
Reconstruction of 3D Neuronal Structures

A Thesis

Submitted For the Degree of

Master of Science (Engineering)

in the Faculty of Engineering

by

Kanuj Kumar

Computer Science and Automation

Indian Institute of Science

BANGALORE – 560 012

February 2013

i

c©Kanuj Kumar

February 2013

All rights reserved

To

My parents and my brother

You are the roots on which I have sustained myself more often than you believe.

Acknowledgements

This thesis would not have been possible without the friendship, support and contribu-

tions from many people. I would like to acknowledge their support and assistance.

Many of the ideas presented in this thesis come from fruitful conversations and joint

work done with my research advisor Dr Vijay Natarajan. It is under his supervision and

advice that I could accomplish the work that lead to this thesis. Even during his busiest

times, he was so kind to answer my questions thoroughly and efficiently. My heartfelt

appreciation and deepest thanks for his patient encouragement and support during the

early part of my studies.

I am also thankful to Prof. S. K. Sikdar, for his valuable feedback and for providing

the datasets to base my research on. Along the same line I would like to thank his

students Nirnath and Kalyan for performing the experiments to generate the datasets.

I would like to thank my lab mates Dilip and Sandeep, as it was their efforts that

helped me debug various parts of my code. I learned a lot of things from them in the

time they spent doing so. Their help and friendship is gratefully acknowledged.

I would also like to express my sincere gratitude to the chairman, Prof. Y. Narahari

for the support and encouragement given to me.

i

Abstract

The three-dimensional reconstruction of neurons is crucial for accurate neurobiological

analysis. However, biologists have to rely on time-consuming manual or semi-manual

methods to process the laser-scanned microscopy images into geometrical models that

in turn would lead to the creation of libraries of neuronal morphologies. Current tech-

niques for digitizing neuronal morphology in 3D entail manual tracing using commercial

packages such as NeuroZoom and NeuroLucida. Such methods introduce systematic

inaccuracies depending upon the individual performing the tracing, thus, necessitating

the need of fully-automated reconstruction methods for neuronal structures. Despite

the recent advancements, the automation of reconstruction process either doesn’t ex-

hibit robustness against noise of microscopy images or fail to capture precise dendritic

structures. Due to these conflicting requirements, a perfect reconstruction is impossible

making some user intervention necessary. In this thesis, we present a framework for re-

construction of neurons that is substantiated through the user validation of output from

each process within framework. The adaptive approaches outlined in this thesis were put

to use with the goal of enabling automated and flexible outputs to ensure a high quality

reconstruction.

Our framework also consists of methods to handle discontinuities in the microscopy im-

age to produce a connected geometrical model and is capable of working on varying

contrast and size of data.

ii

Contents

Acknowledgements i

Abstract ii

Keywords v

1 Introduction 1
1.1 Problem Definition . 2
1.2 Why the problem is Challenging? . 3
1.3 The Framework . 3
1.4 Thesis Organization . 5
1.5 Our Contributions . 5

2 Basic Concepts 7
2.1 Neuron Morphology . 7
2.2 Confocal Laser-scanning Microscopy (CLSM) 7
2.3 Dataset . 8
2.4 Segmentation . 10

2.4.1 Thresholding . 10
2.4.2 Morphological Operators for Binary Images 12
2.4.3 Neighbourhood Templates . 15
2.4.4 Moore-Neighbour Tracing Algorithm 16

2.5 Reconstruction . 17
2.5.1 Overview of the Problem . 17
2.5.2 Classification of Reconstruction Approaches 19
2.5.3 Voronoi Diagrams and Delaunay Triangulation 25
2.5.4 Beta Connection . 29

2.6 Tools and Libraries . 35
2.6.1 CGAL . 35
2.6.2 LibTIFF . 35
2.6.3 Paraview . 35

3 Related Work 36

iii

CONTENTS iv

4 Methodology and Implementation of Algorithms 45
4.1 Image Enhancement and Preliminary Filtering 45
4.2 Segmentation . 46

4.2.1 Algorithm . 46
4.2.2 Thresholding . 47
4.2.3 Morphological Operations . 49
4.2.4 Boundary Extraction and Contour Tracing 50
4.2.5 Connected Components Analysis And Extraction 53
4.2.6 Conclusion . 54

4.3 Reconstruction . 55
4.3.1 Why Beta Connection . 55
4.3.2 Decomposition of the reconstruction problem and related definitions 56
4.3.3 Algorithm . 59

4.4 Corrections . 71
4.5 Data Structure . 73
4.6 Complexity analysis . 76

5 Results 78

6 Conclusion and Future Work 91

References 93

Keywords

Neuron reconstruction. Contour Extraction. Beta Connection.

v

Chapter 1

Introduction

The nervous system of almost all animals consists of nerve cells, known as neurons. Differ-

ent information propagation and processing occurs as results of signal processing within

and among neurons. The morphology of neurons plays a decisive role in information

processing carried out by the entire nervous system. In this context, 3D reconstruction

of neuron morphology is of fundamental interest for the analysis and the understand-

ing of neurons functional characteristics. It significantly heightens the ability to process

geometrical information about neurons by facilitating visualization of the anatomical re-

lationships of neurons and their patterns of dendritic and axonal contact within nervous

tissue. It can also provide anatomical data for construction of electrical and biochemical

circuit models of neuron function that can be used in further computer simulations.

Because of the complex morphology of neuronal cells, reconstruction of a neuronal struc-

tures using a semiautomatic or manual systems is a time consuming task. The challenges

of analyzing optical neuron images typically include low signal-to-noise ratio, ambigui-

ties regarding the branching or crossing of neurites and the linking of fragmented neurite

segments. These challenges makes it virtually impossible to develop fully automatic re-

construction techniques for our purpose. The precision of automatic methods is also

limited by the quality of the reconstruction algorithm used and usually suffers from var-

ious algorithmic constraints. Thus, the goal of decreasing the necessary expense of user

interaction often acts contrary to ensure the accuracy and the topological correctness of

the models.

1

Chapter 1. Introduction 2

Due to the low accuracy and incomplete results of automatic procedures that are now

available, geometric reconstructions are commonly done manually with programs such as

NeuroLucida (MicroBrightField) 1 or Neurozoom2. The accuracy of these manual recon-

structions, however is strongly dependent on individual data interpretation to estimate

mid-lines and diameters of neuron structures in the images. While a few techniques of

varying degrees of automation have been suggested for digitizing neuronal morphology

from laser-scanning microscopy images, the limited size of the data sets that can be han-

dled, and the general requirement for extensive manual editing renders these techniques

impractical in most cases, especially for reconstructing entire neurons at high resolution.

A primary goal of our approach is the development of an automated system for accurate

3D reconstruction of neuron morphology, capable of handling input data independent

of the scale of the images. As we place emphasis on our framework to create flexible

models, experience of the human anatomist becomes necessary to validate the output

of process in the framework. However, in contrast to standard manual reconstruction

techniques, we kept the requirement of minimal user assistance to reconstruct the model.

1.1 Problem Definition

We define a reconstruction of a neuron as a process that generates a 3D model and

fulfills the following requirements: (i) sufficient accuracy of the reconstructed model

can be accomplished, (ii) topological constraints based on the assumption of a tree-

like structure must be fulfilled, (iii) the amount of the user’s time and effort should be

reasonably small, (iv) allows user intervention to correct any unsatisfactory outputs, and

(v) should be fast and make efficient use of memory.

1Glaser and Glaser, Neuron imaging with NeuroLucida, 1990
2Neurome, Inc

Chapter 1. Introduction 3

1.2 Why the problem is Challenging?

The major challenges are involved in the segmentation of the structure from the mi-

croscopy images due to noise imposed by imaging conditions. These challenges include:

(i) variable contrast of structure in images due to uneven dye distribution within the cell,

(ii) intensity decay along the z-axis due to microscopic resolution, (iii) partial volume

effect dependent on point spread function (PSF) of the microscope, and (iv) insufficient

imaging resolution due to low signal-to-noise ratio (SNR). These challenges cause seg-

mentation errors, resulting in self-intersecting and fragmented structures. These inferred

errors then restrict to maintain the precision and the topological properties for the re-

constructed structure.

Most of the existing methods can handle these imperfections by introducing global prior

information, such as where a neurite segment starts and terminates, however, manual in-

corporation of such global information can be very time consuming. Automation is thus

a better alternative. However, tools capable of resolving neuronal morphology on both

local and global scales, and with sufficient automation, are limited by the skeletonisation

methods used, and by quantization errors arising from insufficient imaging resolution.

Most of the prior work on segmentation process (described in chapter 3) rely on filters

optimized for images conforming either to the method used to obtain the data or the

scale of the data. Thus the demand for the reconstruction tool capable of handling

structures independent of the scale is not answered by existing automated methods.

1.3 The Framework

We designed a framework that addresses the problem defined in section 1.1 and relieve the

user from manual tracing of the structures in the images, thereby eliminating subjective

estimations and imprecision due to the users haste or exhaustion. The framework and

the pipeline for reconstruction of neuron structures are shown in Figure 1.1. It requires

minimal user interaction for noise removal or to extract different contours components

from images. However, the reconstruction process is executed independent of the user’s

Chapter 1. Introduction 4

knowledge. Each process in the framework requires an input parameter along with the

data to control the resultant output. The fact that the parameters of the framework can

be adapted depending on the represented neuron structure or noise in the image, shows

its adaptability to generate an adequate segmentation of structures of different sizes.

In our framework, the task of reconstruction of the neuron structure from image data is

Figure 1.1: The framework for reconstruction

split into two modules. The first processing module is the segmentation, which is used to

extract representative boundary of neurite structures from the given image data. Surface

is then generated in the reconstruction module from the segmented structures. In our

framework, an automated pipeline can also be deduced by initializing the parameters,

which can be later refined by performing parameter selection analysis (explained in

chapter 4).

Segmentation The segmentation module starts with computation of boundary poly-

gons based on locally adapted thresholds for an image. A connected 3D component is

Chapter 1. Introduction 5

then formed to filter the noisy structures that employs global connectivity among bound-

ary polygons. The choice of input parameters is assisted via immediate visualization of

results from the process.

Reconstruction The goal of the reconstruction module is to find a best surface consis-

tent with the extracted polygons. In our framework, the reconstruction module attempts

this construction of triangulation from the boundary polygons. This triangulation is ex-

tended further to create correspondence between polygons of adjacent slices. The general

principles that guides the volumetric reconstruction algorithm are described in section

2.5.1.

Corrections The goal of the correction module is to produce a connected structure

when the reconstruction module is unable to do the same. In order to achieve this, we

build a set of minimum-spanning-tree (MST) over the polygons in different connected

components and then establish a link between polygons if the corresponding pair is

connected by an edge in the MST.

1.4 Thesis Organization

Chapter 2 covers the definitions of the various terms and algorithms. Advantages and

limitations of relevant algorithms for neuron reconstruction is discussed in Chapter 3. In

addition to describing the overall framework, theory and implementation of each concept

is described in detail in Chapter 4. Chapter 5 demonstrates the results and performance

of the framework. Chapter 6 concludes the reconstruction framework.

1.5 Our Contributions

Our principal achievements toward a fast and automated system for reconstruction of

neuronal structures are

Chapter 1. Introduction 6

• minimal user time investment by use of automatic methods, while the user can

keep control over the algorithm to generate a flexible reconstruction.

• independence from imaging modalities, making it capable of working with varying

or discontinuous background intensities, contrast, or resolution in images.

• a novel approach to handle discontinuities in structures often present in microscopy

imagery to produce a connected model.

• an accelerated framework capable of processing adjacent pair of images in parallel.

Chapter 2

Basic Concepts

2.1 Neuron Morphology

There are different types and sizes of neurons that are classified by their structural and

functional characteristics. Generally, neurons consist of three main parts:

1. Soma is the central part of neuron and has a spherical shape with a diameter

varying from 4µm to 100µm.

2. Axon is a thin cable-like long extension of the neuron with tens of thousands times

the diameter of the soma. Many neurons have only one axon, but this axon may

branch out.

3. Dendrite is a branched projection of neuron extending for hundreds of micrometres,

whose overall shape and structure is referred to as a dendritic tree. towards soma.

2.2 Confocal Laser-scanning Microscopy (CLSM)

Confocal microscopy is an optical imaging technique that can scan a stained specimen

with high resolution. The key feature of this imaging technique is its ability to acquire

in-focus images from selected depths, a process known as optical sectioning. The basic

principle and working of the confocal microscopy imaging technique is explained in [19].

In this technique, back-scattered light is gathered confocally by using a spatial pinhole

7

Chapter 2. Basic Concepts 8

in an optically conjugate plane in front of a detector. Through this process most of

the photons coming from out of focus planes are filtered and only the light within the

focal plane can be detected. After scanning a two-dimensional layer of the specimen, the

laser beam focuses one layer deeper to scan the next 2D layer. In this way, the confocal

microscope constructs a 3D image stack of the specimen. The accuracy of the acquired

image depends on the raster scan, i.e. the spatial steps between different focuses. The

shorter the steps are, the bigger the resolution of the recorded image. Each pixel of the

image represents a focused point in the scanned specimen. Images acquired through this

technique are of sufficient resolution to enable the three-dimensional reconstructions of

complex structures such as neurons.

2.3 Dataset

The dataset is composed of stack of parallel 2D images acquired through CLSM or other

imaging modalities. Each 2D image is considered as a 2D matrix, where each component

of the matrix represents the intensity value of a pixel. In this context, the image stack

is a function I(x,y,z) that maps voxel coordinates onto their intensity values. For the

remainder of this thesis, the z-axis will refer to the axis parallel to the optical axis, while

the x-y plane will refer to the imaging plane.

To demonstrate the performance of the framework, we have acquired following datasets

recorded with confocal microscopy where each dataset consists of artifacts or noise in-

herent from the mechanism of how it was obtained. We are thankful to Prof S K Sikdar

(MBU, IISc) and his students for performing the experiments to generate the datasets.

Dataset I [Figure 2.1a]: This dataset shows the subicular pyramidal neuron cells from

rat hippocampi. Images were acquired with through CLSM loaded with calcium stained

dye. The dataset consists of 47 steps with voxel resolution of 0.65 µm in the x-y axis and

0.5 µm in the z axis. Excitation wavelength was set to 488 nm with index of refraction

corresponding to that of the water. The depth of image is 8 bits/pixel with resolution

of 512x512 in x-y scale.

Chapter 2. Basic Concepts 9

Dataset II [Figure 2.1b]: This dataset shows the CA3 pyramidal neuron from the rat

hippocampi. Images were acquired with CLSM loaded with Diaminobenzidine dye. The

dataset consists of 36 steps with voxel resolution of 1.0 µm in the z axis. In this dataset,

dendrites project in all directions from the soma, generally having wider apical segments

that taper with distance from the soma. The axon is not visualized in this image.

(a) Dataset I (b) Dataset II

Figure 2.1: CLSM scan of (a) subicular pyramidal neuron (b) CA3 pyramidal neuron

The major challenges posed by these datasets are:

• diffraction effects causing a spread of a point object in the image characterized by

the point spread function.

• variable contrast due to uneven dye distribution within the cell causing apparent

discontinuity in structures.

• many features of interest (such as thin dendrites) are at the limit of imaging reso-

lution.

