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Abstract A wide range of data that appear in scientific experiments and simulations
are multivariate or multifield in nature, consisting of multiple scalar fields. Topo-
logical feature search of such data aims to reveal important properties useful to the
domain scientists. It has been shown in recent works that a single scalar field is insuf-
ficient to capture many important topological features in the data, instead one needs
to consider topological relationships between multiple scalar fields. In the current
paper, we propose a novel method of finding similarity between two multifield data
by comparing their respective fiber component distributions. Given a time-varying
multifield data, the method computes a metric plot for each pair of histograms at
consecutive time stamps to understand the topological changes in the data over time.
We validate the method using real and synthetic data. The effectiveness of the pro-
posed method is shown by its ability to capture important topological features that
are not always possible to detect using the individual component scalar fields.

Key words: Multifield topology, features, fiber-component, distribution, compari-
son measure, time-varying

1 Introduction

Scientists understand different physical phenomena by studying the interrelationships
between features in different fields. It has been observed and shown that such multi-
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field or multivariate data can reveal many important phenomena about an experiment
that are impossible to study using a single scalar field data [13, 10]. Development of
tools and techniques for extracting and visualizing features in multifield data is an
important topic of research interest [18]. Topology-based methods have been shown
to be extremely effective in this context. During the previous two decades, topological
analysis of shapes and data was mostly driven by scalar topology, using contour tree,
Reeb graph, Morse-Smale complex and their variants [6]. Such techniques have also
been extended for time-varying scalar field data by defining different topology-aware
similarity measures between two scalar fields [33, 29, 4].

Generalization of the techniques to time-varying multifield data is challenging
and requires further development in both theory and computational methods. More
recently, new tools have been proposed for understanding and visualizing multifield
data – Reeb space [16], Jacobi set [14, 7, 15], Joint Contour Net [9, 13] and Pareto
analysis [21]. Extending these methods to time-varying multifield data requires the
development of techniques for comparative analysis and visualization. For example,
developing a comparative measure between two Reeb spaces is a challenging open
problem. In this paper, we consider a simpler feature descriptor of a multifield,
namely its fiber-component distribution or histogram. Using this, we take the first
step towards a topology-aware distance measure between two multifields in terms
of the distance between their fiber-component distributions. Our contribution in the
current paper is as follows:

• We introduce simple topology-aware distance measures between two multifields
based on their fiber-component distributions or histograms in the range space. We
prove the metric properties of the proposed distance measures.

• We show that the proposed measures capture significant or interesting events
in time-varying phenomena, not possible using a study of individual fields. We
validate the method by experimenting on a time-varying synthetic data where
topological features are known in advance.

• We show effectiveness of our method by experimenting on previously studied
nuclear-scission data [13] and re-explain how scission events are captured. We
also apply our method in capturing important feature in the orbital data of Pt-CO
interaction.

Section 2 discusses related works on scalar and multifield data analysis. Section 3
describes different data structures or representations used for understanding and vi-
sualizing multifield data. Section 4 introduces our proposed topology-aware distance
measures and describes important properties of the measure. Section 5 discusses the
implementation details and Section 6 and Section 7 describe various results of ex-
periments on synthetic and real data. The experiments are conducted on nuclear
scission, fission, and molecular orbital density data of Pt-CO interaction. Finally,
Section 8 presents conclusions and lists some limitations of the method.
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2 Related Work

Feature extraction in time-varying data is a well studied topic and several approaches
have been proposed. We describe a few relevant approaches here.

Various similarity measures between scalar fields have been studied to analyze
repeating patterns and similar arrangements in the data. Hilaga et al. studied topo-
logical shape matching using a multiresolution Reeb Graph (MRG) [20]. Saikia et
al. propose a method for finding repeating topological structure in a scalar data using
a data structure called the extended branch decomposition graph (eBDG) [33]. In a
following paper [34] the authors describe a histogram feature descriptor to compare
subtrees of merge trees against each other. Narayanan et al. define a distance measure
between extremum graphs to compare two scalar fields [29].

Many other comparison measures have been proposed in the literature for finding
the distance between graphs or topological data structures. Bauer et al. have proposed
a functional distortion metric on Reeb Graph and show its stability properties [4].
A survey on graph edit distance by Gao et al. [17] discusses different inexact graph
matching algorithms for the application in pattern analysis. Sridharamurthy et al.
propose an edit distance betweenmerge trees for feature visualization in time-varying
scalar data [37]. Thomas et al. propose a multiscale symmetry detection technique
in scalar fields using contour clustering and studying the similarity between them
[38]. In related works, different distance metrics between the merge trees have been
proposed to provide a similarity between the corresponding scalar fields [28, 5].

