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Abstract

Measuring scientific processes result in a set of scalar functions (scalar fields) which may

be related temporally, be part of an ensemble, or unrelated. Overall understanding and

visualization of scientific processes require the study of individual fields and, more impor-

tantly, the development of methods to compare them meaningfully. In this thesis, we focus

on the problem of designing meaningful measures to compare scalar fields by comparing

their abstract representations called topological structures. We emphasize on intuitive and

practical measures with useful properties and applications.

The first part of the thesis deals with comparing a topological structure called the merge

tree. We propose two global comparison measures, both based on tree edit distances. The

first measure oted is based on the assumption that merge trees are ordered rooted trees.

Upon finding that there is no meaningful way of imposing such an order, we propose a

second measure called mted for comparing unordered rooted trees. We propose intuitive

cost models and prove that mted is a metric. We also provide various applications such

as shape comparison, periodicity detection, symmetry detection, temporal summarization,

and an analysis of the effects of sub-sampling /smoothing on the topology of the scalar

field.

The second part deals with a local comparison measure lmted for merge trees that

supports the comparison of substructures of scalar fields, thus facilitating hierarchical or

multi-scale analysis and alleviating some drawbacks of mted. We propose a dynamic pro-

gramming algorithm, prove that lmted is a metric and also provide applications such as

symmetry detection in multiple scales, a finer level analysis of sub-sampling effects, an

analysis of the effects of topological compression, and feature tracking in time-varying

fields.

The third part of the thesis deals with comparison of a topological structure called the

extremum graph. We provide two comparison measures for extremum graphs based on

persistence distortion (pdeg) and Gromov-Wasserstein distance (gweg). Both persistence

distortion and Wasserstein distance are known metrics. We analyze how the underlying

iv



Abstract

metric affects these comparison measures and present various applications such as period-

icity detection to facilitate scientific data analysis and visualization.

The final part of the thesis introduces a time-varying version of extremum graphs (tveg)

with a simple comparison criterion to identify correspondences between features in suc-

cessive time steps. We provide applications to tracking features in time-varying scalar fields

from computational fluid dynamics.
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Chapter 1

Introduction

This thesis deals with comparative analysis of topological structures to facilitate meaningful

comparison of the underlying scalar functions. Scalar functions or fields are omnipresent

when it comes to measuring and simulating scientific phenomena. Analysis and visualiza-

tion of these scalar fields lead to a better understanding of the processes involved. Direct

analysis and visualization of such a scalar function using standard visualization techniques

like isosurface construction or volume rendering provides a good overview but is limited by

two factors. First, increasing size of data makes storage and retrieval inefficient. Second, the

analysis often requires a sweep over a large subset of the domain or range of the function

even when the features of interest may be contained within a small region. These limita-

tions are amplified when we consider time-varying scalar functions. Thus, these techniques

are not well suited for feature directed analysis and visualization. This has necessitated the

need for a summarized representation. This is and has been addressed by topological data

structures. Topological structures provide us with an abstract representation of the scalar

field, thus reducing the complexity while retaining the salient features. These structures

have been successfully used in the recent years to represent scalar fields in a meaningful

and succinct manner. Topological structures have facilitated a feature-aware, interactive

and exploratory analysis and visualization resulting in better understanding of these phe-

nomena. Various topological data structures like persistence diagrams [42], merge trees [22],

contour trees [22], Reeb graphs [95], extremum graphs [30], Morse-Smale complexes [44, 43]

have been defined in the literature which provide meaningful combinatorial abstractions

of the scalar field while capturing different aspects of the field. The properties of these

structures have also been well-studied along with efficient algorithms to compute them.

Many of these scientific phenomena may vary with time resulting in a set of scalar

fields that are related temporally. They may vary based on different parameters result-
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ing in ensembles. They can also be just a set of scalar fields which are neither related

temporally nor dependent on any parameters but still needs to be compared to under-

stand the phenomena. Overall understanding may mandate not just studying the individ-

ual fields but also methods to study them together in a global context and compare them

meaningfully. Such methods have been found to be useful for tracking features in time-

varying phenomena [101], topological shape matching [62], detecting symmetry/asymmetry

in scalar fields [124, 125, 76, 102, 126], or clustering [89], computing temporal summaries of

large datasets, to identify features that are preserved in ensemble simulations or multi-field

data, or to compare simulated data against measured data [104, 85, 33, 38]. This thesis deals

with such methods facilitating meaningful representations of time-varying fields and also

measures comparing topological structures which represent the scalar fields.

1.1 Comparison pipeline
The comparison pipeline (Figure 1.1) starts with scalar fields - individual, time-varying or

ensembles - constructs topological structures as their abstract representations, compares

them using a comparison measure customised for such comparison or the application. Fi-

nally the pipeline provides an output that captures the similarity/dissimilarity of the fields.

This can be used further to gain insights about the underlying scalar fields and drive appli-

cations mentioned in the previous section.

We illustrate the comparison pipeline with an example. Symmetry detection in bio-

molecules is an important application which helps the biologists to understand the struc-

ture and function of the molecules. The measurements are typically done by Cryo-electron

microscopy (Cryo-EM) which provides electron density - a scalar field - corresponding to

the bio-molecule. In this case since the biologists are interested in similar sub-structures

present within the same molecule, the field should be compared to itself. The field will

contain noise and also point-wise comparison won’t lead to meaningful comparisons of

the high level structures which the biologists would be interested in. To remove noise and

also get an abstraction which captures such structures we build a topological structure

like merge tree out of the scalar field. We then compare the merge tree to itself using

some local comparison measure to build a distance matrix. The sub-matrices provides us

the symmetric structures in multiple scales as shown in the Figure 1.1.

In the sections that follow, we give an overview of our contribution to facilitate com-

parison – local and global – of various topological structures.
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Figure 1.1: Illustrating a typical comparison pipeline. The pipeline takes a scalar field as
the input, in step 1 it computes the topological structure, a split tree, in step 2 the tree is
simplified by removing topological noise, in step 3 the simplified tree is compared to itself
to generate a distance matrix DM, in step 4 the sub-matrices correspond to the symmetric
regions which can be used to extract them as shown in the bottom right.

1.2 Global comparison of merge trees
We start with global comparison of merge trees. Merge trees capture the topology of the

sublevel/superlevel sets to provide a succinct representation of the scalar fields.

1.2.1 Ordered merge tree edit distance oted

We adapt the ordered tree edit distance from Xu [139] assuming merge trees to be ordered

rooted binary trees to design oted [119]. The important contributions include,

• A simple comparison measure for merge trees.

• A simple cost model based on topological persistence.
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• Applications to periodicity detection and symmetry detection in 2D scalar fields.

1.2.2 Unordered merge tree edit distance mted

Continuing the work on merge trees, we observed that merge trees are unordered rooted

trees and there is no meaningful ordering which can be imposed upon them. The merge

trees are also not necessarily binary trees. The algorithm used in oted [119] has a slow

running time of O(n5) where n is the size of the trees. To alleviate these shortcomings we

adapt the constrained tree edit distance for unordered rooted trees by Zhang [144] to merge

trees with significant modifications and propose mted [120]. The important contributions

include,

• An intuitive and mathematically sound cost model for the individual edit operations.

• A proof that the comparison measure is a metric under the proposed cost model.

• A computational solution to handle instabilities.

• Experiments to demonstrate the utility of the distance measure

– Periodicity detection in 2D time-varying data

– Temporal summarization to support visualization of 3D time-varying data

– Symmetry detection in scalar fields

– Study of topological effects of subsampling and smoothing

– Shape matching.

We also describe a comprehensive set of validation experiments that are designed to

help understand the properties of the measure.

1.3 Local comparison of merge trees lmted
While global comparison measures like oted andmted help to address variety of interesting

problems, they do not support fine-grained and hierarchical analysis of local structures or

substructures of scalar fields. We adaptmted [120] with significant modifications to propose

a local comparison measure called lmted [117]. The important contributions include,

• A novel local tree edit distance (lmted) to compare substructures in scalar fields.

• A proof that it satisfies metric properties.
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• A dynamic programming algorithm to compute the lmted efficiently.

• A notion of truncated persistence to compute costs of matching / correspondences,

which brings in the additional benefit of saving computation time by reducing the

number of comparisons.

• Experiments to demonstrate the practical value of the distance

– Symmetry detection at multiple scales

– Analysis of the effects of smoothing and subsampling

– Fine grained analysis of topological compression [115]

– Applications to feature tracking

Note that the mted supports only a few of the above-mentioned applications in a more

restricted level with higher level of user intervention. Feature tracking is not possible with

mted without significant modifications.

1.4 Comparison of extremum graphs
While merge trees provide a good representation of the topology, they need to be explicitly

augmented if there is a need to incorporate geometric information. Morse-Smale complex

while capturing everything takes a lot of space, storing higher dimensional cells and it

also lacks stability. Extremum graph serves as a via media by storing some geometric

information but takes less space as it only stores nodes and arcs.

We present Persistence distortion distance (pdeg) and Gromov-Wasserstein distance

(gweg) for extremum graphs by adapting persistence distortion distance defined by Dey

et.al [34] for metric graphs and Gromov-Wasserstein distance defined by Memoli [81] to the

case of extremum graphs [118]. The measures are metrics. Important contributions include

• Adaptation of the distances to extremum graphs.

• Guidelines for the choice of metrics through experimental analysis.

• Experiments to showcase the utility of the distances.

– Intuitive interpretation.

– Periodicity detection.

– Comparison of pore networks.
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1.5 Time-varying extremum graphs tveg
We also propose a time-varying extremum graphs tveg which is an extension of extremum

graph [30] to facilitate analysis and visualization of scalar fields [31]. The important contri-

butions include,

• A definition of a novel topological structure, the time-varying extremum graph (tveg).

• An algorithm for constructing the tveg based on a formulation as an optimization

problem.

• Application in feature tracking.

– 3D vortex street data.

1.6 Organization
This thesis is organized as follows. The Chapter 2 surveys previous work done in this

area. The Chapter 3 deals with the necessary mathematical background. The Chapters 4-7

comprises of the contributions of the thesis. Specifically, in Chapter 4 provides twomethods

to compute global merge tree edit distances oted and mted. Chapter 5 covers the local

comparison of merge trees lmted. Chapter 6 provides a method to compare extremum

graphs using persistence distortion pdeg and Gromov-Wasserstein distance gweg. Chapter 7

discusses a time-varying version of extremum graph tveg. Finally, Chapter 8 concludes the

thesis.
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Chapter 2

Related Work

Topological structures in the past two or three decades have been found to be extremely

useful in data analysis and visualization and has resulted in a lot of exciting work both

in theory and practice. Various topological descriptors have been defined, their proper-

ties have been thoroughly studied, multiple applications have been showcased. Various

strategies to compute them efficiently both in terms of space and time complexity have

been developed including parallel and distributed algorithms. There have also been many

comparison measures defined for these structures and have been applied to solve various

problems. In this chapter we discuss all the related work and position our work w.r.t these

previous results. Some of the material covered in this chapter is based on the State of The

Art Report (STAR) on Comparative measures by Yan et.al. [141]. Relevant portions also come

from the related work sections of [119, 120, 117, 118, 31]

Topological structures have been classified [141] into set-based structures (persistence

diagrams), graph-based structures (Reeb graphs, merge/contour trees) and complex-based

structures (Morse/Morse-Smale complexes).

2.1 Topological structures and their construction
All topological descriptors are defined based on critical points of the scalar field and their

relation. Banchoff [5] provides a strategy to compute critical points for piece-wise lin-

ear (PL) functions. Edelsbrunner et.al. [39] first defined persistence diagrams. Reeb [95]

first defined Reeb graph as the quotient space based on the equivalence relation between

points belonging to the same component of level sets. Contour tree is the same as the

Reeb graph for domains that are simply connected. A related topological structure is the

merge tree which track the connectivity of sublevel/superlevel sets. Efficient algorithms
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exist to compute Reeb graphs, contour/merge trees [1, 22, 37, 84]. Morse and Morse-Smale

complexes [44, 43] on the other hand are defined based on the gradient of the scalar field.

There are efficient algorithms to compute them [58, 112, 110, 61]. Correa et.al. [30] defined

the extremum graph which is a substructure of Morse-Smale complex and also provided

an algorithm to compute it.