Chapter 2. Basic Concepts 10

2.4 Segmentation

2.4.1 Thresholding

Thresholding is one of the simplest and least computationally intensive technique for

image segmentation that considers pixels intensity as the measure to generate a binary

image. The pixel value of the resulting binary image either corresponds to a background

or foreground (represented structure raw images). The key parameter in the thresholding

process is the choice of the threshold value, which could be done manually or through

automatic methods. Based on the survey of methods given in [53], the algorithms for

thresholding are classified as:

Histogram based methods use the peaks, valleys and curvatures of the histogram

to define the threshold. For example, Sezan[47] carries out the peak analysis by con-

volving the histogram function with a smoothing and differencing kernel and reduces

the histogram to a two-lobe function. The threshold is then selected from the histogram

lobe. Following the similar pattern, Carlotto[11] and Olivo[39] carry out the multi-scale

analysis of the probability function of histogram. The threshold is defined as the valley

point the first peak in the smoothed histogram. This threshold position is successively

refined over the scales starting from the coarsest resolution.

Clustering based methods cluster the gray-level intensities as background and fore-

ground or alternately model them as a mixture of two Gaussians. Riddler[43] advanced

one of the first iterative schemes based on two-class Gaussian mixture models. At ev-

ery iteration a new threshold is established using the average of the foreground and

background class means. The iterations terminate when the changes between successive

thresholds become sufficiently small. Otsu[40] suggested minimizing of the weighted sum

of within-class variances of the foreground and background pixels to establish an opti-

mum threshold. This method gives satisfactory results when the numbers of pixels in

each class are close to each other.

Chapter 2. Basic Concepts 11

Entropy based methods exploit the entropy of the distribution of the gray levels

in a images. Kapur et. al.[29] consider the image foreground and background as two

different signal sources, and choose an optimal threshold when the sum of the two class

entropies reaches its maximum.

Object attribute based methods search for a measure of similarity (such as fuzzy

shape similarity, edge coincidence) between the gray-level intensity and the binarized

images. Leung and Lam[32] define the thresholding problem as the change in the un-

certainty of an observation on specification of the foreground and background classes.

This reduces the class uncertainty of a pixel, and the information gain is measured by a

predefined function. The optimum threshold is then established as generating a segmen-

tation map that, in turn, minimizes the average residual uncertainty about which class

a pixel belongs to after the segmented image has been observed.

Spatial methods use higher-order probability distribution or correlation between pix-

els neighbourhood. Pal[41] suggest the use of concurrences probability of the gray values

for threshold selection, realizing that two images with identical histograms can have

different nth order entropies due to their spatial structure.

Local methods adapt the threshold value on each pixel to the local image character-

istics such as range, variance, or surface-fitting parameters of the pixel neighborhood.

White and Rohrer[56] compare the gray value of the pixel with the average of the gray

values in some predefined neighborhood of the pixel. If the pixel is significantly darker

than the average, it is denoted as foreground; otherwise, it is classified as background.

Chapter 2. Basic Concepts 12

2.4.2 Morphological Operators for Binary Images

The theory of different morphological operators explained here, has been adapted from

[23]. In binary morphology, an image is viewed as a subset of an Euclidean space Rd or

the integer grid Zd, for some dimension d.

Structuring element The basic idea in binary morphology is to probe an image with

a simple, pre-defined shape, drawing conclusions on how this shape fits or misses the

shapes in the image. This simple “robe” is called structuring element and is itself a

binary image (i.e. a subset of the space or grid). For example, let E = R2; then the

structuring element B is an open disk of radius r, centered at the origin. Let E be a

Euclidean space or an integer grid, and A a binary image in E.

Erosion The erosion of the binary image A by the structuring element B is defined

by: A 	 B = {z ∈ E|Bz ⊆ A}, where Bz is the translation of B by the vector z, i.e.,

Bz = {b+ z|b ∈ B},∀z ∈ E.

When the structuring element B center is located on the origin of E, then the erosion

of A by B can be understood as the locus of points reached by the center of B when B

moves inside A. For example, the erosion of a square of side 10, centered at the origin,

by a disc of radius 2 is a square of side 6 centered at the origin (Figure 2.2). The erosion

of A by B is also given by the expression: A	B =
⋂
b∈B

A−b.

Figure 2.2: Erosion of the dark-blue square by a disk, resulting in the light-blue square

Chapter 2. Basic Concepts 13

Dilation The dilation of the binary image A by the structuring element B is defined

by: A⊕B =
⋃
b∈B

Ab Since the dilation is commutative, it can also be given by: A⊕B =

B ⊕ A =
⋃
a∈A

Ba If structuring element B has a center on the origin, as before, then the

dilation of A by B can be understood as the locus of the points covered by B when the

center of B moves inside A. In the above example, the dilation of the square of side 10

by the disk of radius 2 is a square of side 14, with rounded corners, centered at the origin.

The radius of the rounded corners is 2 (Figure 2.3). The dilation can also be obtained

by: A⊕ B = {z ∈ E|(Bs)z ∩ A 6= ∅}, where Bs = {x ∈ E| − x ∈ B}, i.e. symmetric of

B.

Figure 2.3: Dilation of the dark-blue square by a disk, resulting in the light-blue square
with rounded corners

Opening The opening of A by B is obtained by the erosion of A by B, followed by

dilation of the resulting image by B: A ◦ B = (A 	 B) ⊕ B. It is also given by :

A ◦ B =⊆ A
Bx

⋃
Bx, which means that it is the locus of translations of the structuring

element B inside the image A. In the above example, the opening is a square of side 10

with rounded corners, where the corner radius is 2 (Figure 2.4).

Figure 2.4: Opening of the dark-blue square by a disk, resulting in the light-blue square
with round corners

Chapter 2. Basic Concepts 14

Closing The closing of A by B is obtained by the dilation of A by B, followed by

erosion of the resulting structure by B: A • B = (A ⊕ B) 	 B. It can also be obtained

by: A • B = (Ac ◦ Bs)c, where Xc denotes the complement of X relative to E, i.e

Xc = {x ∈ E|x /∈ X}. It means that the closing is the complement of the locus of

translations of the symmetric of the structuring element outside the image A. In the

above example, closing of the two squares by a disk, results in the union of the dark-blue

shape and the light-blue areas as shown in Figure 2.5.

Figure 2.5: Closing of the two squares by a disk, resulting in the union of two squares

Closing and opening operators together serves as a basic workhorse of morphological

noise removal in binary images. Opening removes small objects from the foreground

(usually taken as the dark pixels of an image) and places them in the background, while

closing removes small holes in the foreground, changing small islands of background into

foreground.

Chapter 2. Basic Concepts 15

2.4.3 Neighbourhood Templates

Moore neighborhood It comprises of eight cells surrounding a central cell on a two-

dimensional square lattice. It is similar to the notion of 8-connected pixels as shown in

Figure 2.6.

Figure 2.6: 8-connective (Moore neighborhood)

Von Neumann neighborhood It comprises of four cells orthogonally surrounding a

central cells on a two-dimensional square lattice. It is similar to the notion of 4-connected

pixels as shown in Figure 2.7

Figure 2.7: 4-connective (Von Neumann neighborhood)

Chapter 2. Basic Concepts 16

2.4.4 Moore-Neighbour Tracing Algorithm

The boundary pixels of the structures, obtained after segmentation, in itself do not

define the link among them. Thus to convert the image pixels into numerical data

contours we need to have an algorithm that can do just so. The idea behind the use

of Moore neighborhood tracing algorithm is to find the link among pixels of the given

boundary structure. The Moore’s algorithm is defined as follows: The Moore’s algorithm

Algorithm 1
Input A square(pixel) tessellation, T(image) containing a connected component P of
boundary pixels.
Output A sequence B (b1, b2, ..., bk) of boundary pixels i.e. the contour
Definitions M(a) = Moore neighborhood of pixel a, p = the current boundary pixel,
c = current pixel under consideration, b = backtrack of c (i.e. neighbor pixel of p that
was previously tested)

B ← ∅
for iy := 1 to height do . From bottom to top

for ix := 1 to width do . From left to right scan the cells of T
if (ix, iy) is white then . until a white pixel, s, of P is found

s = (ix, iy)
Insert s in B.
p = s
b = (ix−1, iy)
c = next clockwise pixel (from b) in M(p).
while c do 6= equal s do

if c is white then . backtrack
Insert c in B . move the current pixel c
b = p . to the pixel from which p was entered
p = c
c = next clockwise pixel (from b) in M(p)

else . advance
b = c
c = next clockwise pixel (from b) in M(p).

end if
end while

end if
end for

end for

terminates after visiting the start pixel for the second time.

Chapter 2. Basic Concepts 17

2.5 Reconstruction

2.5.1 Overview of the Problem

The problem of reconstructing the surface of a solid object from a series of parallel

planar sections (referred hereinafter simply as slices) is to find a surface consistent with

the observed polygons (or contours) in slices where each section consists of a set of closed

polygons that define the boundary of the material of interest to be modeled. This kind of

reconstruction should handle three intrinsic subproblems as defined by Meyers et. al.[34]

and Bajaj et. al.[5] namely, the Correspondence, the Tiling, and the Branching problem.

Correspondence Problem

The correspondence problem arises when an object is represented by more than one

contour in any of the sections of a data set. When that is the case, it is necessary

to determine which of the contours in section are to be connected to contours of the

adjacent sections. For example, we can think of an object as being composed of a

number of tubes joined at branches where the number of contours representing an object

in a section change (see Figure 2.8). A solution to the correspondence problem must

Figure 2.8: Represent the different solution for correspondence between contours in (a)

determine how best to connect the contours of a data set in light of these possibilities.

Chapter 2. Basic Concepts 18

Figure 2.9 shows how correspondence between contours can be handled in many ways.

(a) (b) (c) (d)

Figure 2.9: Represent the different solution for correspondence between contours in (a)

Tiling Problem

A solution of the tiling problem for a pair of planar polygonal contours is a piecewise

planar surface having the contours as boundary curves. Since the surfaces of real objects

do not self-intersect, a condition that the triangles in the surface do not intersect except

along their edges can be added to obtain the solution to tiling problem. Figure 2.10

shows an example of the tiling problem and its solution. The tiling problem is easy to

(a) (b)

Figure 2.10: Different solutions to the tiling problem for contours in (a)

solve if the contours have similar shape, size and orientation. If they do not, as is often

the case in real-world data, computing an acceptable tiling is more difficult. Part of the

problem is that the mesh may contain unusually large triangles.

Chapter 2. Basic Concepts 19

Branching Problem

Branching problem is related with handling the saddle points that may appear in the

models. At a branch, a single tube can split into several tubes or some number of

tubes may merge and then split again into a different number of tubes (see Figure 2.8).

Figure 2.11 shows some cases that an algorithm for automatic branch construction should

handle.

(a)

(b) (c)

Figure 2.11: Different scenarios to be handled by branching problem

2.5.2 Classification of Reconstruction Approaches

The problem of reconstructing 3D models from 2D contours has been studied over many

years. In order to contextualize the methodology proposed in our work, we show how

alternative methods take advantage or lack in generating the volumetric reconstructions.

Optimization Methods Optimal approaches employ graph theory and dynamic pro-

gramming strategies to build a 3D model. For example, in the work by Keppel[26], he

reduced the problem of constructing a triangulated approximation to the surface between

Chapter 2. Basic Concepts 20

a pair of contours to a search problem on a toroidal graph. He used maximization of

enclosed volume as a metric for the search problem. The main difficulty with this method

is that it required convex contours in the cross sections, thereby increasing computation

time for breaking down non-convex into convex contours. Sloan and Painter[52] describe

some improvements to the graph search used in the optimizing algorithm that result in

a constant factor speedup of the algorithm. The Levins[30] method builds a set of in-

termediate contours by interpolating the adjacent contours in the z-direction with cubic

B-splines, in order to solve the branching problem. It is based on calculating the distance

field for each point of each section, where contours can be regarded as iso-curves with

an iso-value of zero. The main limitation of this method is the large number of triangles

obtained in the surface. Meyers[35] used the polygonal form of skeleton called medial

axis to obtain information about the relationships of vicinity among the regions where

ramifications occur. The possible types of connections among skeleton loops helped to

classify the ramifications, however, the method does not work correctly in the cases of

ramifications from many-to-many contours. In addition, the projections on a same plane

of the contours related with the ramification can intercept each other.

Composite Contour Methods In this approach, contours are modified in sections

for constructing a tiling when faced with branching objects. The most commonly used

approach is to form composite contours from the post-branch contours. The section of

the post-branch contours is treated as if it were two sections, one matching the section

of the pre-branch contours and the other matching the section following the post-branch

contours. Christiansen and Sederberg[13] describe a method which forms composite

contours by adding a vertex between adjacent contours to model the saddle surface

implied by the contours. It connects contours in neighboring slices by mapping their

bounding box onto a unit square using the shortest edge to make a connection. In

complex boundary regions, they resort to user interaction to guide a solution. Shantz[48]

proposed a similar solution to the branching problem and went on to address issues

that arise when the shapes of contours on neighboring sections differ significantly. His

Chapter 2. Basic Concepts 21

strategy for composite contour construction used n − 1 minimum-length links to form

a composite from n contours, and resorts to user intervention to produce an acceptable

result. He also addresses the difficulty of tiling pairs of contours with significant shape

differences, by using the medial axis to improve the tiling in such cases. Ekoule et. al.[17]

describe a method for constructing tiling of branching objects that involves formation of

a composite contour that is then used at a level intermediate between the pre and post-

branch contours. They form composites by using the maximum area polygon formed from

the centroid of the contours to guide composite formation. Finally, a planar triangulation

is computed for the region interior to the composite but exterior to each of the contours

from which the composite was formed. A deficiency of this method is that it fails to

consider the shape of the pre-branch contour when choosing the locations at which it

joins the post-branch contours to form the composite.

Generalized Cylinder Methods In this approach, a generalized cylinder is used to

solve the correspondence problem. A generalized cylinder is a solid represented by an

axis curve in three space and a cross-section or sweeping function (that may be function

of the location along the axis curve). Branching objects are described using collections of

generalized cylinders. The efficiency of generalized cylinder methods depends to a large

extent on how well the objects of interest can be modeled by generalized cylinders. If the

objects of interest are not smooth and elongated, the generalized cylinder approach may

not work well. Even if the objects to be reconstructed are well suited to the generalized

cylinder approach, the success of generalized cylinder methods depends on the quality

of the rules used for constructing cylinders from the input contours.

Soroka[51] proposed a method that involves assembling contours into elliptical cylinders,

and then assembling them into objects. If many of the contours of an object are not ellip-

tical, the method would be unable to incorporate them into elliptical cylinders and would

be likely to fail. Bresler et. al.[6] present another way of using generalized cylinders to

determine correspondence. They define a likelihood function over a generalized cylinder,

based on the data collection method and a model of the objects to be reconstructed.