Other techniques that are not based on topological analysis have also been pro-
posed in the literature for tracking and visualizing time-varying features. Ji et al. [22]
proposed a global optimization algorithm for time-varying data and resolved the
problems of volume overlapping and aggregate-attribute criteria by using the earth
mover’s distance. A branch-and-bound approach was used for the global cost eval-
uation. The resultant approach and the metric was able to track features accurately
and efficiently. Lee et al. [26] proposed a time activity curve (TAC) to visualize
time-varying features.

However, topological feature search in time-varying multifield data is a com-
paratively new area of research and only few works can be found in the literature.
Duke et al. [13] propose a joint contour net (JCN) based visualization technique for
detecting nuclear scission feature in the time-varying multifield density data. It has
been observed that direct visualization of the topological features using JCNs does
not scale to large data sizes because the JCN structure can be extremely complicated.
In this paper, our method replaces this JCN visualization technique by a histogram
comparison method.

3 Background

In this section, we discuss a few tools and techniques from the literature that are
required to describe our proposed distance measure.
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3.1 Histogram and isosurface statistics, continuous scatter plot

A histogram visualizes the distribution of the samples of a scalar field using a
bar graph that is constructed by binning the samples in the field range. Histograms
provide ameasure of importance of isovalues based on the statistics of sample points.
Carr et al. [8] show that histograms represent the spatial distribution of scalar fields
with a nearest neighbourhood interpolation. Moreover, they show that isosurface
statistics, such as the area of isosurfaces [3], betters represent the distribution of a
scalar field.

Bivariate histograms represent two fields together. These histograms consist of
bins of possibly different shapes such as square, triangle or hexagonal [35]. Square
shaped bins of the histogram consist of the count for each pair of values defined on
the axes. This count can be used to calculate the variance and bias from the integrated
mean square error by using appropriate formulae. The square bins can be stretched
to a rectangular shape based on the scale defined on the axes.

The density function corresponding to a collection of continuous input fields is
well represented by a continuous scatter plot. Unlike histograms, continuous scatter
plots do not depend on the bin sizes. Bachthaler et al. [2] describe a mathematical
model for generic continuous scatter plots of maps from n-D spatial domain to m-D
data domain. Lehmann et al. [27] describe algorithm for detecting discontinuities in
the continuous scatter plots that reveal important topological features in the data.

3.2 Multifield Topology and Jacobi Set

A multifield on a d-manifoldM (⊆ Rd) with r component scalar fields fi : M→ R
(i = 1, . . . , r) is a map f = ( f1, f2, . . . , fr ) : M → Rr . In differential topology, f
is considered to be a smooth map when all its partial derivatives of any order are
continuous. A point x ∈ M is called a singular point (or critical point) of f if the
rank of its differential map dfx is strictly less than min{d, r} where dfx is the r × d
Jacobian matrix whose rows are the gradients of f1 to fr at x. And the corresponding
value f(x) = c = (c1, c2, . . . , cr ) in Rr is a singular value . Otherwise if the rank
of the differential map dfx is min{d, r} then x is called a regular point and a point
y ∈ Rr is a regular value if f−1(y) does not contain a singular point.

The inverse image of the map f corresponding to a value c ∈ Rr , f−1(c) is called a
fiber and each connected component of the fiber is called a fiber-component [32, 31].
In particular, for a scalar field these are known as the level set and the contour,
respectively. The inverse image of a singular value is called a singular fiber and
the inverse image of a regular value is called a regular fiber. If a fiber-component
passes through a singular point, it is called a singular fiber-component. Otherwise,
it is known as a regular fiber-component. Note that a singular fiber may contain a
regular fiber-component. Topology of a multifield data is usually studied based on
its fiber-topology [12].
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Jacobi set is used to study topological relationship between two or multiple scalar
fields. Jacobi set Jf of a multifield f is the closure of the set of all its singular points,
i.e. Jf = cl {x ∈ M : rank dfx < min{d, r}}. Alternatively, the Jacobi set is the set of
critical points of one component field (say fi) of f restricted to the intersection of
the level sets of the remaining component fields [14]. Intuitively, Jacobi set of two
generic Morse functions f1, f2 : M → R is the set of points where gradients of the
individual fields are parallel, i.e. J = {x ∈ M : ∇ f1(x) × ∇ f2(x) = 0}. Jacobi set
plays a central role in the design of a comparison measure between two or multiple
scalar fields [15].
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Fig. 1: Figure shows a bivariate synthetic data and corresponding structures to
understand its topology. (a) Paraboloid and height field with Jacobi set (red), total 9
connected components of the Jacobi set are numbered as 1 to 9 (b) Singular fiber-
components that pass through the Jacobi set points, (c) Reeb space (JCN) with Jacobi
structure (in red). Jacobi structure components that are the projection of the Jacobi
set components on the Reeb space are shown by the corresponding dashed numbers.
(d) Histogram with singular values (bins).
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3.3 Reeb Space and Joint Contour Net

Similar to the Reeb graph of a scalar field, the Reeb space parameterizes the fiber-
components of a multifield and its topology is described by the standard quotient
space topology [16]. A Jacobi structure has been defined as a projection of the Jacobi
set on the Reeb space, by the quotient map [12]. Figure 1c illustrates a Reeb space
with Jacobi structure (in red) corresponding to a bivariate field.

