
Optimization in Extremum Graph Computation

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

IN

Faculty of Engineering

BY

Dhurjati Prasad Das

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

July, 2023

Declaration of Originality

I, Dhurjati Prasad Das, with SR No. 04-04-00-10-51-21-1-19572 hereby declare that the

material presented in the thesis titled

Optimization In Extremum Graph Computation

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2021-2023.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1

© Dhurjati Prasad Das

July, 2023

All rights reserved

DEDICATED TO

The Aspiring Researcher

who might enjoy visualizing extremum graphs

Acknowledgements

I would like to thank Prof.Vijay Natarajan of the Visualization and Graphics Lab (VGL), under

the Computer Science and Automation (CSA) Department, IISc Bangalore, without whom I

would have struggled a lot. His systematic approach helped me to grasp the concepts quickly,

and his attention-to-detail approach created curiosity within me, which helped me to view the

problem from numerous perspectives.

The Predecessor, Abhijath Ande, who implemented an efficient parallel implementation of the

Extremum graph known as tachyon, also helped me understand the nook and corner of the

tachyon. He has been patiently hearing all the doubts and clearing them up in an elaborate

way so that such concepts remain etched into my mind.

All the people in the VGL lab had been a great help and their constant support made my stay

a really memorable and enjoyable one.

i

Abstract

Extremum Graphs are a subset of the Morse Smale (MS) Complex. It is a simpler represen-

tation possible of Morse decomposition of scalar fields. One of the benefits it provides is the

preservation of topological and geometric properties.Tachyon [4] is a software library that pro-

vides an efficient implementation of a parallel algorithm for computing the extremum graph.

Its implementation utilizes Graphic Processing Unit (GPU) as well as Central Processing Unit

(CPU) in tandem to reduce time costs as much as possible. Detailed observations on the exe-

cution of the tachyon show that as we move from one dimension to another (i.e., 3D to 4D to

ND), the computation time increases exponentially. To reduce the computation time, we em-

ployed optimizations in the tachyon and found significant improvement. A few methods worth

mentioning are the conversion of adjacency matrix (O(4D)) to edge list (O(3D)); Reducing

the number of calls to a function from 2D + 3D calls to 2D calls, with the help of a small local

lookup table; Utilizing shared memory (default: 48KB) of GPU, which is an on-chip memory,

gave a tremendous improvement in run time in higher dimensions, because of earlier thrashing

issues persisted in GPU operations.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

1 Introduction 1

1.1 Motivation . 1

1.2 Project Goal . 2

2 Related Work 3

3 Problem Statement 5

3.1 Problem Statement . 5

3.2 Overview of Solution . 6

3.3 Contributions . 7

4 Background 8

4.1 Extremum Graph . 8

4.2 Computation . 9

4.2.1 Point Classification . 10

4.2.2 Gradient Path Tracing . 12

5 Experimental Work 13

5.1 Understanding the tachyon . 13

5.2 Idea 1: Conversion of adjacency matrix to edge list 15

5.3 Idea 2:Use of Local LOOKUP table to reduce calls to a particular function . . . 18

iii

CONTENTS

5.4 Idea 3: Utilising the SHARED MEMORY Of GPU to avoid thrashing 22

5.5 Total Execution Time for Computation of Extremum Graph 25

5.5.1 HIGH END GPU . 25

5.5.2 LOW END GPU . 27

5.6 Memory workload analysis by Nsight compute 29

6 Discussion and Future Work 32

6.1 Discussion . 32

6.2 Future Work . 33

Appendices 34

.1 Appendix A: Datasets for Low End GPU . 35

.2 Appendix B: Datasets of High-End GPU . 36

Bibliography 37

iv

List of Figures

4.1 Tessellating 2D and 3D grids.Blue represents the edges of the reference point

(i.e., vertex at center). 6 neighbors in 2D, and 14 neighbors in 3D. Image from

paper:TACHYON [5] . 11

5.1 Ratio of execution time: Point Classification vs Gradient Path Tracing. 14

5.2 Increase in size of Matrix vs List . 15

5.3 Sparsity . 16

5.4 Time elapsed in Point classification stage: Tachyon vs Modified-1 17

5.5 Time elapsed in Point classification stage: Tachyon vs Modified-1 17

5.6 Function calls after the kernel launch . 18

5.7 Function-3 and its components execution time in point classification stage 19

5.8 Reduction % age in the number of calls . 20

5.9 Tachyon vs Modified-2 . 21

5.10 Tachyon vs Modified-2 execution time . 21

5.11 Kernel vs Function-1 execution time . 22

5.12 Kernel vs Function-1 execution time . 23

5.13 Tachyon vs Modified-3 execution time . 24

5.14 Tachyon vs Modified-3 execution time graphical view 25

5.15 Tachyon’s Execution time on High-End GPU . 26

5.16 Modified-3’s execution time on High-End GPU 26

5.17 % age reduced from tachyon’s execution time 27

5.18 Tachyon’s Execution Time on Low-End GPU . 28

5.19 Modified-3’s execution time on Low-End GPU 28

5.20 % age reduced from tachyon’s execution time 29

5.21 Tachyon’s Memory Workload Analysis . 30

5.22 Modified-3’s Memory Workload Analysis . 30

v

Chapter 1

Introduction

The section shows the importance of GPU in the modern world (which in turn also reflects

its importance in the topological world), due to which various optimization is performed

on the earlier known algorithms. The motivation section talks about it followed by the

project goal.

1.1 Motivation

With the advent of GPU, most algorithms that were a few decades ago computationally infea-

sible become feasible and are solved within microseconds, milliseconds, or seconds. To utilize

maximum efficiency from GPU, we should schedule work in such a fashion that makes them

independent of each other.

Even the trending topic in modern-day visualization like the topological analysis of scalar

fields (or vector fields) uses GPU to achieve maximum efficiency and faster computation time.