Chapter 2. Basic Concepts 22

Graph Based Methods Graph-based methods usually compute a minimum spanning

tree based on contour shape and position, or construct a graph based on Morse Theory

to represent contour connectivity for solving the correspondence problem. The main

limitation of the MST based algorithm is its inability to solve the correspondence problem

correctly for general graph topologies. Skinner[34] compute the minimum spanning tree

(MST) of the contour graph to solve the branching problem by assigning costs to the

edges of the graph. Shinagawa, Kunii and Kergosien[50] describe a method using Morse

Theory to construct a Reeb graph describing the connectivity of the contours in a data

set. Construction of the Reeb graph for a set of contours requires that the user specify

the topological genus of the object, and the number of connected components and genus

of each in the case of multiple objects. Giertsen, Halvorsen and Flood[22] describe a

structure very similar to the Reeb graph, but construct it manually during the process

of digitization of data from electron micrographs. Their solution to the correspondence

problem is essentially manual interaction, but uses the Reeb graph to organize the data.

The algorithm proceeds by making the highest priority connections in regions where

the number of contours in each section does not change, and then adds connections in

order of decreasing priority subject to the a priori knowledge of the number of connected

components and the topological genus. The quality of the results produced by this

method depends on the accuracy of the knowledge about topological genus and number

of connected components. For large spacing between sections, the authors state that a

complicated data set would require much human intervention. In the work by Jones and

Chen[25], they define a signed distance field to create an implicit function that, jointly

with Marching Cubes[31], is used to approximate the boundary surface of the original

object. The implicit function defines the correspondence automatically thus making it

difficult to choose the different connections.

Volume based Methods Volume reconstruction methods form a mesh over the cross

sections and then sculpt away parts of the mesh to make it agree with the data.

The approach that inspired many other works in the area was given by Boissonnat[3]. He

Chapter 2. Basic Concepts 23

used the projection of Voronoi skeletons from the contours in consecutive pairs of slices

to generate a graph. From this graph, a 3D Delaunay triangulation is constructed which

undergoes a tetrahedron elimination process to generate the volumetric model. Region

correspondence is defined both by the 3D Delaunay triangulation and the tetrahedron

elimination process. However, his method does not describe a solution to the branching

problem. Geiger[21] improved Boissonnats approach by handling the graph produced by

the projection of the 2D Voronoi diagram in order to handle complex branches and dis-

similar contours. Cheng and Dey[12] use Boissonnats theoretical results to reconstruct

surfaces without generating the 3D Delaunay triangulation. Later, Bajaj et. al.[5] used

the Voronoi skeletons generated from projections to generate the triangulation, where

correspondence among regions is implicitly defined by the surface properties. A difficulty

common to all such approaches is the geometric problems involved in computing projec-

tions and intersections. Also in the follow up of Boissonnat’s mathematical framework,

Nonato et. al.[37] explicitly derived a proximity measure from the 3D Delaunay triangu-

lation to determine the correspondence. His approach also guarantees that reconstructed

models are 3D manifolds.

Contour stitching Methods Most of the research on contour-based surface recon-

struction has focused on methods for connecting (stitching) the vertices of neighboring

contours into a mesh. Edelsbrunner and Mucke[16] presented a family of shapes (α-

shapes) that can be defined by a point set and generated by a Delaunay triangulation

based algorithm. However, the strategy adopted in (α-shapes does not ensure that the

resulting model is a PL-manifold. Bernardini et. al.[7] described an algorithm for creat-

ing surfaces from unstructured points by connecting three points that solely lie within

a sphere of user-specified radius to form a triangle. The sphere is pivoted around one

of the triangles edges until it comes in contact with another point. Amenta et. al.[1]

developed a surface reconstruction algorithm based on Delaunay triangulation and 3D

Voronoi diagrams. Given sufficient sampling of the underlying surface the reconstruction

is guaranteed to be topologically correct. Later, Amenta et. al.[2] performed surface

Chapter 2. Basic Concepts 24

reconstruction by first calculating a piecewise-linear approximation of the underlying

surfaces medial axis transform (MAT). The surface is then constructed by applying an

inverse transform to the MAT. Dey et. al.[14] extended this work with the Cocone al-

gorithm, which uses complemented cones of the Voronoi diagram to provide additional

guarantees about the reconstructed surface. The Cocone algorithm itself has been ex-

tended to produce watertight surfaces and to handle noisy input data.

Chapter 2. Basic Concepts 25

2.5.3 Voronoi Diagrams and Delaunay Triangulation

In this section, we briefly describe some definitions and properties of Voronoi diagram

and Delaunay triangulations as described in [37].

Let A = {x1, . . . , xn} be a set of points in general position in Rm, i.e., there is no

affine subspace of Rm containing A and there is no sphere Sm−1 through a subset of A

with m + k, k > 1 points. The Voronoi diagram for A is a decomposition of Rm into

m-dimensional convex cells V1, . . . , Vn with the following properties:

• Each Vi contains a single point xi of A.

• Given x ∈ Rm, x ∈ Vi if and only if d(x, xi) ≤ d(x, xj), for every i 6= j, where

d(x, xi) is the Euclidean distance between x and xi.

It has been shown earlier[4] that the intersection of k Voronoi cells, 2 ≤ k ≤ m + 1,

is either empty or is an (m − k + 1)-dimensional cell contained in the diagram and

a triangulation can be obtained from the Voronoi diagram by associating each of its

p-dimensional cells with an (m − p)-simplex. The triangulation so obtained is called

Delaunay triangulation, and it maintains a duality relationship with the Voronoi diagram.

From the duality relationship and the general position of the points it follows that each 0-

dimensional cell of the diagram is the center of a sphere circumscribing an m-simplex and

that this sphere does not contain in its interior any other points of A. This triangulation

in used in computing the mesh for the given cross sections (section 4.3.3). These can be

defined more formally as:

Empty sphere. The sphere S is called A-empty, if the open ball bounded by S does

not include any point of A.

Delaunay simplex A simplex with vertices in A is called Delaunay, if there exists a

A-empty sphere passing through all its vertices.

For example, considering the 2D case, each vertex in the Voronoi diagram (given by the

intersection of three Voronoi cells) is associated with a triangle (2-simplex); each edge is

associated with an edge of the triangulation (1-simplex); and each cell Vi is associated

with a vertex xi of the triangulation (0-simplex).

Chapter 2. Basic Concepts 26

Tetrahedra Classification

Let C1 and C2 be two sets of contours bounding regions contained in adjacent planar

sections P1 and P2 and DT the 3D Delaunay Triangulation of the vertices in C1 ∪ C2.

Based on contour orientation, such that the interiors of the regions are always on their

left-hand side, an edge of DT contained in P1 or P2 can be classified as either internal

or external to a region while edges on the contours are labeled as contour edges. The

tetrahedra of DT which have a face in P1(P2) and an opposite vertex in P2(P1) are clas-

sified as type 1 tetrahedra, or if they have an edge in each of the planes P1 P2, as type 2

tetrahedra. Based on the classification of its edges, a tetrahedron in DT is classified as:

Internal A tetrahedron with at least one edge internal to a region r is said to be an

internal tetrahedron of r.

External A tetrahedron with at least one external edge and no internal ones is said to

be an external tetrahedron.

Chapter 2. Basic Concepts 27

Redundant A type 2 tetrahedron with two contour edges is called a redundant tetra-

hedron.

Reverse Internal A type 2 tetrahedron whose edges in P1 and P2 are internal ones.

Reverse External A type 2 tetrahedron whose edges in P1 and P2 are one internal and

the other external.

Chapter 2. Basic Concepts 28

Voronoi Skeletons

Let V Di be the 2D Voronoi diagram of the vertices of contours Ci(i = 1, 2) in adjacent

planes Pi(i = 1, 2), respectively. The Voronoi skeleton of a region r ∈ Pi is defined as

the subset of the V Di edges that are dual to the DT internal edges with points in the

contours of Ci that bound r. Figure 2.12 shows a set of regions and their corresponding

Voronoi skeletons.

Figure 2.12: 2D Delaunay triangulation and the corresponding Voronoi Skeleton(orange)

Strong Overlapping Regions

Two regions r1 ∈ P1 and r2 ∈ P2 are defined as strong overlapping regions if the or-

thogonal projection of the Voronoi skeleton of r1 onto P2 intersects the Voronoi skeleton

of r2. The following two propositions (proven by Nonato et. al.[38]) shows that the

strong overlapping regions can be directly defined from the three-dimensional Delaunay

triangulations.

Proposition 1. Two regions r1 and r2 are strong overlapping regions if and only if the

three-dimensional Delaunay triangulation of the points in r1 ∪ r2 has a reverse tetrahe-

dron.

Proposition 2. If two regions r1 and r2 are not strong overlapping regions, then either

the internal tetrahedra of r1 have no intersection with r2 or all internal tetrahedra of r1

contain a vertex or a contour edge of r2.

Both of properties 1 and 2 completely describe how the three-dimensional Delaunay tri-

angulation connects the contours in adjacent planar sections. It can be derived from the

above propositions that the presence of reverse tetrahedra gives a measure of proximity

between two regions r1 and r2.

Chapter 2. Basic Concepts 29

2.5.4 Beta Connection

The β-connection algorithm described in this section is particularly adequate to the re-

construction of objects with high degree of branching as in neuronal structures. Based

on the 3D Delaunay Triangulation, it can produce a family of models for a given set

of cross sections. Model generation is governed by an integral parameter, denoted β,

whose value controls the degree of correspondence amongst regions in neighboring slices.

Increasing the value of β results in stronger region connection. The resulting models are

guaranteed to be piecewise linear(PL) manifolds, a highly desirable property for numer-

ical simulations. The algorithm also satisfies the re-sampling criterion, i.e., intersection

of the resulting model with the original cutting planes produces the original set of pla-

nar cross-sections. We now start with a description of a graph structure from which

beta-components are derived.

The DT Associated Graph The graph is computed in order to define the components

which establishes the connection among the contours. The graph is defines as follows:

Let C1 and C2 be two sets of contours representing the boundaries of regions R1 and R2

contained in adjacent planar sections P1 and P2, respectively, and DT the 3D Delaunay

triangulation of vertices in C1 ∪ C2. From DT , a graph G can be constructed that has

two types of nodes. Each region r ∈ R1 ∪ R2 and all its internal tetrahedra define a

region node in G, and each external or redundant tetrahedron of DT define an external

node in G. Edges linking pairs of nodes in G are obtained as follows:

1. If two regions r1 and r2 have internal tetrahedra with a common face, or if there

is a reverse tetrahedron with internal edges in r1 and r2, then the region nodes

representing r1 and r2 are connected by an edge in G.

2. If an external or redundant tetrahedron t shares a face with an internal tetrahedron

of a region r, then the region node r and the external node t are connected by an

edge in G.

Chapter 2. Basic Concepts 30

3. Two external nodes are connected if and only if the tetrahedra they represent

share a face,that is, external and redundant tetrahedra sharing a common face are

connected by an edge in G.

Figure 2.13 illustrates the graph G generated from DT of contours in Figure 2.10a. The

graph G is a connected graph as all regions nodes of G contain tetrahedra that either

share a face to another tetrahedra or contain face in another region node. A path of

Figure 2.13: The DT graph

length n connecting two region nodes a and b in G is a sequence of nodes {τ1, . . . , τn+1},

such that τ1 = a, τn+1 = b and (τi, τi+1), i = 1, . . . , n, is an edge of G. The distance

between two region nodes a and b, denoted dG(a, b), is the length of the shortest path

between a and b.

Beta-Components Two region nodes a and b are said to be β-connected, denoted

a
β
≈ b, if there is a sequence of region nodes {σ1, . . . , σk} in G, where σ1 = a and σk = b,

such that dG(σi, σi+1) ≤ β, β is a natural number. It has been shown in [37] that β-

forms an equivalence relation which guarantees that each value of β defines equivalence

classes constituted by those region nodes of G positioned at a distance smaller than

or equal to β from one another. As each region node represents a region contained

in a plane Pi(i = 1, 2), β also defines equivalence classes for the original regions, thus

allowing correspondence to be specified through these equivalence classes. Varying the

Chapter 2. Basic Concepts 31

value of β produces different equivalence classes, in-turn enabling multiple choices of

correspondence amongst the regions. An important property of β-connection proven in

[37] is that the strong overlapping regions (which share reverse tetrahedra) are the first

to be connected for any β > 1. Also, no correspondence amongst regions is established

for β = 0.

Component Disconnection As described above, each equivalence class originates a

connected component in the reconstructed model. To disconnect components according

to the equivalence classes specified by β all external and redundant tetrahedra from the

Delaunay triangulation are removed, whose vertices are not in the same component. In

some situations, even after tetrahedron elimination, components may remain connected

through vertices or contour edges as illustrated in Figure 2.14. In this case, vertices

(and edges) are displaced to completely disconnect components, as shown in Figure

2.14c. A special case when β = 0, when each region generates an independent connected

(a) (b)

(c)

Figure 2.14: (a) 3D Delaunay triangulation (b) elimination of external tetrahedron (c)
translation of vertices to avoid edge singularity on a contour edge

component. In this case, the presence of reverse tetrahedra in strong overlapping regions

Chapter 2. Basic Concepts 32

does not allow disconnection to be properly executed. The problem is that if vertices

are translated to disconnect strong overlapping regions, reverse tetrahedra internal to

both regions will remain in one of them and generate wedges in the internal edges of the

other region (Figure 2.15b). A wedge characterizes a singularity, i.e., the boundary of

the union of the tetrahedra around the wedge is not homomorphic either to a sphere or

to a half-sphere. Singularities must be avoided in order to ensure that the reconstructed

object is a PL-manifold. Thus, to disconnect strong overlapping regions it is necessary

to duplicate the reverse tetrahedra and then translate vertices and edges, as shown in

Figure 2.15c)

(a) (b) (c)

Figure 2.15: (a) Reverse tetrahedron (b) Singularity produced by translation of vertices
(c) Duplication of reverse tetrahedron

Tetrahedron Subdivision To ensure that the connected components obtained from

the disconnection process satisfy the re-sampling condition, β-connection algorithm also

eliminates the external tetrahedra within components. However, as in the disconnec-

tion case, the removal of these may introduce singularities. The authors have solved

this problem with the tetrahedron subdivision process(TSP). In this process, external

tetrahedra whose elimination introduces singularities are subdivided (as shown in Figure

2.16 and 2.17), where new vertices inserted in each external edge are translated to an

intermediate position between consecutive slices. The external edges of the tetrahedron

are marked in orange. This subdivision process guarantees the manifold condition(i.e.

free of singularity). Results of subdivision process applied to a reverse tetrahedron are

shown in Figure 2.18.

Chapter 2. Basic Concepts 33

(a) (b) (c)

Figure 2.16: Subdivision of type 1 tetrahedra with (a) one external edge, (b) two external
edges, (c)three external edges

(a) (b)

Figure 2.17: Subdivision of type 2 tetrahedra with (a)one external edge (b)two external
edges

(a) (b) (c)

Figure 2.18: (a) reverse external tetrahedron(marked in red) (b) singularity created along
the edge(marked in red) by removal of reverse external tetrahedron (c) subdivision and
vertex translation of the reverse external tetrahedron

Chapter 2. Basic Concepts 34

The Algorithm The summarized version of β−connection algorithm is described be-

low:

Algorithm 2
Input: a set of contours C bounding the regions contained in two adjacent planar sections
P1 and P2.
Output: a solid O′ representing the structure between P1 and P2

Delaunay triangulation Compute the 3D Delaunay Triangulation of vertices in C and
classify the resulting tetrahedra.

β−-components Create the Delaunay Triangulation associated graph and compute
β−-components from the equivalence classes defined by β.

Connected components disconnection Remove external and redundant tetrahedra
connecting the different β-components and if necessary, translate vertices and du-
plicate reverse tetrahedra.