Joint Contour Net (JCN) [9] gives a practical algorithm for approximating a Reeb
space. A JCN is built in four stages. The first step of the JCN algorithm constructs all
the contour fragments in each cell of the entire mesh corresponding to a quantization
of each component field. In the second step, the joint contour fragments are computed
by computing the intersections of these contour fragments for the component fields
in a cell. The third step is to construct an adjacency graph (dual graph) of these
joint contour fragments where a node in the graph corresponds to a joint contour
fragment and there is an edge between two nodes if the corresponding joint contour
fragments are adjacent. Finally, the JCN is obtained by collapsing the neighbouring
redundant nodes with identical isovalues. Thus, each node in the JCN corresponds
to a joint contour slab or quantized fiber-component and an edge represents the
adjacency between two quantized fiber-components.We use the JCN implementation
for computing the quantized fiber-components and its histogram, see Figure 1d.

3.4 Histogram Distance Measures

Different measures have been proposed in the literature to study the distance between
two histograms [30]. The measures may be classified into two types based on how
they are computed – bin-to-bin measures or cross-bin measures. In the former type,
bins with the same indices are compared. We list below, a few examples of measures
for finding distance between two histograms H and K with bin count hi and ki
respectively.
Minkowski-form distance:

dLr (H,K) =

(∑
i

|hi − ki |r
)1/r

(1)

Commonly used Minkowski-form distances are dL1 , dL2 and dL∞ . These are often
used to compute dissimilarity between two color images.
Histogram intersection:

d∩(H,K) = 1 −

∑
i

min(hi, ki)∑
i ki

(2)
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This distance can capture the partial matches when the areas of the two histograms
are not equal.
Kullback-Leibler (KL) divergence:

dKL(H,K) =
∑
i

hi log
hi
ki

(3)

This is designed from an information-theoretic viewpoint. The measure is non-
symmetric and sensitive to histogram binning.

One example of a cross-bin dissimilarity measure is the
Quadratic-form distance:

dA(H,K) =
√
(h − k)TA(h − k), (4)

where h and k are vector representations of H and K , respectively. The matrix
A = [ai j] is the similarity matrix where ai j denote the similarity between the i-th
bin of H with the j-th bin of K [30].

4 Our Method

Let us consider two continuousmultifields f = (X1, X2, . . . , Xr ) and g = (Y1,Y2, . . . ,Yr )
over a d-dimensional compact domain D ⊆ Rd where each of Xi and Yi ,
(i = 1, 2, . . . , r) are real-valued scalar fields in the domain We consider compar-
ing multifields f and g at two consecutive time steps of a time-varying multifield
data where topological features vary continuously over time. A fiber of the mul-
tifield f corresponding to a parametric point c = (c1, c2, . . . , cr ) is the preimage
f−1(c) = X−1

1 (c1) ∩ X−1
2 (c2) ∩ . . . ∩ X−1

r (cr ). A connected component of the fiber
is called a fiber-component. Fiber-component topology is used to study multifield
topology, similar to the use of contour topology for scalar field studies. The Reeb
space is a generalization of the Reeb graph. It captures the fiber-component topology
corresponding to a multifield. However, Reeb space structure is rather complicated
and computing an effective distancemeasure between twoReeb spaces for comparing
corresponding multifields is an open problem.

In the current work, we consider the change in fiber-component distribution over
parametric space to capture the change in topology in two multifields. We observe
that a change in the number of fiber-components that correspond to a point in the
parametric space implies a change (birth or death) in number of sheets of the Reeb
space, as described in 4.2. Therefore, to study the topological changes from f to
g we first consider the fiber-component distributions as the feature-descriptors of
the respective multifields. Next, we propose few simple distance measures between
the fiber-component distributions to capture the difference in terms of topological
features.
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4.1 Fiber-Component Distribution over the Range Space

Let f = (X1, X2, . . . , Xr ) be a continuous multifield from a d-dimensional compact
domain D ⊆ Rd to the r-dimensional range space Rf = [a1, b1] × [a2, b2] × . . . ×
[ar, br ], ai, bi ∈ R. Define the function N : Rf → N as N(x) = |f−1(x)| for x ∈ Rf ,
where |f−1(x)| represents the number of connected components in the fiber f−1(x).
In other words, N(x) maps each point x of Rf to the corresponding number of fiber-
components of f. We assume that N is a bounded function for multifields f defined
over a compact domain D. To compute the total number of fiber-components, we
partition the range Rf into a union of mr sub-boxes by introducing the partitions
of the intervals: ai = x(i)0 < x(i)1 < . . . < x(i)m = bi for i = 1, 2, . . . , r . Let xi1i2...ir
be a point in the sub-box Bi1i2...ir = [x

