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Geometric Localization of Homology Cycles
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Abstract

Computing an optimal cycle in a given homology
class, also referred to as the homology localization
problem, is known to be an NP-hard problem in general.
Furthermore, there is currently no known optimality
criterion that localizes classes geometrically and admits
a stability property under the setting of persistent
homology. We present a geometric optimization of
the cycles that is computable in polynomial time and
is stable in an approximate sense. Tailoring our
search criterion to different settings, we obtain various
optimization problems like optimal homologous cycle,
minimum homology basis, and minimum persistent
homology basis. In practice, the (trivial) exact
algorithm is computationally expensive despite having
a worst case polynomial runtime. Therefore, we
design approximation algorithms for the above problems
and study their performance experimentally. These
algorithms have reasonable runtimes for moderate sized
datasets and the cycles computed by these algorithms
are consistently of high quality as demonstrated via
experiments on multiple datasets.

1 Introduction

Homology groups and their persistent version called
persistent homology play a central role in topological
data analysis (TDA), a thriving research field of equal
interest to computer scientists, mathematicians and
data scientists [17, 18]. The ranks for homology groups
and the barcodes for persistent homology groups have
been extensively studied both from algorithmic and
mathematical perspectives. With the growth of TDA in
applications, there is an increasing need for computing
homology cycles that localize given homology classes
or constitute a basis for the homology group. Often
applications require these cycles to be tightest possible
or geometry-aware in some sense rather than being
completely oblivious of the embedding space. This
demand has led to studying homologous or basis cycles
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under various optimization criteria. A number of
optimization results in this direction have now appeared
in the literature both in persistent and non-persistent
settings [4, 5, 7, 8, 10–13,16,27].

The quality of the optimal cycles depends on the
choice of a weight function. For instance, one may
choose a weight for each p-cycle ζ to be the sum of
non-negative weights assigned to each p-simplex in ζ.
Optimizing this measure over a class of a given cycle
ζ localizes the class [ζ] in the sense that it selects a
cycle in the class with the least weight. Unfortunately,
this problem is known to be NP-hard in general [7, 10]
except for some special cases [13, 15]. Polynomial
time algorithms are known for certain optimization
criteria [9, 15] or in lower dimensions [4, 7, 16,20].

Outline and Contributions. Precisely, we achieve
the following. Given a simplicial complex K with the
vertices in a point set P ⊂ Rd and linearly embedded
simplices, we define the weight of a cycle ζ as the
radius of the smallest (d − 1)-sphere that encloses ζ.
This measure, in some sense, captures the locality of
ζ with respect to its geometry. In Section 4, we
study how homology localization serves as an archetype
application. Then, we solve other versions of the
optimal cycle problem including minimum homology
basis in Section 5 and minimum persistent homology
basis in Section 6. For the persistent version, in
Appendix B, we show optimal persistent homology
bases are stable in an approximate sense. For
previous results on optimal persistent cycles [11,15] such
stability is not known. The approximation algorithms
described in this paper have been implemented. In
Section 7, we report experimental results for the
approximate algorithms. In our experiments, we found
that even the approximate algorithms return cycles
of consistently high quality confirming the value of
ℓ2–radius as an optimization criterion. We further
compare experimental results on persistent homology
with that of PersLoop [28], which is a state of the art
software for computing optimal persistent 1-cycles. We
visually infer that our cycles are "tighter" than those of
PersLoop on multiple datasets of practical importance.

Related work. A criterion related to ours was
considered by Chen and Freedman [9] who proposed to
compute a minimum homology basis while optimizing
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the shortest path radius of the geodesic balls containing
the basis cycles. With an embedding in the Euclidean
space, the ℓ2–radius of the geometric balls capture
locality more concisely than the shortest path radius.
Yet another measures of optimality for cycles that
is tractable, namely lexicographically optimality [11],
suffers from the drawback that it requires a parameter:
a total order on simplices. In applications, it is
sometimes desirable that the optimal cycles be stable
with regard to the change in the input data [2].
An optimization criterion that is geometry-aware,
polynomial time computable, and results in some kind of
stability is volume optimal cycles by Obayashi [25, 26].
However, unlike our measure, the approach described
in [25] works only for computing representatives of finite
bars. In another related work, Li et al. [24] obtain
minimal representatives using linear programming for
a variety of optimization criteria with impressive
runtimes. However, their software does not work for
arbitrary filtrations yet [22]. In summary, our key
contribution in this work is that we introduce a natural
measure of optimality of cycles that has good theoretical
properties and is well-behaved in practice.