Tetrahedra subdivision For each β-component:

• Remove external and redundant tetrahedra whose elimination does not intro-
duce singularities, otherwise, subdivide the external tetrahedra and remove
the corresponding redundant tetrahedra.

• For each subdivided tetrahedra, translate the new vertices to an appropriated
position between slices.

Chapter 2. Basic Concepts 35

2.6 Tools and Libraries

2.6.1 CGAL

CGAL is an open-source library written in C++ that provides algorithms that are com-

monly used in computational geometry. It offers data structures and algorithms for

computing triangulations (2D constrained triangulations and Delaunay triangulations in

2D and 3D), boolean operations on polygons, mesh generation (3D surface and volume

mesh generation) and simplification. These structures and predicates are regrouped in

form of CGAL Kernels. It further offers interfaces to third party software such as the

GUI libraries Qt, and the Boost Graph Library. In our work, we have used this library

to compute the constrained 2D and regular 3D Delaunay triangulation for set of samples

points in 3D space.

2.6.2 LibTIFF

LibTIFF is an open-source library, written by Sam Leffler, for reading and writing Tagged

Image File Format (abbreviated TIFF) files . This library also provides a small collection

of tools for doing simple manipulations of TIFF images. We have used the library to

read the images acquired with microscopy, which are usually stored in TIFF format.

2.6.3 Paraview

Paraview is a multi-platform, open-source software, developed by Kitware Inc. that

allows visualization of large data sets. It uses the Visualization Toolkit as the data pro-

cessing and rendering engine and has a user interface written using the Qt cross-platform

application framework. To speed up the visualization of the reconstructed model, our

framework reconstructs the model in the format that can be easily incorporated into the

Paraview. We also credit the software for providing an intuitive interface to visualize

multiple models at the same time, the feature which we have utilized extensively while

debugging our reconstruction module.

Chapter 3

Related Work

Several algorithms have been proposed for three-dimensional reconstruction of neurons

from fluorescence laser-scanning microscopy data. The importance of the problem has

led to quite a few attempts at developing semi-automated or automated methods which

can be broadly divided in following categories:

Centerline-extraction based methods In this approach, neuron morphology is ex-

tracted from a centerline model(or skeleton) and the reconstruction is generated assuming

a cylindrical model(a tubular-like shape of dendrites). Using this approach has the ad-

vantage of computing accurate topological structure, but issues such as of irregularities

of dendrites surfaces are ignored while extraction of centerline. Also, this approach is

computationally intensive since most of the operations are done on each voxel. More-

over, in contrast to boundary-extraction based methods, it involves both local and global

characterization while modeling neurites.

Boundary-extraction based methods In this approach, voxels representing the bound-

ary of structure are extracted using algorithms such as watershed or thresholding. These

voxels are then chained together either by vectoral (directional) tracing or using dynamic

programming to search for a minimum cost path. The main problem with this approach

is the ability to produce continuity of edges, which then requires further postprocessing

to link the broken edges. The linking algorithms may introduce unnecessary ambiguity

and incorrect links of noisy data. Recent work[15] have adapted the approach to include

global information to resolve these ambiguities.

36

Chapter 3. Related Work 37

Most of the modern methods have adapted themselves by using the combination of the

above approaches to decrescent the disadvantages of each. In this section, we outline

existing methods for neuron reconstruction and discuss their advantages and disadvan-

tages. Considering the incomplete results of the automatic procedures, neurobiologists

still use the commercially available semi-manual processing techniques. The accuracy of

these however is strongly dependent on individual interpretation to estimate mid-lines

and diameters of dendrites. One of the commercially available software tools is Neu-

roLucida (by MicroBrightField, Inc) which performs the manual tracing of boundaries of

the neurite structure where user specifies the terminal and seed points. Unfortunately,

the manual tracing of complex dendritic trees in large datasets becomes overly tedious.

Therefore, the automatic reconstruction procedure are better for fast visualization and

extraction of the rough topology.

Amir[45], proposed a fully automatic model-based approach for the automatic recon-

struction of neurons based on the use of a tubular shape as the model assumption. The

model is constructed by composing the partially recognized parts of neurons structures

through successive processing steps. Firstly, he used the support vector machine(SVM)

algorithm to recognize the voxels of the image which represent the neurons structure.

The resulting representative voxels were then grouped together with the aid of a mean

shift clustering algorithm. The clustered segments of the neurites are then connected

together to compute the skeleton of the neuron. Finally, a registration algorithm is used

to fit the reconstructed model onto the given image. Using his approach, the resulting

structures have more accurate boundaries of the segmented structure, but, due to the

noisy feature space of SVM, the voxels representing thin neurites are not classified from

the background voxels. Even after extending the feature space, by including the voxels

gray values and gradients, the classifier is unable to accurately distinguish the noisy

artifacts. Thus, the resulting reconstructed model consists of many connected spherical

components. The author has presented results for reconstruction of real neuron using a

single SVM classifier trained using a toy data set.

Chapter 3. Related Work 38

Schmitt et. al.[46, 18] use a semi-automatic method that employs computation of skele-

ton as well as boundaries of the structures for extraction of morphology. They first

use a segmentation algorithm based on geodesic active contours to compute the cross-

sections(or boundaries). A skeleton is then computed based on centerline where user

initializes the branching points of skeleton to represent the structural description of the

neuron(the topology and the dendritic lengths and diameters). Finally, the surface is

built using generalized cylinders that fits a surface to the structure using the geodesic

active contour model. A three-dimensional distance map of voxel’s distance to the near-

est cylinder of the skeleton reconstruction is computed which is subsequently deformed

to best fit the image intensity distribution, loosening the restriction to cylindrical cross-

sections. The surface is filtered by a smoothness constraint that fits data by minimizing

an energy-functional.

Zhao et. al.[58] compute a geometrical model using a 3D cylinder filter to formulate

the shape of a neurite fiber. From the model, they derive a tracing algorithm based

on deformable templates. Once the set of fragmentary trace or neurite fibers have been

obtained for an image, they are assembled to form a neuronal tree structure. They define

a neurite graph consisting of individual fibers and assign the geodesic distance as the

cost of edges. The graph is then filtered to derive tree structure. The method takes the

advantage of dealing with noise while tracing the neurite segments itself. The template

parameters can also be varied to adapt to different neurite sizes. If many branches are

present in a small region, such as the end of an axonal projection, the fitting template

may jump from one branch tip to another or fail to fit on a short segment between two

branch points resulting in topological errors. Also the methods fails to trace complete

segments when there are discontinuities in neurites.

In [44], Rodriguez et. al. developed a semiautomated cell extraction algorithm based

on a two-pass thresholding procedure. Prior to cell extraction, threshold selection is

performed on the deconvolved images by interactively adjusting the threshold using a

2D contouring algorithm until the contour fits exactly over the projected outline of the

Chapter 3. Related Work 39

spines. In the first pass, the extraction routine marks all connected pixels from an ini-

tial seed inside the cell. A threshold that just overestimates the extent of the cell is

then selected, so that the spines maintain connectivity to the dendrites. A second pass

resurfaces the resulting dataset, at the original, minimal threshold value. which isolates

the cell from the background, so that the dataset is able to captures spines structures.

Finally, a polygonal surface is extracted from the volumetric data using a variation of

the Marching Cubes algorithm, which generates a piecewise linear isosurface. Variation

of standard Marching cubes is done to avoid ambiguous saddle cases, which can lead to

holes in the surface. For surfacing highly curved objects such as the spiny dendrites, this

method produces goods result at low computational cost.

Fua et. al.[20] describe a method for tracing of dendrites pattern by computing an op-

timal tree using a modified MST procedure, similar to He et. al.[24], which combines

a EM-based local estimate of the probability of voxel belonging to a neuron filament

with the global tree(or skeleton) properties of the complete structure. They formulate

the problem as Bayesian inference and avoid having to de-noise the image by keeping a

probabilistic semantic in the result of the segmentation step. The problem is decomposed

as derivation of inference measure from actual location of the dendritic tree and its voxels

visibility in the images. The authors have presented results only for 2D images and quote

it extension for 3D cases. The problem with the approach involves high computational

cost, especially to handle the list of all possible voxels.

Santamaria et. al.[49] use a similar approach of [45] to classify voxels assuming the

tubular shape of the dendrite structures using SVM. The initial dataset is filtered to

remove noise using frame-based de-noising on the optical images. They present a novel

approach for extraction of the centreline model, for which a tubular measure is derived

by from the eigen-values and by learning the relation between structural information

(the eigenvalues) and the actual tubular object of interest. The eigenvalues are used to

train the model by assigning the labels to those eigenvalues that belong to the dendrite.

From the centerline model, branching points and dendrite segments are constructed by

Chapter 3. Related Work 40

tracing back the paths from the terminal points to the root, to represent the set of paths

as a single connected tree structure. A surface is then computed by assigning the clas-

sified voxels to level sets and computing the dendrite lengths and diameters using the

distance transform. A preliminary filtering of voxels belonging to soma and pipette is

also done by using a K-means algorithm that utilizes a mask(ellipse) that encloses both

the soma and pipette. The authors have presented good results regarding the extraction

of topological structures.

Dima et. al.[15] present an approach for neuron segmentation using a 3-D wavelet trans-

form to perform a multiscale validation of dendrite boundaries. This segmentation is

used to construct a skeleton complete with an estimate of local axial directions and their

variances, which are then used to locate bifurcations. Initial edge detection is done by

filtering the image with low-pass filters of different size followed by an application of

the gradient operator. The low-pass filtering reduces noise, but it also changes the lo-

cation of edges due to a blurring effect. The local segmentation has the advantage of

detecting the weakest and thinnest neuronal structures present in the images, however,

is unable to distinguish the background noise. To avoid this ambiguity on local neigh-

bourhood, they introduced a new measure called “across-scales validation” to distinguish

the boundary edges from the noise. The measure is dependent on spatial distribution

of boundary edges in the adjacent neighbourhoods and contains high values for edges

found on adjacent neighborhood. The resulting boundary edges are then traversed across

their gradient direction to segment the voxels belonging to object. Since gradient direc-

tions may not be accurate and edge points may be missing due to noise, false pairing

situations also appear in the resulting dataset, which are corrected using the seed fill

algorithm. The skeleton and its branching points are computed from the segmentation,

which constructs at each voxel the list of directional vectors(or rays) which intersect

each other. Their results show gaps in the skeleton, for which they plan to add a manual

correction option. They also extract the branching points and points of high curvature

(bends of dendrites), to detect the variance in axial directions of voxels, which enables

detection of incorrect boundary edges. They show that across-scales validation of edges

Chapter 3. Related Work 41

and the almost blind elimination of noisy edges makes their method their independent

of variations in contrast, and the object sizes.

Hamilton et. al.[24] present an algorithm that operates by performing connectivity test-

ing over voxel neighborhoods to extract a graph representation of the structures. Voxels

are obtained using the combination of thresholding, skeletonisation, and thinning pro-

cess. The resulting graph is then analyzed for width of connected nodes to filter the

voxels that belong to the soma and the artifacts. Assuming the tree structure of the

neurite, graph is then filtered to prevent the cycles and loops by computing the MST.

Resulting fragments are connected through the semi-interactive method where user spec-

ifies the region of error. They identify all of the critical points within this user-specified

region and define the radius for connection among fragments at each critical point. Fi-

nally critical points are connected via assigned cost. The surface is computed using the

vacant-neighbouring scheme over voxels. Although, the resulting structure consists of

accurate topology, it is unable to represent any intermediary branching between voxels

and the method is computationally expensive since it operates on each voxel for every

process in the algorithm.

Al-Kofahi et. al.[27] describe a semi-automatic reconstruction scheme which uses an

adaptive exploratory search at the voxel intensity level. They compute the skeleton on

the data using directional kernels, guided by a generalized 3-D cylinder model. A seed

point and a direction is initially chosen by the user from which the tracing algorithm

begins. The procedure terminates upon reaching the end of traced segment. The soma

is detected using a combination of thresholding and connected component operations on

the pixels of raw images. Since, their method is able to work directly with unprocessed

confocal images, without any preprocessing, it is computationally faster than other algo-

rithms. Adaptive templates are used to trace over discontinuities in the dendrites which

combines the two or more partial traces to form a complete trace based on the local

intensity information and the local orientations of the partial traces. However, to ensure

a complete trace, the selection of redundant points becomes mandatory, making the task

Chapter 3. Related Work 42

user-dependent and complex.

Peng et. al.[42] developed a novel semi-automatic graph algorithm, called the all-path

pruning (APP), to trace the 3D structure of a neuron. An APP initially produces an

initial over-reconstruction(graph) by tracing the optimal geodesic shortest path from the

seed location (specified by the user) to every possible destination voxel/pixel location in

the image, to avoid potential mistracing of some parts of a neuron. They simplify the

reconstruction by pruning the redundant structural elements, using a maximal covering

minimal-redundant (MCMR) subgraph searching algorithm (modification of Djikstras

algorithm). The algorithm consists of three procedures which are run successively. First

procedure called “dark leaf pruning” chooses a threshold which defines the lowest visible

voxel intensity to iteratively remove all leaf nodes whose respective voxel intensity is

below that threshold. Second procedure called “covered leaf pruning” defines a radius-

adjustable sphere (called structural component(SC)) centered at a node, and then en-

larges the radius gradually until 0.1% of the image voxels within this sphere are darker

than the global threshold (average voxel intensity of the entire image). Using the volume

projection of nodes, nodes that are covered by other reconstruction nodes are marked

redundant and are pruned. After covered-leaf node pruning, redundant inter-nodes (that

connect leaf nodes to branching nodes or the root) are removed using an iterative process

which checks for volume projection of parent and child nodes and removes the parent

if it covers its child. The resultant graph consists of shortest path map from leaf nodes

with a tree like structure. The algorithm has is s efficient since it uses the topology of

the initial reconstruction to constrain the search space which reduces a combinatorial

search to linear search. It is also able to implicitly handle dealing with the broken or

punctuated neuron structures, or low SNR images.

Meijering et. al.[33] adapted a semi-automatic interactive technique called live-wire

segmentation paradigm for the tracing of elongated structures in images. A Gaussian

kernel and a steerable directional filter is used to compute the intensity and orientation

of structures (called ridges), given by the eigenvector corresponding to the eigenvalue

Chapter 3. Related Work 43

with smallest magnitude. The ridges are the elongated structures which shows the large

variation in the intensity values along the direction. They also compute a function for

translating local ridge intensities and orientations into costs maps. The adjacent ridge

pixels are then linked using the live-wire segmentation paradigm, where user initially

specifies the a starting point, followed by a graph-searching algorithm to find the short-

est paths from that point to all other points in the image according to a predefined cost

function. This procedure is repeated again where user moves the cursor to the next

point along the path of interest and the new path is computed again. Although, the

technique is computationally inexpensive and exploits the expertise of the user in solv-

ing ambiguities, it could become cumbersome for a user to handle complex morphologies

of dendrites.

