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Fig. 1. Robust scalar field symmetry identification algorithm detects symmetry even in the presence of significant noise in the electron
microscopy data of the Rubisco RbcL8-RbcX2-8 complex (EMDB 1654). (left) Volume rendering shows symmetry and noise in the
data. (center) A set of seed cells is chosen as source vertices for traversing the augmented extremum graph of the data. During the
traversal, the seed cells merge together to form four symmetric super-seeds. Seed cells that belong to a common super-seed are
shown with the same color. (right) The initial estimate of symmetry is expanded in a region growing stage to identify the symmetric
regions. A symmetry-aware transfer function highlights the 4-fold rotational symmetry detected in the Rubisco complex.

Abstract—Visualizing symmetric patterns in the data often helps the domain scientists make important observations and gain insights
about the underlying experiment. Detecting symmetry in scalar fields is a nascent area of research and existing methods that detect
symmetry are either not robust in the presence of noise or computationally costly. We propose a data structure called the augmented
extremum graph and use it to design a novel symmetry detection method based on robust estimation of distances. The augmented
extremum graph captures both topological and geometric information of the scalar field and enables robust and computationally
efficient detection of symmetry. We apply the proposed method to detect symmetries in cryo-electron microscopy datasets and the
experiments demonstrate that the algorithm is capable of detecting symmetry even in the presence of significant noise. We describe
novel applications that use the detected symmetry to enhance visualization of scalar field data and facilitate their exploration.

Index Terms—Scalar field visualization, extremum graph, Morse decomposition, symmetry detection, data exploration.

1 INTRODUCTION

Several natural and man-made objects exhibit symmetry in different
forms – reflectional symmetry of the wings of a butterfly, transla-
tional symmetry of the bricks in a wall, and rotational symmetry of
the spokes of a wheel. In many disciplines, symmetric placement of
objects results in optimal configuration – symmetric arrangement of
atoms leads to stable low energy configuration of molecules and sym-
metric placement of weight bearing structures results in optimal load
distribution. Hence, study of symmetry is important in different fields
to understand various physical phenomena as well as to design, syn-
thesize, and manufacture various materials and objects.

Computer generated models and data generated from experimen-
tal and computational methods are extensively used in many scientific
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disciplines. Visualizing the symmetry present in these data provide
important cues to domain experts in understanding and characteriz-
ing the properties of the underlying phenomena. In this paper, we
study the problem of detecting symmetric or repeating patterns from
such data. Symmetry detection is an active area of research in geom-
etry processing, computer graphics, image processing, and computer
vision communities [27]. The symmetries detected are used for sub-
sequent processing like segmentation, noise removal, beautification,
feature recognition, and shape matching.

Symmetry detection in a scalar field refers to identifying regions
that remain invariant under geometric transformations with respect to
the geometry of the domain and the scalar values. For example, 4-
fold rotational symmetry in the cryo-electron microscopy (cryo-EM)
data of Rubisco RbcL8-RbcX2-8 complex (EMDB 1654) is shown on
the left in Fig. 1. To detect symmetry at a reasonable computational
cost, it is essential to use compact representations of the scalar field.
Topological methods based on Morse theory have been successful in
designing computationally efficient abstract representations like con-
tour trees, Reeb graphs, and Morse-Smale complexes that aid in the
study of scalar fields. The Morse-Smale complex is a partition of the
domain into cells based on the gradient of the scalar field and has been
used for segmentation [8, 39], meshing [10, 24], and studying various
scientific phenomena such as turbulent structures, channel structures
in porous material, and for terrain representation [6, 15, 23]. The ex-
tremum graph is a simplified representation of the Morse-Smale com-



plex and was introduced for designing topological spines [9].
Graph-based representations of the scalar field like the contour tree

and constellation of line features have been used in the past for sym-
metry detection [5, 35]. These methods assume that symmetry in the
data manifests as similar subgraphs in the graph representation and
employ subgraph matching algorithms to identify symmetry. How-
ever, they perform poorly when there is significant noise in the data
resulting in noisy subgraphs that are no longer similar. Our method
also uses a graph-based representation of the scalar field, namely the
augmented extremum graph, but unlike earlier methods, we do not rely
on subgraph matching for symmetry detection.

Augmenting topological constructs with geometric information re-
sults in powerful abstract representations as demonstrated recently in
the study of pore networks [17, 36]. We propose to augment the ex-
tremum graph with geometric information and this integration of both
topological and geometric information facilitates efficient detection
of geometric symmetry. Our algorithm performs Morse decomposi-
tion of the data and selects a set of Morse cells as seed cells. The
augmented extremum graph is traversed to compute distances from
the seed cells to the remaining Morse cells and merge the seed cells
into super-seeds. Eight seeds that merge to form four super-seeds are
shown at the center in Fig. 1. The four super-seeds provide an initial
estimate of the 4-fold symmetry in the data which is then expanded in
a region growing stage. The 4-fold symmetry in the data thus identi-
fied is shown on the right. The main contributions of our paper are the
following:

• A novel symmetry detection method that can detect symmetries
in scalar fields with respect to rigid body transformations. We
propose a data structure called the augmented extremum graph,
which integrates topological and geometric information of the
scalar field and use it for computationally efficient and geometry-
aware symmetry detection.

• Our algorithm detects global symmetry even in the presence of
significant noise. If the amount of noise is not high, our algo-
rithm can detect partial symmetry as well.

• Existing techniques that detect scalar field symmetry using sub-
graph matching have limitations in handling noisy data [5, 35].
Our method addresses this shortcoming by using the augmented
extremum graph only for distance computation and not relying
on subgraph matching for symmetry detection.

• We demonstrate the effectiveness of our method through exten-
sive experiments on several cryo-EM datasets and show that our
method yields better results in the presence of noise. Thus, our
method is able to bridge a gap in the applicability of previous
methods to noisy datasets.

• We describe two novel applications that use our method for im-
proving visualization of scalar field data. Additionally, we use
our method to demonstrate some of the applications reported ear-
lier in the literature.

2 RELATED WORK

Symmetry is a well studied area in geometry processing and diverse
techniques exist for its detection. Symmetry detection in scalar fields
has received attention only in recent years and existing techniques are
not as mature as techniques for detecting and computing symmetry in
geometric objects.