(1)
i1−1, x

(1)
i1
] × [x(2)

i2−1, x
(2)
i2
] × . . . × [x(r)

ir−1, x
(r)
ir
]

for i1, i2, . . . , ir = 1, 2, . . . ,m with volume ∆Vi1i2...ir . Then, N, defined as the sum of
number of fiber-components over all points in Rf is equal to

N = lim
all ∆Vi1 i2 . . .ir→0

m∑
i1,i2,...,ir=1

N(xi1i2...ir )∆Vi1i2...ir =

∫
Rf

N(x)dx. (5)

The function N is bounded and hence integrable. Next, we define a density function
of the fiber-component distribution as:

pf(x) =
N(x)

N
for x ∈ Rf, (6)

where ∫
Rf

pf(x)dx = 1.

In practice, to compute the fiber-component distribution over the range space, we
first discretize the continuous multifield f = (X1, X2, . . . , Xr ) in the r-dimensional
range space. Let field Xi be discretized (quantized) uniformly at the values x(i)1 <

x(i)2 < . . . < x(i)mi
for i = 1, 2, . . . , r . We denote this discrete range space as spec(Rf) =

I1 × I2 × . . . × Ir , the Cartesian product of Ii = {x
(i)
1 , x(i)2 , . . . , x(i)mi

} (i = 1, 2, . . . , r).
Then we compute the frequency distribution of the corresponding fiber-components
over this discrete range space (spectrum). The probability mass function of the
corresponding discrete probability distribution is given by

pf(x) =
Ñx

Ñ
, where x ∈ spec(Rf). (7)

Here, Ñx counts the number of fiber-components at the parametric point x =
(x(1)i1
, x(2)i2
, . . . , x(r)ir

) in spec(Rf) (for i1 = 1, 2, . . . ,m1; i2 = 1, 2, . . . ,m2; . . . ;
ir = 1, 2, . . . ,mr ) and Ñ is the sum of number of fiber-components of f over all
points in the discrete range space spec(Rf). Note that pf defines a probability mass
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function (p.m.f.) since pf(x) ≥ 0 and∑
x∈spec(Rf )

pf(x) = 1.

We note, for a piecewise-linear multifield on a triangulated domain, when the quan-
tization level goes to infinity then the corresponding sequence of JCNs converges
to the actual Reeb space [12]. Therefore, the discrete distribution in (7) converges
to the continuous distribution in (6). Alternatively, one can define p.m.f. using Ax
by measuring the size of the quantized fiber-components at the parametric point
x ∈ spec(Rf) and A is the total measure of all the fiber-components over spec(Rf).
Thus we have

pf(x) =
Ax
A
, where x ∈ spec(Rf). (8)

In the proposed distance measure that we will describe next, we consider the defini-
tions in (6) and (7) because they capture the topological changes in the fibers of the
multifield.

4.2 Distance between two Fiber-Component Distributions

Let us consider two multifields f1 = (X1, X2, . . . , Xr ) and f2 = (Y1,Y2, . . . ,Yr ) over
the domainD ⊆ Rd . Let Rf1 and Rf2 be the range spaces of f1 and f2, respectively. We
note that the range spaces Rf1 and Rf2 may be different but restrict our attention to the
case when they are almost equal. To define our distance measures between the fiber-
component distributions of f1 and f2, first we extend the range spaces Rf1 and Rf2 to an
equal range R. We define R as: R = R1×R2× . . .×Rr where Ri = range Xi∪ range Yi
for i = 1, 2, . . . , r . This extended range R is considered as the common domain of
fiber-component distributions of both f1 and f2. The fiber-component distributions
of f1 on the part R \ Rf1 , corresponding to which f1 has no data, is filled with zeros.
Similarly fiber-component distributions of f2 on R \ Rf2 is filled with zeros.

For the continuous case: let pf1 and pf2 be the density functions of the fiber-
component distributions of f1 and f2, respectively, over the extended range R. Let
P1 and P2 be the corresponding distribution functions. Then we define a point-wise
distance measure between P1 and P2 as:

dq(P1,P2) =

(∫
R

|pf1 (x) − pf2 (x)|
qdx

)1/q
(9)

for any real number q ≥ 1. In particular for q = 1, q = 2 or q = ∞ we get similar
distance measures of practical importance.

