to the persistence diagrams is
the barcode descriptor which represents persistence of features as
intervals in the real line and has been used as a shape descriptor for
point clouds [8]. The barcode metric to compare them is computed
using a maximum weight bipartite matching that maximizes the in-
tersection between the interval representation of the features. The
persistence diagram representation of a scalar field does not cap-
ture the neighbourhood relationship between the features since no

adjacency constraints are imposed on the points in the persistence
diagram. This limits their use for comparing scalar fields.

The Reeb graph of a scalar field is a topological data structure
that tracks the changes in the number of connected components of
its level sets. Recent years have seen distance measures defined on
Reeb graphs and its simpler variant called the merge tree. Moro-
zov et al. define a distance between two merge trees called the in-
terleaving distance. They consider two continuous maps that shifts
the points in each merge tree onto the other under certain constraints
and define the interleaving distance as the smallest possible shift un-
der which such maps exist [18]. Beketayev et al. propose another
distance measure on merge trees by examining the branch decom-
position representations of a merge tree with the aim of identify-
ing isomorphic subtrees through cost functions for matching and
removing vertices in the branch decomposition representation [2].
The distance is defined as the minimum cost for generating iso-
morphic subtrees among all possible branch decompositions of the
two merge trees. Similar to the interleaving distance, Bauer et al.
define the functional distortion distance between two Reeb graphs
by considering two continuous functions that map points in each
Reeb graph onto the other and minimizing, among all maps, the
distortion in the scalar values of the points under the map and their
composition [1].

While the above methods define distances between topological
structures in a rigorous manner, several methods use simpler no-
tions to identify similarity between scalar fields. One such ap-
proach is to define a similarity score between the Reeb graphs and
its loop-free variant, namely, the contour tree and has been used for
matching shapes [17, 34] and identifying repeating features [29].
Saikia et al. recently introduced the extended branch decomposi-
tion graphs as an efficient data structure to encode branch decom-
positions of all subtrees of the merge tree. This is used to iden-
tify repeating features and periodicity in time varying data through
a matching procedure based on dynamic programming [23]. The
ability of the extremum graph to capture proximity relationship
of the features has been used to identify similar features within
a dataset by comparing the geodesic distance between pairs of
extrema computed using an augmented version of the extremum
graph [30]. Other approaches compare level sets using their mutual
information and shape descriptors for identifying important isoval-
ues [5, 16] and repeating features [28] respectively. The correlation
between different functions which are not necessarily similar but
defined on the same domain have also been studied for exploring
multifield data [19, 24, 25].

The graph structure of the Reeb graph and merge tree natu-
rally enforces adjacency constraints on the features in a scalar field.
However, these constraints relate to the merging and splitting of
level sets and an edge may connect features that do not have close
proximity. Figure 1 shows two simple 1D functions with different
nesting structures of the sublevel sets in the merge tree. When these
functions are compared using merge tree based measures [2, 18],
the extrema b, ¢ and b', ¢’ will be simplified rather than matched.
On the other hand, extremum graph based measures can associate
these extrema and their descending manifolds intuitively because
they are based on proximity. The extremum graph is designed to
capture the proximity of features in the field and our comparison
measure therefore enforces proximity based constraints. Further,
while most of these structures are graphs, graph theoretic distance
measures [6, 7] have not been adapted for the purpose of comparing
them. The complete extremum graph structure we introduce allows
us to design maximum common subgraph based distances for com-
paring extremum graphs. Our distance measure is feature-aware
and inherently handles topological noise that appear as insignificant
features.

1.2 Contributions

We introduce a new distance measure between extremum graphs of
scalar fields. The following are the main contributions of this paper:

e We introduce the notion of a complete extremum graph that
associates proximity information for all pairs of extrema in
the extremum graph. The construction helps define a distance
between extremum graphs even when they differ in terms of
the number of maxima. We describe a simple algorithm to
construct the complete extremum graph.

e We introduce a feature-aware distance measure between ex-
tremum graphs. Our distance measure is based on the max-
imum common subgraph of the complete extremum graphs.
We discuss graph pruning and partitioning strategies to effec-
tively compute the distance measure.

e We demonstrate the effectiveness of the distance measure by
applying it to understand periodicity and to track features in
time-varying data sets.

2 COMPLETE EXTREMUM GRAPHS

In this section we discuss the complete extremum graph and de-
scribe an algorithm to compute it.

2.1 Extremum Graphs

Let f: D — R be a scalar function defined on a smooth n-
dimensional manifold, D. For x € D, if the gradient Vf(x) = 0,
x is called a critical point of f on D. All other points are called reg-
ular. The function f is called a Morse function, if all critical points
are non-degenerate i.e., the Hessian matrix of second order partial
derivatives is non-singular. Critical points can be classified using
an index which equals the number of independent directions along
which f decreases. The index of a minimum is 0 and of a maximum
is n. Saddles have indices from n — 1 to 1. Gradients are well de-
fined for regular points. Morse functions allow for a decomposition
of the domain D based on the integral curves of Vf. The union of
all integral curves that terminate at a maximum define the descend-
ing manifold of that maximum. An analogous segmentation can be
considered based on minima and their ascending manifolds [12].