Urban et. al.[55] proposed a skeletonisation algorithm to produce the segmentation of

the structures in the images. The high frequency noise is removed initially using a 3-D

Parseval frame based filter. Following denoising, thresholding is employed to binarize the

denoised data. The authors explicitly determine the voxels that belong to the pipette

and the soma employing the information that these two corresponds to brightest fea-

tures (voxels) in the images. To extract the medial axis of the segmented neuron, they

employ a distance transform(DT)-based skeletonisation method that guarantees to be

tree-structured, which is then used to cull false dendrites from the neuron. A measure

of saliency related to how much a branch lies outside the skeletal reconstruction is also

computed. An approximating spline is then fit to each path in the tree of paths repre-

senting the medial axes of the salient branches in the binarized neuron data. Finally, a

cylinder-tree representation of the neuron is computed that using dendrite widths along

each spline. The framework proposed by the authors is automated and fast in terms of

computation, but is unable to handle apparent dendrite gaps. Also, it may be possible

that short dendrites, which merely originate from surface noise, belong to legitimate

branches, which the framework does not account for.

Zhang et. al.[59] proposed an automated 3D centerline extraction algorithm to extract

Chapter 3. Related Work 44

morphology of the neuronal structures. their approach combines 3D Dynamic Program-

ming (DP) technique and marker controlled watershed algorithm to solve the problem

overlapping dendrites. The approach consists of tracking and updating along the nav-

igation directions of multiple axons via computation of spanning tree to find the path

that gives the shortest geodesic distance between two points.

Uehara et. al.[54] described a neuron reconstruction algorithm based on a wave prop-

agation methodology. Using gradient eigen analysis, the algorithm generates a field

indicating the probability of each voxel belonging to a cylindrical structure (assumed to

be dendritic). A digital wave is then propagated through this field to provide dendrite

paths. However, the multi-scale gradient analysis used here is prohibitively expensive

for large volumes.

Chapter 4

Methodology and Implementation of

Algorithms

This chapter describes the detailed formulation of our neuron reconstruction process

done using the adaptation of the algorithms described in chapter 2.

4.1 Image Enhancement and Preliminary Filtering

Modern microscopy equipment typically includes a PC-class machine for instrument con-

trol and data analysis. Given the volume of raw data and the task at hand, it makes

sense to discard as much data as possible in the earlier stage. Preliminary filtering in-

cludes noise reduction and enhancement of images to reduce the storage space and tune

the focus/brightness/contrast of the data. For example, in confocal microscopy, both

excitation light and fluorescence light are increasingly scattered with imaging depth,

causing a reduction in signal-to-noise(SNR) ratio. Low SNR makes it difficult to resolve

the thin neural structures in the images. To resolve this, non-linear diffusion filters can

be used to reduce the scatter while retaining sharp edges. Point spread function (PSF)

imposed on the data by the optics of the microscope can also be computed in this stage

to deconvolve the image using a standard deconvolution method.

Although not necessary for our framework, these methods have proven effective to pro-

duce more precise segmentation of structures from the images.

45

Chapter 4. Methodology and Implementation of Algorithms 46

4.2 Segmentation

Segmentation as described earlier is essentially a process of classifying voxels of struc-

ture from the background. Often automatic segmentation methods fail to preserve the

details of fine structures due to the poor signal-to-noise ratio or imperfections in sample

preparation of microscopy images. The design of fully automated techniques remains

a difficult problem, and it seems likely that some form of user interaction will always

be required to resolve ambiguities. Accepting this fact and attempting to meet the re-

quirements of problem defined below, we have developed an interactive segmentation

technique that exploits the expertise of the user in extracting the structure, but greatly

simplifies the task by providing the visual and automatic tools. Based on the problem

definition given in section 4.3.2, the goals of the segmentation module are: (i) a reliable

segmentation of structures, independent of image contrast and scale of input data, (ii)

removal of artifacts from the images, and (iii) fast computation time.

4.2.1 Algorithm

Given an image stack of a real neuron, the following algorithm extracts the neuron

structure from the images and represent in the form needed by the reconstruction module.

Step 1 [Thresholding] Binarize the image into foreground and background pixels.

Step 2 [Visual Manipulation] Remove artifacts such as pipette etc in the images.

Step 3 [Morphological Operations] Remove artifacts such as small holes or objects

in the segmented image caused by presence of air bubbles or dust while preparing

the sample.

Step 4 [Contour Extraction] Convert the boundary pixels of segmented structure

into contour data structure.

Step 5 [Connected Components Calculation] Eliminate spatially distant noisy

structures by computing the largest connected component among the extracted

contour set.

Chapter 4. Methodology and Implementation of Algorithms 47

Since we use local neighbourhood for the image of input data in steps 1-4, we were able

to execute the corresponding steps in parallel for each image. However, to achieve noise

robustness we perform the connected component analysis on global scale of the input

data.

4.2.2 Thresholding

As described earlier in section 2.4.1, it is needed to decide an optimum threshold value at

which the maximum amount of information about the object of interest is revealed and

the minimum amount of information is lost, however, presence of different kind of noise

makes the automation of optimum threshold selection a difficult process. In our work,

we experimented with one or two methods from the approaches defined in section 2.4.1,

where none could guarantee the accurate segmentation of the objects. Thus, we designed

visual tools to produce a reliable segmentation and employ advantage of fast computation

of thresholding technique. To ensure that all the possible signals are captured, we first

produce the initial over-complete segmentation of the neuron with the average intensity

value of the entire image as the threshold and provide the user with the overlay of source

and threshold image for manual verification of the initial segmentation (Figure 4.1a).

User can easily manipulate the segmented image in realtime by varying the threshold

value to extract more information. User is also given the choice to specify local threshold

for a resizeable bounding region (Figure 4.1b) in the image. This way, user can even

extract small structures which may not be covered with a global threshold for entire

image. Additionally, user can also cull objects or artifacts, within the specified region

(Figure 4.1c and 4.1d).

Chapter 4. Methodology and Implementation of Algorithms 48

(a) (b)

(c) (d)

Figure 4.1: (a) Extraction of structure with overlay of source image (b) Grid Overlay for
local threshold selection (c) Artifact (represented by circle) in the image (d) correction
of artifact with grid tool

Chapter 4. Methodology and Implementation of Algorithms 49

4.2.3 Morphological Operations

In the raw image, it may be possible that the pixels interior to the structure have inten-

sity closer to the background or is surrounded by more number of background intensity

pixels, which will lead to presence of small holes or objects in the binary data, respec-

tively (as shown in Figure 4.2a and Figure 4.2b). To remove these artifacts, we employ

morphological operations such as openings and closing described in section 2.4.2. In

essence, we check the neighborhood of the pixel for its label, whether it belongs to fore-

ground or background where we use both 8-connective and 4-connective neighborhood

templates while performing morphological operations. The choice of template and the

number of operations are tunable by the user after visual verification. The results of

different operations are shown in Figure 4.2.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: (a) Raw data (b) Binary Data, (c) One morphological operation of opening
followed by closing operator using 4-connective template (d) Two morphological op-
erations of opening followed by closing operator using 4-connective template (e) One
morphological operation of opening followed by closing operator using 8-connective tem-
plate (f) Two morphological operations of opening followed by closing operator using
8-connective template

Chapter 4. Methodology and Implementation of Algorithms 50

4.2.4 Boundary Extraction and Contour Tracing

Boundary Extraction In the segmented image, we can easily discard interior pixels

of structures, since they can be represented by the outer and inner boundary pixels alone.

To extract these boundary pixels, we check the neighborhood of each pixel for its label.

If the 4-connective neighbourhood template of a pixel p contains the background pixel,

then we mark p as the boundary pixel.

Contour Tracing Based on the requirements of our reconstruction module (defined

in sec 4.3.3), we need a data structure that represents the links in boundary pixels of the

extracted structures. We define these link in contours, where each contour is a internal or

external respective to whether its chains the inner or outer boundary pixels. To establish

the link in boundary pixels, we designed an algorithm which is loosely an adaptation of

the Moore-Neighbour tracing algorithm (section 2.4.4). Since, the algorithm in itself

was not sufficient to fulfill the requirements needed by our reconstruction module, we

modified the algorithm to produce non-intersecting contours. This makes the process

more efficient by avoiding the calculations inherent from division of intersecting contours

to non-intersecting contours. To trace a contour, we search each row from the top-left

(a) (b)

Figure 4.3: (a) Neighbourhood tracing order (b) Path template (marked by circles) for
the given p,c,n ordering of pixels

corner of the image to find an unscanned boundary pixel s. Starting at the pixel s,

we follow its neighborhood in clockwise order checking for its label as shown in the

Figure 4.3a. Let p, c and n be the boundary pixels discovered in order of neighbourhood

Chapter 4. Methodology and Implementation of Algorithms 51

traversal. Instead of marking them as the boundary pixels, we add the pixels from the

predefined path templates for all possible positions of p, c and n in the neighborhood.

Figure 4.3b show a path template (represented by circles) for one of the configurations

of p, c and n. Each dot in the path template is computed as mid point of corresponding

pixel. These path templates are defined to ensure that boundary pixels are single pixel

wide. We also handle a few corner cases where we explicitly insert additional pixels to

these templates to maintain this property. We continue to add these path templates

based on the configurations of p, c and n discovered until c reaches the starting pixel

s, which marks the end of a contour. The main scanning algorithm terminates until all

boundary pixels are processed. This way we ensure all boundaries in the segmented image

are detected and traced only once. Since we consider all possible configurations of p, c

and n, we are able to trace both convex and non-convex boundaries. However, internal

boundaries are traced by the same algorithm after reversing the order of neighborhood

traversal. (Figure 4.4) shows a external boundary where a boundary pixel is inserted

twice using Moore-Neighbor Tracing algorithm, and how by using path templates we

prevent creation of intersecting contours. The contours from the tracing algorithm are

(a) (b)

Figure 4.4: (a) intersecting contour(represented by cross) resulting from Moore-Neighbor
Tracing Algorithm (b) contour(represented by circles) from our path-template based
algorithm

stored as unstructured polygons in a VTK data file. Figure 4.5 shows the application of

the algorithm applied to trace the boundaries of Dataset I.

Chapter 4. Methodology and Implementation of Algorithms 52

Figure 4.5: Contour tracing of boundary image in Dataset I

Chapter 4. Methodology and Implementation of Algorithms 53

4.2.5 Connected Components Analysis And Extraction

In order to remove the spatially distant contours (present due to poor segmentation while

removing artifacts), we employ connected component analysis on the contour stack. This

steps results in significant and much needed data reduction, thereby improving the per-

formance of the reconstruction module. To identify and eliminate these contours, we

build an undirected graph G = (V,E) on the set of contours. Edges of the graph have an

associated weight, equal to the geodesic distance between its nodes. The geodesic dis-

tance between two contours C1 and C2 is defined as disg(Ci, Cj) = min(dis(vp, vq) ∀ vp ∈

Ci, vq ∈ Cj), where dis(vp, vq) is equal to the Euclidean distance between vertex vp and

vq. A pair of nodes Ci and Cj (Ci ∈ slice Sa and Cj ∈ slice Sb), have an edge between

them iff a = b or Sa, Sb are adjacent slices and disg(C1, C2) < threshold, t0. We then

perform breadth-first search (BFS) on the graph G to determine the connected compo-

nents. Finally, we group the contours of extracted components into a new 3D stack of

slices. Since we perform the connected component analysis on the set of contours than

voxels we are able to save considerable computational time to filter these noise-caused

structures. Usually, the selection of the largest component is sufficient to represent the

Figure 4.6: 3D Visualization of components contours

structure, but the choice is given to the user to enable selection of multiple components

from the results. A projection of the aligned stack of contours is then presented to the

Chapter 4. Methodology and Implementation of Algorithms 54

user where user can visually validate the extracted contours set (Figure 4.6). If neces-

sary, user can vary the threshold in the viewer and visualize the result in realtime. The

choice of threshold t0 is simplified via analysis of components over all possible values of

thresholds. We collect the number of components and the length of the largest compo-

nent information for analysis. Threshold t0 can be chosen from the values where two

graphs stabilize. Figure 4.7 shows the component analysis plot for Dataset I where the

optimal range for t0 is 20-24.

Figure 4.7: Plot of number of connected components and size of largest connected com-
ponent of the component graph. This plot is used to choose an appropriate threshold
for the component extraction

4.2.6 Conclusion

We conclude that our segmentation technique completely fulfills the required criteria (see

section 4.2) as it enables fast visualization and extraction of the rough topology of the

neuron structures. Also, it is independent of the data being used and can be employed

on data obtained from any imaging modality.

Chapter 4. Methodology and Implementation of Algorithms 55

4.3 Reconstruction

The reconstruction method present in this section is an adaptation of β-connection algo-

rithm (section 2.5.4), modified to correctly handle the branching problem for reconstruc-

tion of neuronal structures. The applicability of the algorithm is illustrated in section

4.3.1. The algorithm relies on the construction of the Delaunay Triangulation(DT) from

the contours contained in parallel cross sections. The DT of the contours set automati-

cally generates an volumetric triangulation connecting the contours.

4.3.1 Why Beta Connection

We chose β-connection algorithm as the reconstruction method as it offers several ad-

vantages over other algorithms presented in section 2.5.2. It makes no prior assumption

about the input and operates on any kind and number of contours without any require-

ment of user interaction during the process. It is also capable of generating multiple

alternatives when establishing region correspondence and intrinsically handles tiling and

branching problem. Many of the algorithms mentioned in section 2.5.2 are unable to

handle the correspondence problem in a flexible manner, without limiting the number

of contours in the slices, their geometries, or their containment hierarchies. In addition,

the β-connection algorithm can handle instances of multiple branching without leaving

gaps between the contours. The algorithm also deals with the topological singularities

that may appear during the process of reconstruction so that the reconstructed object

is a manifold. More importantly, all the operations in the reconstruction process are

combinatorial enabling a more robust and efficient implementation.

Chapter 4. Methodology and Implementation of Algorithms 56

4.3.2 Decomposition of the reconstruction problem and related

definitions

Section A section Ai consists of a set of simple polygons Cj, j = 1, . . . , n, some possible

lying inside others, representing the intersection of a plane Pi with the object O. To state

this reconstruction problem formally, we introduce the following definitions in terms of

implementation.

Definition 4.1. Given the sections A1, . . . , Ak as the input, our goal is to recon-

struct an approximation O′ of the original object O. We further decompose the problem

into reconstruction of partial objects oi, i = 1, . . . , k − 1, where oi is the reconstruction

between adjacent sections Ai and Ai+1 and satisfies the following conditions

Conformity Condition All edges of contours in Ai, Ai+1 are contained in the oi.

Manifold Condition o is a bounded compact set whose boundary is locally everywhere

a topological disk.

The conformity condition ensures that the reconstructed object boundary doesn’t in-

tersect the contours, while the manifold condition forbids connections between sections

along zero or one dimensional features. Since the reconstructed objects oi, i = 1, . . . , k−1

will satisfy the conformity condition, they can be glued together in the end and their

union will constitute the overall reconstructed object O′. i.e. O′ =
⋃
o.

Simplices. A simplex σp of dimension p in Euclidean space Rm, 0 ≤ p ≤ m is the closed

convex hull of p+ 1 points v0, . . . , vp, vi ∈ Rm, in general position, i.e., when the vectors

v1 − v0, v2 − v0, . . . , vp − v0 are linearly independent. For example, 0-simplex is called

a vertex, a 1-simplex is called an edge, 2-simplex is called a triangle, and 3-simplex is

called a tetrahedron. The points v0, . . . , vp are called the vertices of σ. A face of σ is

defined by any j-simplex 0 ≤ j ≤ p spanned by a subset S of v0, . . . , vp (i.e. convex hull

of S). The faces of σ different from σ itself, are called the proper faces of σ; and their

union is called the boundary of σ denoted by ∂σ. If σ is a face of a simplex τ then τ is

said to be incident to σ and τ bounds σ.