2.1 Symmetry detection in shapes
Early work in symmetry detection explored the problem of exact sym-
metry detection [1, 2] and was later extended to approximate symme-
try [40]. State of the art symmetry detection methods use a wide va-
riety of techniques to detect approximate, partial, and intrinsic sym-
metries in shapes. Local symmetry information have been used to cast
votes in a higher dimensional space where clusters of votes correspond
to significant symmetries [25, 28, 31, 32, 38]. Graphs built from geo-
metric features that are extracted from a shape have been studied to
find similar subgraphs representing symmetric structures [3–5]. Shape
descriptors based on spherical harmonics and Fourier methods have
also been used to identify symmetry [19,20,26]. Readers may refer to
the survey on symmetry in 3D geometry for more details [27].

2.2 Symmetry detection in scalar fields
Extensions of symmetry detection methods in shapes have been con-
sidered in the past for detecting symmetry in scalar fields. Ker-
ber et al. [21] extend an earlier work [5] by extracting a set of line
features from 3D scalar fields and model symmetry detection as a sub-
graph matching problem in the graph formed by these lines. However,
the assumption that features in 3D scalar fields can be described us-
ing geometric line features is too restrictive in practice. Even for line
features, this method cannot handle noise in the data robustly since the
alignment of noisy networks of lines will be poor. Hong and Shen [18]
extend an earlier work on reflective symmetry descriptors [19] and de-
termine planes of reflection by assigning a score to each plane based
on how well it acts as a plane of reflection. This method is compu-
tationally costly since the entire dataset has to be examined for each
candidate plane. Our method, on the other hand, is efficient because it
abstracts the scalar field using a small graph and avoids the search over
the space of transformations. Moreover, their technique is restricted to
identifying only reflective symmetries, whereas our method can detect
symmetries under other rigid body transformations also.

The contour tree is a topological data structure that tracks changes
in the topology of the level sets of a scalar field. Thomas and Natara-
jan [35] extract symmetry based on the assumption that regions with
similar level set topology correspond to regions with similar scalar
field distribution. They identify topologically similar regions by
grouping together similar subtrees of the contour tree. The contour
tree is stabilized in a preprocessing step to reduce the sensitivity of the
method to noise. This method performs poorly when noise in the data
destroys the repeating structure of the subtrees. Moreover, the method
totally ignores the geometry of the underlying domain. Our method
is aware of the underlying geometry and can handle noise in the data
which results in wider applicability of the method. Global similar-
ity between two given scalar fields has been studied in the context of
shape matching [16,42]. However these methods are not applicable to
identifying symmetric regions within the same scalar field. Similarity
between the level sets of a scalar field [7] and relationship between
different scalar fields defined on the same domain [12, 29, 34] have
also been studied for exploring and analysing volumetric data.

3 BACKGROUND AND DEFINITIONS

Consider a scalar field f : M→ R defined on a simply connected do-
main M. We define two simply connected regions M1,M2 ⊆M to be
symmetric with respect to f if there is a transformation T such that
M2 = T (M1) and f (x) = f (T (x)) for all x ∈M1. Exact symmetry oc-
curs rarely in practice. Therefore, robust symmetry detection methods
address the more challenging problem of detecting symmetry in an
approximate sense. We restrict our attention to rigid body transforma-
tions and consider piecewise-linear scalar fields defined on the vertices
of a simplicial mesh and interpolated linearly over the elements of the
mesh. For a vertex v, its link is defined as the mesh induced by the set
of vertices adjacent to v and its upper link is defined as the mesh in-
duced by the adjacent vertices having function value greater than that
of v. For piecewise-linear domains, the critical points are character-
ized by the number of components in the upper link. A point c ∈M
is a maximum if its upper link is empty, a minimum if its upper link
is same as its link and a saddle if the upper link consists of more than
one connected component [11, 44].

A Morse decomposition is a segmentation of M where each maxi-
mum of f defines a segment, called Morse cell, as the union of paths
of steepest gradient ascent that terminate at the maximum [13]. The
Morse cells for the minima of f is defined analogously by consider-
ing − f instead of f and the resulting segmentation is referred to as
the Morse decomposition with respect to minima. Using the Morse
decomposition, Correa et al. introduced extremum graphs for design-
ing topological spines – a visual representation that captures both the
geometry and the topology of the scalar field [9]. We compute an ap-
proximation of the Morse decomposition with respect to maxima by
sorting all the vertices in the decreasing order of function values, as-
signing a label to each maximum, and propagating the labels to the ad-
jacent vertices visited in the decreasing order of function values. Each



visited vertex inherits the label of the vertices in its upper link and
the Morse cell associated with a maximum is the set of vertices with
the label of the maximum. The Morse decomposition with respect to
minima is computed analogously. If a vertex inherits multiple labels,
then it belongs to the common boundary of the Morse cells associated
with the labels. Maxima whose Morse cells share a common boundary
are said to be adjacent. For each pair of adjacent maxima, the vertex
with the highest function value on the common boundary is marked
as their shared saddle. Note that due to degeneracies, such saddles
need not necessarily exist between adjacent maxima in the true Morse
decomposition. For this reason, we work with the approximate Morse
decomposition described above and always introduce a shared saddle
between neighboring Morse cells to capture their adjacency relation-
ship. The nodes of a maximum graph are the set of maxima and their
shared saddles. Edges in this graph link a pair of adjacent maxima to
their shared saddle. The minimum graph is defined analogously. The
extremum graph of a scalar field can refer to either the maximum graph
or the minimum graph. Since symmetry identification with respect to
the maximum graph and the minimum graph are analogous, hence-
forth we restrict our attention to the maximum graph. Fig. 2 shows
a scalar field where the light gray patches correspond to regions with
high function values. The maximum graph, on the left, shows adjacent
maxima such as a and b connected to their shared saddle c.

Correa et al. note that the extremum graph captures the geometric
proximity of the extrema much better than the contour tree. This is
illustrated in Fig. 2, where the contour tree (shown partially) requires
a path of five edges, e-g-h-k-l-n, to connect the geometrically close
extrema e and n. On the other hand, the extremum graph connects
them with a shorter and a more natural path e-l-n of length two. Also,
the contour tree connects extrema a and m that are far apart with the
path a-c-h-k-m of length four, which is shorter than the corresponding
natural path a-p-d-g-e-k-m of length six in the extremum graph. Such
unintuitive connections in contour trees fail to capture the proximity
relationship between the extrema.