Correa et. al [10] introduced the extremum graph structure to
develop a planar visual representation of a scalar field called topo-
logical spines. An extremum graph is a representation of the Morse
decomposition. The graph is called a maximum (minimum) graph,
when the decomposition is based on the descending (ascending)
manifolds. For many datasets, prominent features are expressed by
either its descending or ascending manifolds. For such data, the
extremum graph provides a suitable abstraction by representing its
features and their proximity. As the maximum graph of f is equiv-
alent to the minimum graph of —f, we restrict our discussion to
maximum graphs and refer to them as extremum graphs.

We combinatorially represent the extremum graph of a scalar
field f: D — R by EG¢(V,E). The vertex set V consists of the
maxima of f. A pair of vertices v; and v; share a saddle s;; if paths
of steepest ascent from s;; terminate at v; and v;. The edge (vi,v j)
is used to denote this adjacency between the descending manifolds
of v; and v;. S(v;,v;) denotes the saddle associated with the edge
(v,', 1% j)-

To identify similarity between scalar fields, we define a dis-
tance measure over extremum graphs that takes into account the
edge structure while trying to minimize the perturbation required
to match its vertices. Our aim is to compare the underlying fields
based on the distortion that needs to be introduced in them such
that their extremum graphs become identical — given a threshold,
8, can a correspondence be achieved between the vertices such that
the underlying function needs to be modified by at most §, under a

suitable norm? Under this correspondence, is the edge structure of
the extremum graph maintained?

2.2 Complete Extremum Graphs

A pair of extremum graphs can differ in the number of maxima they
represent and their adjacency relationships. In order to compare
them, we introduce the notion of a complete extremum graph. The
complete extremum graphs allows edges between all pairs of ver-
tices in the graph. It associates with each vertex, a cost that depends
on the perturbation necessary in f to simplify the extremum. It as-
sociates with each edge, the cost of introducing it. This cost repre-
sents the extent of perturbation required in f to introduce a shared
saddle between the descending manifolds of the two end point max-
ima of the edge. This allows for comparing proximity relationships
between all pairs of maxima. An importance measure that is often

B B

© (d)

Figure 2: Extremum graphs provide an abstraction of scalar fields
and encodes adjacency relationships between its extrema. (a) shows
a 2D scalar function overlayed with its extremum graph. (b) The ex-
tremum C can be simplified by a merger into extremum D, follow-
ing which D becomes adjacent to A and B, after this simplification
A and B appear much farther away in the graph. (c) shows a com-
binatorial representation of the extremum graph. (d) Simplification
of vertex C into vertex D involves contraction of edge (C,D).

associated with critical points is its persistence [14]. Consider the
extremum graph in Figure 2. The maximum C can be simplified
by merging it with an adjacent maximum D. In terms of the under-
lying function f, the maximum C and the saddle S(C,D) = S are
cancelled by reversing the gradient flow direction along that path.
To realize this modification, the function f has to be modified by
at most f(C) — f(s). This introduces adjacencies between the sur-
viving maximum D and the other neighbours of C. The maximum
C and its associated edges are removed. In terms of the combina-
torial graph, this refers to contracting the edge (C,D). To optimally
simplify a function f, with respect to the L. norm, edges can be
ordered according to the function difference their removal demands
and simplified in increasing order. The persistence of a critical point
refers to the difference associated with it at the time of its removal.

Hierarchical structures have been introduced for Morse-Smale
complexes [3], contour trees [21, 27], and extremum graphs [10].
They simplify extrema in increasing order of persistence and update
the edge structure based on the simplification. Such approaches al-
low for addition of edges between surviving maxima. A natural
cost that can be associated with the inserted edge is the persistence
of the merged maximum that introduces it. However, there are two
issues with this approach. First, simplification strictly follows the
order of persistence. If persistence values are not well separated,

a small perturbation in function values can lead to different graph
representations. These choices further restrict subsequent simpli-
fications and make comparisons difficult. Second, persistence is a
measure designed to identify the minimum perturbation necessary
to simplify extrema. The edge structure that follows the simplifica-
tion is a consequence of this choice. Therefore, the simplification
threshold at which an edge appears can overestimate the perturba-
tion necessary to introduce adjacencies. In Figure 2, the maxima A
and B can be made adjacent by merging the intermediate maximum
C with A. However, persistence directed simplification will merge
¢ with D. Following this simplification, A and B appear to be fur-
ther away in the graph. Although persistence provides an intuitive
measure of importance for vertices, the ensuing simplification can
provide an unintuitive measure for the edges. This motivates the
design of a new measure that captures the cost of introducing an
edge in the extremum graph.

Let <vi,p1,p2,-.-,Pn,v2 > be a path between maxima v; and
vy in the extremum graph. If all the intermediate maxima p; can
be simplified and merged into the end points, v; and v, become ad-
jacent. The perturbation required for this simplification, estimates
the cost for introducing the edge via that path. The minimum cost
over all paths between a pair of maxima provides an accurate cost to
introduce the edge between them. Edges cannot be independently
eliminated during simplification. The cost of eliminating an edge is
implicitly equivalent to eliminating one of its vertices. We therefore
only consider edges, whose costs do not exceed the persistence of
its end points and bound edge costs by the minimum of the persis-
tence of its end points.