There are a number of tools available for computing these topological structures, some

as standalone softwares, others as web-based interactive applications (see [141]). Some of

the tools for computing persistence diagrams and/or persistence barcodes, together with

their bottleneck and Wasserstein distances, include GUDHI [54], PHAT [8], Dionysus [83], R-
TDA [46], HERA [63], persim [92], Perseus [86], and Ripser [6]. They also support multiple
use-cases which aid in machine learning tasks. Many of these tools are implemented in

C/C++ or Python, while a few provide Python/R wrappers. Tools to compute merge trees,

contour trees and Reeb graphs along with support for related tasks like computing branch

decomposition representations, symmetry detection, and feature tracking are available in

software such as Recon [36], contour-tree [36], mtlib [100], AMT [142], and SymmetryViewer [123].
These software are implemented in C/C++, Python, or Java. Tools for computing Morse-

Smale complexes alike include mscomplex3d [111], MSCEER [55], CompExtGraph [87]. Topology
ToolKit (TTK) [129] has been a popular toolkit designed to work together with the visualiza-
tion software ParaView [3], with support for the computation and visualization of persistence
diagrams, merge trees, contour trees, Reeb graphs, and Morse-Smale complexes, together

with persistence based simplifications of these descriptors. It also allows computation of

bottleneck/Wasserstein distances between persistence diagrams and feature tracking via

nested tracking graphs.

2.2 Comparative measures for scalar fields
Comparison of scalar fields can be facilitated by methods which compare the fields directly,

compare isosurfaces or topological structures. In this section we review previous results

which deal with comparison of scalar fields.

2.2.1 Comparative measures for Isosurfaces

Assuming identical domains, RMS distance, Chebyschev distance, and other norms such as

Lp, 1 ≤ p ≤ ∞ can be used for point-to-point comparisons. However, a direct comparison
of the two scalar functions may not be appropriate because of its sensitivity to noise,

transformations, and minor perturbations.

Scalar fields can be compared based on their isosurfaces which are surfaces with the
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same scalar value. Since theoretically, the number of isosurfaces is infinite, the comparison

requires a selection of a finite number of isosurfaces of interest. Tao et al. [121] extend the

notion of isosurface similarity maps, first conceptualized by Bruckner and Möller [18], to

construct matrices of isosurface similarity maps (MISM), and use it to explore multivariate

time-varying data. This involves construction of self-similarity maps, temporal similarity

maps, and variable similarity maps followed by temporal clustering and variable grouping.

Finally, paths spanning across these maps are used to guide the visual comparison. The

choice of the isovalues used is crucial but the inclusion hierarchy followed by isosurfaces

is not utilised.

2.2.2 Comparative measures for Set-based structures

Comparison measures between various topological structures have been studied in the

literature, beginning with the bottleneck distance between persistence diagrams [27]. A

persistence diagram depicts the persistence or “lifetime” of all topological features by plot-

ting their corresponding time of creation (birth) and destruction (death) as points in R2.

The bottleneck distance (dB) between two persistence diagrams is equal to the weight of

the minimum weight mapping between points of the two diagrams. The weight of a map-

ping is equal to the largest L∞ distance between a point and its image under the mapping.

The p-Wasserstein distance dp which is a generalization of dB is an extended pseudometric;

it is a metric [40, Page 184] when the persistence diagrams are locally finite.

We say that the persistence diagram is stable with respect to a distance measure if it

is bounded above by the L∞ distance between the two scalar functions. Intuitively, we

require that small perturbations to the scalar functions translate to small changes in the

distance between the respective persistence diagrams. The persistence diagram is stable

with respect to dB and also with respect to dp for a reasonably large class of functions [28].

But, the persistence diagram is only a multiset. It does not capture the spatial configuration

of critical points, which reduces its discriminative capability.

For other comparison measures for persistence diagram and its variants, refer the Survey

by Yan et.al. [141]

2.2.3 Comparative measures for Graph-based structures

Comparative measures for graph-based structures constitute the bulk of measures defined

in the recent years.

We start with describing some of the measures related to the merge tree. Morozov et

al. [84] proposed the interleaving distance between merge trees. This distance is defined
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by a continuous map that shifts points of one merge tree onto the other and vice-versa.

The distance is equal to the smallest value of the shift such that the map satisfies certain

compatibility conditions. The merge tree is stable under this distance and the distance

measure is more discriminative compared to the bottleneck distance but computing it is

not a tractable problem. Beketayev et al. [10] define a distance measure between merge trees

that can be computed by considering all possible branch decompositions. This measure can

be computed in polynomial time but provide no guarantees on stability.

Various comparison measures for Reeb graph have been defined. Bauer et al. [7] imposed

a metric on Reeb graphs called the functional distortion distance. They proved its stability

and connections with other distances such as the bottleneck and interleaving distance.

The computation depends on the Gromov-Hausdorff distance, which is proven to be NP-

hard [2] to even approximate up to a constant factor for general metric graphs. Di Fabio and

Landi [35] defined an edit distance for Reeb graphs on surfaces. They also proved its stability

and showed connections with interleaving distance and function distortion distance but

there is no polynomial time algorithm to compute the distance.

In contrast to the rigorous definitions of comparison measures introduced in the above-

mentioned works, simpler but practical similarity measures have also been studied. Saikia

et al. [102] introduced the extended branch decomposition graph (eBDG) that describes a

hierarchical representation of all subtrees of a join/split tree and designed an efficient al-

gorithm to compare them. They also present experimental results on time-varying data.

Saikia et al. [103] studied a measure that compared histograms that are constructed to-

gether with the merge trees. As in the case of bottleneck distance, this measure ignores

the structure but it can be computed efficiently and is therefore useful in practice. Saikia

and Weinkauf [101] later extended this measure and demonstrated applications to feature

tracking in time-varying data.

2.2.4 Comparative measures for Complex-based structures

Comparison measures for Complex-based structures are few in number, mainly because

of the complexity of the structures and their vulnerability to noise. A distance measure

to compare extremum graphs is defined by Narayanan et al. [88]. The distance measure is

based on the maximum weight common sub-graph and they use pruning techniques to

speedup the computation. While stability is not guaranteed, they present experimental

results on time-varying data to demonstrate its application to time-varying data analysis

and visualization.
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2.2.5 Local comparison measures

Most of the comparison measures are global in the sense that they do not compare sub-

structures of the descriptor. Some of the above mentioned methods like Saikia et al. [103]

do involve local comparison but they are limited. Saikia et al. [102] compare all subtrees of

a merge tree, they demonstrate its use in applications by explicitly choosing or selecting re-

gion(s) of interest rather than considering the collection of all pairs of subtrees. Lukasczyk

et al. [72, 73] do facilitate tracking features in all scales and across time, but does not support

generic comparison between local features which are not part of time-varying scalar fields.

Symmetry detection has been well studied by Thomas and Natarajan [124, 125, 126], but the

methods have not been applied to detect local similarities between different scalar fields

in general. In other words, the symmetry detection problem is a special case of the more

general local similarity detection problem.

2.3 Feature tracking and time-varying topological structures
Feature tracking methods and time-varying topological structures as areas of research have

a non-trivial overlap with comparison measures, comparison measures often become the

foundation upon which these methods are constructed. But there are some differences too.

In this section we review these methods, some based on comparing topological structures

while others with a different flavour.

2.3.1 Tracking based on topology of isosurfaces

Many methods use isosurfaces as representatives for features of interest and track them.

Shamir et.al. [109] describe a method to progressively track isosurfaces in time-varying

scalar fields by combining spatial and temporal propagation followed by a step for tracking

changes in topology. Sohn and Bajaj [114] address the problem of finding correspondences

between isosurfaces at a fixed isovalue across time. They do so by defining spatial over-

laps between sublevel and superlevel sets and constructing a topology change graph (TCG).

Both papers [109, 114] showcase the utility of the proposed method by tracking vortices in

turbulent vortex data. More details regarding isosurface topology based tracking can also

be found in the comprehensive survey by Mascarenhas and Snoeyink [75].

2.3.2 Tracking based on topological structures

Various methods have been proposed in the literature to track features captured by topo-

logical structures. Laney et al. [68] use the MS complex to define and represent bubbles in

the mixing envelope of hydrodynamic instabilities and track them over time. Bremer et.

11



al. [16] use the Morse complex to define features, followed by a hierarchical representation

and construction of tracking graphs to track the evolution of combustion in lean premixed

hydrogen flames. Bremer et.al. [17] facilitate exploration and analysis of burning cells from

turbulent combustion simulation. Weber et al. [134] track burning regions by extracting iso-

volumes in a 4D space-time temperature field, followed by construction of Reeb graphs of

time defined on the 4D domain. They convert a 4D tracking problem into the computation

of the Reeb graph. Widanagamaachchi et al. [137] use correspondences between branches

of merge trees followed by progressive construction of tracking graphs to track features in

combustion simulations. They also provide a linked view for concise and effective visual-

ization of the features. In a follow up work [138], they present methods to handle temporal

artifacts, temporal simplification, and a parameter independent approach to track embed-

ded features and apply it to track extinction holes in turbulent combustion simulations.

Saikia and Weinkauf [101] use merge trees to represent multi-scale features and use a global

shortest path formulation together with dynamic time warping to identify similar spatio-

temporal structures. Lukasczyk et al. [72, 73] use a nesting tree, a variant of the merge tree,

to capture hierarchical features and track them in dynamic nested tracking graphs. Soler

et.al. [116] use lifted Wasserstein matcher to find temporal correspondences between critical

points and track features. Many other works propose different forms of tracking graphs to

support the study of evolving topological features [66, 107, 106]. Tracking features in vector

fields is also an active area of research [122, 96].

2.3.3 Time-varying topological structures

Many time-varying counterparts of topological structures have been proposed to facilitate

analysis of feature rich data. Cohen-Steiner et al. [26] describe an algorithm to update persis-

tence diagrams and use it to study protein folding trajectories. Edelsbrunner et al. [45] apply

Jacobi curves to track the temporal evolution of Reeb graphs by describing a complete char-

acterization of the combinatorial changes that occur in the Reeb graph of a time-varying

scalar field. Oesterling et al. [89] introduced time-varying merge trees which provides a

topological summary of time-varying scalar fields by tracking features for all scalar thresh-

olds. They represent the time-varying merge trees as a sequence of landscape profiles and

showcase the utility of the method by applying it towards the analysis of time-varying high

dimensional point clouds.
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2.4 Tree edit distance
In this section we review tree edit distance (TED) as it forms the foundation for some of

the comparison measures we later define for topological structures. Tree edit distance

has various applications, such as comparing neuronal trees [52], comparing shapes [65],

comparing music genre taxonomy [79], analysis of glycan structures [50], comparing RNA

structures [105], and comparing plant architectures [47]. Edit distances and alignment dis-

tances for trees are inspired by edit distances defined on strings. Given two strings, one

is transformed into the other via a sequence of operations where each operation has a

non-negative associated cost. The distance is defined as the minimum cost over all such

transformations. Similar distance measure may be defined for labeled trees with edit op-

erations like relabeling, addition, and deletion of nodes. Zhang and Shasha [145] described

an algorithm to compute the tree edit distance for ordered labeled trees. Later, Zhang [143]

proposed a new algorithm for constrained tree edit distance for ordered labeled trees. The

computation of tree edit distance for unordered labeled trees is NP-complete [146]. How-

ever, the constrained version of the problem can be solved in polynomial time using a

dynamic programming based algorithm [144]. A gap corresponds to a collection of nodes

that are inserted / deleted during a sequence of edit operations. Edit distance with arbitrary

gap costs were first proposed by Touzet [132], who showed that the distance computation is

NP-hard. But, the distance between ordered labeled binary trees can be computed in poly-

nomial time [139]. While tree edit distance based algorithms have been employed in many

applications, they have not been well studied for comparing topological structures like

merge trees except in very recent work. Riecke et al. [97] defined a hierarchy of persistence

pairs and a tree edit distance based dissimilarity measure to compare hierarchies.

2.5 Comparison of metric graphs
In this section we review methods used to compare metric graphs which can be adapted

to compare some of the graph-based and complex-based topological structures.

2.5.1 Persistence Distortion for metric graphs

The persistence distortion distance between metric graphs is discussed separately as its

setting is more general, i.e. the objects are metric graphs which can be thought of as

super-sets of many of the topological descriptors discussed till now.

Dey et al. [34] defined the persistence distortion distance to compare metric graphs,

proved its stability (w.r.t graphs not scalar fields), and described a polynomial time algo-

13



rithm with asymptotic running time O(m12 logn) (continuous version) and O(n2m1.5 logm)

(discrete version), where m is the number of edges and n is the number of vertices in the

larger graph. They also reported applications to shape matching.