4 AUGMENTED EXTREMUM GRAPHS

While the abstract definition of the extremum graph captures minimal
proximity information, it does not capture significant geometric infor-
mation about the scalar field. The extremum graph can be viewed as a
gradient flow graph, whose edges connect a shared saddle to its adja-
cent extrema along the path of steepest gradient ascent / descent. For a
2D scalar field, such a path in the domain can be embedded in the sur-
face plot of the function and captures part of the geometric structure
of the scalar field, see Fig. 3.

4.1 Geodesic distance between extrema
Geodesic distance between two points on a shape is an intrinsic prop-
erty of the shape that remains invariant under isometric transforma-
tions and has been used for identifying symmetries of a shape [22,33].
In the rest of this paper, we use the phrase “path between two points”
to refer to the path in the hypersurface plot of the scalar function. Our
method requires the computation of the geodesic path between two
extrema. Since computing the exact geodesic path is expensive, we
propose to approximate it using the shortest path in the embedded ex-
tremum graph. However, the extremum graph consists only of edges
between extrema and shared saddles and thus the shortest path be-
tween two non-adjacent extrema in the extremum graph deviates con-

Fig. 2. Extremum graphs represents the geometric structure of scalar
fields better than contour trees. (left) The extremum graph for a scalar
field connects the adjacent extrema through their shared saddle and
represents proximity information better than (right) the contour tree.

siderably from the true geodesic path. For example, consider the short-
est path between the extrema c and f in the extremum graph in Fig. 3.
For clarity, only a subset of the edges of the extremum graph is shown
in blue. The shortest path consists of four edges - two edges that con-
nect the extrema c and e and two edges that connect the extrema e and
f through their respective shared saddles. Depending on the height of
the intermediate extremum e, the length of this path can be arbitrar-
ily different from the true geodesic path because the shortest path in
the extremum graph is forced to pass through e whereas the geodesic
path may bypass the extremum. To overcome this problem, we aug-
ment the extremum graph by inserting additional edges that directly
connect the shared saddles of an extremum as shown by the magenta
edge that bypasses the extremum e. Thus, inserting edges between the
shared saddles allows extrema corresponding to noise to be bypassed.
This also makes the geodesic path estimate more robust. Assume that
due to noise, a shared saddle does not exist between the extrema g and
l and the shortest path between g and l in the extremum graph is g-h-
i-m-l. The path has to traverse through all the intermediate extrema,
in this case the extremum i, which distorts the shortest path estimate.
By directly connecting the intermediate shared saddles, shown by the
magenta edge hm, we obtain a better estimate for the shortest path.
This path is not significantly different from the true geodesic path be-
tween g and l. On the other hand, if a shared saddle did exist between
g and l and the path between g and l through this shared saddle was
the shortest, then our method will detect and use this path.

We also note that explicit computation of the gradient lines is re-
quired to embed the extremum graph, whereas an abstract represen-
tation of the extremum graph can be easily obtained once the shared
saddles and their adjacent extrema are determined. Hence, instead of
computing the length of the edges in the embedded extremum graph,
we assign to each edge a weight equal to the approximate length of
the geodesic path between the endpoints of the edge. Though we aug-
ment edges between the shared saddles for distance computation, we
do not explicitly insert these edges in the extremum graph. Instead, we
perform all computations on the extremum graph and infer the aug-
mented information on-the-fly during the path computation. While all
illustrations below of the extremum graph are for 2D scalar fields, the
discussion holds for higher dimensions also.

4.2 Symmetry from distances
We observe that for two regions that are symmetric, the distance be-
tween a pair of extrema in one region is equal to the distance between
their symmetric counterparts in the second region. Consider the paths
from symmetric mountains c and l in Fig. 3 to the neighboring sym-
metric mountains f and g, respectively. Although the two paths differ
significantly, the geodesic distance estimate is roughly the same. The
noisy hill e is bypassed and the absence of the shared saddle between
g and l is compensated for by directly connecting the saddles h and
m. The distance between extrema is estimated robustly and similar
distances is a good indicator of symmetric regions. We assume that
different symmetric regions are well separated in terms of distances in
the hypersurface plot of the scalar field while features within a sym-
metric region lie in close proximity to each other. This can be seen in
Fig. 3 where the path between a mountain on the left and one on the

Fig. 3. The geodesic distance between an extremum and its shared
saddle is approximated as the length of the corresponding edge in the
embedded extremum graph. To approximate the shortest geodesic path
from c to f , the intermediate extremum e is bypassed by directly con-
necting its shared saddles with the magenta edge. Distance between
the pair of extrema c and f is similar to the distance between its sym-
metric pair l and g.
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Fig. 4. Symmetry detection pipeline. The extremum graph of the input
data is computed and simplified. A set of extrema are then selected as
seeds and the augmented graph is traversed starting from the seeds.
During the traversal, seeds merge to form symmetric super-seeds. Fi-
nally, the symmetry of the super-seeds is expanded in a region growing
stage and the symmetric regions are reported.

right is longer than the path between a pair of adjacent mountains both
of which lie on the same side. We exploit this separation between sym-
metric regions and remove long paths from the augmented extremum
graph to obtain a set of disconnected subgraphs. These graph cuts
partition the domain into different symmetric regions. In Fig. 3, the
region on the left and the region on the right are identified as a pair of
symmetric regions.

5 EXTREMUM GRAPH AND SYMMETRY DETECTION

Our symmetry detection pipeline is shown in Fig. 4. Given a scalar
field as input, we first compute its Morse decomposition and the as-
sociated extremum graph. The resulting Morse decomposition may
be over-segmented. We coarsen it and generate a simplified extremum
graph. Next, we classify the Morse cells into different groups based on
similarity of their histograms. The extrema of the cells that belong to
one such group are selected as a seed set. These pre-processing steps
are described in Section 5.1 and Section 5.2. Starting from each seed,
the augmented extremum graph is traversed iteratively by visiting, at
each iteration, the extremum that is closest to the seed. When the
traversal from a seed reaches another seed, the two seeds are declared
to be merged. Once all the seeds merge, we use the distance between
pairs of seeds to cluster them into super-seeds. Augmented extremum
graph traversal and super-seed formation is explained in Section 5.3

and Section 5.4. The Morse cells corresponding to the seeds that be-
long to a common super-seed are the initial estimates of the symmet-
ric regions. The symmetry is expanded in a region growing stage by
merging cells in the neighborhood of the seeds. For detecting different
partial symmetries, the above procedure is repeated with a different
seed set. These post-processing steps are described in Section 5.5.