Chapter 4. Methodology and Implementation of Algorithms 57

Simplicial Complex. A simplicial complex K is a finite collection of simplices satisfying

the following conditions:

• If σ ∈ K then all faces of σ belong to K

• If σ, τ ∈ K then either σ ∩ ρ 6= ∅ or σ ∪ τ is a common face of σ and τ

Regularized Simplicial Complex. A regularized simplicial complex K is a three-

dimensional simplicial complex such that any p-simplex, in K, p = 0, 1, 2 is contained in

at least one 3-simplex of K.

Star and Link. The star of a simplex σ ∈ K is the union of all simplices in K having

σ as a face, denoted by st(σ,K) The link of σ is the union of all simplices of K lying in

st(σ,K) that are disjoint from σ. For example, if k is a vertex in a triangulation T in

R3, the star of k is the union of all tetrahedra containing k and the link of k is the union

of the faces of these tetrahedra that do not contain k. Figure 4.8 shows the star (marked

in blue and orange) and the link(marked in blue) of an edge.

Figure 4.8: star and link of edge ab

Manifolds. A simplicial complex K is a p-manifold if the star of a vertex in K is home-

omorphic to open set of Euclidean space Rp. In particular, if K is a manifold, then every

(p− 1) simplex in K is bounding either one or two p-simplex.

Boundary. The boundary of p-manifold K is the sub-complex S ⊂ K constituted by

all p − 1-simplex that are incident to only one psimplex. The simplices that are not on

the boundary are called interior simplices. For ex. A 2-simplex t (triangle) of K is an

Chapter 4. Methodology and Implementation of Algorithms 58

interior triangle if t is shared by two tetrahedra of K, otherwise, t is a boundary triangle.

The vertices and edges contained in the boundary triangles are called boundary vertices

and boundary edges of K, respectively. Figure 4.9 shows an example of interior and

boundary simplex of a 3-manifold.

Figure 4.9: Interior and Boundary simplex of a 3-manifold

Singularity A simplex σ ∈ K has a singularity at a point p if its link is not homeomor-

phic to a sphere or to a hemi-sphere. Figure 4.10 shows a 2D example with singularity

at point p.

Figure 4.10: 2-manifold with singularity at point p

Chapter 4. Methodology and Implementation of Algorithms 59

4.3.3 Algorithm

In this section, we describe the concepts regarding the implementation of the β-connection

algorithm and the modifications done to handle the branching problem in a different

manner. To summarize the β-connection algorithm, a mesh of tetrahedra is constructed

between slices, with contour points as vertices. New vertices are then added to ensure

that the contours are part of the mesh. Finally, some tetrahedra are eliminated to make

the volume consistent with the contours. The reconstructed surface is then extracted as

surface of the remaining volume.

Arrangement of Input data The input data consists of a sequence of cross-sections,

where each cross-section consists of a hierarchy of contours (closed simple polygons with

non-intersecting boundaries). A parent (or external) contour fully encloses all its chil-

dren, and no other parent contour encloses a parent. Each section is also marked by

its height along the z axis; thus, every vertex can be specified by its three coordinates.

Based on the requirements of the algorithm, following arrangement on the input sections

are mandatory:

• The planes of sections should be parallel and aligned in z-direction in 3D space.

• The boundaries of the contours contained in the sections should be non-intersecting(i.e.

simple contours). This conditions helps to define the boundary of the reconstructed

object, necessity of which is described later in section4.3.3.

• The contours should be oriented so that interior or exterior of regions are clearly

defined. We orient the contours consistently, so that for each contour, when viewed

from above, the structure lies to its right. Consequently, all external contours

are oriented in a clockwise direction, and all internal contours are oriented in a

counterclockwise direction.

If the containment hierarchy of the contours is omitted from the segmentation, it can be

re-computed in the reconstruction module. The construction of the hierarchy and of the

contour orientations is easily performed using a standard line-sweep procedure in each

Chapter 4. Methodology and Implementation of Algorithms 60

section. Henceforth, we focus reconstruction of the partial object o i.e. a reconstruction

formed by considering the space between pair of adjacent planes at a time.

The Initial Delaunay Triangulation

The first phase of the reconstruction module generates a 3-dimensional Delaunay tri-

angulation that contains all edges of the contours on the two consecutive slicesMi and

Mi+1. Boissionat[3] proved following properties that proved to be helpful in relation to

computation of 3D Delaunay mesh from planar cross sections:

Property 1 If the points in A are positioned on two consecutive parallel planar sections

P1 and P2, the intersection of their 3D Delaunay triangulation with Pi(i = 1, 2) is

the 2D Delaunay triangulation of the points in Pi. This property helps to define

coherence between sections (i, i-1) and (i, i+1).

Property 2 If the points in P1 and P2 are polygon vertices, polygon edges that are not

contained in the Delaunay triangulation can be subdivided into new edges, until

they are contained in the triangulation. This property necessitates the requirement

2 of input data, so that edges of contours in sections can belong to the Delaunay

triangulation of its vertices.

In order to fulfill the conformity condition following the Property 2, vertices are added

to the contour edges until all the contour edges are contained in the resulting triangu-

lation denoted by T. To obtain such triangulation in an efficient manner, the following

algorithm has been adopted:

1. Compute the 2-dimensional Delaunay triangulation D of the vertices in each sec-

tion.

2. Mark the edges of the contours that are not contained on D.

3. Subdivide all marked edges, inserting new vertices on the contours.

4. Repeat these steps until the triangulation contains all contour edges.

Chapter 4. Methodology and Implementation of Algorithms 61

5. Obtain a new 3D Delaunay triangulation that includes those new vertices obtained

in step 4.

We now consider the 3D Delaunay triangulation T, the union of the contour-vertices and

the new added points. After the 3D Delaunay triangulation has been built, star and link

of simplices are the only necessary operations to be done on the resulting solid mesh.

With the data structure (explained in section 4.5) we adopted, these topological tests

can be executed in linear time. Once we obtain the Delaunay triangulation, we classify

the edges as specified in the β-connection algorithm, depending on the relative position

of the edge with the corresponding sections, with the addition of “in-section” edges and

“ground” edges. “in-section” edges are the ones that have one vertex of tetrahedron in

one section and other in the adjacent section, while “ground” edges are the ones that

lies entirely in one section.

Reconstruction - Adaptation of β-Connection Algorithm

The basis of the β Connection Algorithm was initially introduced by Boissonnat[3] which

proved that the regions that are geometrically well positioned can be found through topo-

logical tests on the DT. Later, Nonato et. al[37], showed that the distance measure among

regions can be intrinsically derived from DT, responsible for establishing the connection

among them. The distance parameter was defined as a positive integer parameter, called

β. Varying β thus allowed the construction of different models for a given set, as evident

in Figure 4.11.

Component Disconnection As described in the section 2.5.4, it is necessary to dis-

connect the components completely by translation of vertices to intermediary level be-

tween sections, after removal of external and redundant tetrahedra. However, instead of

computing the centroid of the contour as the new intermediary voxel as demonstrated

by results in the paper[37], we compute the centroid of the tetrahedra whose vertices are

being translated as the new intermediary voxel. Figure 4.12 shows how this way we can

avoid intersections in the reconstructed surface.

Chapter 4. Methodology and Implementation of Algorithms 62

(a) (b) (c)

Figure 4.11: Models generated for β = (a) 0 (b) 1 (c) 3

(a) (b)

Figure 4.12: (a) Intersection created in the reconstructed surface with centroid of the
contour as the intermediary voxel (b) Reconstructed surface using centroid of the neigh-
bouring tetrahedra as the intermediary voxel

Chapter 4. Methodology and Implementation of Algorithms 63

Tetrahedron Subdivision The β-connection algorithm in itself reconstructs the ob-

jects that satisfies the conformity and manifold condition. The algorithm subdivides

the external tetrahedra and translates the vertices created on the subdivision of these

tetrahedra to an intermediary position between the slices, generating branches at that

intermediary level. The objective of this subdivision process is twofold (1) to guarantee

that the intersection of the object with the corresponding planes is exactly the original

set of contours and (2) the reconstructed object should be a manifold with boundary.

The results of the algorithm for a pair of adjacent sections of Dataset I are shown in

Figure 4.13. However with the subdivision process, the β-connection algorithm generates

branches in inner regions of adjacent sections as shown Figure 4.13c, where it is necessary

to avoid this kind of branching in the reconstruction of neuron structures. Following the

results from the Figure 4.13c, we handle the branching problem by completely avoid-

ing the connections in external regions and still produce a complex which satisfies the

manifold condition. The underlying tetrahedron disconnection method, which jointly

with the β-connection correspondence strategy, improves the usability of our volumetric

reconstruction technique.

Chapter 4. Methodology and Implementation of Algorithms 64

(a)

(b)

(c)

Figure 4.13: (a) A pair of adjacent sections from Dataset I (b) Reconstruction of surface
between sections in (a) (c) Close-up view of reconstructed surface which shows branching
of contours in adjacent sections resulting from the β-connection algorithm

Chapter 4. Methodology and Implementation of Algorithms 65

Disconnection Algorithm The algorithm of tetrahedron elimination within β-components

is listed below:

1. Eliminate the external tetrahedra which do not generate singularities and corre-

sponding redundant tetrahedra.

2. Subdivide the edges and disconnect the external and redundant tetrahedra whose

elimination generate singularities.

The disconnection of the tetrahedron in the external regions is based on following crite-

ria:

Type 1 tetrahedra. For a type 1 tetrahedron with two external edges, we divide along

the external and in-section edges and translate the vertices along those edges. For dis-

connection along edges, we chose the orientation specified in the Figure 4.15a where cb,

dc and bd are the “ground” edges. When the type 1 tetrahedra contains three external

edges, we follow the division criteria as in type 2 (Figure 4.15b) where cb, dc and bd are

the “ground” edges.

Type 2 tetrahedra. For a type 2 tetrahedron, we subdivide along all edges and trans-

late the vertices along those edges. For disconnection, we chose the orientation specified

in Figure 4.15b where da, cb are external edges.

Redundant tetrahedra. A redundant tetrahedron is subdivided using the criteria of

type 1 tetrahedra with two external edges, with the possible orientations defined in Figure

4.16. Our disconnection algorithm is different from the β-connection subdivision pro-

Figure 4.14: Subdivision of type 1 tetrahedra with one external edge bd

Chapter 4. Methodology and Implementation of Algorithms 66

(a)

(b)

Figure 4.15: Disconnection of (a) Type 1 tetrahedron with two external edges (cb and
bd) (b) Type 2 tetrahedron with two external edges(ad and bc)

(a) (b) (c)

Figure 4.16: possible orientations of redundant tetrahedra for disconnection with external
edge (a) dc (b) bd and (c) cb

Chapter 4. Methodology and Implementation of Algorithms 67

cess in how it disconnects both external and redundant tetrahedra while β-connection

retains both of them and subdivide only external ones. The disconnection algorithm

solves the branching problem in a very satisfactory way and also confirms to manifold

condition. Since the disconnection process respects the contours (i.e. the subdivided

tetrahedron always contain its contour edges), the neighbourhood around the edge is

always maintained, guaranteeing the manifold condition. In order to enforce the re-

sampling condition, we can also translate the new points inserted in the subdivision to

an intermediate position between the parallel planes, however this may not be necessary

in terms of reconstruction of neuron structures. Figure 4.17 illustrates the results of

disconnection algorithm applied to same pair of sections of Dataset I.

(a)

(b)

Figure 4.17: (a) Reconstruction of surface of sections in 4.13a (b) Close-up view of
branching in contours from our disconnection method

Chapter 4. Methodology and Implementation of Algorithms 68

Handling Singularities In this section, we demonstrate how we deal with singularities

that appear in the reconstruction process.

Definition 4.2. Face-to-Face connectivity Two tetrahedra T and T ′, are said

to be face-to-face connected in a complex K, if there exists a sequence of tetrahedra

T = T0, . . . , Tk = T ′ such that for all i, Ti ∈ K, and (Ti−1, Ti) share a face.

Based on the above definition we can now define the edge e as singular if any tetrahedron

in star of e is not face-to-face connected in K to at least one tetrahedron incident to e.

Let T and T ′ be two tetrahedra incident to an edge e. A pivot from T to T ′around e is a

sequence of face-to-face connected tetrahedra incident to e joining T to T ′. A tetrahedron

t is disconnected if and only if elimination of t does not change the number of face-to-face

connected components around e. We compute these components as follows. We start

pivoting at t around its ground edge e in the star(e) until we find t or a tetrahedron

incident to e that does not share its face with another tetrahedron of star(e). In the

latter case, we start pivoting again in the opposite direction to determine the next

component. Tetrahedron t incident to e is disconnected if it can be visited twice with

different directions or if it does not shares both of its faces containing e. In both the

cases, number of face-to-face connected components remains same after its elimination.

(a) (b)

Figure 4.18: (a) Star of edge e in tetrahedron t (b) 2D view of star of e

Chapter 4. Methodology and Implementation of Algorithms 69

Comparison with Beta connection Figures 4.19 and 4.20 show side-by-side com-

parison of our disconnection method with the β-connection subdivision algorithm in the

reconstructed mesh, using torus as the data model with different values of β. Left side

shows the results from β-connection subdivision algorithm, while right side shows results

from our disconnection method.

(a)

(b)

Figure 4.19: (a) Contours of torus model (b) Reconstruction with β = 0

Chapter 4. Methodology and Implementation of Algorithms 70

(a)

(b)

(c)

Figure 4.20: Reconstruction with β = (a) 1 (b) 3 (c) 5

Chapter 4. Methodology and Implementation of Algorithms 71

4.4 Corrections

It is possible that the resulting model consists of multiple components, if the segmenta-

tion process produces a set of spatially distant contours as a result from insufficient dye

penetration in microscopy images, and the reconstruction module is unable to establish

a connection among them with the specified value of β parameter. We can solve this

problem by varying the β parameter to establish a higher correspondence in regions of

disconnected component, but since the value remains same for an inter-slice region, it

might create unwanted connections in another regions. We rectified this problem by

computing the minimum spanning tree(MST) of the components, which finds relevant

connections between the contour nodes. The process is carried out on the cross-sectional

data.

We first build a graph G1 among the contours in cross-sections, with its edges formed by

relation disg(Cj, Ck) > 1 ∀ Cj, Ck ∈ slices Si, Si+1. Next, we compute the components

by performing a BFS on graph G1. These components (shown in Figure 4.21) are then

used as nodes for constructing the graph Gc. The edges of graph Gc are assigned a label

lab(Coj, Cok) = min(disg(Cm, Cn) ∀ Cm ∈ Coj ∩ Si, Cn ∈ Cok ∩ Si; i = 1, . . . , k),

where Coj and Cok are the nodes of graph Gc. Next, we filter the edges of graph Gc
by the relation lab(Coj, Cok) < threshold, t1. The selection of threshold is again done

through component analysis plot as shown in Figure 4.22. Finally, we compute the MST

on the filtered component graph Gc using Kruskal’s algorithm[28]. The resultant out-

put of the algorithm is a tree or a forest, determined by connectedness of the filtered

component graph Gc. To establish the correspondence among the contours of obtained

forest(or tree), we rasterize the segmented images along the shortest path connecting

the two contours using Bressenham Line Drawing Algorithm[8]. The images are then re-

fetched to the pipeline to generate a new reconstruction. The above mentioned process

increases the proximity factors of distant regions(or contours), which then enables the

correspondence among them in the reconstruction module with the same β value.