2.5.2 Gromov-Hausdorff and Gromov-Wasserstein distances

Gromov [53] introduced Gromov-Hausdorff (GH) distance between metric spaces, though

NP-hard to compute for general cases, it has been used in shape matching applications by

treating shapes as metric spaces [80]. Later Memoli [81] introduced Gromov-Wasserstein

distance framework, relaxing GH and making it amenable to practical applications. Since

then GW and its variants (fused GW [130], scalable GW [140], sliced GW [131], sampled GW [64],

quantized GW [25]) have been utilized in many applications, like comparing graphs [130],

networks [24], computing barycenters of point clouds [93], graph partitioning [140], sketching

merge trees [71], segment transfer [25], alignment of word embeddings [4], cross domain

alignment [23] and various machine learning applications.

2.6 Summary
From the discussion presented in the sections above, we summarize the key aspects from

all the previous work described. Table 2.6 provides the properties of some of the measures

discussed in this chapter.

We observe from Table 2.6 that there have been many comparison measures defined for

various topological descriptors, but they either suffer from high computational complexity

making them unusable in practice or they lack theoretical properties which would provide

guarantees. Interpretation of these measures are also desirable since that would help the

user to understand how the measure changes w.r.t changes in the input. The choice of mea-

sures for different structures also vary a lot. In particular set and graph based structures

have a lot to choose from while the complex based structures have hardly a few measures.

Local comparison measures are not well-explored, which can be crucial for many appli-

cations. We also note that from Yan et.al. [141, Table 2] these observations are not limited

to the measures which we have discussed in the previous sections but they hold true in

general for many other measures which exist in the literature barring few exceptions.

With these observations, we aim to design comparison measures that address some

of these gaps to whatever extent it is possible. Table 2.6 provides the properties of the

measures defined in this thesis.
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Measures Metric Stability Discrimination Complexity Global/Local

Comparing persistence diagrams

Bottleneck distance [27] extended peudometric Yes baseline n/a O(n1.5 log(n)) global
p-Wasserstein distance [28] extended peudometric Yes Yes O(n3) global
Lifted Wasserstein [116] conj. Metric unknown unknown O(n3) global

Comparing merge/contour trees, Reeb graphs

Functional distortion distance [7] extended pseudometric Yes Yes NP-hard global
Edit distance for Reeb graphs [35] extended pseudometric Yes unknown We conj. NP-hard global
Interleaving distance between merge trees [84] metric Yes Yes NP-hard global
Distance based on branch decompositions [10] We conj. Yes We conj. No We conj. Yes O(n5 log(Iε)) global
Distance based on histograms for merge trees [103] metric unknown unknown O(n2B) global

Comparing extremum graphs

Distance between extremum graphs [88] metric unknown unknown NP-hard global

Table 2.1: We summarize the pros and cons of some of the measures discussed in the related
work in this table. n is the number of critical points in a topological descriptor; Iε is the
search range for εmin; B is the number of bins in a histogram; “conj” means conjecture.
This table borrows from the STAR report by Yan et.al [141, Table 2].

Measures Metric Stability Discrimination Complexity Global/Local

Comparing merge trees

oted conj. Yes conj. No conj. Yes O(n5) global
mted Yes conj. No conj. Yes O(n2) global
lmted Yes conj. No conj. Yes O(n2) local

Comparing extremum graphs

pdeg Yes conj. Yes Yes O(n2m1.5 logm) global
gweg Yes unknown conj. Yes O(n3) [93] global

Table 2.2: We summarize the pros and cons of the measures we present in this thesis. n
is the number of critical points in a topological descriptor; m denotes the edges in the
descriptor; “conj” means conjecture.
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Chapter 3

Background

In this chapter we present all the relevant background required to understand subsequent

chapters. The content of this chapter is mainly based on the State of The Art Report (STAR) on

Comparative measures by Yan et.al. [141]. Relevant portions also come from the background

sections of [119, 120, 117, 118, 31]. While the STAR by Yan et.al. [141] is more comprehensive, we

restrict ourselves to the topological structures which we have used in this thesis. For more

computation-oriented details see [148, 40] and for visualization-oriented details see [127].

We review set-based (persistence diagrams, barcodes), graph-based (merge trees, contour

trees, Reeb graphs), and complex-based (Morse and Morse-Smale complexes) topological

structures and their variants. The graph-based structures are largely based on level sets of

a scalar function, whereas complex-based ones are primarily based on its gradient.

3.1 Scalar field and Morse theory
Scalar fields are real valued functions. They can be classified [141] as follows

A single field f is a scalar-valued field defined on a 2D, 3D, or higher-dimensional domain

X, f : X→ R.
A time-varying field F is a dynamic field varying over time, and is defined over the

Cartesian product of a spatial domain X and a time axis R, F : X × R → R. Time-varying
data is typically available as a discrete set of temporal snapshots.

An ensemble is a collection F of scalar fields that are indexed by a collection of param-

eters, F = {fi : i ∈ I} (where I is an index set).
The next section defines properties which make real valued functions Morse. The topo-

logical structures which we further describe find their origin in Morse theory [82], see [78]

for more details.
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(b) 2D scalar field (c) 2D scalar field warped z values

Figure 3.1: Morse functions with (a) a 1-dimensional and (b) a 2-dimensional domain (c)
2-dimensional domain where z coordinates are warped by the scalar value.We consistently
use the ( ) color map for the scalar field. Depending on the variety of critical points
( ) color map for representing critical points based on their Morse index (0: minimum, 1:
1-saddle, 2: 2-saddle) or ( ) where Morse Index is as follows (0: minimum, 1: 1-saddle,
2: 2-saddle, 3: maximum).

3.1.1 Morse function

Let M be a smooth manifold and f : M → R a smooth function on M. A point x ∈ M
is a critical point of f if and only if the partial derivatives at x are zero; otherwise, it is

a regular point. The image of a critical point is a critical value of f . A critical point x is

non-degenerate if the Hessian (the matrix of second derivatives) at x is non-singular. f

is a Morse function if all its critical points are non-degenerate and have distinct function

values. Given the function f and a value c in the range of f (called isovalue) all points

in M which map to c i.e. {x ∈ M | f(x) = c} form a level set. It is also known as iso-
contour or an isosurface depending on the dimension of the domain. Morse index which is

defined as the number of negative eigenvalues of the Hessian matrix, which alternatively

counts the number of independent directions along which the function f decreases, is used

to classify the critical points of f . The Morse indices of the minimum and maximum are 0

and n, respectively, rest of the critical points which are referred to as k-saddles, have indices

k, 1 ≤ k ≤ (n−1). Figure 3.1 gives examples of Morse functions with a 1- and a 2-dimensional
domain, respectively. Critical points are always displayed as red (for local maxima), blue

(for local minima), and green (for saddles) spheres, level sets are curves displayed in black.
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3.1.2 Morse theory

For a Morse function f : M → R, we define sublevel sets as the preimage of f−1(−∞, t]

i.e. Mt := f−1(−∞, t] = {x ∈ M | f(x) ≤ t} and the superlevel sets as the preimage of
f−1[t,∞) i.e. Mt := f−1[t,∞) = {x ∈ M | f(x) ≥ t}. Morse theory states that almost
all functions are Morse and a non-Morse function can be made into a Morse function by

resolving degenerate conditions via the simulation of simplicity [41] in practice. All scalar

functions discussed in this thesis are assumed to be Morse.

The Morse lemma states that a function looks extremely simple near a non-degenerate

critical point. Two fundamental theorems of Morse theory state that the topology of sub-

level/superlevel sets Mt change as t varies, in particular, when t passes a critical value.

See [82, Theorems 3.1 and 3.2]. Topological descriptors are related with one another via

these theorems of Morse theory as they are defined over the sublevel/superlevel sets of a

function or over the behaviour of the gradients of the function.

Smooth functions don’t exist in practice, instead, we always encounter sampled version

of such functions, represented as a function on a point cloud sample of M. To make things
more amenable to computation, a combinatorial structure (i.e., a simplicial complex K) is

built on the sampled space as an approximation of M. Let K be such a simplicial complex
with real values specified on its vertices; |K| represents its underlying space. We obtain
a piecewise linear (PL) function f : |K| → R using linear extension over the simplices,
where f(x) =

∑
i bi(x)f(ui) (ui are vertices of K and bi(x) are the barycentric coordinates

of x) [40, page 135]. We can then apply Morse-theoretical ideas to this PL approximation.

This application is justifiable according to the Simplicial Approximation Theorem [40, page

56], which states that every continuous function on a triangulable topological space can be

approximated by a PL function.

3.2 Topological structures
Using Morse-theoretical ideas we can build various topological structures based on the way

the critical points are related, they can be without connections (set-based structures), con-

nected to form trees and graphs (graphs-based structures), and augmented with geometric

information (complex-based structures). We describe them in subsequent sections.

3.2.1 Set-based topological structures

We describe set-based topological descriptors like persistence diagrams in this section. For

a comprehensive treatment with different perspectives we refer the reader to [40, 21, 11].
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3.2.1.1 Persistence diagram and barcode

For a Morse function defined on compact M i.e. f : M → R with sublevel sets Mt :=

f−1(∞, t] would have finitely many critical points (as a consequence of the Morse lemma).

Let n be the (finite) number of critical values of f . Let a0 < · · · < an be a sequence of

regular values of f such that each interval (ai, ai+1) contains exactly one critical value of f .

A sublevel set filtration of f is a sequence of sublevel sets connected by inclusions,

Ma0 →Ma1 → · · ·→Man .

Persistent homology studies the topological changes of sublevel sets by applying k-dimensional

homology (k ≥ 0) to this sequence,

Hk(Ma0)→ Hk(Ma1)→ · · ·→ Hk(Man).

Given a topological space X, the 0-, 1-, and 2-dimensional homology groups, denoted as

H0(X), H1(X), and H2(X), respectively, capture the connected components, tunnels, and
voids of X. We give an example of 0-dimensional persistence homology based on the sub-
level set filtration of a 1-dimensional Morse function in Figure 3.2.

Figure 3.2: The graph of f : M→ R (left); together with the 0-dimensional barcode (middle)
and 0-dimensional persistence diagram of f (right) Each birth-death pair (bi, di) is a feature
of the scalar function and its persistence is defined as di − bi. Each pair is represented as a
point in R2.

Formally, a k-dimensional persistence diagram D is the disjoint union of a multi-set

of off-diagonal points {(b, d) | b (= d, b, d ∈ R≥0} on the Euclidean plane R̄2 (where R̄ =
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R ∪ {−∞,+∞}) and the diagonal ∆ = {(b, b) | b ∈ R≥0} counted with infinite multiplicity.
Let ci denote the critical values of a Morse function f restricted to an interval M ⊂ R,

f : M → R, where c0 < c1 < · · · < cn−1. Let xi denote the critical points of f . Assume

f is Morse, then ci = f(xi). For simplicity, we set c0 = 0, c1 = 1, and ci = i, etc. Let

a0 < a1 < · · · < an be a sequence of regular values of f such that each interval (ai, ai+1)

contains exactly one critical value ci.

The 0-dimensional persistent homology captures how connected components in the

sublevel sets Mt changes as t varies from a0 to an.

From Figure 3.2(left), at t < b3, Mt = ∅. At t = b3, a single (connected) component

appears in the sublevel set Mt containing the global minimum, we call this a birth event at

M0. At t = b1, b2 2nd and 3rd component appears in Mt containing local minima. At t = d2,

the component merges with the component born at b3 as per the Elder Rule [40, Page. 150],

referred to as a death event: the component disappears (dies) while the component created

b3 remains. At t = d1, the component containing born at b1 merges with the component

born b3 and dies.

Persistent homology pairs the birth and death events either as a set of intervals (called

barcode), or a multi-set of points in the plane (called persistence diagram).

Barcodes A barcode is shown in Figure 3.2(middle). The component born at b3 never dies,

giving rise to a bar [b3,∞) in the barcode that begins at b3 and goes to ∞. The component
born at b1 dies at d1, which corresponds to the bar in the middle, similarly, the birth and

death events b2, d2 gives rise to an additional bar on the right. A persistence diagram is

shown in Figure 3.2(right), where each bar [b, d) is mapped to a point (b, d) on the plane.

The topological persistence which captures the life span of a component in the filtration

quantifies the importance of a pair of critical points in the diagram. It is defined as the

absolute difference between the function values i.e. |d− b|
For other variants of persistence diagram like persistence landscapes, betti curves etc

refer to survey by Yan.et.al [141].