For the discrete case, let the range space R be discretized (quantized) as spec(R) =
I1 × I2 × . . . × Ir where Ii = {x

(i)
1 , x(i)2 , . . . , x(i)mi

}. Let P1 = {p
(1)
x : x ∈ spec(R)}
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and P2 = {p
(2)
x : x ∈ spec(R)} be the fiber-component distributions of f1 and f2,

respectively, over the discrete range space spec(R). Then we define the point-wise
distance measure between the distributions P1 and P2 as:

dq(P1,P2) =
©­«

∑
x∈spec(R)

|p(1)x − p(2)x |
qª®¬

1/q

. (10)

for any real number q ≥ 1. In particular, for q = 1, q = 2 and q = ∞ we have

d1(P1,P2) =
∑

x∈spec(R)
|p(1)x − p(2)x | (11)

d2(P1,P2) =
©­«

∑
x∈spec(R)

|p(1)x − p(2)x |
2ª®¬

1/2

(12)

and

d∞(P1,P2) = sup
x∈spec(R)

|p(1)x − p(2)x |. (13)

These distance measures are motivated from the observation that the point-wise
difference |Ñ (1)x − Ñ (2)x | captures the number of changes in fiber-components between
two multifields at consecutive time steps for x ∈ spec(R). Note that each fiber-
component of a multifield corresponds to exactly one sheet of its Reeb space. So, the
difference in number of fiber-components captures the number of possible changes
in Reeb space sheets containing the parameter value x. Thus, |Ñ (1)x − Ñ (2)x | captures
the number of births or deaths of sheets containing the parameter value x of the
corresponding Reeb spaces.

4.3 Weighted Distance for the Singular Values

Singular fibers capture the topological changes in the evolution of fibers in a multi-
field. The image of a singular fiber in the parametric space is called a singular value.
Because of importance of the singular values compare to regular values, we propose
a variant to the distance measure that weights the singular values differently,

dSq(P1,P2;ω) =

[
ω

∑
x∈S
|p(1)x − p(2)x |

q +
∑
x<S
|p(1)x − p(2)x |

q

]1/q

. (14)
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Here, S is the set of singular values in the discrete range space spec(R) and q ≥ 1.
Moreover, ω > 1 is the weight parameter to impose more importance to the singular
values than the regular values.We observe from our experiments on different datasets
that increasing the weight ω increases the prominence of the events that correspond
to topological changes when we plot weighted distances over time. Figure 1d shows
a fiber-component histogram with the singular values (in red) corresponding to the
bivariate field in Figure 1a.

4.4 Metric Space Properties of the Distance Measures

It is important to show that the proposed distancemeasures between two distributions
satisfy the metric space properties for the space PR of all possible fiber-component
distributions corresponding to different multifields with range R. Let us first show
that (PR, dq) is a metric space .

1. Non-negativity. Note dq is real-valued, finite and non-negative.
2. Identity. We note that for two distributions P1,P2 ∈ PR, dq(P1,P2) = 0 if

and only if P1 = P2, since
∑

x∈spec(R)
|p(1)x − p(2)x |

q = 0 implies p(1)x = p(2)x for all

x ∈ spec(R).
3. Symmetry. It is straight-forward to show that dq(P1,P2) = dq(P2,P1). This

implies the symmetry property of dq .
4. Triangle inequality. To show the triangle inequality of dq we consider three

fiber-component distributions P1, P2 and P3. Note, for q = 1, |p(1)x − p(3)x | ≤

|p(1)x − p(2)x | + |p
(2)
x − p(3)x |. For q ≥ 1, using Minkowski inequality [19] we can

show that dq(P1,P3) ≤ dq(P1,P2) + dq(P2,P3).

Similar properties can be proved for the other distance measures dSq , d1, d2 and
d∞. However, note the above metric properties hold in the space of fiber-component
distributions, not necessarily in the space of actual multifields.