Numerous abstractions are being developed in the visualization field to study the topology of

any given structure in a more meaningful way. Some of them which are already in use are

Contour Tree, Reeb Graph, cancellation Tree, and MS Complex. Such structures help us to

interpret the topology of a given structure that has a scalar value at specified points. Every

structure has some pros and cons associated with it. And as the world is moving towards

visualization and interpretation of high-dimensional data, we want to make a visualization

technique that is able to keep up with such high-dimensional data.

Most of the mentioned structure fails to make the visuals understandable for the human eye. For

instance, MS Complex [9], in a higher dimension (i.e., greater than 3) suffers occlusion problems

as well as storage problems due to an exponential increase in the number of connecting arcs

1

between critical points (maxima, minima, saddles) as well as between regular points. Structures

such as contour trees hardly preserve the geometric information of the structure.

A noble structure that is simple and preserves most information was required, which gave rise

to Extremum Graph. It only considers critical points (i.e., either maxima or minima) and a

particular saddle type (i.e., either n-1 saddle or 1 saddle, where ‘n’ is the number of dimensions).

Since most interesting phenomenon happens around extrema (either minima or maxima), it will

be useful to visualize only those points. To aid their computation comes the GPU, without

which computation time would have a shoot day, months, or even year. Earlier papers [5] have

shown an increase in GPU cores will further enhance the algorithm and reduce the computation.

Now, if we improve performance in simple low-end GPU systems, then it can be used by normal

users (i.e., students, doctors) without the help of workstations and servers.

1.2 Project Goal

Tachyon [4] is a software library that provides an efficient implementation of a parallel algorithm

for computing the extremum graph. We will try to improve the existing tachyon.

The project goal is structured in three phases:

Understanding the flow of the tachyon.

It will involve finding any structural change in the data structure or flow change (i.e., refactor-

ing) in the existing tachyon.

Understanding GPU-related architectural bottlenecks that might be occurring.

Due to the limitation of resources provided by GPU, we might need to reconfigure storage areas

of certain variables.

Modifications of existing tachyon that might help improve performance and testing it thoroughly

on numerous datasets.

2

Chapter 2

Related Work

The section shows relevant papers on extremum graphs and the earlier method of com-

puting extremum graphs.

To represent the gradient flow behavior of Morse functions, a new set of topological structures

such as Morse Complex[6] and MS complex[9] were introduced. The extremum graph is a

subset of the MS complex or, in other words, it can be considered as a 1-skeleton of the Morse

complex. The term ‘Extremum Graph’ was first coined in the paper, Topological Spines [7].

The importance of the Extremum Graph lies in the fact that it preserves the topological as

well as the geometric structure of a scalar field, while the topological spine is a covering of the

extremum graph to make it more presentable. It essentially preserves the relative location of

extrema and knowledge of their neighborhoods with respect to the gradient path connecting

them. Numerous applications of extremum graphs can be seen, a few worth mentioning are

segmentation in the 2D-3D scalar field, feature tracking in time-varying data, and clustering in

high-dimensional data.

Earlier, only up to 3D MS complex computation was studied extensively, and even numerous

methods [10] and techniques [9] have been involved to improve the performance of MS Complex

computation. But due to an increase in scientific data, we need to make our algorithm scalable

and as robust as we can. MS Complex in higher dimensions (> 3), requires tremendous memory

space as well we need to keep track of a lot of arcs, and still it might suffer from occlusion

problems. To eliminate such problems, Extremum Graph comes in handy.

3

We can first construct the MS Complex, then extract the Extremum Graph, since Extremum

Graph is a subset of the MS Complex. But the construction of MS Complex in higher dimensions

is daunting to deal with, so we need to construct Extremum Graph directly.

We are aware of the single library ‘tachyon’ [4], which has been released for public use. It

computes the extremum graph using a couple of stages. The first stage is point classification,

which helps to assign a label to the point, whether it is regular or critical (i.e., maxima or

saddle). It involves efficient usage of GPU parallelism. The second stage is constructing arcs

from saddles to the maxima and due to varied path lengths, it is sensible to use the CPU

which can afford task-level parallelism. Hence, we could leverage the library and try to find

any improvements that might aid in the performance of the existing tachyon.

4

Chapter 3

Problem Statement

The section elaborates on the problem statement, and how we have tackled the problem.

3.1 Problem Statement

Tachyon [4] is released for public use. It contains an efficient implementation of a parallel

algorithm for computing Extremum Graph. We tend to enhance its performance by studying

the various stages it goes through and making any modifications necessary to bring down the

overall computation time.

Conceptually, the tachyon follows a three-stage approach:

• Point Classification.

Tachyon implementation classifies a point into a critical point using algorithms that make

the operation independent of other points and hence GPU can be utilized for faster

computation. Analysis of the current stage shows there is room for a lot of improvement.

• Point Collection.

All critical points are aggregated in the stage to be utilized for further stages. Analysis

of the current stage shows there is little room for improvement.

• Gradient Path Tracing

Critical points collected from the above stage are utilized to create an extremum graph.

Here task level parallelism is involved which utilizes the CPU core of the system. Analysis

of the current stage shows the workload imbalance is tremendous, and we may require

advanced graph algorithms to reduce the time complexity of the current stage.

In short, analyze the tachyon, search for improvement, implement it, and report the findings.

5

3.2 Overview of Solution

Modification is done majorly in three phases:

• Conversion of adjacency matrix to edge list.

In tachyon, we need to find the number of connected components among neighbors, so we

used to store the potential edge matrix in the neighbors*neighbors matrix. As we increase

dimensions, the matrix becomes sparser and sparser and we incur more traversal time as

well as more storage space. To annihilate such problems we use an edge list, which has a

size less than the matrix, as well as incurs less traversal time.