3.2.2 Graph-based topological structures

Graph-based topological structures such as merge trees, contour trees, and Reeb graphs

capture topological changes of (sub)level sets of scalar fields. While the same holds for

superlevel sets in the current discussion we mention sublevel sets.
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(a) 2D scalar field (b) left: join tree and right: split tree

Figure 3.3: Merge trees. (a) A 2D scalar field (b) A merge tree tracks the connectivity of
sublevel sets (preimage of f−1(−∞, c]) or the superlevel sets (preimage of f−1[c,∞)).

3.2.2.1 Merge tree

Given a Morse function f : M→ R defined on a connected domainM, a merge tree records
the connectivity of its sublevel sets. Two points x, y ∈ M are equivalent (w.r.t f ), x ∼ y,

if they have the same function value, that is, f(x) = f(y) = t, and if they belong to the

same connected component of the sublevel set Mt, for some t ∈ R. A merge tree is the
quotient spaceM/∼ obtained by gluing together points inM that are equivalent under the
relation ∼. It keeps track of the evolution of connected components in Mt as t increases;

see Figure 3.3 for an example.

In the abstract view of a merge tree in Figure 3.3(b), each leaf corresponds to a local

minimum of f that represents the birth of a connected component; each internal node

corresponds to the merging of components; and the root represents the entire space as a

single component. Note that the notions of join and split trees [22] are the two forms of

merge trees; a join tree is the merge tree of f and a split tree is the merge tree of −f .
Nodes of join trees consist of minima M = {mi}, saddles S = {sj}, and the global

maximum. In theory, the structure of a join tree is simple. Excluding the global maximum,

which is the root of the tree, every node has either 0 (minimum) or 2 children (saddle). All

minima are paired with saddles based on the notion of topological persistence [42] except

for one which is paired to the lone global maximum. Each such pair (m, s) represents a

topological feature and its persistence is defined as pers(m) = pers(s) = f(s) − f(m). In

practice, saddles may have more than two children. A split tree is defined likewise. It
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Figure 3.4: Persistence pairs in the join (left) and split (right) trees.

Figure 3.5: Two scalar functions (blue and red) and the corresponding persistence diagrams
andmerge trees. Even though the scalar functions and the corresponding trees are different,
the persistence diagram is the same.

contains a set of maxima and saddles together with the global minimum. Figure 3.4 shows

the persistence pairing for the trees from Figure 3.3.

As merge trees contain more information than persistence diagrams, they can be used

generate the later. The reverse however is not always possible since there can be different

trees which would result in the same persistence diagram and barcodes. See Figure 3.5.

3.2.2.2 Reeb graph and contour tree

A Reeb graph, on the other hand, relies on equivalence relations among points in the level

sets of a Morse function f : M → R. Two points x, y ∈ M are equivalent, x ∼ y, if f(x) =

f(y) = t, and if they belong to the same connected component of the level set f−1(t),

for some t ∈ R. The Reeb graph Gf := M/∼ is the quotient space obtained by identifying
equivalent points; see Figure 3.6. Nodes in the Reeb graph have a one-to-one correspondence

with the critical points of f , while arcs connect the nodes. A point on an arc represents
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Figure 3.6: (a) A height function f : M → R defined on a double torus, (b) its Reeb graph
embedded in the domain M, and (c) its Reeb graph shown in an abstract view. If the Reeb
graph in (c) is further equipped with a function lf defined on its vertices, where lf is the
restriction of f to V , then we obtain a labeled Reeb graph. Image from [141]
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Figure 3.7: (a) A height function f : M→ R defined on the surface of two (solid) balls glued
together; (b) its contour tree embedded in the domain M; and (c) its contour tree shown
in an abstract view. Image from [141]

a connected component of a level set in M. Intuitively, as t increases within the range
of f , a Reeb graph captures the topological changes in the level sets of f , in particular,

the appearances, disappearances, splitting, and merging among the connected components

(contours) of f−1(t); see [40, section VI.4] for a formal treatment.

A contour tree is a special type of Reeb graph when the domain M is simply connected.
Then,M/∼ gives rise to a tree; see Figure 3.7 for an example involving a “deformed” spherical
domain. The main difference between a contour tree and a merge tree is that the former

captures the connectivity among level sets, while the latter encodes the connectivity among

sublevel sets of a Morse function.

A related structure is the branch decomposition tree (BDT) which can be derived from

a contour tree [91] or a merge tree [102]. A BDT represents the branch decomposition of a

tree, with the nodes representing the branches and the edges representing their hierarchy.
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Saikia et.al. [102] further introduced an extended branch decomposition graph (eBDG), which

represents a forest of BDTs, where each of the BDTs is computed from a subtree of the

merge tree.

3.2.3 Complex-based topological structures

We review complex-based structures like the Morse and Morse-Smale complex, extremum

graphs which are subgraphs of these complexes. These structures are derived from the

gradient of the function f rather than the level sets.

3.2.3.1 Morse and Morse-Smale complex

A curve l(r) is defined as an integral line of f if ∂
∂r l(r) = ∇f(l(r)) for all r ∈ M. The critical

points of f are exactly the limit points of an integral line. The collection of all integral lines

that begin and terminate at a critical point p is referred to as the ascending manifold and

the descending manifold of p respectively. The dimensions of the ascending and descending

manifolds of an index k critical point are n−k, k respectively. these ascending and descend-

ing manifolds partitionM into valley-like and mountain-like regions respectively called the
Morse decomposition. These represent a collection of monotonic regions when overlaid

uponM. The Morse-Smale (MS) complex is the partition ofM into cells formed by collection
of integral lines having common source and destination. We refer to the 0-dimensional

cells as nodes and 1-dimensional cells as arcs. Figure 3.8(b) shows the extremum graph of a

2D scalar field.

While the MS complex provides a comprehensive description of the topology of the

scalar field, it has some disadvantages. The complexes are often large which results in

clutter while visualizing and sensitive to noise which results in lots of spurious saddles

which increases the size dramatically hindering its utility to aid meaningful visualizations.

3.2.3.2 Extremum graph

Correa et al. [30], observe that extrema are associated with interesting and meaningful

topological features. They introduce a topological abstraction called the extremum graph.

The extremum graph is a substructure of MS complex that captures the connectivity between

maxima and saddles (maximum graph) or between minima and saddles (minimum graph).

In this paper, we focus on the maximum graph while referring to it as the extremum graph

to simplify terminology. The extremum graph G(V,E) consists of the node set V consisting

of the maxima and (n− 1)-saddles of f and the arc set E consisting of the connecting arcs

(mi, sj) between maxima and (n− 1)-saddles. If a pair of maxima m1,m2 ∈ V are adjacent

to a common saddle s1, namely both (m1, s1) and (m2, s1) belong to E, then the segments
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(a) Scalar field f (b) MS complex of f (c) Extremum graph of f

(d) Critical points of f (e) Simplified MS complex (f) Simplified extremum
graph

Figure 3.8: Extremum graph of a 2D scalar field. (a) Scalar field f defined on a 2D domain,
shown using both a color map and surface height. (d) Critical points of f . (b) MS complex
and the segmentation of the domain into monotonic regions. (c) Extremum graph of f
embedded within the domain represents the peaks and adjacency relationship between
their corresponding segments. (e) Simplified MS complex obtained by canceling critical
point pairs, including a max-saddle pair. The peak p is canceled together with an adjacent
saddle thereby flattening one of the mountains. (f) Extremum graph corresponding to the
simplified MS complex.

associated to m1 and m2 are adjacent to each other. Figure 3.8(c) shows the extremum

graph of a 2D scalar field.

3.3 Topological simplification
All the topological structures can be simplified by removing topological noise using a se-

quence of critical point pair cancellations [43]. The ordering of such cancellations are based

on the notion of topological persistence [42]. A sequence of repeated cancellations in the

increasing order of persistence is used to simplify topological structures. In case of graph

based structures, cancellation would result in the removal of an edge. In case of an MS

complex, an individual cancellation operation removes the two critical points, the arc con-

necting them, arcs incident on the two critical points, and reconnects of the surviving

critical points in the neighborhood [43, 56]. Note that such simplification would also re-

sult in changes in the scalar field and updating the original field to keep it consistent is

crucial for many applications. The MS complex in Figure 3.8(b) is simplified by canceling
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a maximum-saddle pair, resulting in the MS complex in Figure 3.8(e). The simplification

removes the peak p and merges its associated segment with the adjacent segment. The

extremum graph can also be simplified by simplifying the corresponding MS complex. Fig-

ure 3.8(f) shows the simplified extremum graph obtained by canceling a maximum-saddle

pair.

3.4 Metric graphs
In this section we describe metric graphs which are used in the formulation of the com-

parison measure for extremum graphs. We follow the definition given by Dey et.al. [34]. We

also describe a particular metric of interest, the function metric.

Given a graph G(V,E) and a weight function w : E −→ R+ on the set of edges E, we

can define a metric graph (|G|, dG) by considering |G| to be the geometric realization of G
and |e| as the image of some edge e ∈ E. the metric dG can be defined considering the arc

length parametrization e : [0, w(e)] −→ |e| for every e ∈ E and for any two points x, y ∈ |e|
define dG(x, y) = |e−1(x)− e−1(y)|. For a path π(u, v) where u, v ∈ |G| lie on different edges,
the length of the path can be obtained by summing up the lengths of the restrictions of

this path to the edges in G. Given any two points u, v ∈ |G| the distance dG(u, v) is given
by the minimum length path connecting u to v in |G|. To simplify the notation, (G, dG) is

used to denote the metric graph.

Given two graphs G1, G2 with functions f : G1 −→ R and g : G2 −→ R respectively.
Define (pseudo)metrics on the input graphs as induced by f and g.

Function metric. Given x1, x2 ∈ G1, Bauer et.al. [7] define the function metric df as

df (x1, x2) = min
π:x1!x2

height(π) (3.1)

here π ranges over all paths connecting x1, x2 ∈ G1 and height(π) = maxx∈π f(x) −
minx∈π f(x) is the maximum f -function value difference for points from the path π.

3.5 Properties of comparison measures
This section is the same as Section 2.2 from Yan et.al. [141]. We discuss desirable properties

of a comparative measure d = d(A1,A2) between a pair of topological descriptors (of the

same type), A1 and A2. We focus on four types of properties surrounding metricity, stability,

discriminativity, and computational complexity. These properties have been studied across

scattered literature in TDA and visualization.
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Metricity and Pseudometricity. Requiring d to be a metric is desirable. That is, d satisfies

the following metric properties:

1. Non-negativity: d(A1,A2) ≥ 0;

2. Identity: d(A1,A2) = 0 iff A1 = A2;

3. Symmetry: d(A1,A2) = d(A2,A1);

4. Triangle inequality: d(A1,A2) ≤ d(A1,A3) + d(A2,A3).

If the triangle inequality (item 4) above is not required, d becomes a dissimilarity measure

instead. If the identity is not required, d becomes a pseudometric, replacing item 2 above

by:

• d(A1,A1) = 0 (but possibly d(A1,A2) = 0 for some distinct A1 (= A2).

Stability. Many definitions of stability for a distance metric d with respect to the under-

lying scalar field have been proposed. Stability can refer to whether d is stable with respect

to simplification or perturbation of the underlying function. For example, given two scalar

fields f1 and f2 : X → R that give rise to a pair of topological descriptors A1 and A2, d is

L∞-stable if for some constant C > 0,

d(A1,A2) ≤ C · ||f1 − f2||∞.

Intuitively, stability requires that if the functions are not too “different” in terms of the

L∞ norm of the difference between the functions then the comparison measure between

the topological structures representing the scalar functions should also be small.

Discriminativity. Discriminativity also has various definitions. For instance, using a

comparative measure d0 as a baseline, d is considered to be more discriminative than d0 if

for some constant c > 0,

d0(A1,A2) ≤ c · d(A1,A2)

and there exists no constant c′ > 0 such that d0 = c′ · d (that is, d is not a scaled version of
d0).

Discrimination, on the other hand, requires that however “small” the difference between

two functions, it should be captured by the comparison measure. Specifically, the distance

measure equals 0 should imply that the functions are equal.
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Since the bottleneck distance dB between persistence diagrams of f and g was among

the first measures defined between topological structures, we typically state this property

in terms of how a newly proposed distance d is related to bottleneck distance.

Figure 3.5 shows an example where dB = 0 for a pair of functions that are not equal,

which implies that dB is not discriminative enough. One reason for the low discriminative

power is that the persistence diagram, and hence dB , does not incorporate the connectivity

between critical points as in the merge tree.