5 Implementation

We implement the distance measures described in the previous section using Vi-
sualization Toolkit (VTK) [24] under the Joint Contour Net [9] implementation
framework. The implementation works for a generic pair for multifields but is par-
ticularly designed for time-varying multifields. We note that the range spaces of
two multifields at two consecutive time steps are not necessarily the same and may
vary slightly. We expand the range of both multifields by considering their com-
ponent wise union and use zero-padding to compute the histogram as described in
section 4.2. Next, we describe the four main steps of our implementation.
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I. Computing Fiber-Components: First, we discretize or quantize the common
range of the multifields into finite numbers of bins. Then corresponding to each
bin-value, we compute the quantized fiber-components as described in the JCN
algorithm [9]. In other words, compute the contour slabs in each cell for each
of the scalar fields and then find intersection of the slabs to get the fragments.
Finally an adjacency graph is computed from the fragments to obtain quantized
fiber-components. Each quantized fiber-component corresponds to a node of the
JCN.
II.ComputingFiber-ComponentHistograms:Next,we compute the r-dimensional
fiber-component histogram corresponding to each multifield on the range space. We
use the same binning as used for the quantized fiber-component computation. Each
bin in the range is populated with the corresponding fiber-components. We com-
pute the number of fiber-components in each bin for the fiber-component histogram
computation. A color map specifying the number of all the nodes is shown in Fig-
ure 1d. The color map is chosen over a range of blue values. Light blue shows fewer
number of nodes (fiber-components), and as the color darkens the number of nodes
(fiber-components) also increases.
III. Computing Singular Values of Multifields: To compute singular values first
one needs to compute the singular points or the Jacobi set in the domain of the
multifield and then the corresponding range values of those points are actually the
singular values. In the current implementation we first compute the Jacobi structure
using a multi-dimensional Reeb graph (MDRG) as described in [12, 11] and then
project them in the histogram-bins and call those bins as singular bins. We note that a
singular bin of the histogrammay contain both singular and regular fiber-components
(nodes). In the histogram plot Figure 1d, the red colored bins indicate the singular
bins and blue are the regular bins. For the singular bins of the histogram the singular,
regular and total nodes (singular and regular together) are stored separately for
further computation.
IV. Computing Distance Metrics between Histograms: The above three steps are
performed for multifields at all the time stamps or sites, and the corresponding
histograms are stored in different files. A python script is then implemented to
compute the corresponding probability density from the histogram. Then the distance
metrics between two probability densities at the consecutive time steps are computed
as in sections 4.2 and 4.3. The distance metric dSq (as in equation 14) is computed for
different values of q and ω. This metric is computed using the singular and regular
nodes. Note that if q = 1 and ω = 1 the metric dSq is same as d1. To validate the
experiment d1 is calculated using all the nodes (regular and singular nodes together).
Along with the measures that we have proposed we even calculated the distance
measures for the already defined metrics for histogram comparison as defined in
section 3.4. The values for these distance metrics are stored and then used to create
a comparison line plot. The values were also used to check the metric properties
defined in section 4.4. We also calculated the simple root mean square distance for
bivariate data for experimental comparison.
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6 Applications

We now describe applications of the proposed comparison driven feature search
method to four different datasets, namely (i) a synthetic data consisting of two
polynomial functions, (ii) the scission data of plutonium atom, (iii) fission data of
Fermium atom and (iv) the DFT data of carbon monoxide and platinum (CO-Pt)
molecular bond.

6.1 Synthetic Data

Fig. 2: Plots of distance measures between consecutive sites in a series of bivari-
ate (height, paraboloid) fields. (a) Various distance measures show a peak at site
11, indicating a topological change. The proposed metric dSq also exhibits a peak,
more significant than other distance measures.(b) Root-mean-square plot is not able
to capture the topological change. This indicates the need for a topological data
structures for multifield data that captures topological changes. (c) Fiber-component
distributions for selected sites. Singular values are highlighted in red. Blue nodes
indicate regular nodes and the shades of blue indicate the number of nodes in a
particular bin (light indicates low). (d) Corresponding Reeb spaces. The height field
is mapped to color (blue is low and red is high).

We generate a synthetic bivariate field whose components are the height field
f1(x, y, z) = z and the paraboloid field f2(x, y, z) = x2+ y2−z. Both fields are defined
on an axis-aligned box [−5.5, 4.5] × [−5.5, 4.5] × [−5.5, 4.5] and sampled on a grid
of size 20×20×20. Next, we generate a sequence of multifield data by incrementally
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translating the domain-box along each of the three axes with small magnitude 0.05,
i.e. if (Cx,Cy,Cz) and (cx, cy, cz) are respectively the coordinates of a point on the box
before and after the translation, then Cx = cx +0.05, Cx = cy +0.05, Cz = cz +0.05.
In total, we create 21 bivariate datasets. To create the consecutive datasets, we begin
with the domain [−5.5, 4.5] × [−5.5, 4.5] × [−5.5, 4.5] and then apply the above
described sequence of translations 21 times until we obtain the domain of the final
dataset, namely [−4.5, 5.5]×[−4.5, 5.5]×[−4.5, 5.5]. The major topological feature
is expected in the dataset corresponding to the domain [−5, 5] × [−5, 5] × [−5, 5]
(which is symmetric about origin) because of degenerate intersections of the fiber-
components with the boundary of the box.

Observations and Results

We compute the fiber-component histograms for each dataset in the series and plot
the distance between two consecutive datasets, see Figure 2. The distance peaks at
site 11 as expected. The red color in the histograms indicates singular nodes and
blue color indicates regular nodes. The number of regular nodes in a particular bin is
mapped to different shades of blue. Colors in the Reeb space indicate the height field
value. Although various distancemeasures are able to capture the topological change,
the peak was not sharp enough. The peak is most prominent using the dSq metric
and increased weight for singular nodes. Note that all the subsequent experiments
are done with ω = 13 in order to keep the consistency in our experiments for all the
datasets. If the value of ω is increased better peaks can be obtained and the value is
not dependent on the chosen dataset.