5.1 Simplification of the extremum graph
We compute the extremum graph as described in Section 3 and sim-
plify it for computationally efficient traversal. Our simplification pro-
cedure coarsens the initial Morse decomposition by merging a Morse
cell into its adjacent cell based on two parameters – persistence and
size. For an edge between the extremum of a cell i and the saddle
shared with an adjacent cell j, if its persistence [14], which is the dif-
ference in function values between the extremum and the saddle, falls
below a threshold, then i is merged into j. Similarly, if the size of a
Morse cell, measured in terms of the number of vertices that lie within
the cell, falls below a threshold then it is merged with an adjacent cell.

When a cell i merges into a cell j, the extremum of i, and all its
shared saddles and edges are removed from the graph. The shared
boundary of j also changes and the shared saddles are updated / cre-
ated and edges are inserted between the shared saddles and the ad-
jacent extrema. A saddle that exists after simplification is called a
surviving saddle and a saddle removed during simplification is called
a cancelled saddle. Since computing the length of geodesic paths en-
countered during the graph traversal is expensive, we approximate it as
the sum of Euclidean distances of the edges in the path. For 3D scalar
fields, we normalize the spatial coordinates and the scalar values of
the input to lie within the unit hypercube in R4 and embed the abstract
extremum graph in R4. The first three coordinates of a node are the
spatial coordinates and the fourth coordinate is the scalar value of the
corresponding critical point. For simplicity, we use uniform weights
for normalization. Any normalization procedure may be used as long
as it preserves the hierarchical relationship in the merging of the seeds.

Simplification removes many of the shared saddles and a surviving
saddle may lie arbitrarily far away from the extrema that it is adjacent
to after simplification. Directly using the Euclidean approximation
for computing the length of a path in the simplified graph will lead
to significant errors. Therefore, the cancelled saddles and the edges
removed during simplification are taken into account to estimate the
length of paths in the simplified graph. An edge between a surviving
shared saddle and an extremum is the result of zero or more simplifi-
cations. The shared saddle of the extremum in the unsimplified graph
that lies on the path to the surviving saddle is called the originating
saddle. To keep track of edges removed during simplification, each
surviving saddle stores the originating saddles of the extrema that it
is adjacent to and the length of the path between the originating sad-
dles. Consider the extremum graph shown on the left in Fig. 5. During
simplification, let the cell u merge with v, cancelling the saddle n and
the cell x merge with c, cancelling the saddle r as shown in the middle
figure. The surviving saddle m is adjacent to a and v and stores their
originating saddles, m and n. Similarly, o stores the originating sad-
dles of v and c, namely o and r. To ensure that distances are calculated
correctly, each surviving saddle also stores the distance between its
two originating saddles. Before simplification, this distance stored at
each saddle is zero. When a saddle is cancelled, the distance stored at
the surviving saddle is updated to equal the sum of the distance stored

m n o r

u

a c

v x

m n o r

u

a c

v x

m n o r

u

a c

v x

Fig. 5. Bookkeeping of distance during simplification. (left) An extremum
graph where the extrema are shown in red and the shared saddles in
green. (center) During simplification, u merges into v and x merges into
c. The surviving saddle m stores the length of the path between m and n.
Similarly, o stores the length of the path between o and r. (right) When
m is cancelled, o stores the length of the path between m and r.



at the cancelled saddle, the distance stored at the surviving saddle, and
the length of the edge connecting the two originating saddles of the
cell that gets merged. Before n is cancelled, the distance stored by the
surviving saddle m and the cancelled saddle n is zero. After cancelling
n, the distance stored by m is the length of the edge m-n that bypasses
the extremum u, calculated as the Euclidean distance between m and n.
Similarly, after r is cancelled, the surviving saddle o stores the distance
between o and r. Eventually, after m is cancelled, the surviving saddle
o stores m and r as its originating saddles and the distance stored at o
is equal to the sum of the distance stored by o (length of the path o-r),
the distance stored at the cancelled saddle m (the length of the path
m-n), and the distance of the edge no, which connects the originating
saddles of v. Thus the evaluation of distances remains the same in the
unsimplified graph and the simplified graph.

To determine the simplification threshold, we plot the drop in the
number of critical points against the simplification parameter. For the
dataset shown in Fig. 1, the plot for simplification with respect to per-
sistence is shown on the left in Fig. 6. A similar plot is obtained for
simplification with respect to the size of the Morse cells. In both cases,
we see that initially there is a sudden drop in the number of critical
points due to noise in the data. We set the thresholds to the value at
which the drop in the number of critical points stabilizes, which can be
identified as the beginning of the horizontal section in the plot. Later
stages of the pipeline and the results are not sensitive to the exact value
of the threshold chosen because the bookkeeping procedure described
above ensures that the path length computed is not affected by the sim-
plification. The main purpose of simplification is to improve efficiency
of graph traversal by removing spurious critical points introduced by
noise in the data. A simplification threshold of 1% of the maximum
persistence or size suffices in most cases.

5.2 Seed set selection

Selection of good seed sets is crucial for meaningful symmetries to be
detected by our algorithm. Ideally, seeds should be chosen such that
they are symmetric and representative of the symmetry in the input.
Automatic selection of meaningful features from a dataset is a chal-
lenging problem and though solutions may be designed for specific
cases, a generic approach that works across datasets is not known.
Hence, we do not attempt to find a generic solution to the related
problem of automatic seed selection. For typical cryo-EM datasets,
the histogram of the scalar values of symmetric seeds cells are very
similar. We use a heuristic procedure based on histogram similarity
for selecting seed sets.