We represent the complete extremum graph as an attributed
graph G¢(V,E). The vertices of the graph are identical to the ver-
tices of the extremum graph. We associate with each vertex v;,
its persistence denoted by P(v;). The edges of the complete ex-
tremum graph extends the edge set of the extremum graph by in-
cluding edges between all pairs of maxima.The cost of an edge is
denoted by C((v;,v;)) such that C((v;,v;)) < min(P(v;),P(v})).
We normalize all scalar functions to have the range [0,1] ensur-
ing 0 <P(v;) <1and 0 <C((v;,v})) < 1. The persistence of the
global maximum is set to 1. We derive a distance measure between
extremum graphs based on these vertex and edge attributes.

2.3 Computation

We compute the extremum graph based on an approximate Morse
decomposition [31]. The approximate decomposition is fast and
dimension independent but may introduce saddles between pairs
of maxima whose descending manifolds do not share a saddle in
the true decomposition. Since we generate a complete graph, these
additional edges have little consequence. Computing all paths be-
tween every pair of maxima is computationally infeasible. We only
require the minimum cost of a path between a pair of maxima. We
compute this by modifying the simplification algorithm to consider
all relevant paths between maxima.

Algorithm 1 generates the complete extremum graph Gf(V,E')
for an input extremum graph EG;(V,E) by computing persistence
‘P for all maxima and edge costs C for all pairs of maxima. Edges of
the extremum graph are inserted in a priority queue, Q. The priority
of an edge (v;,v;) with saddle S(v;,v;) = s is the cost of simplifying
the edge, i.e., f(vi) — f(s). We assume that f(s) < f(v;) < f(v;)
and simplifying an edge implies cancelling the maximum v; and
saddle s to merge them into v; . Note that the priority of an edge in-
dicates the function modification required to simplify the edge and
the cost associated with each edge indicates the function modifica-
tion required to introduce the edge. When an edge is popped from
the priority queue, unlike persistence simplification, where all the
other edges associated with that maximum are deleted, we retain
all other edges for subsequent simplification along other paths. We
introduce new edges between the neighbours of the simplified max-

imum v; and the surviving maximum v;. The set of neighbours of a
vertex v is denoted by N(v).

Note that while the other edges associated with the simplified
maximum are retained, each edge is simplified only once. The
value associated with new edges introduced due to simplification
is not less than that of the simplified edge. During simplification,
an edge may appear between an already adjacent pair of maxima.
Suppose, an edge exists between a pair of maxima with cost c. Af-
ter further simplification, if another edge is introduced between the
same pair at a cost ¢’ > ¢, that introduces a higher saddle, we only
update the saddle. Since edge costs are computed in a monotoni-
cally increasing fashion, the higher saddle is only used for pairs that
have cost greater than ¢’

Figure 3 shows a few steps in the construction of the complete
extremum graph for the graph shown in Figure 2. First, edge (F,G)
is popped, and the persistence of vertex F is recorded. As the vertex
F has no neighbours, no further edges are added. The next edge
with lowest function difference is (C,D) and is popped from Q .
The persistence of the vertex C is recorded. By simplifying vertex
C, the maximum D now neighbours maxima A and B. The simplified
edge (C,D) is considered processed and the vertex C and D are no
longer not considered neighbours in subsequent steps. As edges
associated with C are still maintained in Q, (C,A) is popped. The
persistence of C is not changed and this simplification is used to
identify and add the edge (A,B). Next (C,B) is simplified followed
by (A,E) introducing (E,D) and the persistence of A is recorded. The
remaining edges are processed similarly.

F F
°
¥
Y
G
B B
(a) (b)
F F
[)
A
D E
G
B

(d) (©)

Figure 3: Construction of the complete extremum graph. (a) Input
extremum graph EG. (b) (F,G) is processed. (C,D) is processed
introducing (A,D) and (B,D). Other edges associated with C are
retained.(c) (C,A) is processed and (A,B) is introduced. (d)(A,E) is
processed introducing (E,D).

3 DISTANCE BETWEEN EXTREMUM GRAPHS

To compute the distance between a pair of extremum graphs, we
adapt the maximum common subgraph based measure [7] to the at-
tributed complete extremum graphs. We find a correspondence be-
tween the vertices of the complete graphs with pairwise constraints
enforced by the edge costs. The quality of correspondence between
a pair of vertices is measured by the difference in the persistence of
the maxima they represent and is refered to as vertex distortion. As
the graph is complete, a pair of vertex correspondences determines
their edge correspondence. The difference in the cost associated
with the corresponding edges indicates the quality of the edge cor-
respondence and we refer to this difference as edge distortion. Low

Algorithm 1: CEG-SiMP Complete Extremum Graph

Input: Extremum Graph EG¢(V,E)
Output: Complete Extremum Graph G/(V,E’), P and C
for each (v;,v;) € E do
C((vi,vj)) =0
Q.push((vi,v,))
L Pl = P(ey) =
hile ! pg.empty() do
(vi,v;) = Q.pop()
ProcessedEdges.insert((vi,v;))
E/ E/ (V,‘,Vj)
s=8(vi,vj)
¢ = priority((vi,v;))
if P(v;) =00 then
(vi) =
N(vi) N(V:)\Vi
N(vj) =N(vj)\vi
for ll e (v,) and (V',v;) & ProcessedEdges do
S(V,vi)
1fC((v ,vj) > c then
C((V’«W)) =
S(V,vj) =+
Q.push((v',v}))
else if f(s") > f(s) then
SW,vj) =+
Q.push((v',v,))
for (vi,v;) € E' do
L C((vi,v))) = min(C((vi,v;),min(P(vi), P(v)))

1% priority((vi,v;)) = f(vi) — f(5)*/

=

u‘\l

/* Update cost*/

/* Update saddle*/

edge distortion between the edges of the complete extremum graphs
indicates high structural similarity between the extremum graphs
being compared. We introduce a parameter that controls edge dis-
tortion and compute vertex distortions introduced by mappings that
satisfy the edge constraints introduced under this parameter.