Comparison with the Root Mean Squares Metric

To show the usefulness of the proposed metrics, we compute the distance between
two multifields by directly extending the root mean square metric. The root mean
square distance between two multifields f = ( f1, . . . , fr ) and g = (g1, . . . , gr ) can
be generalized as the square root of the mean of the sum of the difference between
consecutive component fields:

dRMS =

√√
1
m

m∑
i=1
{( f1(xi) − g1(xi))2 + · · · + ( fr (xi) − gr (xi))2}.

Here m is the number of data points in the domain. Figure 2(b) shows the root
mean square distance metric plot. We observe that the rms metric is not capable of
capturing the topological change. This further motivates the study of measures such
as the one proposed in this paper for comparing multifield data.
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6.2 Plutonium Atom Dataset

(a)

(b)

site 688 site 689 site 690 site 692 site 693

Fig. 3: Plots of the distance measures for the scission data for the plutonium atom.
(a) Distance measure between fields at consecutive time steps vs. the time step in
the range [665− 699]. The proposed distance measure dSq exhibits a prominent peak
between time step 690 − 692, which indicates a significant change. (b) Geometry
of the plutonium atom at various time steps. The point of scission is between site
690 − 692 and can be seen in the geometry.

Nuclear Density Functional Theory (DFT) is an approach to understand the
nuclear fission occurring in a nucleon-nucleon interaction in atomic nuclei. Nuclear
fission is a process bywhich an atom’s nucleus splits into two ormore fragments. The
splitting of the nucleus can be identified as stretching the core, hence it involves some
deformation. This deformation can be a crucial indicator of the topology of the atom’s
nucleus. An important problem in nuclear fission study is the accurate identification
of points in a continuous high dimensional manifold where the core is split. The
time when the atom breaks into multiple fragments is known as nuclear scission. At
this time the topology of the atom changes in terms of the number of components.
Physicists typically identify this phenomenon via tedious manual process. Previous
works have described a visual approach to identification of scission [13]. However,
these methods require the inspection of the geometry of the Reeb space for all time
steps. Further, the Reeb space is a complex structure that is difficult to examine. We
aim to detect the key time steps that correspond to topological changes by plotting a
graph of the distance measure over time.

The dataset consists of nuclear densities of plutonium atom which represents
the internal structure of a heavy nucleus. The dataset is a multifield data consisting
of spatial density of proton, the spatial density of neutrons and spatial density of
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nucleons (protons + neutrons) in the nucleus. These densities, represented as p, n
and t are sampled on a 40 × 40 × 66 grid. The dataset available to us is a negative
log transformed sample at 14 different time steps, namely [665, 670, 675, 680, 686,
687, 688, 689, 690, 692, 693, 694, 695, 699]. The time step where the nuclear
scission occurs is reported in earlier work [13] and confirmed by physicists. We use
sufficiently small slab width to capture the topological change. We use the following
parameters in our experiments: p (slab width 8) and n (slab width 2), p (slab width
8) and t (slab width 2), n (slab width 2) and t (slab width 2).

Observations and Results

We experiment with all combination of proton, neutrons and nucleon density con-
sidering two fields at a time. The plots in Figure 3 show the distance measure for
the first combination, p (slab width 8) and n (slab width 2). We observe a sudden
change between time steps 690 and 692. The d1 distance was typically in the range
of 0.0 to 0.02, but at nuclear scission, the measure increases to 0.1. This is due to
the change in the number of quantized fiber-components in the range space. After
scission, the distance measure dropped down to small values because the number of
fiber-components does not change after the split. Figure 3(a) shows a comparison
with other bin-to-bin measures that are also able to capture the topology change
but the peak is not as prominent. We plot the measure dSq for different values of q
and weights. As the weight for singular values is increased, the peak becomes more
prominent and as q is increased the plot becomes smoother. Figure 3 shows the
highest peak in the plot using weight ω = 13 (for singular bins) and q = 1.

6.3 Fermium Atom Dataset

We experiment with another scission dataset, namely that of the Fermium-258 atom.
In this dataset, our goal is again to find the point where nuclear scission occurs. As
described in the literature [13], this dataset consists of three different types of data
viz. aEF: asymmetric elongated fission, sCF: symmetric compact fission and sEF:
symmetric elongated fission. The dataset that was made available is the sCF data and
was sufficient to detect the topological change where the fermium nucleus scission
happens symmetrically. The sCF dataset consists of three fields i.e. proton density
(p), neutron density (n) and total density (t) defined on a 19×19×19 sized grid. The
field is available at 56 regularly spaced time steps. Time steps 20-40 were chosen for
analysis. Choosing the slab width was still an issue, and we end up working with the
same slab width as that for Plutonium atom data, namely p (slab width 8) and n (slab
width 2), p (slab width 8) and t (slab width 2), n (slab width 2) and t (slab width 2).
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(a)

(b)

site 23 site 24 site 25 site 26 site 27

Fig. 4: Plots of the distance measures for the scission data for the fermium-258 atom.
(a) Distance measure between fields at consecutive time steps vs. the time step in
the range [20, 39]. The proposed distance measure dSq exhibits a prominent peak at
time step 26, which indicates a significant change. (b) Geometry of the fermium-258
atom at various time steps. The point of scission is at site 26 and can be seen in the
geometry.