2 Background and preliminaries

In this section, we recall some preliminaries on
persistent homology. For the rest of this section, we
work only with simplexwise filtrations: That is, we have
a filtration F on R where the complexes change only at
finite set of values a1 < a2 < . . . < an and every change
involves addition of a unique simplex σai for i ∈ [n].

F : ∅ = Ka0

σa0
↪→ Ka1

σa1
↪→ Ka2

σa2
↪→ . . .

σan�1

↪→ Kn = K

Using p-th homology groups of the complexes over the
field Z2, we get a sequence of vector spaces connected
by inclusion-induced linear maps:

HpF : Hp(Ka0
)→ Hp(Ka1

)→ Hp(Ka2
)→ . . .

The sequence HpF with the linear maps is called
a persistence module. There is a special persistence
module called the interval module I[b,d) associated to
the interval [b, d). Denoting the vector space indexed at
a ∈ R as Ia, this interval module is given by

I[b,d)a =

(
Z2 if a ∈ [b, d)

0 otherwise

together with identity maps ida,a0 : I[b,d)a → I[b,d)a0 for
all a, a0 ∈ [b, d) with a ≤ a0.

It is known due to a result of Gabriel [21] that a
persistence module defined with finite complexes admits
a decomposition

HpF ∼=
M
α

I[b�,d�)

which is unique up to isomorphism and permutation of
the intervals. The intervals [bα, dα) are called the bars.
The multiset of bars forms the barcode of the persistence
module HpF , denoted by Bp(F). The following two
definitions are taken from [14].

Definition 1. For an interval [b, d), we say that ζ is
a representative cycle for [b, d), or simply ζ represents
[b, d), if one of the following holds:

• d ̸= +∞, ζ is a cycle in Kb containing σb, and ζ is
not a boundary in Kd�1 but becomes one in Kd.

• d = +∞, and ζ is a cycle in Kb containing σb.

Definition 2 (Persistent cycles). A p-cycle ζ that
represents an interval [b, d) ∈ Bp(F) is called a persistent
p-cycle for [b, d).

For a bar [b, d), σb is said to be a creator simplex and
σd is called a destroyer simplex.

It is easy to check that if ζ is a representative cycle
for [bi, di) and ξ is a representative cycle for [bj , dj),
where bj < bi and dj < di, then ζ + ξ is also a
representative cycle for [bi, di). The set of representative
cycles for interval [bi, di) is denoted by R([bi, di)).
Representatives of bars of the form [b,∞) are called
essential cycles.

Definition 3 (Persistent basis). Let J be the indexing
set for the intervals in the barcode Bp(F) of filtration
F . That is, for every j ∈ J , [bj , dj) is an interval in
Bp(F). Then a set of p-cycles {ζj | j ∈ J} is called a
persistent p-basis for F if

HpF =
M
j2J

Iζj where Iζj is defined by

Iζja =

(
[ζj ] if a ∈ [bj , dj)

0 otherwise.

Here, for every j ∈ J and every a, a0 ∈ [bj , dj) with
a ≤ a0 the maps Iζja → Iζja0 are the induced maps on
homology restricted to [ζj ], respectively.

The following theorem by Dey et al. [14] relates
persistent cycles to persistent bases.