We initially choose a Morse cell based on its attributes like size, per-
sistence, and the function value of the extrema. In all our experiments,
we select the Morse cell that contains the extrema with the highest
function value. We then compute the histogram of each Morse cell by
uniformly dividing the range of function values into thirty bins. The
histogram is then normalized and the Earth Mover’s Distance (EMD)
between the histograms of the chosen Morse cell and all other cells is
computed. Those cells whose EMD falls below a threshold together
with the initially chosen cell form a seed set. To determine the thresh-
old, we plot the number of seeds added to the seed set as the EMD
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Fig. 6. (left) Plot of the number of critical points with increasing values of
the simplification parameter. The value at which the drop in the number
of critical points stabilizes is used as the threshold for simplification.
(right) Plot of the increase in the number of seeds with increase in EMD
threshold. Initially, the EMD of the seeds is nearly zero after which there
is a significant increase in the EMD. The value just before the sudden
increase in EMD can be used to identify seed sets.

threshold is increased, see the plot on the right in Fig. 6. For clarity
of illustration, we show only the initial part of the plot. Initially, the
number of seeds increase even for a very small increase in the EMD
threshold (close to zero in the plot) as shown by the leftmost horizon-
tal section in the plot. Further increase in the number of seeds occurs
only after a significant increase in the EMD threshold as indicated by
the vertical section in the plot. We can identify a meaningful seed set
by setting the threshold to the value just before this jump in the EMD
threshold. For the dataset shown in Fig. 1, eight seeds are identified
using this procedure. For cryo-EM datasets that we use in our experi-
ments, we have empirically determined that the threshold of 0.9 results
in a good selection of seed sets in many cases.

The histogram matching procedure is a heuristic for selecting seeds
and may not always give the desired result. We employ the follow-
ing semi-automatic procedure for selecting seeds which performs well
in practice and does not require significant effort from the user. The
selection procedure uses the toporrery layout, which is in turn based
on the branch decomposition representation of the contour tree, and
provides a powerful user interface for exploring and selecting features
from scalar field datasets [30]. A user identifies a seed (extremum)
of interest either based on its attributes (such as persistence) or visual
examination of the features in the data. The branches in the toporrery
layout corresponding to the extrema with similar function values are
then automatically highlighted. The user examines the geometry of the
level sets of the highlighted branches. The user needs to examine only
a few level sets in the neighborhood of the scalar value at the extrema.
The user then selects a subset of the branches that exhibit symmetry in
the evolution of the level sets. The extrema of the branches selected by
the user are chosen as the seed set. The above procedure automatically
prunes away a majority of branches in the branch decomposition lay-
out and limits user interaction to selecting a subset of branches from
the remaining small set of branches. An illustration of this procedure
is shown in the supplemental material.

5.3 Augmented extremum graph traversal

Given an initial set of seeds, an efficient procedure for the augmented
extremum graph traversal is employed both to form super-seeds and
to expand the initial estimate of symmetry through region growing.
Each seed is marked as a source vertex and traversals are initiated
simultaneously and independently from each source vertex, as shown
in Algorithm 1. Each traversal proceeds iteratively, where at each step,
the saddle that is closest to the seed is processed. Only the source and
destination extrema are contained in a path and the rest of the extrema
are bypassed. To store distances from multiple seeds, each Morse cell
maintains an array of distances. Similarly, each saddle maintains an
array that indicates if the saddle has been visited from a seed.

Consider the surface plot of a scalar function as shown in Fig. 7.
Let the mountain peaks a, b, c, and d be chosen as seeds. Initially, the
edges from each seed to its adjacent shared saddles, shown on the left,
are inserted into a common priority queue. The cost of each edge is
the distance from the seed to the shared saddle. After this initialisa-
tion step, the edge with the shortest distance, say ci, is popped from the
queue. Next, the distance from the source seed c to the extremum e ad-
jacent to the endpoint saddle i in the path is computed as the sum of the
length of the edge ei and the length of the edge ci which was popped

Fig. 7. Augmented Extremum graph traversal. (left) Blue edges from
the seeds a, b, c, and d to their shared saddles are inserted into a priority
queue. (right) The shortest path c-i is popped out and extended to the
adjacent saddles by adding the magenta edges. When the path c-i-h is
popped out, the traversal from the seed c reaches the seed d and the
two seeds merge.



foreach seed do // initialise pq
j = cell id(seed);
foreach cell id k adjacent to j do

path = (j,k, sadj,k);
path.len = len(ej, sadj,k));
pq.push(path);

end
end
while not all seeds merged do // traverse

p = pq.pop();
if not visited(p.src, p.sad) then

visited(p.src, p.sad) = true;
foreach cell id i adjacent to p.des do // extend

ext path = (p.src, i, sadp.des,i);
ext path.len = p.len+len(p.sad, sadp.des,i));
pq.push(ext path);

end
des len = p.len + len(p.sad, ep.des);
if dist(p.src, p.des)> des len then

dist(p.src, p.des) = des len // update;
if isseed(p.des) then // merge seeds

merge(p.src, p.des, des len);
end

end
end

end
Algorithm 1: Augmented extremum graph traversal algorithm. For
a Morse cell i, its extremum is denoted by ei. The shared saddle
between i and j is denoted by sadi,j. A path is a 3-tuple (src, des,
sad), where src is the source seed and des is the cell adjacent to sad,
the saddle at the end of the path.

out, see the figure on the right. The popped path c-i is extended to the
unvisited shared saddles of the adjacent extremum e. When the path is
extended to h, the extremum e is bypassed and the shared saddles are
directly connected. The length of the extended path is calculated as
the sum of the length of the saddle-saddle direct edge and the length
of the path popped from the queue. The extended path is inserted into
the queue and the traversal proceeds to visit other saddles in the order
of increasing distance from the seeds. When a saddle is visited from a
seed, the distance from the seed to the adjacent extremum is updated
and is later used during the region growing stage. When the path c-i-h
is eventually popped out of the queue, the path from the source seed c
reaches the seed d and the two seeds merge. The traversal continues
until all the seeds merge.