Chapter 4. Methodology and Implementation of Algorithms 72

Figure 4.21: Components of Contour Graph G1

Figure 4.22: Plot of number of connected components and size of largest connected
component of the component graph. This plot is used to choose an appropriate threshold
for the establishing connections

Chapter 4. Methodology and Implementation of Algorithms 73

4.5 Data Structure

One of the challenges of volume reconstruction is the definition of data structure to

support fast object manipulation and representation. In our implementation, we use

half-edge data structure (adapted from [36]) to represent tetrahedral meshes and to ef-

ficiently perform the topological operations. It optimizes the memory consumption /

execution time ratio for different topological operations in reconstruction process. How-

ever, instead of using the data structure in its entirety, we have adapted the same to

our needs, where we have substituted singularity and boundary computation properties

with the algorithm to maintain the efficiency. Given a regularized simplicial complex K,

a HE data structure is organized in terms of following entities:

Solid represents each connected component of the complex K.

Cells represents the list of tetrahedra of the solid.

Vertices represents the vertices of the solid.

Half-Faces represents the semi-faces of cells. It is a either a pointer to semi-face sand-

wiched between two adjacent cells (share a common face) or the boundary face of the

cell. The adjacency relationships among half-faces are also stored where each half-face

knows the adjacent half-face in the neighbor cell, as shown in Figure 4.23a. The diagram

in Figure 4.23b shows a small section of a half-edge representation of a triangle mesh

where each half-face consists of circular lists of its half-edges to define its orientation.

This half-edges can either be oriented clockwise or counter-clockwise around the face

based on the orientation of overall mesh.

(a) (b)

Figure 4.23

Chapter 4. Methodology and Implementation of Algorithms 74

Half-Edges represent the half-edges of cells. A half edge is a pointer to the oriented

semi-edge of the half-face represented by its initial vertex as shown in Figure 4.24. With

this notation, next and previous half edges of edb are ebc ecd, respectively. The adjacency

relationships among half-edges e1, e2, e3, e3 is defined as follows:

e1, e2 and e3, e4 are face adjacent.

e2, e4 are cell adjacent

The half-edges are employed to give access to the adjacency relationships in the bound-

ary surface. A pair of half-edges are directed have opposite directions.

Figure 4.24

Star Edge: A star of edge consists of the all tetrahedron incident on that edge. It is

represented as a linked list containing the pointer to each of the tetrahedron in its star.

These properties makes the half-edge data structure an appropriate choice to represent

manifold surfaces (i.e. every edge is bordered by exactly two faces). Figure 4.25 shows

the hierarchical relationship among the nodes of HE. The data structure was imple-

mented using object-oriented concepts where the child node contains the pointer to its

parent, thereby providing constant time access to its parent.

Chapter 4. Methodology and Implementation of Algorithms 75

Figure 4.25: Arrangement of nodes in data structure

Computational Complexity HE data structure described in above section provide

different tradeoffs between memory usage and time complexity of basic operations such

as identifying a simplex, accessing its edges, and computing its stars. For instance when

querying star of the edge, the operation will be linear in the number of tetrahedra inci-

dent to the edges, but constant time per-tetrahedron.

Considering the case of tetrahedral removal in a regularized simplicial complex K rep-

resented by the HE data structure, the time to update the neighborhood of a given

topological element is proportional to the number of elements in that neighborhood, due

to the adjacency and incidence relations stored in HE data structure.

Chapter 4. Methodology and Implementation of Algorithms 76

4.6 Complexity analysis

We have measured the complexity of the algorithms in framework as a function of num-

ber of vertices (or pixels) in the section (or image). In the segmentation module, contour

extraction runs on the subset of the pixels, while thresholding, morphological operators

and boundary extraction algorithms run on the entirety of the image, giving the com-

plexity bound as O(p) in time and space, where p is the number of pixels of image.

Table 4.1 show the complexity of each algorithm in segmentation module. As seen in the

table, it is the component extraction algorithm that bounds the complexity of segmen-

tation module, as it involves processing of each vertex of contours to compute geodesic

distances between the nodes of contour graph. The complexity of computation of the

geodesic distances algorithm is O(zn2), where n is the number of vertices of contour in

a pair of adjacent sections and z represents the number of sections. The complexity of

building the contour graph and extracting the largest component is O(zc), where c is

the number of contours in a section.

The reconstruction module is more efficient in terms of implementation and has its com-

plexity bounded operations that run in linear time proportional to the neighbourhood of

simplex. The complexity of the available incremental algorithm for 3D Delaunay trian-

gulation is O(zn2), while reconstruction process is bounded by O(zNT), where N is size

of neighborhood of tetrahedron, and T is the number of tetrahedra in simplex. Compu-

tation of the contour nesting hierarchy in each section and orienting the contours in the

correct directions takes O(n log n) time, where n is the number of vertices in a pair of

adjacent sections. The space complexity of the module is O(t), where t is the number of

triangles in the pair of adjacent sections.

The correction module is also bounded by computation of geodesic distance between

the nodes of contour graph as in the component extraction algorithm, which gives its

complexity as O(zn2) where n is the number of vertices of contour in a pair of adjacent

sections and z represents the number of sections.

Chapter 4. Methodology and Implementation of Algorithms 77

Table 4.1: Complexity of Segmentation module

Complexity
Binary Image Extraction O(zp)
Morphological Operations O(zp)
Boundary Extraction O(zp)
Contour Extraction O(zp)

Component Extraction
Computing geodesic distances O(zn2)
Component Graph O(zc+ E)
Component Extraction O(zc)

Total O(zn2)

Table 4.2: Complexity of Corrections module

Complexity
Computing geodesic distances O(zn2)
Building Connections Graph O(zc)
Building Component Graph O(zc+ E)
Computing MST O(E lgC)
Rasterized Operations O(zp)
Boundary Extraction O(zp)
Component Extraction O(zn2)
Total O(zn2)

Table 4.3: Complexity of Reconstruction module

Complexity
Computing 3D Delaunay Triangulation O(zn2)
Reconstruction of Surface O(zNT)
Building overall mesh O(zn)
Total O(zn2)

Table 4.4: Legend

z number of slices (images)
p number of pixels in a slice
n number of vertices in a pair of slices
c number of contours in a pair of slices
E number of edges in graph used in operation
C number of components in connections graph
N size of neighborhood of tetrahedron
T number of tetrahedrons in DT

Chapter 5

Results

In this chapter, we present the results obtained with the our framework on the given

dataset. To facilitate its use, we have worked the algorithms into a full-fledged software

tool. Each module of the framework was implemented using an object-oriented approach

making it easy to establish the correspondence in various data structures and adapting

the code to rapid changes and testing demands. The interchangeability provided by

abstract and derived classes allowed easy representations of the input data, and support

for multiple output data formats with minimal source code changes.

The complete framework, data structure and methods to access its information were

implemented in C++ with Visual Studio as IDE. The software was compiled for Microsoft

Windows 7 using Microsoft VC++ compiler. Because of our choice for the specific

programming language and processing environment as described earlier, the tool is, in

principle, computer-platform independent. By optimizing the implementation of the

algorithms we were able to achieve acceptable processing speeds, details of which are

described later in the section.

For visualization purposes, we developed our own 3D viewer using VTK (Visualization

Toolkit) and OpenGL library, that smoothens the reconstructed mesh using a laplacian

filter. We have tested our results on HP workstation xw6600, equipped with an Intel

Xeon quad-core processor, 8 gigabytes of memory, and a Nvidia GeForce 8800 graphics

card with 1 gigabytes of video memory.

78

Chapter 5. Results 79

We now begin with the reconstruction of Dataset I along the flow of pipeline in the

framework and show how each module performs in the framework.

Segmentation We first analyse the raw images of the dataset for noise which helps

to decide the threshold to use for the segmentation process. Figure 5.1 shows the non

background (inherited noise and structure) pixels in the raw image of the Dataset I.

Based on the noise present, we set an initial estimate of threshold, g0=22. We further

manipulate the regions in images to extract the small structures using visual tools.

Figure 5.1: Noise represented by grey pixels present in the microscopy images

Chapter 5. Results 80

Morphological Operations Once we sufficiently extract the information in thresh-

olding process, morphological operations are applied on the images to patch holes and

vacant neighbourhood pixels in the images. The results of morphological operations with

a 4-connective template and 8-connective template are shown in Figure 5.2. We used

two operations of openings followed by two operations of closing operator in our result.

Based on the visual analysis, we chose 8-connective template for further processing in

the framework.

(a)

(b)

Figure 5.2: Newly added pixels (marked in blue) with morphological operations applied
to segmented image with (a) 4-connective template (b) 8-connective template

Chapter 5. Results 81

Contour Extraction and Component Analysis Next, we trace out the boundaries

in the images to form the contours stack. To remove distant sparse contours inherited

from the noise, we use the component analysis algorithm. Figure 5.4a shows the contours

selected (marked in blue) for filtration with the optimal threshold value selected from the

component analysis plot (Figure 5.3). From the plot, we can see that two graphs (largest

component size and number of components) stabilize over the range 20-24. We selected

22 as the threshold based on visual analysis of the contour stack. This contour filtration

step has proved to be very effective in reducing the size of data, which is critical towards

increasing the computational efficiency of our reconstruction module. The reconstructed

mesh for the extracted contours is shown in Figure 5.4b with components of mesh from

noisy contours marked in blue color.

Figure 5.3: Component Analysis graph for the Dataset I

Chapter 5. Results 82

(a)

(b)

Figure 5.4: (a) Contours(marked in blue) selected with the threshold, t0 = 22 in compo-
nent extraction (b) Reconstructed mesh with components from selected contours in (a)
marked in blue color

Chapter 5. Results 83

Corrections As observed in Figure 5.4b, the reconstructed mesh still has disconnected

components in the dendritic branches, thus creating the necessity of the correction mod-

ule. Figure 5.6 shows how the connections are linked in the contour stack and corre-

spondingly in the reconstructed mesh from those contour stack for threshold t1 = 10.

The threshold selection is again done through component analysis plot (Figure 5.5) on

the component graph of extracted contour stack. As seen in the plot, the optimal range

of threshold t1 is 10-13. Figure 5.7a shows the final reconstructed mesh where it is ex-

tended correctly as a connected component in the dendritic branches with newly created

connections marked in blue color.

Figure 5.5: Plot of component analysis in corrections module

Chapter 5. Results 84

(a)

(b)

Figure 5.6: (a) Connections established (marked in blue) in contours stack (b) Recon-
structed mesh with newly created connections marked in blue

Chapter 5. Results 85

Reconstruction Figure 5.7b shows how variation of β parameter affects the connec-

tion in the reconstructed mesh with extra correspondences generated marked in blue

color as compared to correspondence from β = 1. In our result, we have used consistent

value of β-parameter across the contour stack, but it is possible to vary the values of β

across different pairs of sections to obtain different results.

(a)

(b)

Figure 5.7: (a) Reconstructed Mesh for β = 1 (b) Reconstructed Mesh with β = 3

Chapter 5. Results 86

Performance of the framework The computation time for the above dataset are

presented in Table 5.1 an 5.2 with parallel execution done on four cores. The total time

Table 5.1: Performance of Segmentation module (in sec)

Linear Parallel
Binary Image Extraction 3.760 2.153
Morphological Operations 3.682 2.715
Boundary Extraction 3.120 1.809
Contour Tracing 3.900 1.982
Computing geodesic distances 213.378
Component Graph 3.81
Component Extraction 1.82
Total 230.35 227.667

Table 5.2: Performance of Reconstruction module (in sec)

Linear Parallel
Computing 3D Delaunay Triangulation 23.83 6.83
Reconstruction of Surface 771.72 244.62
Building overall mesh 0.967
Total 796.51 252.417

Table 5.3: Performance of Corrections module (in sec)

Linear
Computing geodesic distances 54.366
Building Connections Graph 1.856
Building Component Graph 0.07
Computing MST 0.05
Rasterized Operations 1.378
Boundary Extraction 4.81
Component Extraction 81.463
Total 143.99

taken by our framework for the reconstruction of Dataset I is 624.07 sec ≈ 10 minutes.

On comparison with commercial softwares such as NeuroLucida, it takes an average time

of 4-6 hours to trace the boundaries in the dataset and generate the surface of the given

dataset. This performance gain shows the significance of our framework in terms of

reconstruction of neuronal structures.

Chapter 5. Results 87

Error Analysis To evaluate the reconstruction from our framework, we reconstructed

a virtual neuron model and compared the results of reconstruction with the original

mesh. We used the 3d modelling software “Autodesk 3ds Max” to design a virtual

neuron model. The model contains a soma, axon and flow of dendrite in 3d space (as

shown in Figure 5.8). Following the design, we computed the cross sections (Figure 5.9a)

of model at intervals in z scale, where we used normalized value for computing interval

length to maintain the aspect ratio of model. Further to introduce the partial effect of

adjacent images in the focused image, we took average of intensities of pixels in adjacent

sections to form a new image. To achieve the partial volume effect and intensity decay,

Figure 5.8: Virtual Neuron Model

we applied the proprietary “Lens blur” effect in Adobe Photoshop to the images (Figure

5.9b). This process helped us achieve realistic challenges often present in the images

due to uneven dye distribution and point spread of microscope. Finally, we fed these

images to our framework and obtained the reconstructed mesh (Figure 5.10). For error

analysis, we used a proprietary tool called Metro[10] which numerically compares two

triangular meshes by evaluating the difference between the two meshes on the basis of

the approximation error. It uses a mean distance as the measure of approximation error

Chapter 5. Results 88

(a)

(b)

Figure 5.9: (a) cross sections of the virtual neuron model (b) with Lens Blur effect

Chapter 5. Results 89

Figure 5.10: Reconstruction of Virtual Neuron Model

which is defined as

Em =
1

|S1|

∫
S1

e(p, S2)ds

where S1, S2 are the meshes being compared and e(p, S2) is the distance of point p in

S1 to nearest point in S2. Metro adopts an approximate approach based on surface

sampling and the computation of point to surface distances. The surface of the first

mesh is sampled, and for each elementary surface point, distance to the second mesh is

computed. Surface sampling in Metro is achieved by scanning of triangular faces with a

user-selected sampling resolution.

Chapter 5. Results 90

The output from the Metro tool consists of numerical data on input meshes charac-

teristics (mesh volume, feature edges total length, diagonal of the bounding box); and

the mean and maximum distances between meshes. For our use, we have used mean

and RMS distance as the two measures to evaluate our reconstruction. We used both

reconstructed mesh (backward) and original mesh(forward) as the sampled mesh and

evaluated the results. We computed percentage error on the non-sampled mesh as value

of mean distance with respect to diagonal of the bounding volume of sampled mesh.

With the given results in Table 5.4, we can conclude that the reconstruction accuracy of

the framework is optimal for the given purpose.