Observations and Results

The same set of experiments were done using the fermium-258 atom dataset. Figure 4
shows the plots with proton and neutron density data from time step 20 to 39. We
observe a topological change at time step 26. Other bin-to-bin histogram metrics,
e.g. the KL divergence and the histogram intersection, exhibit a much smaller peak
as compared to the proposed dSq distance.

6.4 Chemistry Data: Pt-CO Bond

Adsorption of gas molecules on metal surfaces has various applications includ-
ing heterogeneous catalysis, electrochemistry, corrosion, and molecular electron-
ics [36, 23]. Particularly, the adsorption of the CO molecule on platinum surfaces
has attracted attention of a wide scientific community, due to its role in the areas of
automobile emission, fuel cells and other catalytic processes [25, 1]. Therefore, an
atomic-level understanding of the CO molecule interacting with the Pt surface is of
utmost importance. In this study, we have considered seven Pt atoms representing
a platinum surface which interacts with a CO molecule. As the CO molecule ap-
proaches towards one of the Pt atoms, the CO bond starts weakening, and Pt-CO bond
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site 1 site 13 site 16 site 20 site 21 site 35

(b)

(a)

(c)

Fig. 5: Plots of the distance measures for the orbital density data of Pt-CO bond at
different time steps. (a) Distance measure between fields at consecutive time steps
vs. the time step in the range [0, 39]. The plots are for two field values, HOMO and
LUMO and the highest peak is obtained at time stamp 21. The proposed distance
measure dSq exhibits a prominent peak, which indicates a significant change. (b) Pt-
CO Bond length vs time. Bond length stabilizes at time step 21. (c) Geometry of
the Pt-CO bond creation at various time steps, visualized using the tool Avogadro.
Although the bond is visible at time step 13, the bond length is not stable at this site.

formation takes place. Quantum mechanical computations were used to generate the
electron density distribution corresponding to the highest occupied molecule orbital
(HOMO), lowest occupied molecular orbital (LUMO) and HOMO−1. The electron
density distribution was computed for varying distance between the carbon atom of
the COmolecule and the Pt atom. The Pt-CO bond forms when the distance between
the Pt atom and the CO molecule becomes ∼ 1.83A. This Pt-CO dataset consists of
orbital density for orbital numbers 69, 70 and 71. Orbital number 70 corresponds to
HOMO, orbital number 71 to LUMO and orbital number 69 to HOMO−1.

Observations and Results

Figure 5 shows different plots for the Pt-CO dataset. At site 21, we get the most
stable bond length between Pt and CO molecule. We observe that although the bond
is formed at site 13 (as validated by the geometry), the bond-length is not stable. The
bond length stabilizes at site 21 and does not change much later. We observe a sharp
peak in the plot of the proposed dSq distance. This peak corresponds to the formation
of the stable bond.
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7 Single Scalar Field vs. Multifield

We now describe an experiment to demonstrate the importance of studying tools for
multifield data over single scalar field analysis tools. Consider the Pt-CO molecular
dataset. Using only orbital 69 (HOMO-1) data the highest peak in the distance
measure plot is obtained at site 16 (Figure 6. Distance plots for orbital 70 (HOMO)
exhibit the highest peak at site 21. On the other hand, using two fields together, i.e.
orbital data 69 and 70, or orbital data 70 and 71, or orbital data 69 and 71, we observe
the highest peak is always at site 21. Some topological changes may not be captured
using a bivariate data and we may need to consider more than two fields to detect
the changes.
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Fig. 6: Distance plot for scalar data for Pt-CO bond detection dataset. (a) Plot for
orbital density 69 (HOMO−1). The highest peak is at site 16. (b) Plot for orbital
density 70 (HOMO). Significant peak is at site 21.

8 Conclusions and Future Work

We propose the use of fiber-component distribution as a topological feature-
descriptor for multifield data. We describe a novel method for extracting topological
features from time-varying multifield data based on a distance measure defined be-
tween fiber-component distributions. This method is simple and a first step towards
the development of a more accurate topological comparison measure between two
Reeb spaces. We show effectiveness of our method by applying it on several datasets,
both synthetic and real data. While the method captures important changes, it flags
a few unimportant ones also. For example, in the plot for the Pt-Co data, we observe
additional peaks. Such false positives are a key drawback of the current method.
To overcome such issues in future we want to explore distance measures between
two Reeb spaces. Overall, the proposed distance measures can be used to quickly
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identify interesting time-steps and intervals. The Reeb space could be studied in a
subsequent step for detailed analysis. The distance measure can also be computed
for sub-domains thereby allowing for finer grained analysis.
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