Theorem 1 ( [14, Theorem 1]). Let J be the indexing
set for the intervals in the barcode Bp(F) of filtration
F . Then, an indexed set of p-cycles {ζj | j ∈ J} is a
persistent p-basis for a filtration F if and only if ζj ∈
R([bj , dj)) for every j ∈ J .
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3 The `2�radius metric

Given a complex K, let Zp(K) denote its p-th cycle
group, Bp(K) its p-th boundary group and Hp(K ) its
p-th homology group with Z2 coe�cients. Given a cycle
� , our goal is to de�ne a non-negative weight function
w : Zp(K) ! R+ on the cycles in Zp(K) and compute
a minimum-weight (optimal) cycle � � in its homology
class[� ], that is,

� � 2 arg min
�̂ 2 [� ]

w(�̂ ): (1)

We show that the `2�radius is an alternative natural
geometric objective function de�ned on cycles that
guarantees tractability. Let P be the vertex set of
K. Then, KV denotes the subcomplex ofK induced
by a subset V � P. Extending this notation, we say
a complex is induced by a sphereSc;r if it is induced
by the subset of vertices ofP that are enclosed bySc;r

(including on the sphere). Let the complex induced by
Sc;r be denoted asKc;r . We de�ne a weight function
r : Cp(K) ! R+ , � 7! r (� ) where

r (� ) = min
c;�

f � j � 2 Cp(Kc;� )g: (2)

In words, r (� ) is the radius of the smallest Euclidean
sphere whose induced complex inK contains � .

We now de�ne an `2�radius measure for intervals in
a barcode. For an interval [b; d) 2 Bp(F ), we de�ne
r ([b; d)) as the radius of the smallest sphere that encloses
a subset of verticesV of Kb that induces a subcomplex
KV

b � Kb, which supports a representative cycle for
[b; d). Equivalently,

r ([b; d)) = min
� 2R ([ b;d))

r (� ); (3)

where in Equation (3), the radius function r is restricted
to the subcomplexKb � K.

4 Computing optimal homologous cycle

Following Equation (1), we de�ne an optimal cycle � �

in the class [� ] by requiring � � 2 arg min�̂ 2 [� ] r (�̂ ). The
cycle � � represents an optimal localization of the class
[� ] with respect to the `2�radius. We consider the
following Optimal Homologous Cycle problem:

Given an p-cycle � 2 Zp(K), compute an optimal
cycle � � in [� ] and r (� � ).

Remark 4.1. To compute the optimal homologous cycle,
it is su�cient to look at the minimum circumspheres
of all k-subsets of points P = V(K), where k 2
f 2; : : : ; d + 1g, and check if the circumsphere encloses

a cycle homologous to the input cycle. When the
dimension d of the complex K is �xed, the search
terminates in polynomial time. This describes a trivial
exact algorithm which was found to be too expensive in
our experiments in spite of polynomial time complexity.

Remark 4.2. By restricting the centers of the spheres in
Equation (1) to the the sites P = V(K) (vertices of K)
yields a 2-approximation of `2�radius as follows: let S
be a sphere that minimizes`2�radius of a chain � and
let v be a vertex on S. Then, a sphere of twice the
optimal radius centered at v enclosesS, and therefore
also encloses� . We de�ne r c(� ) = min f � j � 2 Cp(Kc;� )g
and r P (� ) = min c2 P;� f � j � 2 Cp(Kc;� )g.

Notations and Conventions. The notations and
conventions described are common to all the problems
in the paper. In our algorithms, a cycle (or a chain)
� is represented by a0� 1 vector in the standard chain
basis. That is, a p-cycle � is represented by a vector�
where � [i ] = 1 (� [i ] = 0 ) if a p-simplex � i is (not) in the
support of � . We often use cycle vectors of subcomplexes
in computations involving cycles and boundaries of
larger complexes. To ensure that we are working with
vectors/matrices of the right dimensions, we make the
following adjustment. For complexes L � K, the
inclusion map L ,�! K induces mapsZp(L) ! Zp(K)
for every p. A cycle � in L is mapped to a cycle� in
K with � [i ] = � [i ] for simplices � i 2 L, and � [i ] = 0
for simplices � i 2 K n L (using standard chain basis).
Likewise, a matrix M of cycle vectors ofL can be treated
as a matrix of cycle vectorsM of K by padding zeros
in the rows corresponding to the simplices inK n L. We
call such cycle vectors� and matricesM , the extensions
of � and M in K.