• Use of lookup table to reduce calls to a particular function

The function takes as input the neighbor of the reference point and returns whether this

point has a function value greater than the reference point or not (whether it is part of

the upper link or not). The function is significant because it almost consumes 18-30%

of the execution time in the point classification stage. Earlier every time either ‘i’ or ’j’

of the edge list changes (endpoints of edges), we called the function. So, the number of

times the function was called O(neighbors + potential edges). Now if we store only the

return result of the function, we call the function O(neighbors) times.

• Utilizing Shared Memory of GPU to avoid thrashing

In Tachyon, there is an adjacency matrix that is used by the CPU as well as GPU, so

we stored the matrix in UNIFIED memory (i.e., accessible to both CPU and GPU).

A quite interesting fact emerge when we found out there is a huge difference between

kernel execution time and function1 (i.e., the first and foremost function executed by the

kernel). We hypothesize that due to the aggressive pace of page replacement, thrashing

is occurring at GPU.So, we shifted the adjacent matrix of the tachyon (or edge list of

modified tachyon) to the Shared Memory of GPU, and finally found huge improvements

in run-time at higher dimensions.

6

3.3 Contributions

• Conversion of adjacency matrix to edge list

• Use of a lookup table to reduce the number of calls to a particular function.

• Use of Shared memory of GPU to avoid the issue of thrashing.

• We have successfully reduced tachyon’s execution time by 65%-75% at higher dimensions.

7

Chapter 4

Background

The prerequisites are elaborated here.

4.1 Extremum Graph

The term ”Extremum Graph” was coined in the paper by Carlos D.Correa [7]. To ease the

understanding of the Extremum Graph, we will quickly define some preliminaries.

Given a smooth function f : M → R over a manifold M of dimension n, we say that a

point x ∈M is critical if and only if ∇f(x) = 0, otherwise x is called regular point. A function

f is a Morse function if all critical points have pairwise distinct values and non of them are

degenerate i.e., the Hessian evaluated at the point is non-singular. For a critical point x of f ,

its Morse index is defined as the number of negative eigenvalues of its Hessian matrix evaluated

at x.

An integral line is a maximal curve in M, whose tangent at every point is equal to the

gradient of f at that point. Usually, along the integral line f increases monotonically, and

its two endpoints (limit points) are critical points of f . The Morse function f determines a

decomposition ofM based on integral lines. The fusion of integral lines that converge at a critical

point is called a descending manifold. The descending manifold of a maximum is a n-dimensional

manifold. The collection of descending manifolds of critical points of f partitionM is called the

Morse decomposition. Similarly, ascending manifold of a minimum is the fusion of integral lines

that diverge from a minimum. Again, the collection of ascending manifolds of critical points of

f partition M.The extremum graph is a representation of the Morse decomposition. A (n− 1)

8

saddle s of f lies on the boundary of descending manifold of a maximum m, and the extremum

graph captures such relationship between (n− 1) saddle and maximum, and thereby captures

the combinatorial structure of Morse decomposition. Such extremum graphs are called the

Maximal Extremum graph, and if we had considered 1 saddle and minima then we would have

called it a Minimal Extremum graph. Most discussions will be around the Maximal Extremum

graph, we would drop the term Maximal from subsequent discussions.

In brief, Extremum Graph is a balance between a complete representation (i.e., MS Com-

plex), and an easily comprehensible representation (i.e., cancellation tree). The Maximal Ex-

tremum graph is formed by joining ‘n-1’ saddles with maxima in n-dimensional data set. A

practical data set always contains some noise and to remove such noises, we employ simpli-

fication, where there are two thresholds: noise threshold for extrema (value above a certain

point is considered noise), and, variation threshold for saddles to remove some uninteresting

points. There are numerous ways to implement the Extremum Graph, one of the ways is to

first construct MS Complex and then construct the Extremum Graph [10] [11], since it is a

subset of MS Complex. We can construct MS Complex for 3D but for higher dimensions (i.e.,

> 3), it takes a toll on the computational time and storage resources. Another method that is

implemented in the tachyon can be studied in section 4.2.

4.2 Computation

Input comprises data sets that are formed by sampling scalar field values at points on a uniform

sample space, which further maintains the piece-wise linear function properties with the help

of linear interpolation if values are missing at those sample points. We usually work with the

function values at the sample points. Computation majorly involves numerous stages, some

stages which are important are as follows :

• Point Classification: All grid points are classified as either critical or regular.

• Point collection: All grid points which are critical are collected and stored in the data

structure.

• Gradient Path Tracing: Critical points mainly comprise saddles (with Morse index ‘n-1’)

and maxima. Path tracing begins at saddles and terminates at maxima.

9

4.2.1 Point Classification

As we know point classification can be done in numerous ways, but since we are working with

uniformly spaced sample points in n-dimensional space (In 2D, imagine a grid-like structure),

we can’t make use of the Hessian matrix, which in general is applicable in the continuous

domain, and allows us to classify points into either critical or regular points. The number of

negative eigenvalues in the Hessian matrix helps us to determine the Morse index of the point.

In an n-dimensional structure, a point with ‘n’ negative eigenvalues is classified as maxima, and

‘0’ negative eigenvalues are considered as minima, others with ‘1’ to ‘n-1’ negative eigenvalues

are known as saddles. Since we can’t use the Hessian matrix in the discrete domain (i.e., In

2D,grid-like structure), we need to devise a noble method to classify sample points. Already

developed ideas in topology will help us in it.