5.4 Super-seed formation

Studies on the way humans perceive patterns, like Gestalt theory [41],
have shown that items that are located spatially near each other are
perceived to be part of a group. Repeating structures in close proxim-
ity are grouped together and perceived to be part of bigger patterns.
Thus for symmetry detection, it is important to identify the formation
and repetition of such bigger patterns formed from smaller patterns.
In our context, seeds that are closer merge first and form a hierarchy
of bigger patterns. A super-seed is the set of seeds that merge to form
the biggest such repeating pattern. The above description of the way
humans perceive patterns also explains our assumption on distances
between symmetric regions as stated in Section 4.2. When the path
from a source seed reaches another seed, the two seeds merge and the
distance between the two seeds is the length of the shortest path be-
tween the two seeds. At the leaf level of the hierarchy, all the seeds, a,
b, c, and d, in Fig. 7, are separate repeating units. During the traversal,
a merges with b and similarly c merges with d. These merged compo-
nents form the next level in the hierarchy and they further merge into
a single component at the root level. A graph can be constructed by
inserting a node for each seed and a weighted edge between two seeds
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Fig. 8. Seed-merge tree and super-seed identification. (a) Labels on the
interior nodes of the seed-merge tree is equal to the distance at which
its children nodes merge. (b) Nodes with values above a threshold are
removed from the tree and the seeds that remain connected belong to
a common super-seed. (c) Plot of the number of components against
the path length. The threshold for disconnecting the seed-merge tree is
chosen from the rightmost horizontal interval, just before the number of
components drop to one.

that have merged. The edge weight is equal to the distance between the
two seeds. After all the seeds merge, a graph cut that removes edges
with high weights is used to identify the super-seeds.

Our graph cut algorithm uses a binary tree, called seed-merge tree,
that represents the merging of seeds. Each of the seeds a, b, c, and
d is a leaf node of the seed-merge tree and represents a component.
When the components corresponding to two nodes merge, an interior
parent node is created to represent merging of the components. Each
interior node is assigned a weight equal to the distance at which the
corresponding components merge in the augmented extremum graph
traversal, see Fig. 8(a). All leaf nodes are assigned zero weight. Once
all the seeds merge and the complete tree is constructed, we discon-
nect it into different subtrees by removing nodes with weight above a
threshold. Thus we disconnect the seeds that merge during the aug-
mented extremum graph traversal by means of paths whose length is
above the threshold and the seeds that remain connected are identi-
fied as super-seeds. Fig. 8(b) shows two disconnected subtrees formed
when the threshold is set to eight. One of the subtrees corresponds to
the super-seed comprising of a and b and the other subtree corresponds
to the super-seed comprising of c and d.

To determine a suitable value for this threshold, we plot the de-
crease in the number of components with respect to increase in the
path length. Fig. 8(c) shows this plot for the dataset in Fig. 1. For this
dataset, eight seeds were chosen and each of the vertical sections in
the step-like plot show the sudden drop in the number of components
due to the merging of the components. The merging happens at dif-
ferent scales and reflects the hierarchical relationship in the merging
of the seeds. The number of components at the start of the horizon-
tal sections in the plot remains unchanged till the end of the interval
and shows the stability of the components in this section. The super-
seeds are the largest stable components formed just before all the seeds
merge into a single component. Hence, the threshold for identifying
the super-seeds is chosen as any value that lies in the last horizontal
section in the plot just before the number of components drop to one.
We identify four super-seeds for this dataset and these are shown us-
ing four distinct colors as shown in the middle figure in Fig. 1. As
described in Section 4.2, we assume that the distance at which the
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Fig. 9. (left) The distance from the candidate cells f and e to the seeds
a, b and c, d are shown by the labels on the edges. (right) An edge
connecting two seeds in the bipartite graph is weighted with the mini-
mum of the distances to the seeds. The sum of weights of matching
edges ad and bc, 8.3, is close to the average of the distances to the
seeds, (5.3+3.2+5.2+3.1)/2 = 8.4 and hence f and e are considered to
be symmetric.
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Fig. 10. Results of symmetry analysis on cryo-EM datasets. Five datasets - EMDB 1179, 1603, 5331, 2094, and 1706 are shown in the first row.
EMDB 1179, 1603, and 5331 contain significant noise as shown by the violet regions in the volume rendered images. The seeds selected are
shown in the second row. The extracted symmetries are shown in the third row. Symmetries are extracted even in the presence of noise. Columns
1-4 show dodecahedral, 9-fold rotational, screw, and translational symmetries and the rightmost column shows partial symmetry extraction.

seeds within a super-seed merge is significantly lower compared to the
distance at which seeds merge across super-seeds. This separation of
distances will manifest as a distinct horizontal section in the plot used
to identify the super-seeds and can be easily determined.

5.5 Symmetry expansion

Once the super-seeds are formed, its symmetry is expanded by insert-
ing neighboring Morse cells through a region growing procedure. For
detecting partial symmetry, when a Morse cell is considered as a can-
didate to be inserted into its closest super-seed, we ensure that a sym-
metric candidate exists in the remaining super-seeds. Consider candi-
date cells f and e and the distances to the seeds that constitute their
closest super-seeds, {a, b} and {c, d} as shown on the left in Fig. 9.
If f and e are symmetric, then the distance from f to a seed in its
closest super-seed will be nearly equal to the distance from e to the
corresponding symmetric seed and the minimum of the two distances
will be nearly equal to the average of the distances. When the dis-
tances from f to each seed in its super-seed satisfy this property, we
consider the distribution of distances from f and e to be similar and
treat them to be symmetric. To determine this we construct a com-
plete bipartite graph as shown on the right in Fig. 9, where the nodes
in each partition are the seeds that constitute the closest super-seed
and an edge between two seeds is weighted with the minimum of the
distances from f and e to the respective seeds. Next, we compute a
maximum weight matching and if the weight of the matching is close
to the average of the distances, we consider f and e to be symmetric.
Based on empirical results, we set this threshold to 80% of the average

distance to the seeds. The ideal threshold depends on the noise in the
data and selecting the threshold involves a trade-off between tolerance
to noise and quality of the detected symmetry. If each super-seed has a
symmetric candidate, then these candidates are inserted into the sym-
metric region of their super-seeds and the regions are expanded. The
procedure is repeated till all candidate cells visited during the graph
traversal are considered. For noisy data, the farther we traverse away
from the seed cells, the distance estimate accumulates errors as noise
causes variations in the shortest path estimate. This makes it diffi-
cult to compare distance distribution for detecting partial symmetry.
However, for identifying global symmetry, the symmetry verification
at each step can be avoided since, by definition, each candidate cell
has a symmetric counterpart in all the super-seeds. For global symme-
try, we continue the graph traversal, even after the seeds merge, till all
the cells are visited by at least one of the seeds. The symmetric region
corresponding to a super-seed is then reported as the set of all cells
that are closest to the super-seed.