Let K be a simplicial complex,K � Rd. For any v 2
Rd we can de�ne a total ordering � v on the simplices
of K as follows. If � 1 is a face of� 2 or r v (� 1) < r v (� 2),
then � 1 � v � 2. Otherwise (when r v (� 1) = r v (� 2) and
� 1 is neither a face or coface of� 2), ties are arbitrarily
broken. If � = � 1 + : : : + � s such that � 1 � v : : : � v

� s, then we de�ne � (� ) = � s. Further, we extend this
ordering to chains as follows: If� 1; � 2 2 Cp(K) such that
� 1 = � 1 + : : : + � s; � 2 = � 0

1 + : : : + � 0
s0with � 1 � v : : : � v

� s and � 0
1 � v : : : � v � 0

s0, then � 1 � v � 2 if � s � v � 0
s0

i.e. � (� 1) � v � (� 2). Note that r v (� ) = r v (� (� )) . The
ordering � v induces a simplex-wise �ltration on K which
we denote byDv (K).

The standard reduction algorithm [3] is used in many
of our algorithms as subroutines. For completeness, we
present an outline of the algorithm and recall some facts
arising out of it in Appendix C. Algorithm 1 relies on
the following proposition (Proof in Appendix C).

Proposition 4. Let � 1 � v : : : � v � s be the essential
p� cycles ofDv (K) computed using standard reduction.
Let � be a p-cycle,[� ] 6= 0 2 Hp(K), such that � = � i 1 +
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: : : + � i m + @cp+1 where each� i k 2 f � 1; : : : ; � sg and cp+1

is a p+1 chain. If i 1 < : : : < i m then r v ([� ]) = r v (� i m ).
In particular, � i 1 + : : : + � i m 2 arg min� 2 [� ] r v (� ).

We now describe a 2-approximation algorithm for
Optimal Homologous Cycle for an input cycle
� by optimizing with respect to rP . For each site
v, the algorithm invokes the subroutine optimal-
hom-cycle-forsite (Line 15 of Algorithm 1) which
computes r v ([� ]) = min � 2 [� ]f r v (� )g and � �

v 2
arg min� 2 [� ]f r v (� )g. Finally it reports the minimum
among all sites and the corresponding optimal
homologous cycle. Procedureoptimal-hom-cycle-
forsite is motivated by Proposition 4. It �rst sorts the
simplices ofK based on distance fromv. The ordering is
monotonic, that is, faces gain precedence over cofaces.

In this way the ordering � v and hence the �ltration
Dv (K) is de�ned. Let � 1 � v : : : � v � m be the essential
p� cycles ofDv (K) computed using standard reduction.
As noted before we consider cycle vectors to represent
the cycles. To compute the linear combination of
cycles f � i g which is homologous to� , we solve for the
system of equations[� 1 : : : � s j Bp(K)]:x = � . (We invoke
subroutine SolveByReduction which solvesAx = b
over Z2, using standard reduction as a subroutine.
Refer to Appendix C, Algorithm 5 for de�nition of this
routine). If i 1; : : : i s; j 1 : : : ; j t is a solution where indices
i 1; : : : i s correspond to cycles inf � i gm

i =1 ) and j 1 : : : j t

correspond to boundaries inBp, then by Proposition 4
� i 1 + : : : + � i s 2 arg min� 2 [� ]f r v ( � )g.

Remark 4.3. Algorithm 1 runs in O(jP jN 3), where N
is the number of simplices inK.

5 Optimal homology basis

A set of p-cycles f � 1; : : : ; � � g (� p = � p(K)) is called a
homology cycle basisif the set of classesf [� 1]; : : : ; [� � ]g
forms a basis forHp(K). For simplicity, we use the term
homology basisto refer to the set of cyclesf � 1; : : : ; � � g.

De�nition 5. A p� homology basis f � 1; : : : ; � m g will
be called a minimum p� homology basis (p > 0)
with respect to a non-negative weight function w :
Zp(K ) ! R, if for all p� homology bases� 0

1 : : : � 0
m ,

w([� 1]) + : : : + w([� m ]) � w([� 0
1]) + : : : + w([� 0

m ]) and
each� i 2 arg min� 2 [� i ] w(� )

We consider the following Optimal Homology
Basis problem.