3.1 Maps between extrema

Let G¢(V,Ey) and G¢(U,E,) be the complete extremum graphs of
f:D—[0,1]and g : D — [0, 1]. We extend the vertex set of G by
a set of dummy vertices to obtain V U {¢‘V|+1,¢|V|+2, e ¢|V|+‘U|}.
We extend the edge set of G to include edges (v;, ¢) between all
pairs of dummy vertices ¢; and vertices v;. We similarly extend
the vertex and edge set of G¢ and represent its dummy vertices by
v. The attributes of the dummy vertices and edges are set to 0.
We denote a mapping between vertex v; and u; as v; — uj. As the
vertex mapping induces a map on the edges, corresponding edges
are denoted as (v;,v;) — (ug,u;).

Amap F :V — U, is called p-valid for p € [0, 1] and denoted by
Fp if it is bijective and the edge distortion of corresponding edges
is bounded by p. As we extend both vertex sets to contain |[V|+ |U|
vertices, bijective maps can be found for all values of p. Given a
valid map F)p, we measure the vertex distortion between individual
maximum that have been mapped. The vertex distortion under a
map F, is denoted by d}/p with d%p (viuj) =|Pvi) —Puj)|.

As the attribute associated with a dummy vertex is 0, correspon-
dences involving a dummy vertex, i.e., v; = Vj, implies simpli-
fication of the vertex v; and its vertex distortion is equal to its
persistence. Similarly, we denote the edge distortion by dfp and

it is bounded by p, by definition of a valid map, dfp (vi,vj) —

(u,u)) = |C((vi,v;)) = C((ux,17))| < p . We assume the edge dis-
tortion involving a dummy edge is 0. Figure 4 describes a valid map
with p = 0.25 between two complete extremum graphs.

3.2 Distance between extremum graphs

The individual distortions of the vertices and edges is used to com-
pute the maximum distortion of the vertex set and edge set, which
is in turn used to compute a distance between the two gr%phs. We
define a distance DY (V,U) between the vertex sets and D% (E,, E,)

Figure 4: For p =0.25, the figure shows a possible map between the
two complete extremum graphs. Dummy vertices are inserted into
each graph to obtain a bijective map. Edges are labelled with their
corresponding edge cost. The correspondence A — 0 and C — 2 sat-
isfies the p criterion since |C((A,C)) —C((0,2))| =10.35—0.10] <
0.25. The correspondence B +— 1 cannot be included since (A,B)
and (0,1) cannot be mapped within a distortion of 0.25 though
(B,C) and (1,2) satisfy the condition. Correspondences that in-
volve a dummy vertex are indicated with dotted edges. The vertex
distortion for this map can now be computed based on the differ-
ence in the vertex attributes of the corresponding vertices.

between the edge sets of the complete graphs based on the maxi-
mum distortion introduced by the map F),. The distance between
the vertex sets is indicative of the quality of the correspondence be-
tween the features of the functions being compared in terms of their
persistence. The distance between the edge sets indicates how well
the proximity relationships between pairs of extrema are preserved.
D%p (Gr,Gg) = max,cy d%p (v F(v))

D} (Gy,Gy) = max(,, v ek df, (viyvj) = (F(v),F(v)))

The distance between the graphs Gy and G is defined
as the sum of the distance between their vertices and edges.
Each map gives an estimate of the distance between the two
graphs that measures the distortion in the graph induced by
that map. For a fixed p, the minimum over all possi-
ble maps gives the true distance between extremum graphs.
DE (Gy,Gg) = D, (Gy,Gg) +Df, (Gy, Gy)

Dp(EGf,EGg) = Dp(Gy,Gg) = min{DE(G 1, Gy)|F is p-valid }

3.3 Composition of Maps

Let Fp, be a p-valid map between complete extremum graphs
Gy(V,E,) and G4(U,E,) due to functions f and g respectively.
Let G¢ be a £-valid map between complete extremum graph
G,(U,E,) and G;(W,E,;) due to functions g and h respec-
tively. Consider the composition map H = G o F' between
G(V,E,) and G,(W,E,,). First, H is a p + & valid map. Let v; # v;
and v; = wy, and vj — wy, under H due to maps v; — ug, v;j — u;
under Fp and uy — wy, and u; — wy, under Gg. As Fp and Gé
are bijective, wy,, # w,. The edge distortion introduced by H on
iy vj) = Wiy wa) = |C((vi, vj) = C((Wm, wn))|
IC((visv)) = C((wims wa))| < |C((visv) = C((ur,ur))
+C((ux,u1)) = C((Wim, wn))|
< 1C((vi,vj) = C((uge,)
+1C((ue, 1)) = C((Wimy wn))|
<p+¢&

As edge distortions introduced by H is bounded by p + &, H is a
p + & valid map. The distortion induced by H,, ¢ on the vertex v;
is bounded by the distortions induced by F on v; and G¢ on u;.

dpy, . vi wi) = [P (i) = P(w))|
=[P i) = P(uj) +P(u;) = Pwg)|
<[Pvi) = P(uj)| +[P(uj) = P(w)l

:d};/p(v,' > uj)+dg§ (uj — Wk)

3.4 Metric Properties

We now verify that our distance measure Dy (G r, G) satisfies prop-
erties of a metric.