In general comparison measures are designed so that they are more discriminative com-

pared to the bottleneck distance.

dB(f, g) ≤ d(f, g) ≤ ‖f − g‖∞ (3.2)

Computational complexity. We investigate the computational complexity of d in terms

of the time and space complexity. We investigate whether d is easily implementable, referring

to whether an algorithmic solution has been proposed which affects its practicality.

The above properties are particularly desirable for analysis and visualization tasks that

are supported by a comparative measure. They lead to theoretically sound, interpretable,

robust, reliable, and practical methods for comparative visualization.

3.6 Comparison measures
In this section we discuss some of the comparison measures which are either used as

the baseline to compare other measures (like bottleneck/Wasserstein distances) or founda-

tional material for other measures we define later (like persistence distortion and Gromov-

Wasserstein distance).

3.6.1 Bottleneck and Wasserstein distances

Bottleneck distance [27]. Given two persistence diagrams Df , Dg corresponding to scalar

fields f : M1 −→ R, g : M2 −→ R and a bijection η : Df → Dg , the bottleneck distance

between Df and Dg is defined as

dB(Df ,Dg) = inf
η:Df→Dg

sup
x∈Df

||x− η(x)||∞. (3.3)

Cohen-Steiner et.al.[27] provide an important stability result for dB .
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dB(Df ,Dg) ≤ ||f − g||∞ (3.4)

Wasserstein distance [28]. The p-Wasserstein distance is defined as

dp(D1,D2) =

[
inf

η:D1→D2

∑

x∈D1

||x− η(x)||p∞

] 1
p

(3.5)

3.6.2 Persistence distortion distance

Given metric graphs G1 = (G1, dG1) and G2 = (G2, dG2) where G1 = (V1, E1) and G2 =

(V2, E2). Let n = max{|V1|, |V2|} and m = max{|E1|, |E2|}.
Considering a point s ∈ G1 as a base point and for any other point x ∈ G1 consider short-

est path distance from s, dG1,s : G1 −→ R, dG1,s(x) = dG1(s, x). Let Ps denote 0-dimensional

persistence diagram 0(dG1,s) induced by dG1,s.

Consider base points s ∈ G1, dG1,s : G1 −→ R and t ∈ G2, dG2,t : G2 −→ R and correspond-
ing persistence diagrams as Ps andQt. Map G1 and G2 to the set of (infinite number of) points

in the space of persistence diagrams D given by C := {Ps|s ∈ G1} and F := {Qt|t ∈ G2}.
Persistence Distortion Distance [34]. The persistence-distortion distance between G1

and G2 , denoted by dPD(G1,G2), is the Hausdorff distance dH(C,F) between the two sets C

and F where the distance between two persistence diagrams is measured by the bottleneck

distance. In other words,

dPD(G1,G2) = dH(C,F) = max{max
P∈C
min
Q∈F

dB(P,Q),max
Q∈F
min
P∈C

dB(P,Q)}. (3.6)

3.6.3 Gromov-Hausdorff and Gromov-Wasserstein distances

Metric distortion in metric spaces (hence graphs) is given by the Gromov-Hausdorff dis-

tance [53]. We state the equivalent definition given in [20] and [80]. Given two metric

spaces X = (X, dX),Y = (Y, dY ), the correspondence between X,Y is the relation M : X × Y

such that for any x ∈ X there exists (x, y) ∈M and for any y′ ∈ Y there exists (x′, y′) ∈M.

The Gromov-Hausdorff distance is defined as

dGH(X,Y) =
1

2
inf
M

max
(x, y),(x′,y′)∈M

|dX(x, x′)− dY (y, y
′)| (3.7)
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Where M ranges over all correspondences. If X,Y are compact metric spaces and the

diameter is defined as diam(X) = max(x,x′)∈X dX(x, x′), a useful property of dGH is as follows:

1

2
|diam(X)− diam(Y )| ≤ dGH(X,Y) ≤

1

2
max(diam(X)), (3.8)

Given a metric graph G = (G, dG), let W be a either a weighted adjacency matrix or

a the matrix containing the all-pairs shortest path distances w.r.t dG. Since G is finite

graph both (G, dG) and (V,W ) provide the same information. G can be represented as a

measure network with additional information p which corresponds to probability measure

supported on the nodes of G. In most cases p is taken to be uniform, i.e. p = 1
n1n, 1n =

{1, 1, 1, . . . , 1}T ∈ Rn.

Let G1(V1,W1, p1) and G2(V2,W2, p2) be two graphs |V1| = n1,|V2| = n2. A coupling be-

tween p1 and p2 is defined as a joint probability measure on V1×V2 whose marginals agree

with p1 and p2, i.e. it is a non negative matrix C of size n1×n2 such that C1n2 = p1, CT 1n1 = p2.

The distortion of a coupling C w.r.t a loss function L is defined as

E(C) =
∑

i,k∈[n1],j,l∈[n2]

L(W1(i, k),W2(j, l))Ci,jCk,l

If C = C(p1, p2) denotes the collection of all couplings between p1 and p2 . The Gromov-

Wasserstein discrepancy [93] is defined as

D(C) = min
C∈C

E(C).

If L is chosen to be the quadratic loss function L(a, b) = 1
2 |a−b|

2 , the Gromov-Wasserstein

distance dGW given by [81, 93] between G1 and G2 is defined as

dGW (G1, G2) =
1

2
min
C∈C

∑

i,k∈[n1],j,l∈[n2]

|W1(i, k)−W2(j, l)|2Ci,jCk,l.

3.7 Tree edit distance
In this section we provide background on tree edit distance (TED). Further details can be

found in the survey by [15].

Let T be a rooted tree with node set V and edge set E. For a node v ∈ V , deg(v) is

the number of children of v, and parent(v) is its parent in the tree. The maximum degree

of a node in the tree is denoted as deg(T ). We denote an empty tree by θ. Since we are
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(a) delete (b) insert (c) relabel

Figure 3.9: Three different tree edit operations. Each edit affects only one node in the tree.
The null character λ corresponds to a gap.

interested in labeled trees, let Σ be the set of labels, and λ /∈ Σ denote the null or empty

character, which corresponds to a gap. In the following discussion, we use notations and

definitions from Zhang [144].

Edit operations. The edit operations differ based on the gap model. For this discussion we

consider edit operations that modify the tree, one node at a time. Xu [139] gives a detailed

discussion of general gaps where edits modify multiple nodes. We consider a total of three

edit operations as shown in Figure 3.9.

1. relabel: A relabel a −→ b corresponds to an operation where the label a ∈ Σ of a node

is changed to a label b ∈ Σ.

2. delete: A delete operation a −→ λ removes a node n with label a ∈ Σ and all the

children of n are made the children of parent(n).

3. insert: An insert operation λ −→ b inserts a node n with label b ∈ Σ as a child of

another node m by moving all the children of m to children of n.

We define a cost function γ that assigns a non-negative real number to each edit oper-

ation of the form a −→ b. It is useful if the cost function γ satisfies metric properties i.e.

∀a, b, c ∈ Σ ∪ {λ}

1. γ(a −→ b) ≥ 0, γ(a −→ a) = 0

2. γ(a −→ b) = γ(b −→ a)

3. γ(a −→ c) ≤ γ(a −→ b) + γ(b −→ c)

In particular, Zhang [144] proved that if γ is a metric then the edit distance is also a metric,

else it will be merely a dissimilarity measure. Given a tree T1, we can apply a sequence of

edit operations to transform it into another tree T2. If S = s1, s2, . . . , sk is a sequence of
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edit operations, where each si is an edit, we can extend the cost function to S by defining

γ(S) = Σ|S|
i=1γ(si).

Edit distance. Formally, the distance between two trees T1, T2 is defined as

De(T1, T2) = min
S

{γ(S)} (3.9)

where S is an edit operation sequence from T1 to T2.

3.7.1 Edit distance mappings

Computing the edit distance between merge trees is a minimization problem with a huge

search space. In order to understand this search space and how it affects the computation,

we first define some edit distance mappings – unconstrained, constrained, and restricted –

and their properties as described by Zhang [144].

3.7.1.1 Unconstrained edit distance mappings

The sequence of edit operations performed to transform T1 into T2 determines a mapping

between the two trees. For convenience, we order the nodes of both the trees. This ordering

does not affect the distance. Let t1 and t2 denote the ordering of nodes in T1 and T2,

respectively, and t1[i] represents the ith node in the ordering. LetMe denote a collection of

ordered integer pairs (i, j). A triple (Me, T1, T2) defines the edit distance mapping from T1 to

T2, where each pair (i1, j1), (i2, j2) ∈Me satisfies the following properties:

• i1 = i2 iff j1 = j2 (one-to-one)

• t1[i1] is an ancestor of t1[i2] iff t2[j1] is an ancestor of t2[j2] (ancestor ordering).

The cost of transforming T1 into T2 can be expressed through the mapping as

γ(Me) =
∑

(i,j)∈Me

γ(t1[i] −→ t2[j])

+
∑

{i|!j,(i,j)∈Me}
γ(t1[i] −→ λ)

+
∑

{j|!i,(i,j)∈Me}
γ(λ −→ t2[j]) (3.10)

Given a sequence of edit operations S that transforms T1 into T2, there exists a mapping

Me such that γ(Me) ≤ γ(S). Conversely, given an edit distance mapping Me ,there exists a

sequence of edit operations S such that γ(S) = γ(Me). Using the above, it can be shown
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that

De(T1, T2) = min
Me

{γ(Me)} (3.11)

where (Me, T1, T2) defines the edit distance mapping from T1 to T2. Zhang et al. [146] showed

that computing De(T1, T2) is NP-complete even when the trees are binary and |Σ| = 2.

3.7.1.2 Constrained and restricted mappings

Adding constraints to the edit distance mapping brings it within the computationally

tractable realm. The main constraint imposed is that disjoint subtrees are mapped to dis-

joint subtrees. Let T [i] denote the subtree rooted at the node with label i and F [i] denote

the unordered forest obtained by deleting the node t[i] from T [i]. A node t1[i] is a proper

ancestor of t1[j] if t1[i] lies on the path from the root to t1[j] and t1[i] (= t1[j]. The triple

(Mc, T1, T2) is called a constrained edit distance mapping if,

• (Mc, T1, T2) is an edit distance mapping, and

• Given three pairs (i1, j1), (i2, j2), (i3, j3) ∈Mc, the least common ancestor lca(t1[i1], t1[i2])

is a proper ancestor of t1[i3] iff lca(t2[j1], t2[j2]) is a proper ancestor of t2[j3].

The constrained edit distance mappings can be composed. Given two constrained edit

distance mappings Mc1 from T1 to T2 and Mc2 from T2 to T3, Mc2 ◦Mc1 is a constrained edit

distance mapping between T1 and T3. Also,

γ(Mc2 ◦Mc1) ≤ γ(Mc1) + γ(Mc2) (3.12)

which can be proven using the triangle inequality imposed on the edit operation costs. This

leads to the definition of constrained edit distance

Dc(T1, T2) = min
Mc

{γ(Mc)} (3.13)

Dc also satisfies metric properties. BothMe andMc deal with mapping between unordered

trees. Similar mappings work for forests. We define a restricted mapping Mr(i, j) between

F1[i] and F2[j] as follows:

• Mr(i, j) corresponds to a constrained edit distance mapping between F1[i] and F2[j].

• Given two pairs (i1, j1), (i2, j2) ∈ Mc, t1[l1] and t1[l2] belong to a common tree in F1[i]

if and only if t2[j1] and t2[j2] belong to a common tree in F2[i].
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(a) one-one mapping (b) violates one-one mapping

Figure 3.10: Unconstrained TED mappings satisfy the one-to-one mapping. (a) A mapping
that satisfies the property. (b) A mapping that violates the property.

(a) ancestor preserving mapping (b) ancestor order not preserved

Figure 3.11: Unconstrained TEDmappings satisfying the ancestor preservation. (a) A mapping
that satisfies the property. (b) A mapping that violates the property.

Essentially, nodes within different trees of F1 are mapped to nodes lying in different trees

of F2.

3.7.1.3 Illustrations of the mappings

Figures 3.10 and 3.11 illustrate these mappings using a small example. The mapping in Fig-

ure 3.11(b) is one-to-one but does not satisfy the ancestor preservation property, i1 is an-

cestor of i2 but j1 is child of j2. Figure 3.12 illustrates an important property required for a

mapping to be constrained, namely disjoint subtrees map to disjoint subtrees. Figure 3.12(b)

illustrates a mapping that satisfies the properties of unconstrained tree edit distance map-

ping but is not a constrained tree edit distance mapping. The node i3 is a descendant

(immediate descendant in this case) of the lca(i1, i2) = I but j3 is not a descendant of the

lca(j1, j2) = J .