In topology literature, we came across a popular term, that is LINK which will guide us

through the neighborhood of the sample point in an abstract way. First, we have to know in

an n-dimensional field which points are the neighbor of the inspected sample point, then we

can talk about the LINK of the sample point in question. In general in a normal scenario, if

we consider a point in sample space, it will have 2n neighbors, since there are n-dimension, as

each dimension will comprise two neighbors around the point (i.e., 1st neighbor on one side of

the point and 2nd neighbor on the other side of each axis, total 2n neighbors). The number of

points that is present around the reference point in an n-dimensional hypercube, is 3n − 1. We

make an observation, that as we increase dimensions the size of the neighborhood of the sample

point becomes sparser and sparser with respect to the number of points present around the

sample point, which makes such a concept of the neighborhood not quite intuitive. We start

to have doubts about whether the few neighbors really classify the reference point correctly

or not. Hence, we resort to using concepts of the Freudenthal subdivision[8]. It will help to

make the neighborhood of a reference point denser, otherwise, in higher dimensions, it became

sparser and sparser. The restriction imposed on such subdivision is that common faces between

adjacent cells are consistent so that we can tessellate throughout the whole sample space. In

3D we can assume the cube is divided into 6 tetrahedrons (irregular cells). We will tessellate

such blocks over all the grid structures given to us. Tessellation will give rise to additional

edges in the uniform grid. And adjacency between two grid points in the tessellated grid are

checked by condition, which says, two distinct points are adjacent if and only if the difference

vector between the two points must entirely constitute non-negative or non-positive values and

10

the magnitude of non-zero values must be exactly 1. From now on, we will term this special

condition as the grid− adjacency condition.

The term ‘LINK’ is an interconnection among the neighbors of the reference point. A

neighbor of a reference point is the vertex that is connected to the reference point, or, in other

words, the vertex that satisfies the grid-adjacency condition when tested with the reference

point.

Imagine the neighborhood of 2D and 3D respectively in Figure 1.

Figure 4.1: Tessellating 2D and 3D grids.Blue represents the edges of the reference point (i.e.,

vertex at center). 6 neighbors in 2D, and 14 neighbors in 3D. Image from paper:TACHYON [5]

If all neighbors have function values greater than the reference point, we classify the reference

point as minima, another scenario happens when all the neighbors have lesser function values

compared to the reference point, then we classify the reference point as maxima. The link is

further classified into upper links and lower links; the Upper link comprises the vertices that

have a greater function value than the reference grid point, similarly for the lower links comprise

the vertices that have a lower function value than the reference grid point. We ponder over

the thought of the number of connected components in the upper link (or lower link), which

might help us to classify the reference grid point. It is observed that a point (i.e., critical or

regular) can be distinguished from the number of connected components in its upper link (or

lower link). For a point to maxima, its upper link component must be 0. For a point to be

regular, its upper link and lower link component must be 1. For a point to be a saddle, its

upper link component must be greater than or equal to 2. Hence we have successfully classified

a sample point (or a grid point in 2D).

11

4.2.2 Gradient Path Tracing

Tracing usually starts from a point and follows either an increasing function value point or

decreasing one. In our algorithm, ‘n-1’ Morse index saddles are used as starting points, following

the neighbor which has the maximum valued function until we reach the maxima.

12

Chapter 5

Experimental Work

The section deals with the practical work carried out to improve the existing tachyon. It

elaborates on the solution we adopted to increase the efficiency of the tachyon.

5.1 Understanding the tachyon

Most real-world data sets [1] are usually limited to 2D-3D dimensions. Synthetic data sets can

be created using random assignments at sample points of higher dimensions. Assume, synthetic

data sets are given as input to the tachyon. For better understanding, we can take 3D data sets

(with dimensions 128x128x128). Each grid point (i.e., (1,2,3)) has a point index (i.e., 16643)

as well as a function value (i.e., 12) associated with it.

The first step is point classification, where each point is launched independently and classi-

fied using kernel launch of GPU. Each thread undergoes numerous stages, among them the most

important; is finding which neighbors are in the upper component link and which neighbors are

in the lower component link, and the number of connected components they form. This stage

consumes 98%-99% percent of the whole thread execution time. To utilize maximum efficiency,

we need to make sure each thread works the same amount otherwise different workload balance

gives rise to divergence problems in GPU which will increase the execution time. The main

aim is to find the number of connected components in the upper link or lower link. We can

use Breadth First Search (BFS) or UNION-FIND. Since divergence issues are too much in the

BFS algorithm, we use the UNION-FIND algorithm. To traverse the neighbor-neighbor po-

tential connections of the reference point (i.e., point index of launched thread), we created an

adjacency matrix of neighbors in UNIFIED Memory, which can be accessed by both CPU and

13

GPU. The adjacency matrix is fixed that’s why they were already stored in UNIFIED Memory

before launching the threads. The adjacency matrix mainly stores the potential edges from

each neighbor to another neighbor. For a potential edge to become a real edge, both neighbors

either must lie in the upper link or lower link (in other words both neighbors’ function value

should either be greater or lower than the reference points). After the UNION FIND algorithm

is performed, we classify the point as maxima,1-saddle or regular points based on the number

of components in the upper link and lower link.

The second step is Point collection: It collects all the critical points and stores them in an

array.

The third step is Gradient Path Tracing: We start tracing paths from the saddles to maxima

for the Maximal Extremum Graph. We won’t dive too much into this stage, because the time

here is of little significance at higher dimensions. Figure.2 shows a preview of the execution

time distribution of the point classification stage vs gradient path tracing stage for data sets of

uniform size (Refer Appendix .2 for x-axis units)

Figure 5.1: Ratio of execution time: Point Classification vs Gradient Path Tracing.