1. D(Gy,Gg) > 0. By definition, as all vertex and edge distor-
tions are non-negative, this is true.

2. D(Gy,Gg) =0 < Gy = G,. We first prove the implication

in the forward direction, Assuming all extrema have strictly
positive persistence, to achieve a distance 0, all dummy ver-
tices of G should map to dummy vertices in Gg. All non-
dummy vertices should map to corresponding non-dummy
vertices that have identical persistence giving zero distortion.
If the edge costs are not identical between the graphs, all ver-
tices can only be mapped under p > 0. Since the distance is
0, both the edges and vertices have identical attributes leading
to G F= Gg.
The implication in the other direction follows from the fact
that an identity map Fy : V — V with p = 0 assigns a dis-
tance of 0, which is the minimum distance that can be attained.
Hence, D(Gf,G,) = 0.

3. D(Gf,Gg) = D(Gy,Gy). By definition of the vertex and edge
distances, D is a symmetric measure. For a map F that attains
minimum distortion between G f and G, F —1 attains the same
distortion between G and Gy.

4. D(Gy,Gg) + D(Gg¢,Gy) > D(Gy,Gy). From the composi-
tion of maps and bounded distortion of individual vertices and
edges, the triangular inequality holds.

3.5 Computation

By definition, to compute the distance D, between two complete
extremum graphs, one requires a p-valid map between the extrema
that introduces minimum distortion. One way to encode all valid
maps is by considering a product graph. Let the two graphs to
be compared be G¢(V',E,) and G¢(U',E,). We extend the ver-
tex and edge sets as described in the map computation and denote
the extended vertex sets as V and U respectively, with [V| = |U| =
[V'|+|U’|. The product graph P(V x U, E) contains |V| x |U| ver-
tices of the form p(v;,u;). Vertex p indicates a possible correspon-
dence between its factor vertices v; and u;. The weight of a vertex
is defined as w(p(vi,u;)) = 1 —d(v; = uj) = 1 — |P(v;) = P(u;)|.
In practice, we only require |V’| 4 |U’| vertices in the product graph
to identify vertices that will be simplified. So, inserting one dummy
vertex to each extremum graph and manipulating weights and edges
is sufficient for computation.

We use the validity constraints to introduce edges in the product
graph. An edge exists between vertex pj(v;,u;) and pa(vg,up) if
vi # vic, uj# upand [C((vi,ve)) — C((uj,m))| < p

Any p—valid map is now represented by a maximal clique in
the product graph. The weight of a maximal clique is defined as
the minimum weight of any vertex it contains. Note that since the
cliques are maximal, trivial cliques are avoided. In practice, when
we are interested in determining the actual correspondence as op-
posed to just the distance, the weight of a maximal clique can be
defined as the sum of its vertex weights.

An optimum map that minimizes the distortion between G and
Gg is now a maximum weight clique in the product graph. The
vertices of the maximum clique provide the correspondences of the
optimum map.

To compute the optimum correspondence map and thereby the
distance Dy (Gy,Gyg), we can enumerate all maximal cliques in P
and identify the maximum weight clique C, [4]. While we use the
Bron-Kerbosch algorithm to enumerate cliques, any weighted max-
imum clique enumeration algorithm can be used to compute the
optimum map. Enumerating cliques has exponential time complex-
ity and is feasible only for small graphs. We discuss some generic
pruning strategies to sparsify product graphs as well as some ap-
proaches to partition extremum product graphs in order to reduce
the search space.

3.5.1 Pruning

We prune the product graph to remove vertices and edges that can-
not be a part of any maximum weight clique. The weight of any
maximal clique is a lower bound on the weight of the maximum
clique, Wy, in P. We compute a lower bound, Wy, for W, by
computing a greedy clique. We order the vertices of P based on
their weights and degrees i.e., deg(p(v,u)) - w(p(v,u)) and itera-
tively pick the next vertex that satisfies clique conditions.

P is a product graph and each maximal clique computes a corre-
spondence that respects edge constraints defined by the parameter
p. We can adapt the maximum weight bipartite matching to com-
pute a bottleneck distance [11], that gives an optimum correspon-
dence when no pairwise constraints are imposed by p. Hence, this
cost, W, on the set of factor vertices, is an upper bound for W,.

Now, for each edge in the product graph, we compute an upper
bound on the weight of a maximum clique that contains this edge.
Let N(x) represent the neighbours of a vertex x(v,u) in the product
graph and W (S) be the weight of the maximum clique restricted to
a set of vertices S C V x U. Let W,;,(S) be the maximum bipartite
matching cost between the factored vertices of S. Any maximal
clique containing the edge between x and y is entirely contained in
the intersection of their neighbourhoods by definition of a clique.
Therefore, W (N(x) NN(y)) < W, (N(x) NN (y)).

W(x)+ W (y) + W, (N(x) NN(y)) < Wy, implies that the weight
of any maximal clique containing the edge (x,y) does not exceed
the lower bound. Therefore, pruning the edge (x,y) from P does not
affect the maximum weight clique. Once edges have been pruned,
vertices can also be pruned in a similar fashion. A vertex x(v,u) is
pruned if W(x) + W, (N(x)) < Wpp.