3.7.2 Constrained edit distance

We recall the properties of Dc as described by Zhang [144].

Let t1[i1], t1[i2], . . . , t1[ini ] be the children of t1[i] and t2[j1], t2[j2], . . . , t2[jnj ] be the children

of t2[j]. Further, let θ denote the empty tree. Then,

Dc(θ, θ) = 0, (3.14)
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(a) disjoint subtrees map to disjoint
subtrees

(b) disjoint subtrees do not map to dis-
joint subtrees

Figure 3.12: Constrained TED mappings satisfying the disjoint subtree mapping. (a) A map-
ping that satisfies the property. (b) A mapping that violates the property.

Dc(F1[i], θ) =
ni∑

k=1

Dc(T1[ik], θ), (3.15)

Dc(T1[i], θ) = Dc(F1[i], θ) + γ(t1[i] −→ λ), (3.16)

Dc(θ, F2[j]) =

nj∑

k=1

Dc(θ, T2[jk]), (3.17)

Dc(θ, T2[j]) = Dc(θ, F2[j]) + γ(λ −→ t2[j]), (3.18)

Dc(T1[i], T2[j])

= min






Dc(θ, T2[j]) + min
1≤t≤nj

{Dc(T1[i], T2[jt])−Dc(θ, T2[jt])},

Dc(T1[i], θ) + min
1≤s≤ni

{Dc(T1[is], T2[j])−Dc(T1[is], θ)},

Dc(F1[i], F2[j]) + γ(t1[i] −→ t2[j]).

(3.19)

If the cost is not a metric, we need to include one additional case, namely Dc(F1[i], F2[j]) +

γ(t1[i] −→ λ) + γ(λ −→ t2[j]). The distance between two forests is given by

Dc(F1[i], F2[j])

= min






Dc(θ, F2[j]) + min
1≤t≤nj

{Dc(F1[i], F2[jt])−Dc(θ, F2[jt])},

Dc(F1[i], θ) + min
1≤s≤ni

{Dc(F1[is], F2[j])−Dc(F1[is], θ)},

min
Mr(i,j)

γ(Mr(i, j)).

(3.20)

The minimum restricted mapping may be computed by constructing a weighted bipartite

graph in such a way that the cost of the minimum weight maximum matching MM(i, j)
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is exactly the same as the cost of the minimum restricted mapping Mr(i, j),

min
Mr(i,j)

γ(Mr(i, j)) = min
MM(i,j)

γ(MM(i, j)) (3.21)

3.7.3 Algorithm

Zhang described an algorithm for computing the tree edit distance for labeled unordered

trees [144]. It is a dynamic programming based algorithm that follows from the properties

discussed in Section 3.7.2. The entry D(T1[m], T2[n]) in the table with m = |T1| and n = |T2|
corresponds to the final result. The algorithm computes the distance in O(|T1| × |T2| ×
(deg(T1) + deg(T2))× log2(deg(T1) + deg(T2))) time in the worst case.

3.8 Tree edit distance with general gap model
Tree edit distance with general gaps is extensively discussed by Xu [139], the material in this

section is borrowed from the same.

Consider two join trees T1 and T2. Let their vertex sets be V1 and V2, with |V1| = m, |V2| =
n. Let p(i) denote parent of a node i. The distance measure is defined on the preorder

traversal of the trees. A relabel cost r(i, j) is included if a node i from T1 is relabeled to

node j in T2 and a gap cost g(i) is included when a node either starts a gap or extends a

previously started gap. Optionally, the costs could differ in the two cases.

Given 1 ≤ i′ ≤ i ≤ m and 1 ≤ j′ ≤ j ≤ n, the edit distance is defined as,

Q[i′ . . . i, j ′ . . . j] = min






Q[i′ . . . i− 1, j ′ . . . j − 1] + r(i, j), relabel

Q⊥∗[i′ . . . i, j ′ . . . j], i is gap node

Q∗⊥[i′ . . . i, j ′ . . . j], j is gap node

If both i and j exist, then first expression gives the relabel cost, else depending on

whether i or j is a gap node, Q⊥∗ or Q∗⊥ are used. Q⊥∗ and Q∗⊥ are defined based on the

gap model as follows.

Q⊥∗[i
′ . . . i, j ′ . . . j] = min






Q[i′ . . . i− 1, j ′ . . . j] + g(i),

Q⊥∗[i′ . . . i− 1, j ′ . . . j] + g(i),

minj1≤k≤j{Q⊥∗[i′1 . . . p(i), j
′
1 . . . k]+

Q[p(i) + 1′ . . . i− 1, k + 1′ . . . j] + g(i)}
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Q∗⊥[i
′ . . . i, j ′ . . . j] = min






Q[i′ . . . i, j ′ . . . j − 1] + g(j),

Q∗⊥[i′ . . . i, j ′ . . . j − 1] + g(j),

mini1≤k≤i{Q∗⊥[i′1 . . . k, j
′
1 . . . p(j)]+

Q[k + 1′ . . . i, p(j) + 1′ . . . j − 1] + g(j)}

The cases here are based on whether for the node i, (a) if p(i) is not a gap node, (b) p(i)

is a gap node and i is it’s left child, (c) p(i) is a gap node and i is it’s right child. Refer Xu [139]

for case by case analysis and proof of correctness for these recurrences.

3.8.1 Distance measure

The overall cost C is defined as

C =
∑

(i,j)∈R

r(i, j) +
∑

n∈G

g(n)

The distance measure γ between the trees T1 and T2 is defined as,

γ[T1, T2] = min{C}

3.8.2 Algorithm

The overall cost is given by the minimum edit distance cost γ = de = Q[1 . . .m, 1 . . . n]

from the algorithm. We compute de by incorporating the above-mentioned costs into the

recurrences Q, Q⊥∗ and Q∗⊥.

Here are the initial conditions.

Q[∅, ∅] = 0

Q[1 . . . i, ∅] =∞, 1 ≤ i ≤ m

Q[∅, 1 . . . j] =∞, 1 ≤ j ≤ n

As it is minimization problem, these initial values make sense. Now set

Q⊥∗[1 . . . i, ∅] =
∑

i

g(i), 1 ≤ i ≤ m

Q⊥∗[∅, 1 . . . j] =∞, 1 ≤ j ≤ n

as it is impossible to match an empty tree with T2[1 . . . j] such that T1 ends in a gap
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node but T1[1 . . . i] has a unique matching with the empty tree given by i number of gap

nodes. By symmetry we have.

Q∗⊥[1 . . . i, ∅] =∞, 1 ≤ i ≤ m

Q∗⊥[∅, 1 . . . j] =
∑

j

g(j), 1 ≤ j ≤ n

These expressions directly lead to a dynamic programming algorithm which can be

computed in a bottom up fashion. The computation is slow as the algorithm even though

polynomial takes O(m3n2 +m2n3) time.

3.9 Summary
We provide a summary of the background. Section 3.1 provides the theoretical basis for

scalar field topology. Section 3.2 describes the topological structures which are used in this

thesis as an abstraction of scalar fields. In particular, the persistence diagram described in

Section 3.2.1.1 is used directly or indirectly in all the subsequent chapters, i.e. Chapters 4,5,6,7,

the merge trees described in Section 3.2.2.1 is the topological structure compared in Chap-

ters 4,5, the extremum graphs described in Section 3.2.3.2 are compared in Chapter 6 and

a time-varying extension is provided in Chapter 7. Topological simplification described in

Section 3.3 is extensively used to remove topological noise from all the structures before

comparing them. Metric graphs described in Section 3.4 form the basis for comparing ex-

tremum graphs described in Chapter 6. Properties of comparison measures discussed in

Section 3.5 provides us a set of criteria to aim for while defining new comparison mea-

sures. Comparison measures discussed in Section 3.6 either form baseline cases to compare

our new measures or form the building blocks of the new measures. Tree edit distance

described in Section 3.7 forms the basis mted and lmted described in Chapters 4,5. The

tree edit distance with general gap model described in Section 3.8 forms the basis of oted

described in Chapter 4.
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Chapter 4

Global edit distance for merge trees (oted)

and (mted)

In this chapter we define and describe two comparison measures for merge trees. The

ordered merge tree edit distance oted [119] and the unordered merge tree edit distance

mted [120]. We also discuss various properties and applications of these two comparison

measures.

4.1 Introduction
Defining and computing a tree edit distance that allows or disallowed for gaps is a well-

studied problem. In case gaps are allowed, the computation has been shown to be NP-

hard for arbitrary trees. However, for labeled binary trees a polynomial time, dynamic

programming-based algorithm exists [139]. We focus on merge trees, which we assume to

constitute a special subset of labeled binary trees. Further, we are interested in scenarios

where the scalar functions being compared are not significantly different from each other.

For example, functions from consecutive time-steps of time-varying data or a function com-

pared against another obtained via a minor perturbation. Given the above assumptions, our

aim is to design an effective distance measure using topological persistence. This leads to

the ordered merge tree edit distance oted. oted is an adaptation of Xu’s algorithm [139] for

computing distance between ordered labeled binary trees to the case of the general subtree

gap model that preserve the merge tree structure. The general subtree gap model allows

for interior nodes to be inserted / deleted while retaining the child nodes.

However, this method has multiple shortcomings:

1. The gap model is too general. In the case of merge trees, we require a constrained
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version that considers gaps as persistence pairs in order to preserve the structural

integrity of the tree. These pairs depend on function values. So, the constraints are

ad hoc, difficult to express directly and to incorporate into the dynamic programming

based algorithm that is used to compute the measure.

2. The above-mentioned pairs are not stable under perturbations to the scalar function.

3. Merge trees constructed on real world data are not necessarily binary trees.

4. Absence of a natural left-to-right ordering of children of a node in the merge tree.

The algorithm requires such an ordering, random or canonical orderings lead to in-

stabilities.

5. The running time of the algorithm is approximately O(n5), where n is the number of

nodes in the tree. This is very slow for practical applications.

To alleviate these, we propose a different approach by adapting of the constrained un-

ordered tree edit distance [144], but is a significant modification that caters to merge trees.

Individual edits correspond to topological features. The edit operations may be subse-

quently studied for a fine grained analysis.

4.2 Contributions

4.2.1 oted

We adapt the ordered tree edit distance from Xu [139] assuming merge trees to be ordered

rooted binary trees to design oted [119]. The important contributions include,

1. A simple comparison measure for merge trees.

2. A simple cost model based on topological persistence.

3. Applications to periodicity detection and symmetry detection in 2D scalar fields.

4.2.2 mted

We adapt the constrained unordered tree edit distance [144] to design mted [120]. The

important contributions include,

1. An intuitive and mathematically sound cost model for the individual edit operations.

2. A proof that the distance measure is a metric under the proposed cost model.
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3. A computational solution to handle instabilities.

4. Experiments to demonstrate the practical value of the distance measure using various

applications — 2D time-varying data analysis by detecting periodicity, summarization

to support visualization of 3D time-varying data, detection of symmetry and asym-

metry in scalar fields, study of topological effects of subsampling and smoothing, and

shape matching.

In addition, we describe a comprehensive set of validation experiments that are designed

to help understand the properties of the measure.

4.3 Global merge tree edit distances
In this section we describe the formulation of the two global distances, followed by the

algorithms, properties, and applications.

4.3.1 Ordered merge tree edit distance oted

Xu [139] describes a distance measure with a focus on correctness and worst case runtime

analysis for computing the measure. We describe a distance measure that is also based on

edit distances with a general subtree gap similar to Xu. However, our focus is on applica-

bility to merge trees. The edit operations are (a) Relabel nodes, (b) Insert a subtree or gap,

and (c) Delete a subtree or gap. A gap is defined as collection of nodes that are present in

one tree but not in the other. We do not distinguish between starting gaps and continuing

gaps.

A key property of the join tree is that it supports only a restricted set of insert/delete

operations. Consider a minimum-saddle pair (m, s). Let l denote the parent of s and m′

denote the child of s that is neither equal to m nor ancestor of m. If s is deleted, then m

should also be deleted, and vice-versa, also m′ is paired with l. But deletion of s does not

result in the deletion of the entire subtree rooted at s.