14

5.2 Idea 1: Conversion of adjacency matrix to edge list

The use of irregular grid cells helps to classify the reference point more accurately than without

it. Without the irregular grid cells, the number of neighbors of a reference point is determined

by ‘2n’ whereas, with the use of irregular grid cells, it is determined by ‘2 ∗ (2n − 1)’.The

hypercube of a reference point has ‘3n’ points, where ‘n’ is the number of dimensions. For

example: for 3D, without the use of irregular grid cells, we have 6 neighbors, 2 about the x-

axis,2 about the y-axis, and 2 about the z-axis. But with irregular cells, we have 14 neighbors

of the reference points (The points which are neighbor satisfies the condition: difference vector

between the points constitutes either all non-negative or non-positive values, along with the

condition that the magnitude of non-zero values must be exactly one). So adjacency matrix size

is 14*14=196. As we increase dimensions, the adjacency matrix becomes sparser and sparser, so

that’s why we got the idea of using an edge list. The number of edges present also has a formula

associated with it. The formula:- 3n+1 − 3 ∗ 2n+1 + 3, where ‘n’ is the number of dimensions.

To get an idea of how sparse it becomes, let us first look at each dimension; the number of

neighbors; the number of edges between neighbor and neighbor; the size of adjacency matrix

(=neighbor*neighbor); the size of edge list (=2*edges, because we need to store the endpoints

of the edges). Each component is shown in Figure 5.2

Dim Neighbor Edge Adj.matrix Edge list

2 6 6 36 12

3 14 36 196 72

4 30 150 900 300

5 62 540 3844 1080

6 126 1806 15876 3612

7 254 5796 64516 11592

8 510 18150 260100 36300

9 1022 55980 1044484 111960

Figure 5.2: Increase in size of Matrix vs List

15

The chart of how sparser the adjacent matrix becomes is shown in Figure 5.3. With the

increase in dimensions, the cell entries with a value of zero increase drastically.

Figure 5.3: Sparsity

In the tachyon, we were traversing every cell of the adjacent matrix, which was mainly

filled with zeroes (and were of no use), now we only need to traverse the potential edges which

eliminates the time spent traversing through zeroes of the adjacent matrix. After applying the

structure of the edge list to the tachyon (we name it as ‘Modified-1’), there is an improvement in

point classification time, and it is only visible at higher dimensions; because at lower dimensions,

due to the high computation power of GPU, unless there is a difference of 10000 operations, no

significant improvement can be seen.

Specification:

Software: Tachyon vs Modified-1

Hardware, and Data sets: Refer to Appendix .2

The table for total point classification stage time (in seconds) is represented in Figure 5.4.

16

Data set Tachyon Modified-1

H2 0.226 0.224

H3 1.215 1.225

H4 5.089 5.092

H5 20.607 20.905

H6 158.650 156.992

H7 560.959 560.298

H8 1638.434 1628.116

H9 5316.526 5043.987

Figure 5.4: Time elapsed in Point classification stage: Tachyon vs Modified-1

To get a graphical idea of how much the execution time (of point classification stage)

decreases as we increase the dimension in the data set is shown in Figure 5.5.

Figure 5.5: Time elapsed in Point classification stage: Tachyon vs Modified-1

17

5.3 Idea 2:Use of Local LOOKUP table to reduce calls

to a particular function

After kernel launch, each thread of a GPU goes through numerous function calls, we will

describe them briefly using a flow chart which is represented in Figure 5.6.

Start Kernel launch

Function-1

Function-2

Function-3

extremum graph single point()

extremum graph single point impl()

neighbour bfs union find()

Stop End of Kernel

Figure 5.6: Function calls after the kernel launch

The left side of the flowchart shows the function name in abstract form, and the right side

of the flowchart shows the real function name. We will use only abstract function names from

now on.

Within the kernel, measuring time consumed by each function (i.e., the function called

within the kernel) is not being implemented by any NVIDIA’s Pro-filer, be it nsight-system or

nsight-compute. We need to create an array to measure time, which won’t be accurate, but it

will be approximately accurate. There is a huge difference between the whole kernel function

execution time vs Function-1 execution time, which will be studied in the next subsection. In

18

this subsection, our focus will be on Function-3.

Within Function-3, two more functions (i.e., let’s say Function-31 and Function-32) are

called, and we track the time of the two functions, and the result are tabulated and shown in

Figure 5.7.

Specification:

Software: Tachyon

Hardware, and Data sets: Refer to Appendix .1

Data set Function-3 Function-31 Function-32

L2 1.215 0.303 0.417

L3 5.794 1.731 3.667

L4 25.51 7.459 17.123

L5 80.831 26.887 52.710

L6 347.830 67.209 148.990

L7 707.536 149.161 319.761

L8 1952.709 365.276 827.611

Figure 5.7: Function-3 and its components execution time in point classification stage

Note: Time is measured and recorded in seconds.

Almost 18%-30% of Function-3 execution time is consumed by Function-31.Function-31 can

be optimized with the help of a lookup table.

Working of Function-31 (i.e., Point Updating) in the Point Classification stage of GPU: It

takes the i′th neighbor of the reference point and tells us whether it is in the upper link or lower

link components (in other words, whether its function value is greater than the reference point or

not).In the tachyon, it is called whenever either ‘i’ changes or ‘j’ changes (where (i,j) represents

the coordinates in the adjacency matrix).In short, it is called O(neighbours+potential edges)

number of times, though a lot of times the same neighbor is passed, and the same value is

returned. To reduce such calls we create a Boolean array of size neighbors to store whether

the neighbors’ function value is greater than or less than the reference point. So now, we only

19

traverse O(neighbors) number of times, using extra space of O(neighbors).

Let’s see the reduction in the number of calls with the help of a reduction % which is shown

in Figure 5.8.

Dim Neighbor Edge+Neighbor Reduction%

2 6 6 0.5

3 14 50 0.72

4 30 180 0.833333

5 62 602 0.89701

6 126 1932 0.934783

7 254 6050 0.958017

8 510 18660 0.972669

9 1022 57002 0.982071

Figure 5.8: Reduction % age in the number of calls

Implementing Idea 1 and Idea 2 together in the tachyon, we get another modified code base

(let’s say Modified-2), and we compare the execution time of the point classification stage of

both the tachyon vs Modified-2.