6 RESULTS AND DISCUSSION

We now present experimental results of our symmetry detection algo-
rithm run on different cryo-EM datasets.
Global and partial symmetry. The first row in Fig. 10 shows vol-
ume rendered images of five cryo-EM datasets. The volume render-
ing shows the lower function values in dark violet color and they
correspond to noise in the data. The first four columns in Fig. 10
show global symmetry extracted by our algorithm and the fifth col-
umn shows an example of different partial symmetries extracted. For



Fig. 11. Sensitivity to seed set selection. (left) When one seed is
dropped, the symmetry detected is unaffected. (center) When the blue
super-seed is dropped by removing both of its seeds, the Morse cells
which were closest to the blue super-seed are reassigned to the re-
maining super-seeds. (right) When two new seeds are inserted, the
symmetry detected is again unaffected.

all datasets, except the first, seed selection was done based on his-
togram matching.

Fig. 10(a) shows a dataset with dodecahedral symmetry detected us-
ing 120 seeds. The Morse cells corresponding to the seeds show con-
siderable variation in their geometry and as a result histogram com-
parison is not meaningful in this case. Hence, seeds were selected
semi-automatically based on the procedure described in Section 5.2.
We choose 120 maxima with the highest function values and the se-
lected seeds merge to form twelve super-seeds. The seeds belonging
to a common super-seed are shown with the same color in Fig. 10(b).
The extracted symmetric regions after region growing are shown in
Fig. 10(c). Though only ten small Morse cells are selected per sym-
metric region, the region growing stage correctly identifies symmetry
of the remaining Morse cells even though some of these cells in the
long fibre-like structures are far away from the seeds at the base. The
second column shows 9-fold rotational symmetry detected by our al-
gorithm after selecting eighteen seeds that merge to form nine super-
seeds. The third column shows a dataset with twelve repeating strand-
like structures arranged helically and our algorithm detects screw sym-
metry of the repeating strands. Fig. 1 shows another example where
our algorithm is able to detect 4-fold rotational symmetry in the data
using eight seeds which merge to form four super-seeds. The vol-
ume rendering of all these datasets indicate that there is significant
amount of noise in the data. However, due to the robustness of the
technique we are able to identify the symmetry present in the data.
The fourth column shows a dataset with translational symmetry de-
tected by the algorithm. Three different partial symmetries extracted
from the dataset in Fig. 10(m) are shown in Fig. 10(o) as orange, blue,
and red segments in a symmetry-aware segmentation. The seed sets
used in each case is shown in Fig. 10(n) with the same color as the
color of the symmetry-aware segment.
Sensitivity to seed selection. Ideally, seeds should be chosen such
that they are symmetric and representative of the symmetry in the
input. However, our method can tolerate asymmetric distribution of
seeds among the symmetric regions. Consider an ideal set of seeds
and the assignment of each Morse cell to the seed that is closest to
it. Erroneous omission of a seed from the ideal set affects the assign-
ment of only those cells that were originally assigned to the omitted
seed. Cells in the neighborhood of the omitted seed are reassigned
to the remaining seeds while other cells are unaffected. Similarly, in-
sertion of a new seed into the ideal set affects the assignment of only
those Morse cells that belong to the neighborhood of the new seed.
Also note that the distance between a pair of seeds is calculated inde-
pendent of the remaining seeds. Thus, deletion or insertion of seeds
causes changes only in the local neighborhood of the seeds. We illus-
trate this for the dataset shown in Fig. 1 by modifying the ideal set of
two seeds per super-seed. When one seed is dropped, the blue super-
seed is formed with only one seed. However, the symmetric regions
detected are unaffected as shown in the left column of Fig. 11 since

many of the Morse cells that were closest to the dropped seed are now
closest to the remaining blue seed. In the extreme case, when two
seeds are dropped resulting in only three super-seeds, the Morse cells
that were assigned to the blue seeds are reassigned to the remaining
closest seeds - pink and red as shown in the middle column. Note
that the symmetric region corresponding to the orange super-seed is
unaffected since dropping of seeds only causes local changes to the
detected symmetry. When two new seeds are inserted, the blue super-
seed consists of four seeds as shown in the right column. The Morse
cells assigned to the other super-seeds are unaffected and thus the sym-
metric regions detected are again not affected. For each of these cases,
the plot used to identify the super-seeds is similar to the plot shown in
Fig. 8(c) and is included in the supplemental material. The fourth col-
umn in Fig. 10 shows another example where each symmetric region
is a ring with 9-fold rotational symmetry. Ideally, nine seeds from each
ring should have been selected as the seed set. However, due to vari-
ations in the histogram, the algorithm selects two, three, or four seeds
from the rings as shown in Fig. 10(k). Though the seed distribution is
inconsistent, symmetry can be detected as long as the seeds chosen are
such that the distance between seeds belonging to different symmetric
regions is higher compared to the distance between seeds within the
same symmetric region. This ensures that seeds within a symmetric
region merge first and form super-seeds that represent the symmetry
in the data. Eight super-seeds are formed in this case corresponding
to the translational symmetry and the symmetric regions are correctly
identified as shown in Fig. 10(l). Results on more datasets are shown
in the supplemental material.
Comparison with the contour tree method. Our symmetry detection
method uses Morse decomposition, which is based on gradient flow
topology as compared to the approach that uses the contour tree [35],
which is based on level set topology. The symmetric segments identi-
fied by the two methods may be different and it is not meaningful to
compare the results of the two methods. So, we qualitatively evaluate
the two methods and list the pros and cons of both approaches.

The contour tree based method detects symmetry by identifying
similar subtrees from the branch decomposition representation of the
contour tree. Since branches corresponding to noise in the data can de-
stroy the similarity of the subtrees, this method requires the removal of
such branches. For this purpose, the branch decomposition is simpli-
fied by removing low persistence branches under the assumption that
only low amplitude noise exists in the data. Though our method also
simplifies the extremum graph for computational efficiency, in contrast
to the assumption made by the contour tree based method, we do not
necessarily require that the noise is removed through the simplification
step. This is because the presence of noise does not affect the distance
calculation and hence our method can handle noise of larger amplitude
in the data. Moreover, our method incorporates geometric information
for more effective symmetry detection and also uses a region growing
procedure to identify the largest symmetric region. In comparison, the
contour tree based method ignores geometric information and does not
necessarily identify the largest symmetric region. We illustrate these
advantages in the supplemental material with a real-world dataset.