4.3.1.1 Definition

Consider two join trees T1 and T2 representing scalar functions f1 and f2, whose ranges are

normalized to lie within [0,1]. Let their vertex sets be V1 and V2, with |V1| = m, |V2| = n.

The distance measure is defined on the preorder traversal of the trees. A relabel cost r(i, j)

is included if a node i from T1 is relabeled to node j in T2 and a gap cost g(i) is included

when a node part of a gap.

Given 1 ≤ i′ ≤ i ≤ m and 1 ≤ j′ ≤ j ≤ n, the edit distance is defined as
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(a) merge trees (b) cost model

Figure 4.1: Two merge trees with the cost model.

D[i′..i, j ′..j] = min






D[i′..i− 1, j ′..j − 1] + r(i, j),

D⊥∗[i′..i, j ′..j],

D∗⊥[i′..i, j ′..j],

If nodes corresponding to both i and j exist, then first expression gives the relabel cost,

else depending on whether i or j is a gap node, D⊥∗ or D∗⊥ are used. D⊥∗ and D∗⊥ are

defined based on the gap model and details are provided in Xu [139].

We propose to utilise well-known properties of merge trees to define appropriate costs

for the edit operations (see Figure 4.1).

Relabel cost. If the node i ∈ V1 is matched with node j ∈ V2, define the cost of relabelling

i to j as r(i, j) = |f1(i)− f2(j)|
Add/delete gap cost. We define the cost of a gap node irrespective of whether it is a

minimum or a saddle, as the persistence of the feature to which the node belongs to:

g(m) = g(s) = pers(m) = pers(s).

The overall cost is given by the minimum edit distance cost de = D[1..m, 1..n] from

the algorithm. We compute de by incorporating the above-mentioned costs into D and

computing it in a bottom up fashion.

4.3.1.2 Algorithm

The algorithm and computation follows [139] with the customised cost model. The worst

case running time is O(m3n2 +m2n3) where n,m are the sizes of the trees.

4.3.2 Unordered merge tree edit distance mted

oted is based on the assumption that the trees are binary and can be ordered. Absence of

a natural left-to-right ordering of children of a node in the merge tree, high run time of

O(n5), and existence of more than two children limits the utility of oted.
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To handle such scenarios we describe a new tree edit distance that is appropriate for

comparing merge trees, discuss its properties, and an algorithm for computing the distance

measure.

4.3.2.1 Comparing merge trees

Our proposed measure is based on a variant of tree edit distance that applies to unordered

general trees as opposed to ordered binary trees. This variant is appropriate because

• Merge trees are unordered trees.

• Merge trees are not binary in general.

• Persistence pairs represent topological features. So, it is natural that the edit opera-

tions are defined in terms of persistent pairs.

• The pairs do not fit into any subtree gap model that has been studied in the literature.

Consider the properties of edit distance mapping mentioned in Section 3.7.1.1, but now

in the context of merge trees. The one-to-one property is applicable but ancestor ordering

might not hold in all cases. Small perturbations in the function value may result in swaps

similar to rotations in AVL or red-black trees [29, Chapter 13], which violate the ancestor

ordering. Such violations also result in instabilities i.e., cause significant fluctuations in the

distance (see Section 4.3.2.4). Computing the edit distance with the ancestor order preserv-

ing mappings is already infeasible. Removing that constraint will make the computation

more difficult. We introduce a stability parameter to ensure that ancestor order preserving

mappings are identified in practically all cases. More details on this computational solu-

tion to handling instabilities can be found in Section 4.3.2.4. This solution does discard some

mappings and may lead us away from the optimum solution. But, the stabilization ensures

that the mapping remains meaningful and helps reduce the search space thereby making

the problem tractable.

To summarize, Dc between unordered trees with suitable modifications seems to be a

good candidate for comparing merge trees. In this section, we describe one such distance

measure and demonstrate its use in the following section. The additional constraint of map-

ping disjoint subtrees to disjoint subtrees may seem limiting. Also, De(T1, T2) ≤ Dc(T1, T2),

which implies that the constrained edit distance may not be optimal in many cases. But, we

observe that, in practice, it is not as limiting and gives good results in many applications.
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Figure 4.2: Permitted and forbidden edit operations. (left) A gap is introduced by removing
a persistence pair. (right) An edit operation that is permitted for generic trees but is invalid
for a join tree. Nodes and arcs are repositioned to improve the tree layout.

4.3.2.2 Cost models

The edit distance mapping Me and the constrained edit distance mapping Mc need to be

suitably modified so that they are applicable for comparing merge trees. We begin by

considering the edit operations as applicable to merge trees together with appropriate cost

models. The literature on tree edit distances study generic trees and hence do not describe

particular cost models. The following discussions focus on join trees but all results hold

for split trees also.

Tree edit operations on the join tree need to preserve the structural integrity of the

join tree. This reduces the number of operations, say insertions and deletions. Consider a

min-saddle pair (m2, s1) in Figure 4.2. If s1 is deleted, then it’s pairm2 should also be deleted,

and vice-versa. After deletion, m1 is adjacent to s2. But deletion of s1 does not necessarily

require that the entire subtree rooted at s1 be deleted. In fact, deleting the entire subtree

may not result in a valid join tree as illustrated in Figure 4.2. In this particular illustration,

we consider the pairing imposed by the persistence. But, in general, we may consider other

pairings based on say volume, hyper-volume, etc.

Gaps in the join tree can be represented as a collection of min-saddle pairs. In Figure 4.2,

we can transform the first tree into the last tree by deleting the pairs {(m2, s1), (m3, s2)}.
We propose two cost models that capture the preservation of topological features and are

applicable for join trees. Consider nodes p ∈ T1 and q ∈ T2. Then p and q are creators or

destroyers of topological features in T1 and T2, respectively. Let the birth and death times

of these features be (bp, dp) and (bq, dq), respectively. These birth-death pairs correspond to

points in the persistence diagrams. Alternatively, they are represented as closed intervals

[bp, dp] and [bq, dq] in a persistence barcode.
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L∞ cost CW

γ(p −→ q) = min





max(|bq − bp|, |dq − dp|),
(|dp−bp|+|dq−bq |)

2

(4.1)

γ(p −→ λ) =
|dp − bp|

2
(4.2)

γ(λ −→ q) =
|dq − bq|

2
(4.3)

This cost model is based on the bottleneck and Wasserstein distances. Note that the insert

/ delete cost is based on the L∞-distance of the points p (or q) from the diagonal in the

persistence diagram. The relabel cost is the minimum of the L∞-distance between the

points p and q and the sum of the L∞-distance from the points p (or q) to the diagonal. This

corresponds to the scenario where transforming p to q (p −→ q) by deleting p and inserting

q (p −→ λ and λ −→ q) has a lower cost in some cases. Figure 4.3 shows how these costs

can be derived from the persistence diagram when there is no overlap in the barcodes and

when there is overlap between the barcodes.

Overhang cost CO

γ(p −→ q) = min





|bq − bp|+ |dq − dp|,

|dp − bp|+ |dq − bq|
(4.4)

γ(s −→ λ) = |dp − bp| (4.5)

γ(λ −→ t) = |dq − bq| (4.6)

This cost model is based on the overlap of the barcodes or the intervals. We consider the

lengths of the overhang or the non-overlapping section to determine the costs. Consider

p −→ λ, the interval corresponding to p is given by [bp, dp] with length |dp − bp| and the
interval corresponding to λ is ∅ with length 0. Since there is no overlap, the cost is |dp −
bp| + 0 = |dp − bp|. The cost of λ −→ q can be derived similarly. Let us now consider the

cost of p −→ q. If there is an overlap, we discard the overlap and obtain |bq − bp|+ |dq − dp|.
If there is no overlap then the cost is equal to |dp − bp| + |dq − bq|. The minimum of the
two expressions is the relabel cost. The barcodes are shown in the fourth quadrant of the

persistence diagrams in Figure 4.3.
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Figure 4.3: Illustration of the cost models when there is no overlap in the barcodes (left)
and when there is overlap (right). We distinguish between birth and death events in the
barcode by using different glyphs for the start and the end of the intervals.

4.3.2.3 Properties

Metric property enables us to study the space of all the trees, compute the mean, and also

compose transformations between merge trees. From Sections 3.7 and 3.7.1.2, we know that

if the cost model satisfies the metric property then the distance measure is also a metric.

We now prove the metric properties for our cost model.

The overhang cost is similar to symmetric difference, which is a well-known metric [70].

We now prove that the L∞ cost CW is a metric.

CW is a metric

We show that the cost CW is equal to the Wasserstein distance between two correspond-

ing persistence diagrams. Let N denote the set of all nodes in the merge trees and λ denote

a node corresponding to the null character. We define a mapping M : N ∪ {λ} −→ Dgm,

where Dgm is set of all persistence diagrams, as follows:

1. ∀p ∈ N, M(p) = {(bp, dp)} ∪ {(x, x), x ≥ 0},

2. M(λ) = {(x, x), x ≥ 0}.

Define the distance on the set N ∪ {λ} as the Wasserstein distance of the first order i.e.,
given p, q ∈ N ∪ {λ}

d(p, q) = W1(M(p),M(q))
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Figure 4.4: The cost of edit operations can be reformulated as the weight of a minimum
weight maximum matching in a bipartite graph. Bipartite graph for a relabel operation
p −→ q (left) and a delete operation (right).

Now, the cost CW can be rewritten as

γ(p −→ q) = W1(M(p),M(q)) (4.7)

γ(p −→ λ) = W1(M(p),M(λ)) (4.8)

γ(λ −→ q) = W1(M(λ),M(q)). (4.9)

Since the Wasserstein distance W1(·, ·) between persistence diagrams is known to be a
metric [133, Chapter 6], CW is also a metric. However, this proof of the metric property is

for general distributions. We have an alternative proof for merge trees from first principles

with the aim to better understand the cost.

CW is a metric : proof from first principles

Non-negativity and symmetry follows by definition because CW is based on sum, max,

min of absolute values. To prove the triangle inequality, we first reformulate the cost of the

edit operations as the weight of a minimum weight maximum matching. The matching

is defined in a bipartite graph. Nodes of the bipartite graph consists of the merge tree

nodes together with an equal number of copies of λ. We collect the nodes of the graph

to construct sets of the form P = {p,λ} and a special multiset Λ = {λ,λ}, see Figure 4.4.
All pairs of nodes from different multisets are connected by an edge. The edge weight c is

given by the L∞ distance between the corresponding points in the persistence diagram:

cpq = L∞(p, q) = max(|bq − bp|, |dq − dp|) (4.10)

cpλ = L∞(p,λ) =
|dp − bp|

2
(4.11)

cλq = L∞(λ, q) =
|dq − bq|

2
(4.12)

cλλ = L∞(λ,λ) = 0 (4.13)

The cost of the edit operations is equal to the cost of the minimum weight maximum
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Figure 4.5: The cost function satisfies triangle inequality. (left) The blue or the red matching
may be the minimum weight maximum matching that corresponds to the cost of the edit
operation. (right) The matching between P and R is a composition of matching between
P,Q and Q,R. The inequality can be proved via case analysis by considering all possible
compositions.

matching MM in this bipartite graph. In Figure 4.4, one of the two matchings will deter-

mine the cost of the edit operation.

γ(p −→ q) = MM(P,Q) = min





cpq + cλλ,

cpλ + cλq
(4.14)

γ(p −→ λ) = MM(P,Λ) = min





cpλ + cλλ,

cλλ + cpλ
(4.15)

γ(λ −→ q) = MM(Λ, Q) = min





cλλ + cλq,

cλq + cλλ
(4.16)

Consider three multisets as shown in Figure 4.5. Using the above construction, we

prove triangle inequality by considering the two cases, namely when the minimum weight

matching is equal to either the red or blue matching.

Case red: MM(P,R) is given by the red matching. The cost of the relabel γ(p −→ r) =

cpr + cλλ = cpr . Two different paths from p lead to r, p −→ q −→ r and p −→ λ −→ r.

Consider the first path,

γ(p −→ r) = cpr = L∞(p, r) ≤ L∞(p, q) + L∞(q, r) (4.17)

= cpq + cqr (4.18)

= γ(p −→ q) + γ(q −→ r) (4.19)

Now, let us consider the second path. If cpr ≤ cpλ + cλr then cpr ≤ cpλ + cλq + cqλ + cλr and

we are done. Else, we have two sub-cases

cpr > cpλ + cλq + cqλ + cλr > cpλ + cλr, or (4.20)
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Figure 4.6: Illustrating instabilities. Since the difference in the function values between s1
and s2 is small, a slight perturbation leads to a change in the structure of the tree, which
affects the distance measure.

cpr > cpλ + cλr but cpr < cpλ + cλq + cqλ + cλr. (4.21)

In both sub-cases, we have a matching with weight MM ′(P,R) = cpλ + cλr ≤MM(P,R) =

cpr + cλλ, which contradicts our assumption.