For a given p > 0 compute a minimum p� homology
basis with respect to the weight function r .

Algorithm 2 describes a2� p-approximation algorithm
for Optimal Homology Basis by computing a

Algorithm 1: Computing optimal homologous
cycle for given set of sites
Input : K; � 2 Cp(K)
Output: r P ([� ]); � � (Optimal homologous cycle)

1 Procedure OptHomologousCycle
2 rP ([� ])  1 ; � �  ;
3 for v 2 P do
4 r v ([� ]); � �

v  
Optimal-Hom-Cycle-ForSite (v)

5 If r v ([� ]) is less than the current value of
r P ([� ]), then update r P ([� ]) with r v ([� ])
and � � with � �

v

6 Procedure Optimal-Hom-Cycle-ForSite( v)
7 . Description: Computes r v ([� ]) =

min � 2 [� ] r v (� ); � �
v 2 arg min� 2 [� ] r v (� )

8 De�ne � v on K. Compute Dv (K)
9 Compute the essential cycles ofDv (K) by

standard reduction. Let � 1; :::; � m be essential
cycles ordered with respect to� v .

10 Compute the pth boundary matrix of K,
denote it by Bp.

11 Assemble matrix @= [ � 1; :::; � m j Bp]
12 Solve@:x= � . Invokes(

SolveByReduction (@; �)). Let
i 1; : : : ; i s; j 1; : : : ; j t be the solution where
i 1; : : : ; i s � m (indices that correspond to
cycles in f � i gm

i =1 ) and j 1 : : : j t > m ( indices
correspond to boundaries inBp.)

13 � �
v  � i 1 + : : : + � i s .

14 r v ([� ])  r v (� �
v )

15 Return r v ([� ]); � �
v

minimum homology basis with respect to r P by
restricting the centers of minimal spheres to sites. To
compute the minimum homology basis M from 
 ,
(see Line 5) standard reduction is performed on@=
[Bp(K) j 
] . We examine the columns of the reduced
matrix ~@from left to right. For every non-zero column
i that is an index from 
 , we add the corresponding
cycle in 
 to M . Algorithm 2 runs in O(jP jN 3). See
Appendix C.1 for a proof of correctness.

6 Optimal persistent homology basis

We now consider a �ltration of a simplicial complex K
with the aim of studying an extension of the problem to
persistent homology [19]. We introduce theMinimum
persistent homology Basis problem:

Given a �ltration F of complex K, compute a
persistent p-basis � p = f � i j i 2 [jBp(F )j]g that



CCCG 2024, St. Catharines, ON, Canada, July 17 � 19, 2024

Algorithm 2: Optimal homology basis for sites

Input : Complex K � Rd, p > 0
Output: A minimum homology basis with

respect to rP

1 Procedure Opt-hom-basis-for-sites( K; p)
2 For each v 2 P, de�ne � v . Using standard

reduction compute the essentialp� cycles of
the �ltration Dv (K), denote them by
� v;1; : : : ; � v;m .

3 Let 
 = f � v;i gv2 P;1� i � m . Sort the cycles in 

so that if r v (� v;i ) < r v0(� v0;i 0) then � v;i

precedes� v0;i 0 in 
 . If � v;i � v � v;i 0, then � v;i

precedes� v;i 0 as well. Ties are broken
arbitrarily. Denote this ordering on 
 as � 
 .

4 M  ; .
5 for � in the ordered list 
 do
6 Let � 1; : : : � k be the cycles currently inM .
7 if [� ] 2 spanf [� 1]; : : : [� k ]g then
8 Discard � and continue.

9 else
10 Add � to M .

11 Report M as a minimum homology basis.

minimizes r (� p) =
P jB p (F ) j

i =1 r (� i ).