Specification:

Software: Tachyon vs Modified-2

Hardware, and Data sets: Refer to Appendix .2

Figure 5.9 shows only the total point classification stage time.

20

Data set Tachyon Modified-2

H2 0.226 0.204

H3 1.215 0.974

H4 5.089 3.129

H5 20.607 12.654

H6 158.650 139.965

H7 560.959 488.774

H8 1638.434 1379.507

H9 5316.526 4027.727

Figure 5.9: Tachyon vs Modified-2

Note: Time is measured and recorded in seconds.

The graphical format is shown in Figure 5.10

Figure 5.10: Tachyon vs Modified-2 execution time

21

5.4 Idea 3: Utilising the SHARED MEMORY Of GPU

to avoid thrashing

An astonishing discovery was made when we measured the total kernel execution time vs the

Function-1 execution time. Function-1 is the first and foremost function that is called by each

thread launched by the kernel, it should be at least equal to the total execution time. But to

our surprise, it was not. Let’s revisit the flowchart (Figure 5.6) in subsection 4.3 and observe

the time elapsed at each function. To again stress the fact that functions within the kernel

can’t be accurately recorded, but approximately accurately recorded using the clock function,

so tolerance of 5-10 seconds is ignored. Figure 5.11 shows the time recorded for each function.

Specification:

Software: Tachyon

Hardware, and Data sets: Refer to Appendix .1

Data set Kernel Exec. time Function-1 Exec.time

L2 0.952 1.228

L3 4.463 5.840

L4 19.329 25.445

L5 73.426 80.556

L6 740.973 363.439

L7 3012.142 713.747

L8 9680.262 1899.302

Figure 5.11: Kernel vs Function-1 execution time

Note: Time is measured and recorded in seconds.

The graphical format is shown in Figure 5.12.

22

Figure 5.12: Kernel vs Function-1 execution time

The reason for the time lapsed which isn’t recorded is due to thrashing occurring at an

aggressive level. The space (i.e., page) required for storing the edges keep on increasing as the

dimensions increase. Memory space is limited in each SM (streaming multiprocessor) of the

GPU. Each SM can handle only a few thread blocks. Different threads in each thread block

require access to different edge points (for example thread 1 requires access to the 12th edge

point and thread 35 require access to the 105th edge point which is on a different page, so page

replacement will happen). The frequency of page replacement increases as the number of edges

keeps on increasing. That’s why we can see as we move to higher dimensions, kernel execution

time is much much greater than Function-1 execution time. Originally to improve memory

access time, the edge list was stored in Unified Memory. Whenever a thread requires an edge

from the edge list, the page containing the edge and nearby edges is transferred to the LOCAL

memory of SM (which is also known as L1 cache). The local memory is replaced frequently

and hence the time elapsed in replacement is not recorded by our clock functions.

To improve memory management of the whole process of the point classification stage, we

use the SHARED Memory of the GPU. The most important characteristic of the SHARED

Memory is that it is an ON-CHIP memory, its access time is almost equal to or a little worse

than the local registers of each thread. Each thread block has a separate shared memory

assigned to it. Now the problem of page replacement is reduced by the fact that at the start

of the function we store the edge list in the shared memory and then execute all the remaining

operations, here we minimize the number of page replacements that will occur. As the size

23

of shared memory is limited (default:48 KB), we have to use it judiciously. The number of

edges that are stored in shared memory is 5796 at one pass, the limit is set explicitly by the

programmer. The reason to store only 5796 edges is that dimension 7 has 5796 edges, and

we could dynamically allocate that many edges quite peacefully, but at dimension 8 there are

18150 edges, as soon as we compile the code, we get an error of allocating too much-shared

memory, which isn’t available in our GPU.So as a workaround for dimensions greater than 7, we

reinitialize the shared memory with the next set of 5796 edges and used the function syncthreads

(), which synchronizes all the threads in a thread block. If we don’t use synchronization, some

threads within a thread block will execute faster and change the shared memory without other

threads realizing it. So we need to avoid that, as other operations are dependent on those edges.

Finally, we reached the greatest reduction in time we have ever seen.

Specification:

Software: Tachyon vs Modified-3

Hardware, and Data sets: Refer to Appendix .2

We are using the default GPU, with device ID:0, though it has two GPUs available. The

data set size is kept constant as we increase dimensions (i.e., as we move from ‘n’ to ‘n+1’

dimensional data set, where ‘n’ represents dimension).

The Point Classification stage execution time for both the tachyon and say Modified-3 code

(which includes Idea 1 + Idea 2 + Idea 3) [2] are as shown in Figure 5.13.

Data set Tachyon Modified-3

H2 0.226 0.188

H3 1.215 1.015

H4 5.089 3.328

H5 20.607 14.725

H6 158.650 139.358

H7 560.959 210.109

H8 1638.434 571.683

H9 5316.526 1724.915

Figure 5.13: Tachyon vs Modified-3 execution time

24

Note: Time is measured and recorded in seconds.

The graphical representation is shown in Figure 5.14.

Figure 5.14: Tachyon vs Modified-3 execution time graphical view

To probe further into code-level changes, programmers and future developers are advised to

go through the file available at site [3].

5.5 Total Execution Time for Computation of Extremum

Graph

Abbreviations which might help:

Point Classification (PC)

Gradient Path Tracing (GPT)

Extremum Graph Computation (EGC)

5.5.1 HIGH END GPU

Specification:

Software: Tachyon vs Modified-3

Hardware, and Data sets: Refer to Appendix .2

25

Tachyon’s Performance is tabulated in Figure 5.15.