Further, based on the application, vertices and edges can be ad-
ditionally pruned using geometric information and constraints. An
edge in the product graph refers to a pair of vertices in each com-
plete extremum graph. If these vertices are expected to maintain
similar geodesic or euclidean distance between them, the edges of
the product graph may be pruned based on such properties.

3.5.2 Partitioning

While pruning helps in reducing the number of edges and vertices
in the product graph, direct construction of the maximum clique
remains impractical. We leverage the fact that the importance of a
feature is captured by the persistence of maxima, to partition the
product graph and process the partitions in an importance-aware
manner. The maximum weight clique is constructed incrementally
by restricting the computation to a growing subset of the product
graph.

We order the factored vertices in the increasing order of their
persistence values, P. To identify threshold values that denote a
relatively significant change in persistence between vertices, we
plot the difference between the persistence of the ordered vertices,
P(i+1)—"P(i). A peak in this difference plot indicates a significant

change in the persistence values and we identify the persistence as-
sociated with these points as thresholds. We restrict thresholds to
have a minimum separation of 1% of the function range.

After identifying a set of thresholds T{ry >} > --- > 1, }, we
partition the vertex set of the product graph based on it. We de-
note the partially computed maximum clique as a set of vertices
C'. In each iteration i, we consider only those vertices p(v;,u;),
whose minimum persistence value min{P(v;),P(u;)} is at least t;.
We consider the graph induced by these vertices and enumerate the
maximum clique for it. Vertices that indicate a correspondence be-
tween non-dummy vertices are added to C’. We then prune the
product graph by eliminating vertices that are not adjacent to all
the vertices in C’. Vertices that indicate a dummy correspondence
are included in the next iteration along with vertices that satisfy the
next threshold. In the last iteration, all dummy correspondences are
also included in C'.

4 APPLICATIONS

T T T \ \ \ \ \
o, e o,..\!w. .(cet’g\. (e;o: \ 7 ;‘\ /,‘:.\ @ ‘;v\
© (3 . (9 o © © A © oo € 3 o
X ° ° °9 & . _—
1 - -
0 [2 . [
0 20 40 60 80 100 120

Figure 5: The plot shows distances computed between consecutive
time steps for a synthetic time-varying dataset. The distance plot
helps in summarizing the dataset, peaks in the plot indicate frames
that have a large distance with respect to the previous time step,
indicating an event of importance. The peak at time step 24 occurs
due to the creation of a new feature in the bottom right.

Time varying data is often available for a large time period due
to the nature of the physical phenomenon or a high time resolution
simulation. Visualizing the data frame by frame is tedious. Dis-
tance measures can be used to provide an overview of the entire
sequence of data. This can help in identifying frames of significant
activity, series of time steps that are stable and other interesting pat-
terns such as periodicity in the data. Further, correspondence based
distance measures also facilitate tracking features across time steps.
In time varying scalar fields, these patterns and variations are often
captured by the changes in its topological abstractions across time
steps. Figure 5 shows the distance plot computed between consec-
utive time steps of synthetic dataset. Peaks in the plot refer to a
pair of time steps that show significantly higher distance, they in-
dicate time steps that involve creation or merger of features. Peaks
at time step 24, 32 and, 54 appear due to creation of new extrema.
Over time, these features merge and this event can be seen as peaks
at time step 96 and 98. We now discuss some applications of our
distance measure to a few time varying datasets that validate and
illustrate its usefulness.

4.1 Periodicity in Time-Varying Data

Identification of periodicity in a time-dependent data is critical to
understanding the underlying phenomenon and validating simula-
tions. Figure 6 shows a few time steps of the Bénard—von Karman
vortex street formed by a flow around a cylinder simulation' that
exhibits periodic vortex shedding [33]. To verify that our distance
function indeed identifies the known periodicity in this data [23],
we compare each time step with all other time steps of the dataset.

IThis data set has been simulated by Tino Weinkauf [32] using the Free
Software Gerris Flow Solver [22] and is available from http://people.mpi-
inf.mpg.de/ weinkauf/notes/cylinder2d.html.

YY) v
5 A s

Figure 6: Time-step O (top), 38 (middle) and 75 (bottom) of the flow
around a cylinder simulation. This simulation is time dependent
with a time period of 75, these time steps appear similar. The vortex
shedding alternates between the two sides of cylinder with a time
period of 38. Time step 38 appears symmetric to time step 0 and
75. The extremum graph is overlayed in yellow.

0.2 -

0 |
NS TRRNITA NIRRT TATI AT RERIYRIARIYRTRIYR ARTRRINTTA FURNERIRTA ERRUTNYINA A RERIRITRANRERAVINT AYRVTNTINTI ARCRIVRITRL CRVPATINTTA FENUVRIRRIANCE)
0 75 150 225 300 375 450 525 600 675 750 825 900 975

900 o 22

Figure 7: To identify periodicity, we compare the extremum graph
of each time step with all 1000 time steps of the data. The line
plot above shows distances computed between time step 0 and time
steps 0-1000. The time steps are indicated on the x-axis and dis-
tance is indicated on the y-axis. The plot below shows distances
computed with respect to time step 22, 38, 58 and 75. From both
plots, a time period of 38 can be identified.