Theorem 1 states that for computing an optimal
persistent homology basis it su�ces to compute the
minimum representative of each bar. Formally, an
optimum representative of a bar [b; d) is a cycle � � 2
arg min� 2R ([ b;d)) f r P (� )g.

Algorithm 3 computes an minimum representative of
a input bar [b; d) 2 Bp(F ) for a simplex-wise �ltration
F of K with V (K) = P with respect to rP . For each
site v 2 P the subroutine Opt-Pers-Cycle-Site is
invoked which computes� �

v 2 arg min� 2R ([ b;d)) f r v (� )g.
Finally the minimum � �

P = arg min v2 P f r v (� �
v )g among

all sites is reported. Similar to Algorithm 1 a �ltration
Dv is de�ned on Kb. The essentialp� cyclesY = f � 1 � v

: : : � v � m g of Dv (Kb) are computed using standard
reduction. We then compute the smallest i > 0 such
that 9 � 2 spanf � 1; : : : ; � i g; � 2 R ([b; d)) . If � b was
added at index b of F and � is the index of the �rst
cycle in Y containing � b, then update Y by adding Y�

to all other cycles containing � b. This ensures that only
a single cycle now contains� b. Denoting these cycles of
Y n f � � g by Y 0 and the �rst i cycles of Y 0 by Y 0

� i , it
su�ces to check if [Bp(Kd) j Y� i ]:x = Y� has a solution.
This is determined in Line 15 with a binary search over
i 2 [1::m � 1].

The proof of correctness of Algorithm 3 can be found
in Appendix C.2. It runs in O(jP jN 3 logN ).

Algorithm 3: Computing optimal
representative of bar of persistence wrtr P .
Input : K; F (simplex-wise �ltration) ; [b; d) 2

Bp(F )
Output: � �

P ([b; d)) 2 arg minv2 P;� 2R ([ b;d)) f r v (� )g

1 Procedure Opt-PersHom-Rep(K; F ; [b; d))
2 rP ([b; d))  1 ; � �

P ([b; d))  ;
3 for v 2 P do
4 r v (� �

v ); � �
v  

Opt-Pers-Cycle-Site ([b; d); v)
5 if r v (� �

v ) < r P ([b; d)]) then
6 r P ([b; d))  r v (� �

v ) � �
P ([b; d))  � �

v

7 Return rP ([b; d)) ; � �
P ([b; d))

8 Procedure Opt-Pers-Cycle-Site( [b; d); v)
9 De�ne � v on Kb. Compute Dv (Kb)

10 Compute the essential p-cycles
� 1 � v : : : � v � m of Dv (Kb) using standard
reduction

11 Y  � 1; :::; � m . (Y is a matrix of m columns,
the column Yi is the cycle-vector of� i ). Let �
be index of �rst cycle in Y containing � b

12 Add cycle Y� to all other cycles in Y
containing � b, resulting in matrix Ŷ .

13 Assemble matrix Y 0 by dropping the � th

column of Ŷ . Denote by Y 0
� i the �rst i

columns of Y 0.
14 @d  Bp(K d)(@d is empty if d = 1 )
15 Compute the smallest i 2 [1::m � 1] such that

[@d jY 0
� i ]:x = Y� has a solution.

16 Let b1; :::; bt ; i 1; :::; i s be the solution
computed by the previous step whereb1; :::; bt

are indices in@d and i 1; :::; i s are in Y 0
� i

17 � �
v  Y 0

� i;i 1
+ ::: + Y 0

� i;i s
+ Y�

18 Return � �
v ; r v (� �

v )

7 Experiments

We report results of experiments on real world datasets
with a focus on computing cycle representatives ofH1.
These results demonstrate the utility of the `2�radius
towards the identi�cation of meaningful representatives
of homology classes. We consider three applications:
localizing individual 1-cycles, optimal 1-homology basis
computation, and minimum persistent 1-homology basis
computation. Computing the exact `2�radius via an
enumeration of all circumspheres is expensive. So, all
experiments were conducted on implementations of the
approximate algorithms described above.

We implement a heuristic to minimize the length
of the cycle representative while preserving its radius.
Essentially, we replace one of the pathsP between
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