Table 5.4: Error Analysis Results from Metro tool

Mean RMS Percentage Error
Forward Distance 2.41 3.20 0.4
Backward Distance 2.55 3.08 0.4

Chapter 6

Conclusion and Future Work

The success of our approach to the reconstruction problem depends critically on the

user’s expertise to derive the solution, that is judged by its quality and accuracy of the

reconstructed 3D model. Although, for reasons mentioned in the chapter 1, it seems

impossible to eliminate all user interaction and it remains a challenge for us to auto-

mate the framework further and investigate its potential for fully automated neuron

reconstruction. Our approach to treat the disconnected fragments problem in the recon-

struction of neuron structures offers flexibility in the choice of degree of connections to

be made. Moreover, the fact that the resulting mesh is free of singularities enables the

resulting models to be used in simulations without any need for postprocessing. We feel

that results from our framework were more than adequate for the given dataset and can

be applied for functional visualization of other neuron structures. From a neuroscien-

tists standpoint, several characteristics are important, including the centroid of a soma,

its volume, its surface area, pattern in the dendritic connectivity and topology of such

structures, which can be easily derived from our reconstructed mesh. We would also like

to mention the comments we have received from Prof. S.K. Sikdar who is a neuroscien-

tist working within Indian Institute of Science, Bangalore. “I wish to mention that the

method has been found to be useful in the preliminary analysis of dendritic shaft and

spines of a single neuron filled with a dye, where the 2-photon confocal microscopy was

used to reconstruct the images. The preliminary studies confirm the usefulness of the

91

Chapter 6. Conclusion and Future Work 92

method and I am confident that this will prove to be useful for detailed neuronal recon-

structions in the future. I consider this work to be very challenging and it is probably

the first time that such detailed attempts to computationally reconstruct the image of a

neuron has been attempted in the country, independently.”.

The problem still left to work out is the detection of crossovers i.e when two neuron

structures cross each other very closely in the axial z-dimension and cause a overlap

of signal in the images. These overlaps are difficult to detect in raw images without

algorithms that require a lot of computational overhead. Further work in our plans is to

derive the correspondence parameter (β) for each region or contour from the component

analysis graph, instead of using unified β parameter across pair of adjacent slices.

From the above discussion, we conclude that our semiautomatic neurite reconstruction

technique yields a significant improvement over fully manual tracing(or reconstruction)

methods or other approaches by the conjunction of an accelerated and parallel imple-

mentation of processes, and corrigible results due to parameter initialized algorithms.

References

[1] N. Amenta, M. Bern, “Surface reconstruction by Voronoi filtering”, Discrete and

Computational Geometry, pp.481-504. 1999.

[2] N. Amenta, S. Choi, R. Kolluri, “The power crust, unions of balls, and the medial

axis transform”, Computational Geometry: Theory and Applications, pp.127-153,

2001.

[3] J. D. Boissonnat, “Shape reconstruction from planar cross sections”, Computer

Vision, Graphics, and Image Processing, pp.1-29, 1988.

[4] M. de Berg; O. Cheong, M. van Kreveld, M, Overmars, “Computational Geometry:

Algorithms and Applications”, Springer-Verlag, 2008.

[5] C.L. Bajaj, E.J. Coyle, K.N. Lin, “Arbitrary topology shape reconstruction from

planar cross sections”, Graphical Models and Image Processing, pp. 524-543, 1996.

[6] Y. Bresler, J.A. Fessler, and A. Macovski, “A Bayesian approach to reconstruction

from incomplete projections of a multiple object 3d domain. IEEE Transaction on

Pattern Analysis And Machince Intelligence, pp.840-858, 1989.

[7] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, G. Taubin, “The ball-pivoting

algorithm for surface reconstruction”, IEEE Transactions on Visualization and Com-

puter Graphics, pp.349-359, 1999.

[8] J. E. Bresenham, “Algorithm for computer control of a digital plotter”, IBM Systems

Journal, pp.25-30, 1965.

93

REFERENCES 94

[9] P.J. Broser, R. Schulte, A. Roth, F. Helmchen, S. Lang, G. Wittum, and B. Sak-

mann, “Nonlinear anisotropic diffusion filtering of threedimensional image data from

two-photon microscopy”, Journal of Biomedical Optics, pp.1253-1264, 2004.

[10] P. Cignoniy, C. Rocchiniz and R. Scopignox, “Metro:measuring error on simpli

ed surfaces”, Technical Note (Short contribution), Istituto per l’Elaborazione

dell’Informazione - Consiglio Nazionale delle Ricerche, Pisa, Italy, 1998.

[11] M. J. Carlotto, “Histogram analysis using a scale-space approach”, IEEE Transac-

tion of Pattern Analanysis and Machince Intelligence, pp.121-129, 1997.

[12] S. W. Cheng and T. Dey, “Improved constructions of delaunay-based contour sur-

faces”, ACM Symposium on Solid Modeling and Applications”, pp.322-323, 1999.

[13] H.N. Christiansen and T.W. Sederberg, “Conversion of complex contour line defi-

nitions into polygonal element mosaics”, Computer Graphics, SIGGRAPH, pp.187-

192, 1978.

[14] T.K. Dey, S. Goswami, “Tight Cocone: A water-tight surface reconstructor”, Jour-

nal of Computing and Information Science in Engineering”, pp. 302-307, 2003.

[15] A. Dima, M. Scholz, and K. Obermayer, “Automatic segmentation and skeletoniza-

tion of neurons from confocal microscopy images based on the 3D wavelet trans-

form”, IEEE Transaction on Image Processing, pp.790-801, 2002.

[16] H. Edelsbrunner and E.P. Mucke, “Three-dimensional alpha shapes”. ACM Trans-

action on Graphics, pp.43-72, 1994.

[17] A. B. Ekoule, F. C. Peyrin, and C. L. Odet, “A triangulation algorithm from ar-

bitrary shaped multiple planar contours”, ACM Transactions on Graphics, pp.182-

199, 1991.

[18] J.F. Evers, S. Schmitt, M. Sibila, and C. Duch, “Progress in functional neu-

roanatomy: precise automatic geometric reconstruction of neuronal morphology

from confocal image stacks”, Journal of Neurophysiology, pp.2331-2342, 2005.

REFERENCES 95

[19] T.J. Fellers, M.W. Davidson, “Introduction to Confocal Microscopy”. Olympus Flu-

oview Resource Center. National High Magnetic Field Laboratory, 2007

[20] F. Fleuret, P. Fua, “Dendrite Tracking in Microscopic Images using Minimum Span-

ning Trees and Localized E-M”, Technical Report, Computer Vision Lab, EPFL,

2006.

[21] B. Geiger, “Three dimensional modeling of human organs and its application to di-

agnosis and surgical planning”, Technical Report, INRIA, Sophia-Antipolis, France,

1993.

[22] C. Giertsen, A. Halvorsen, and P. R. Flood, “Graph-directed modelling from serial

sections”, The Visual Computer, pp. 284-290, 1990.

[23] R.C. Gonzalez, R. E. Woods, “Digital image processing”, 2nd edition, Upper Saddle

River, New Jersey, Prentice Hall, 2002.

[24] W. He, T.A. Hamilton, A.R. Cohen, T.J. Holmes, C. Pace, D.H. Szarowski, J.N.

Turner and B. Roysam, “Automated Three-Dimensional Tracing of Neurons in Con-

focal and Brightfield Images. Microscopy and Microanalysis”, pp 296-310, 2003.

[25] M. Jones, and M. Chen, “A new approach to the construction of surfaces from

contour data”. Computer Graphics Forum, pp.75-84, 1994.

[26] E. Keppel, “Approximating complex surfaces by triangulation of contour lines”,

IBM Journal of Research and Development, pp.2-11, 1975.

[27] K.A. Al-Kofahi, S. Lasek, D.H. Szarowski, C.J. Pace, and G. Nagy, “Rapid au-

tomated three-dimensional tracing of neurons from confocal image stacks”, IEEE

Transactions on Informations Technology in Biomedicine, pp.171-187, June 2002.

[28] J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Traveling

Salesman Problem”, Proceedings of the American Mathematical Society, pp.48-50,

1956.

REFERENCES 96

[29] J. N. Kapur, P. K. Sahoo, A. K. C. Wong, “A new method for gray level picture

thresholding using the entropy of the histogram. Computer Vision, Graphics, and

Image Processing, pp.273-285, 1985.

[30] D. Levin, “Multidimensional reconstruction by set-valued approximation”, IMA

Journal of Numerical Analysis, pp.173-184, 1986.

[31] W. Lorenson, and H. Cline, “Marching cubes: A high resolution 3d surface con-

struction algorithm”, ACM Computer Graphics, pp.163-169, 1987.

[32] C. K. Leung and F. K. Lam, “Performance analysis of a class of iterative image

thresholding algorithms”, Pattern Recognition, pp.1523-1530, 1996.

[33] E. Meijering, M. Jacob, J.C.F. Sarria, M. Unser, “A Novel Approach to Neurite

Tracing in Fluorscence Microscopy images”, International Conference on Signal and

Image Processing, pp 491-495, 2003.

[34] D. Meyers, S. Skinner, K. Sloan, “Surfaces from contours”, ACM Transactions on

Graphics, pp.228258, 1992.

[35] D. Meyers, “Reconstruction of surfaces from planar contours”, Doctoral dissertation,

University of Washington, 1994.

[36] L.G. Nonato, A. Castelo, J.P.P. Campos, H.H. Biscaro, R. Minghim, “Tetrahedron

Topological Characterization with Application in Volumetric Reconstruction”, In-

ternational Journal of Shape Modeling, 2005

[37] L.G. Nonato, A.J.C. Vargas, R. Minghim, M.C.F. Oliveira, “Beta-connection: Gen-

erating a family of models from planar cross sections”, ACM Transactions on Graph-

ics, pp.1239-1258, 2005

[38] L.G. Nonato, R. Minghim, M.C.F. Oliveira and G.Tavares, “A novel approach for

Delaunay 3D reconstruction with a comparative analysis in the light of applica-

tions”, Computer Graphics Forum, pp 161-174, 2001.

REFERENCES 97

[39] J. C. Olivo, “Automatic threshold selection using the wavelet transform”, Graphical

Models and Image Processing pp. 205-218, 1994.

[40] N. Otsu, “A threshold selection method from gray level histogram”. IEEE Transac-

tions on Systems, Man, and Cybernetics, pp.6266, 1979.

[41] N. R. Pal, “On minimum cross-entropy thresholding”, Pattern Recognition, pp.575-

580, 1996.

[42] H. Peng, F. Long and G. Myers, “Automatic 3D neuron tracing using all-path

pruning”, Bioinformatics, pp 239-247, 2011.

[43] T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection

method”, IEEE Transaction on Systems, Man and Cybernactics, pp.630-632, 1978.

[44] A. Rodriguez, D. Ehlenberger, K. Kelliher, M. Einstein, S.C. Henderson, J.H. Mor-

rison, P.R. Hof, and S.L. Wearne, “Automated reconstruction of three-dimensional

neuronal morphology from laser scanning microscopy images”, Methods, pp.94-105,

2003.

[45] Amir Sadeghipiur, “Algorithms of rutomatic reconstruction of neurons form the

confocal images”, Masters thesis, 2008.

[46] S. Schmitt, J.F. Evers, C. Duch, M. Scholz, and K. Obermayer, “New methods for

the computer-assisted 3D reconstruction of neurons from confocal image stacks”,

NeuroImage, pp.1283-1298, 2004.

[47] M. I. Sezan, “A peak detection algorithm and its application to histogram-based

image data reduction,” Graphical Models and Image Processing, pp.47-59, 1985.

[48] M. Shantz, “Surface definition for branching, contour-defined objects”, Computer

Graphics, pp.242-270, 1981.

REFERENCES 98

[49] A. Santamaria, I. Kakadiari, “Automatic Morphological Reconstruction of Neurons

from Optical Imaging”, Micscoscopy Image Analysis and Applications in Biology

Workshop”, 2007.

[50] Y. Shinagawa, T.L. Kunii, and Y. L. Kergosien, “Surface coding based on Morse

theory”, IEEE Comuter Graphics and Applications, pp.66-78, 1991.

[51] B.I. Soroka, “Generalized cones from serial sections”. Computer Graphics and Image

Processing, pp.154-166, 1981.

[52] K.R. Sloan Jr. and J. Painter, “Pessimal guesses may be optimal: A counterintuitive

search result”, IEEE Transactions on Pattern Analysis and Machine Intelligence,

pp.949-955, 1988.

[53] M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quanti-

tative performance evaluation”, Journal of Electronic Imaging, pp.146-165, 2004.

[54] C. Uehara, C. Colbert, P. Saggau, I.Kakadiaris, “Towards automatic reconstruction

of dendrite morphology from live neurons”, IEEE Engineering in Medicine and

Biology Society, 2004.

[55] S. Urban, S.M. OMalley, B. Walsh, A. Santamara-Pang, P. Saggau, C. Colbert and

I. A. Kakadiaris, “Automatic Reconstruction of Dendrite Morphology from Optical

Section Stacks”, Computer Vision approaches to Medical Image Analysis, Lecture

Notes in Computer Science, pp 190-201, 2006

[56] J.M. White and G.D. Rohrer, “Image thresholding for optical character recogni-

tion and other applications requiring character image extraction”, IBM Journal of

Research and Development. pp.400-411, 1983.

[57] S.L. Wearne, A. Rodriguez, D.B. Ehlenrger, A.B. Rocher, S.C. Henderson, and P.R.

Hof, “New techniques for imaging, digitization and analysis of three-dimensional

neural morphology on multiple scales”, Neuroscience, 2005.

REFERENCES 99

[58] T. Zhao, J. Xie, F. Amat, N. Clack, P. Ahammad, H. Peng, F. Long, E. Myers,

“Automated Reconstruction of Neuronal Morphology Based on Local Geometrical

and Global Structural Models”, Neuroinform, pp 247-261, 2011.

[59] Y. Zhang, X. Zhou, J. Lu, J. Lichtman, D. Adjeroh and ST. Wong, “3D Axon

structure extraction and analysis in confocal fluorescence microscopy images”, Neu-

ral computation, pp.1899-1927, 2008.

	Acknowledgements
	Abstract
	Keywords
	Introduction
	Problem Definition
	Why the problem is Challenging?
	The Framework
	Thesis Organization
	Our Contributions

	Basic Concepts
	Neuron Morphology
	Confocal Laser-scanning Microscopy (CLSM)
	Dataset
	Segmentation
	Thresholding
	Morphological Operators for Binary Images
	Neighbourhood Templates
	Moore-Neighbour Tracing Algorithm

	Reconstruction
	Overview of the Problem
	Classification of Reconstruction Approaches
	Voronoi Diagrams and Delaunay Triangulation
	Beta Connection

	Tools and Libraries
	CGAL
	LibTIFF
	Paraview

	Related Work
	Methodology and Implementation of Algorithms
	Image Enhancement and Preliminary Filtering
	Segmentation
	Algorithm
	Thresholding
	Morphological Operations
	Boundary Extraction and Contour Tracing
	Connected Components Analysis And Extraction
	Conclusion

	Reconstruction
	Why Beta Connection
	Decomposition of the reconstruction problem and related definitions
	Algorithm

	Corrections
	Data Structure
	Complexity analysis

	Results
	Conclusion and Future Work
	References