To ensure that edge constraints are strictly enforced, we use a low
p = 0.001 across all comparisons. Figure 7 shows the vertex distor-
tion plots for a few time steps. Each time step is compared against
all time steps. We can observe from the distance plot that the simu-
lation is periodic. The time period of this simulation is known to be
75, the plot however indicates a time period of 38. This is due to
the alternating nature of vortex shedding from the two sides of the
cylinder as shown in Figure 6. Since the distance measure is over
the extremum graph, the symmetric nature of these oscillations are
identified.

4.2 Correspondence and Tracking of Features

When data is time-varying, one is often interested in tracking fea-
tures identified in one time-step, across all other time-steps. The
ability to perform such tracking greatly aids in visualizing the fea-
tures of a dataset. In this example, we show that the correspon-
dences found based on the complete extremum graph are intuitive
and use them to track features across time steps. We compute cor-
respondences between adjacent time steps and propagate the corre-
spondence by transitivity across all time steps to uniquely identify a
feature. The complete graph structure allows us to compare features
irrespective of instabilities in the merging order of the extrema or
geometric overlap in the features. Figure 8 shows the first few time
steps of the turbulent vortex flow data®. In order to show the cor-
respondence in the turbulent vortex flow, we compute iso-surfaces

Zhttp://vis.cs.ucdavis.edu/TVDR/Vortex/

Figure 8: To track features in the turbulent vortex data, we compare
the complete extremum graphs of consecutive time steps. Tracked
features across time steps 2, 4 and 6 are shown on the left. Low
opacity values indicate higher structural distortion in the complete
extremum graph. Three features are shown in isolation on the right,
the violet feature undergoes a split. The green and brown features
merge, the purple feature grows.

of the volume at an iso-value that is 50% of the maximum vortic-
ity magnitude in each dataset [26]. The correspondence established
between the descending manifolds is mapped to the parts of the
iso-surface that lie in that descending manifold and is indicated by
its color. The complete extremum graph implicitly handles merg-
ing and splitting of the extrema features. Figure 8 (right) shows
three features in isolation from time steps 2 and 7. The violet fea-
ture splits. The green and brown features merge and the purple
feature grows. To label a feature that corresponded to a dummy
vertex, as in the case when a feature splits, we adopt the label of
its parent feature according to the persistence based simplification
order. As the goal here is to compute correspondences and track
as many features possible, we compute correspondences at various
p levels. We compute a set of p values based on the peaks in the
difference plot of the edge costs. We map the lowest p value at
which a feature is mapped inversely to its opacity, indicating the
extent to which the graph structure with respect to that feature is
similar across time steps. Note, the violet feature in the bottom and
the yellow feature in the center of the tracked frames in Figure 8,
these features undergo merges and splits and their transparency in-
dicates that the variation in their edge structure is relatively higher
as compared to other features. To speed up clique computation,
we consider only vertices with persistence > 10% of the function
range and also prune them based on the moments of the descending
manifold [15].

5 CONCLUSION

We presented a distance measure to compute the similarity between
scalar fields and showcased its applicability in understanding time
varying datasets. We introduced a complete extremum graph struc-
ture that captures proximity information between all pairs of ex-
trema and computed maximum weight common subgraphs to deter-
mine the similarity between fields. Graph based distances are typi-
cally hard to compute and have exponential complexity in the worst
case, we discussed pruning and partitioning strategies to effectively
compute the distance measure. However, the distance computation
is not real time. Other strategies and heuristics based on the ex-
tremum graph structure to improve computational aspects can be
further worked upon.We used application specific schemes to iden-
tify p values, a general approach to efficiently compute optimal
values needs further investigation. The complete extremum graph
structure provides a way of relating all pairs of extrema based on
function perturbation. It would be interesting to see if this informa-
tion can be effectively employed in other similarity measures that
are easier to compute, such as shape distribution [20], to understand
scalar fields. Finally, while the complete extremum graph is de-
signed to mitigate the effects of instabilities due to binary choices
that are inherent in simplification based approaches, we intend to
perform a thorough analysis of the stability of this distance func-
tion in the future.

ACKNOWLEDGEMENTS

This work was partially supported by the Department of Science
and Technology, India, under Grant SR/S3/EECE/0086/2012. Vi-
jay Natarajan was supported by a fellowship for experienced re-
searchers from the Alexander von Humboldt Foundation and by the
Robert Bosch Centre for Cyber Physical Systems, Indian Institute
of Science.

REFERENCES

[1] U. Bauer, X. Ge, and Y. Wang. Measuring distance between Reeb
graphs. In SOCG’14, page 464, 2014.

[2] K. Beketayev, D. Yeliussizov, D. Morozov, G. . H. Weber, and
B. Hamann. Measuring the distance between merge trees. Topological
Methods in Data Analysis and Visualization 111,

Mathematics and Visualization. Springer-Verlag, 2013.

[3] P-T. Bremer, B. Hamann, H. Edelsbrunner, and V. Pascucci. A topo-
logical hierarchy for functions on triangulated surfaces. Visualiza-
tion and Computer Graphics, IEEE Transactions on, 10(4):385-396,
2004.

[4] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an
undirected graph. Commun. ACM, 16(9):575-577, Sept. 1973.

[5]1 S. Bruckner and T. Moller. Isosurface similarity maps. Comput.
Graph. Forum, 29(3):773-782, 2010.

[6] H. Bunke. On a relation between graph edit distance and maximum
common subgraph. Pattern Recognition Letters, 18(8):689-694, 1997.

[7] H. Bunke and K. Shearer. A graph distance metric based on the max-
imal common subgraph. Pattern recognition letters, 19(3):255-259,
1998.