Data set PC GPT EGC

H2 0.226 5.866 10.694

H3 1.215 4.866 9.282

H4 5.089 6.374 14.434

H5 20.607 11.061 33.598

H6 158.650 22.431 182.751

H7 560.959 41.411 603.618

H8 1638.434 72.336 1711.764

H9 5316.526 124.124 5441.502

Figure 5.15: Tachyon’s Execution time on High-End GPU

Note: Time is measured and recorded in seconds.

MODIFIED-3’s performance is shown in Figure 5.16.

Data set PC GPT EGC

H2 0.188 5.426 10.789

H3 1.015 4.636 9.172

H4 3.328 5.607 11.596

H5 14.725 9.968 26.535

H6 139.358 18.392 159.267

H7 210.109 24.761 235.939

H8 571.683 31.262 603.774

H9 1724.915 45.379 1770.993

Figure 5.16: Modified-3’s execution time on High-End GPU

Note: Time is measured and recorded in seconds.

26

Percentage Reduction in Extremum Graph Computation time is shown by the graph which

is displayed in Figure 5.17:

Figure 5.17: % age reduced from tachyon’s execution time

5.5.2 LOW END GPU

Specification:

Software: Tachyon vs Modified-3

Hardware, and Data sets: Refer to Appendix .1

Tachyon’s Performance is tabulated in Figure 5.18.

27

Data set PC GPT EGC

L2 0.831 6.544 11.509

L3 4.278 11.829 18.743

L4 19.116 28.979 50.386

L5 73.545 65.660 140.803

L6 741.311 129.766 872.340

L7 2974.154 260.013 3235.094

L8 9970.500 416.006 10387.190

L9 34019.706 620.995 34641.324

L10 109936.446 678.582 110615.565

Figure 5.18: Tachyon’s Execution Time on Low-End GPU

Note: Time is measured and recorded in seconds.

MODIFIED-3 performance is shown in Figure 5.19:

Data set PC GPT EGC

L2 0.605 6.365 11.244

L3 2.924 11.069 16.938

L4 10.771 21.102 34.269

L5 42.154 59.575 103.360

L6 463.255 105.124 569.683

L7 1179.293 187.164 1367.402

L8 3743.255 185.955 3929.919

L9 11543.160 337.020 11880.751

L10 34683.603 284.878 34969.013

Figure 5.19: Modified-3’s execution time on Low-End GPU

Note: Time is measured and recorded in seconds.

28

We observe that in data set ‘L10’ which is 10 dimension data set, the elapsed time in the

point classification stage is 109936 seconds which is approximately equal to 30 hours (or 1 day

6 hours), whose execution time is reduced tremendously by our Modified-3 implementation.

The elapsed time for the point classification stage for Modified-3 is 34683 seconds (or 9 hours)

showing a huge success of Modified-3 implementation and a great reduction in execution time

as well.

Percentage Reduction in Extremum Graph Computation time is shown by the graph which

is displayed in Figure 5.20:

Figure 5.20: % age reduced from tachyon’s execution time

5.6 Memory workload analysis by Nsight compute

Memory Workload Analysis of tachyon and Modified-3 are shown in Figure 5.21 and in Figure

5.22 respectively.

29

Figure 5.21: Tachyon’s Memory Workload Analysis

Figure 5.22: Modified-3’s Memory Workload Analysis

30

Dataset:

LThrees 512x512x512 uint8.raw

Profiler:

Nsight Compute 2021.4

Profiling Application:

tachyon vs Modified-3

GPU specs:

2 x NVIDIA GeForce GTX 3080 card with 8704 CUDA cores, 11 GB RAM.

We can’t profile data sets in NVIDIA-provided Nsight compute; whose GPU time period is

> 5 seconds. We need to content ourselves with a 3D data set or 2D data set, whose GPU time

period is < 5 seconds.

Let’s look below two diagrams extracted from Nsight compute pro-filer.

Memory Workload analysis is available to us. We observe carefully and see the request for data

is reduced, and the heavy performance arrows (i.e., the red arrows) have less load to deal with.

The L1 Hit ratio is improved as well as the L2 Hit ratio, which is a good sign for our

Modified-3 algorithm.

31

Chapter 6

Discussion and Future Work

The section describes some intricacies of the current work and also discusses the future

scope of the project.

6.1 Discussion

One of the stages of Extremum Graph Computation is Gradient Path Tracing. As we increase

the dimension, the execution time of this stage decreases due to the fact of less number of

critical points are being discovered at higher dimensions. But, this stage plays an important

role in lower dimensions, where its execution time contributes to almost always > 50% of total

execution time, to support my statement we can refer to Figure 2. Gradient Path Tracing

computation time (at higher dimensions>6) is too less compared to point classification to be

considered for optimization. But apart from that in the lower dimensions, it is hard to parallelize

because the path length can vary too much. If one thread constructs 10 arcs along a path and

the other 1 thread constructs 1 arc along a path, then their workload imbalance is too high to

be considered for parallelism. In other words, due to divergence problems, we cannot extract

maximum performance from the GPU in a simpler fashion. But there are advanced graph

algorithms that are being developed to handle such issues. To reduce the execution time of the

gradient path tracing stage we need further literature study on advanced GPU-CPU algorithms

that are being developed at a rapid pace. Hence, it’s daunting to even think to parallelize the

path-tracing stage of the algorithm with simpler techniques or without appropriate knowledge

of present-day advanced methods.

Extremum Graph is a significant structure that helps in numerous applications. There are

applications where critical points are tracked at every time step using an extremum graph, and

32

we can determine the origin of the critical point (For example Cyclone, thunderstorm, in a

real-life application, etc).

Memory is limited in GPU, and managing it in an efficient way becomes crucial. Extremum

graph computation at lower dimensions (<3D) was performing well enough, but at higher

dimensions (>5D), the performance took minutes, hours, and sometimes days to complete

execution. With the help of numerous ideas: creating a local lookup table; conversion of

the adjacency matrix to an edge list; the utilization of the shared memory of GPU; we have

successfully reduced the tachyon’s time by at least 65%-75%, which is a significant improvement

from the tachyon at higher dimensions.