One of the major limitations of our method is that the symmetry
detected depends on the choice of seed sets used and selection of seed
sets may require user interaction unlike the contour tree method. The
contour tree method is well suited for identifying partial symmetry as
opposed to our method which requires different seed sets to be identi-
fied for each partial symmetry in the domain. The contour tree method
also has the advantage that it can detect symmetry at multiple scales
since the branch decomposition representation induces a natural hier-
archy on the branches. The supplemental material shows additional
results of symmetry detected by our results on datasets used in earlier
work [35]. It can be seen that our method is limited to detecting sym-
metries at the largest scale whereas the contour tree method can detect
different partial symmetries as well as symmetries at different scales.
Performance. Table 1 reports the running time of our algorithm for
the datasets shown in Fig. 10. The time taken for building the graph
includes computation of the Morse decomposition as well as the sim-
plification of the initial extremum graph constructed. Earth Mover’s
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Fig. 12. (a) The seed cells for the dataset in Fig. 10(d) together with the Morse cells that lie in its proximity are extracted. The volume can also be
cropped automatically to include only the selected features and this reduces the size of the volume from 160× 160× 160 to 92× 93× 50. (b) The
remaining Morse cells which correspond to noise in the data. The transfer function used in (a) and (b) is identical to the one in Fig. 10(d). (c)-(e) Two
internal layers are peeled off from the segment shown in blue to reveal the features in the interior and the corresponding actions are automatically
performed on the other three symmetric segments. (f) The symmetric regions are rendered differently by peeling different internal layers and shows
complementary information in a single view.

Table 1. Running time, measured in seconds, for various steps in the
symmetry detection pipeline. All experiments were performed on a
2 GHz Intel Xeon processor with 8GB RAM.

EMDB build EMD traverse
dataset# #vertices graph computation graph

2094 1003 5.4 1.5 3.2
1654 1123 7.6 3.3 1.1
1706 1303 8.5 0.04 0.5
1603 1603 34.2 8.9 45.4
5331 2403 106.5 19.8 77.6
1179 2553 106.9 - 409.1

Distance computation is fairly fast in practice. When the number of
seeds is large, graph traversal dominates the computational cost of the
algorithm since the saddles are visited multiple times by the graph
traversal initiated from each seed. In the current implementation, the
weights of the edges are computed on the fly during the graph traver-
sal. The augmented edges that directly connect the shared saddles are
not present in the extremum graph and their weights have to be com-
puted during the traversal. This additional computation increases the
time spent for the graph traversal. We believe a more efficient imple-
mentation of the algorithm can significantly improve the running time.
The running time does not include time for I/O.

7 APPLICATIONS

We describe two novel applications of our method for enhancing visu-
alization of scalar field data. We also demonstrate some of the existing
applications that use symmetry information for better visualization.
Proximity-aware volume visualization. Distances from the seed
cells to the remaining Morse cells computed during the augmented ex-
tremum graph traversal can be used for proximity-aware selection and
visualization of features. A user can specify the proximity he is inter-
ested in and only those Morse cells that satisfy the proximity criteria,
measured in terms of the distance from the seed cells will be selected
and extracted. Thus a given set of features that the user deems as im-
portant (seed cells) can be visualized together with only those features
that lie in its proximity. We use this technique for separating the fea-
tures from noise as shown in Fig. 12(a) and Fig. 12(b).
Linked volume editing. Exploration of features in 3D scalar field
data often involves significant effort from the user to interact with the
volume and focus on the features of interest. Symmetry-aware seg-
mentation obtained by our method can offer considerable assistance to
users in performing such time consuming interactions. User can in-
teract with one of the segments by applying different volume editing
operations and the same operations can be automatically applied to the
remaining segments. We show an illustration of this technique in the
context of peeling features in a volume as shown in Fig. 12(c)-(e).
Symmetry-aware transfer function design. Features in a volume

that lie within the same range of function values can be highlighted dif-
ferently using spatially-aware transfer functions [37,43]. Such transfer
functions can be made symmetry-aware and enables selective visual-
ization and hiding of features in the volume [35]. Symmetry-aware
transfer functions have been used in the bottom row of Fig. 10 to high-
light the symmetric segments extracted by our method.
Multi-mode volume rendering. Symmetry information identified by
our method helps in presenting complementary information from dif-
ferent symmetric segments in a single view by rendering each segment
differently [18] as shown in Fig. 12(f).
Symmetry-aware query selection. Segmentation of the volume into
its symmetric parts facilitates query-driven selection of features. User
can query for features similar to a selected feature and the symmetric
features identified can then be presented to the user.

8 CONCLUSIONS

In this paper, we present an integrated geometric and topological ap-
proach for detecting symmetric regions in a scalar field. We believe
that our method is a significant improvement over existing methods
since it can robustly detect symmetry even in the presence of signif-
icant noise. The proposed method is computationally efficient. We
show through experiments that our algorithm can detect symmetry un-
der different types of transformations in real-world datasets.

Perhaps the biggest limitation of our method is that the symme-
try detection critically depends on the selection of a meaningful set
of seeds. A bad selection of seeds may lead to incorrect formation
of super-seeds, which in turn affects the quality of the detected sym-
metries. Though we describe the method used for seed selection, a
robust and widely applicable method for automatic selection of seeds
remains an open problem. Another limitation is that the simplification
procedure is not symmetry-aware. An interesting open problem is to
design a simplification method that ensures that the simplified Morse
cells are appropriately distributed among the symmetric regions.

The limitations of our technique primarily arise from using only lo-
cal information about symmetry. We believe that similar to methods
that detect symmetry in geometric shapes [25, 28, 31, 32, 38], scalar
field symmetry detection methods will also benefit from a clustering
based analysis. Such an approach will help obtain more global infor-
mation about the symmetry and may also lead to symmetry detection
methods that are insensitive to missing regions and imperfections in
the symmetry. We also believe that extraction of symmetry informa-
tion will lead to new methods and tools that aid users in visualization
and data analysis in future.
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