[8] G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas. Persis-
tence barcodes for shapes. In Proceedings of the 2004 Eurographic-
s/ACM SIGGRAPH symposium on Geometry processing, pages 124—
135. ACM, 2004.

[9] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persis-
tence diagrams. Discrete & Computational Geometry, 37(1):103-120,
2007.

[10] C. Correa, P. Lindstrom, and P.-T. Bremer. Topological spines: a
structure-preserving visual representation of scalar fields. Visualiza-
tion and Computer Graphics, IEEE Transactions on, 17(12):1842—
1851, 2011.

[11] H. Edelsbrunner and J. Harer. Computational topology: an introduc-
tion. American Mathematical Soc., 2010.

[12] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical morse
complexes for piecewise linear 2-manifolds. In Proceedings of the sev-

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

[27]

[28]

(29]

(30]

(31]

[32]

(33]

[34]

enteenth annual symposium on Computational geometry, pages 70—
79. ACM, 2001.

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological per-
sistence and simplification. Discrete and Computational Geometry,
28(4):511-533, 2002.

H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-sensitive
simplification functions on 2-manifolds. In Proceedings of the Twenty-
second Annual Symposium on Computational Geometry, SCG ’06,
pages 127-134, New York, NY, USA, 2006. ACM.

J. Flusser, B. Zitova, and T. Suk. Moments and moment invariants in
pattern recognition. John Wiley & Sons, 2009.

M. Haidacher, S. Bruckner, and M. E. Groller. Volume analysis us-
ing multimodal surface similarity. /EEE Trans. Vis. Comput. Graph.,
17(12):1969-1978, Oct. 2011.

M. Hilaga, Y. Shinagawa, T. Komura, and T. L. Kunii. Topology
matching for fully automatic similarity estimation of 3D shapes. In
SIGGRAPH, pages 203-212, 2001.

D. Morozov, K. Beketayev, and G. Weber. Interleaving distance be-
tween merge trees. Discrete and Computational Geometry, 49:22-45,
2013.

S. Nagaraj, V. Natarajan, and R. S. Nanjundiah. A gradient-based
comparison measure for visual analysis of multifield data. Comput.
Graph. Forum, 30(3):1101-1110, 2011.

R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape distribu-
tions. ACM Transactions on Graphics (TOG), 21(4):807-832, 2002.
V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. The toporrery:
computation and presentation of multi-resolution topology. In Math-
ematical Foundations of Scientific Visualization, Computer Graphics,
and Massive Data Exploration, pages 19—-40. Springer, 2009.

S. Popinet. Free computational fluid dynamics. ClusterWorld, 2(6),
2004.

H. Saikia, H.-P. Seidel, and T. Weinkauf. Extended branch decomposi-
tion graphs: Structural comparison of scalar data. Computer Graphics
Forum (Proc. EuroVis), 33(3):41-50, June 2014.

D. Schneider, C. Heine, H. Carr, and G. Scheuermann. Interactive
comparison of multifield scalar data based on largest contours. Com-
puter Aided Geometric Design, 30(6):521-528, 2013.

D. Schneider, A. Wiebel, H. Carr, M. Hlawitschka, and G. Scheuer-
mann. Interactive comparison of scalar fields based on largest con-
tours with applications to flow visualization. [EEE Trans. Vis. Com-
put. Graph., 14(6):1475-1482, 2008.

D. Silver and X. Wang. Volume tracking. In Visualization’96. Pro-
ceedings., pages 157-164. IEEE, 1996.

S. Takahashi, Y. Takeshima, G. Nielson, and I. Fujishiro. Topologi-
cal volume skeletonization using adaptive tetrahedralization. In Geo-
metric Modeling and Processing, 2004. Proceedings, pages 227-236.
IEEE, 2004.

D. Thomas and V. Natarajan. Multiscale symmetry detection in scalar
fields by clustering contours. IEEE Transactions on Visualization and
Computer Graphics, 99(PrePrints):1, 2014.

D. M. Thomas and V. Natarajan. Symmetry in scalar field topology.
IEEE Trans. Vis. Comput. Graph., 17(12):2035-2044, 2011.

D. M. Thomas and V. Natarajan. Detecting symmetry in scalar fields
using augmented extremum graphs. /EEE Trans. Vis. Comput. Graph.,
19(12):2663-2672, 2013.

D. M. Thomas and V. Natarajan. Detecting symmetry in scalar
fields using augmented extremum graphs. Visualization and Computer
Graphics, IEEE Transactions on, 19(12):2663-2672, 2013.

T. Weinkauf and H. Theisel. Streak lines as tangent curves of a de-
rived vector field. [EEE Transactions on Visualization and Com-
puter Graphics (Proceedings Visualization 2010), 16(6):1225-1234,
November - December 2010.

H.-Q. Zhang, U. Fey, B. R. Noack, M. Konig, and H. Eckelmann. On
the transition of the cylinder wake. Physics of Fluids (1994-present),
7(4):779-794, 1995.

X. Zhang, C. L. Bajaj, B. Kwon, T. J. Dolinsky, J. E. Nielsen, and
N. A. Baker. Application of new multi-resolution methods for the
comparison of biomolecular electrostatic properties in the absence of
global structural similarity. SIAM J. Multiscale Modeling and Simula-
tion, 5:1196-1213, 2006.