6.2 Future Work

Currently, the tachyon is working on a single GPU. We can distribute the workload among

multiple GPUs. The distributed system is one of the future ideas, where we can distribute the

workload of all the threads launched by the kernel at different systems and utilize the efficiency

of all the systems available to us.

33

Appendices

34

.1 Appendix A: Datasets for Low End GPU

GPU specs:

NVIDIA Corporation GP106: NVIDIA GeForce GTX 1060 6GB (rev a1)

Data set along with their shape and datatype:

L2: LTwos 16384x8192 uint8.raw

L3: LThrees 512x512x512 uint8.raw

L4: LFours 128x128x128x64 uint8.raw

L5: LFives 32x32x32x32x128 uint8.raw

L6: LSixs 16x16x16x16x16x128 uint8.raw

L7: LSevens 16x16x16x16x16x16x8 uint8.raw

L8: LEights 16x16x16x8x8x8x8x8 uint8.raw

L9: LNines 8x8x8x8x8x8x8x8x8 uint8.raw

L10: LTens 8x8x8x8x8x8x8x4x4x4 uint8.raw

35

.2 Appendix B: Datasets of High-End GPU

GPU specs:

2 x NVIDIA GeForce GTX 3080 card with 8704 CUDA cores, 11 GB RAM.

Dataset along with their shape and datatype:

H2: HTwos 8192x16384 uint8.raw

H3: HThrees 512x512x512 uint8.raw

H4: HFours 128x128x128x64 uint8.raw

H5: HFives 64x64x32x32x32 uint8.raw

H6: HSixs 16x16x16x32x32x32 uint8.raw

H7: HSevens 16x16x16x16x16x16x8 uint8.raw

H8: HEights 16x16x16x8x8x8x8x8 uint8.raw

H9: HNines 8x8x8x8x8x8x8x8x8 uint8.raw

36

Bibliography

[1] Open scientific visualization datasets. URL https://klacansky.com/

open-scivis-datasets/. accessed: 12-June.2021. 13

[2] Modified tachyon library. https://bitbucket.org/vgl_iisc/tachyon/src/

edge-list-link/. 24

[3] Implementation details. https://bitbucket.org/vgl_iisc/tachyon/src/

edge-list-link/README_v2.md. 25

[4] Tachyon library. https://bitbucket.org/vgl_iisc/tachyon. ii, 2, 4, 5

[5] Varshini Subhash Abhijath Ande and Vijay Natarajan. Tachyon: Efficient shared memory

parallel computation of extremum graphs. Computer Graphics Forum, 1(1):1–14, 2023. v,

2, 11

[6] P.-T. Bremer, B. Hamann, H. Edelsbrunner, and V. Pascucci. A topological hierarchy

for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer

Graphics, 10(4):385–396, 2004. doi: 10.1109/TVCG.2004.3. 3

[7] Peer-Timo Bremer Carlos Correa, Peter Lindstrom. Topological spines: A structure-

preserving visual representation of scalar fields. IEEE Transactions on Visualization and

Computer Graphics, 17(12):1842–1851, 2011. 3, 8

[8] SNOEYINK J. CARR H., MOLLER T. Artifacts caused by simplicial subdivision. IEEE

Transactions on Visualization and Computer Graphics, 12(2):231–242, 2006. 10

[9] Vijay Natarajan Herbert Edelsbrunner, John Harer and Valeri Pascucci. Morse-smale com-

plexes for piecewise linear 3-manifolds. In Proceedings of the nineteenth annual Symposium

on Computational Geometry, 1(1):361–370, 2003. 1, 3

37

https://klacansky.com/open-scivis-datasets/
https://klacansky.com/open-scivis-datasets/
https://bitbucket.org/vgl_iisc/tachyon/src/edge-list-link/
https://bitbucket.org/vgl_iisc/tachyon/src/edge-list-link/
https://bitbucket.org/vgl_iisc/tachyon/src/edge-list-link/README_v2.md
https://bitbucket.org/vgl_iisc/tachyon/src/edge-list-link/README_v2.md
https://bitbucket.org/vgl_iisc/tachyon

BIBLIOGRAPHY

[10] M Senthilnathan Nithin Shivashankar and Vijay Natarajan. Parallel computation of 2d

morse-smale complexes. IEEE Transactions on Visualization and Computer Graphics, 18

(10):1757–1770, 2011. 3, 9

[11] M Senthilnathan Nithin Shivashankar and Vijay Natarajan. Parallel computation of 3d

morse-smale complexes. Computer Graphics Forum, 31(3):965–974, 2012. 9

38

	Acknowledgements
	Abstract
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Project Goal

	2 Related Work
	3 Problem Statement
	3.1 Problem Statement
	3.2 Overview of Solution
	3.3 Contributions

	4 Background
	4.1 Extremum Graph
	4.2 Computation
	4.2.1 Point Classification
	4.2.2 Gradient Path Tracing

	5 Experimental Work
	5.1 Understanding the tachyon
	5.2 Idea 1: Conversion of adjacency matrix to edge list
	5.3 Idea 2:Use of Local LOOKUP table to reduce calls to a particular function
	5.4 Idea 3: Utilising the SHARED MEMORY Of GPU to avoid thrashing
	5.5 Total Execution Time for Computation of Extremum Graph
	5.5.1 HIGH END GPU
	5.5.2 LOW END GPU

	5.6 Memory workload analysis by Nsight compute

	6 Discussion and Future Work
	6.1 Discussion
	6.2 Future Work

	Appendices
	.1 Appendix A: Datasets for Low End GPU
	.2 Appendix B: Datasets of High-End GPU

	Bibliography