The cost γ(λ −→ λ) = cλλ = 0. Both paths via Q, λ −→ λ −→ λ and λ −→ q −→ λ,

should necessarily have a non-zero total cost. So, the inequality holds trivially.

Case blue: MM(P,R) is given by the blue matching. The cost of the relabel is equal to the

sum cpλ + cλr . We consider the two weights individually.

Two paths from p ∈ P lead to λ ∈ R via a node in Q, p −→ λ −→ λ and p −→ q −→ λ.

Similarly, two paths from λ ∈ P lead to r ∈ R, λ −→ λ −→ r and λ −→ q −→ r.

In both cases, triangle inequality holds trivially for the first path via Q, cpλ ≤ cpλ + cλλ

and cλr ≤ cλλ + cλr . We need to show that the inequality holds for the second paths as

well. From the persistence diagram, we observe that L∞(p,λ) ≤ L∞(p, q) + L∞(q,λ) for all

q, even when q lies on the perpendicular from p onto the diagonal. So, cpλ ≤ cpq + cqλ. A

similar argument can be used to show that cλr ≤ cλq + cqr .

The red and blue cases together imply that the cost CW satisfies the triangle inequality

and is therefore a metric. It follows that the tree edit distance measure D is also a metric.

4.3.2.4 Handling instabilities

Saikia et al. [102] discuss two kinds of instabilities, vertical and horizontal, that affect branch

decompositions and hence the distance measures. Figure 4.6 illustrates how horizontal

instability can occur. In our case, the horizontal stability has a more drastic effect on the

measure because

• It changes the persistence pairing, which in turn affects the cost.

• It also changes the subtrees thereby affecting the matching found by the algorithm.

We employ a strategy similar to the one used for branch decompositions by Thomas and

Natarajan [124] and apply it to merge trees. We introduce a stability parameter ε and use
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it to determine how to merge simple saddles into a multi-saddle where instabilities occur.

We merge the saddles in a bottom-up manner as follows. Begin from the lower saddle sl
that is further from the root and merge it into a higher saddle sh that is nearer to the root

if the function difference |f(sh) − f(sl)| < ε. Repeat this process until none of the saddles

satisfy the merging condition. In the implementation, the multi-saddle is represented by

the saddle with the highest persistence. We compute the distance between the stabilized

trees. Optionally, a fixed value may be added to the final distance to incorporate the cost

incurred due to the stabilization. In Section 4.4.2.2, we experimentally analyze how varying

the stability parameter ε affects the distance measure.

4.3.2.5 Algorithm

We adapt Zhang’s algorithm [144] with the edit costs discussed in Section 4.3.2.2 to compute

the tree edit distance between merge trees. The input to this algorithm is a pair of merge

trees that are stabilized using the strategy described in Section 4.3.2.4.

We describe the algorithm 1 in some detail. Line 2 initializes the distance between two

empty trees to 0. The loops spanning lines 3−6 and 7−10 fill the table entries corresponding
to the distances between the empty tree and all trees and forests. The nested loops spanning

lines 11 − 16 fill the entries that correspond to distances between non-empty forests and

trees. The entry D(T1[m], T2[n]) in the table with m = |T1| and n = |T2| corresponds to the
final result. The runtime analysis is as described by Zhang [144]. This algorithm has a better

running time than the one proposed by Xu [139].

The computation proceeds in a bottom up manner. Distances for the subtrees are

computed and stored in a table. These are next used for computing distances between

subtrees at higher levels of the merge trees. This proof of concept implementation does

not include code and memory optimizations for efficiently computing and storing the dy-

namic programming tables. We use the simple Kuhn-Munkres algorithm [67] for computing

MM(i, j). We still observe reasonable running times for most of the datasets as reported

in the individual experiments in the following section.

4.4 Applications
We describe various applications which find the two global merge tree edit distances as

their underlying foundation in this section.
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Algorithm 1: TreeEditDistance [144]
Data: Merge trees T1, T2.
Result: D(T1[i], T2[j]), where 1 ≤ i ≤ |T1|, 1 ≤ j ≤ |T2|

1 begin
2 D(θ, θ) = 0
3 for i = 1 to |T1| do
4 D(F1[i], θ) =

ni∑
k=1

D(T1[ik], θ)

5 D(T1[i], θ) = D(F1[i], θ) + γ(t1[i] −→ λ)
6 end
7 for j = 1 to |T2| do

8 D(θ, F2[j]) =
nj∑
k=1

D(θ, T2[jk])

9 D(θ, T2[j]) = D(θ, T2[j]) + γ(λ −→ t2[j])
10 end
11 for i = 1 to |T1| do
12 for j = 1 to |T2| do
13 D(F1[i], F2[j]) =

min






D(θ, F2[j]) + min
1≤t≤nj

{D(F1[i], F2[jt])−D(θ, F2[jt])},

D(F1[i], θ) + min
1≤s≤ni

{D(F1[is], F2[j])−D(F1[is], θ)},

min
MM(i,j)

γ(MM(i, j)).

D(T1[i], T2[j]) =

min






D(θ, T2[j]) + min
1≤t≤nj

{D(T1[i], T2[jt])−D(θ, T2[jt])},

D(T1[i], θ) + min
1≤s≤ni

{D(T1[is], T2[j])−D(T1[is], θ)},

D(F1[i], F2[j]) + γ(t1[i] −→ t2[j]).

14 end
15 end
16 end
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(a) 2D vortex street data
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Figure 4.7: Merge trees. (a) Time-step 0 (top) and 74 (bottom) of the flow around a cylinder
simulation. The split tree along with the critical points is overlayed. (b) The plot shows
distances computed between time step 0 and time steps 0-1000. The timesteps and the
distances are indicated on the x-axis and the y-axis respectively. From this plot, a time
period of 74-75 can be identified.

4.4.1 Applications of oted

We demonstrate the potential utility of oted by applying it to analyse time-varying data

and to study symmetry in scalar fields.

4.4.1.1 Periodicity in time-varying data

To demonstrate the utility of the measure, we use Bénard von Kárman vortex street data-set

formed by flow around a cylinder [135]. Figure 4.7(a) shows few timesteps of the data-set. The

data-set is known to exhibit a periodicity of 75 and [88] detects another period of 38 along

with 75. To identify periodicity, we compare the split tree of each time step with all 1000

timesteps of the data-set. We plot the distances obtained by our measure in Figure 4.7(b)

and observe a periodicity between 74 and 75.

4.4.1.2 Symmetry detection

We use a synthetic data-set (see Figure 4.8) that contains seven regions out of which five

are symmetrical and the other two (named as ‘a’ and ‘b’) are slightly perturbed to cause

asymmetry. We apply our distance measure to compare each subtree corresponding a

region with the other and we are able to distinguish between symmetric and asymmetric

regions. Region d, for example has a distance close to 0 with regions c, e, f, g; 0.53 with

region b and 0.45 with region a. This is consistent with the premise upon which the data

is generated.
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(a) 2D scalar field (b) symmetric regions

Figure 4.8: 2D synthetic data-set generated by sum of guassians, along with the symmetric
and asymmetric regions identified. The symmetric regions are highlighted using the same
boundary color, magenta and the asymmetric regions are shown using arrows.

4.4.2 Applications of mted

We demonstrate the utility of mted by applying it to analyze time-varying data, to study

symmetry in scalar fields, for summarizing data, and for shape matching. We use the Recon

library [37] to compute merge trees, the algorithm described in Section 4.3.2.5 to compute

the tree edit distance between the merge trees, and Paraview [3] together with the Topology

ToolKit TTK [128] to generate renderings of the merge trees together with the scalar fields.

We uniformly use the L∞ cost CW (4.3.2.2). All experiments were performed on a machine

with an Intel Xeon CPU with 8 cores running at 2.0 GHz and 16 GB main memory.

4.4.2.1 Understanding the distance measure

We construct three synthetic datasets to understand the difference between the tree edit

distance D and other well known distances between topological structures. The scalar

functions f1, f2, f3 are sums of gaussians whose extrema are fixed in space. The scalar

values change in a controlled manner for the three functions so that the values at the

extrema increase / decrease monotonically as we step from f1 to f2 to f3. We compute

the tree edit distances together with the corresponding mapping for each pair (f1, f2) and

(f2, f3).

Figure 4.9 shows the three scalar functions f1, f2, f3. We observe in Figure 4.9(d) that D
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(a) Three scalar field f1, f2, f3 (b) Mapping determined by W1 for (f1, f2)
and (f2, f3)

(c) Merge tree driven segmentation for each field. (d) Mapping determined by D for (f1, f2) and
(f2, f3)

Figure 4.9: Comparing mappings established by tree edit distance measure D and Wasser-
stein distance W1. (a) Three scalar functions f1, f2, f3 in the synthetic data set. (c) Regions
corresponding to the maxima and arcs incident on them in the merge trees of f1, f2, f3.
Each region is assigned a unique color. (b) Mapping determined by W1 between (f1, f2) and
between (f2, f3). (d) Mapping determined by the tree edit distance D between (f1, f2) and
between (f2, f3). Merge tree nodes and their corresponding spatial regions have the same
color.
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establishes intuitively correct mappings. The mappings also preserve the tree hierarchy. On

the other hand, the Wasserstein distanceW1 (Figure 4.9(b), left) maps the brown regions to

the null character. The tree edit distance prefers the relabel over a sequence of delete-insert

operations. The reasonW1 does not find the correspondence between the two brown nodes

is because their birth-death intervals do not overlap. As a result, these nodes are mapped

to the null character i.e., inserted or deleted. The intervals corresponding to the two nodes

in question are [1.17, 1.39] in f1 and [1.06, 1.08] in f2. We also see from Figure 4.9(b) that

W1 maps the brown region to the magenta region, thereby mapping nodes that lie within

different subtrees. This also causes a pair of nodes being mapped to the null character.

The tree edit distance D is constrained to map disjoint subtrees to disjoint subtrees and

establishes a better mapping. To summarize, D in general establishes mappings that are

better than DB andW1 because it is aware of the structure of the merge tree and preserves

the hierarchy captured in the tree.

4.4.2.2 Comparison with other distance measures

We compare the proposed tree edit distance measure D with existing measures such as

bottleneck distance DB and Wasserstein distance W1 via computational experiments on

the 2D Bénard-von Kármán vortex street dataset [135]. Figure 4.11(a) shows a few timesteps

of the data, which represents flow around a cylinder. The dataset contains the velocity

magnitude on a 400 × 50 grid over 1001 timesteps. Each split tree contains approximately

55 − 65 nodes. We calculate D and plot it together with the bottleneck and Wasserstein

distance, see top row of Figure 4.10. The tree edit distance D is always greater thanW1 and

DB . Indeed, D is likely to be more discriminative than W1 and DB because it incorporates

the structure of the merge tree in addition to the persistence pairs.

We also compute and plot D for increasing values of the stability parameter ε. The

values of ε are reported as a percentage of the maximum persistence of the particular

dataset. While there are some anomalies for small values of ε, in general we observe in

Figure 4.10 that with increase in ε, D tends towards W1. For a high enough value of ε, D

becomes almost equal toW1. The reason for this behavior is that the bottleneck/Wasserstein

distance does not consider the structure of the trees. Increasing the stability parameter

transforms the tree to become more like a bush. Finally, all the nodes become children

of the root thereby simplifying and eliminating the tree structure. Varying ε from 0 − 5%

results in a decrease of up to 25 nodes in the split tree. Further increasing ε led to an

additional reduction by only 1− 2 nodes. We observe this trend in the distance plots also.
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Figure 4.10: Comparing distance measures on the von Kármán vortex street dataset.
(top) Plot of distance measures between the first time step and others when stability pa-
rameter ε is set to 0 and comparison with the Wasserstein distance W1 and bottleneck
distance DB . (rows 2-4) Effect of stabilization parameter ε = 0, 1.5, 5, 10, 20, 50, 100% and
comparison with Wasserstein distanceW1. Results are shown in three plots to reduce clut-
ter.
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(a) Three timesteps from the flow around a cylinder
simulation.

(b) Distance matrix highlights the periodicity.

Figure 4.11: (a) Time step 0 (top), 37 (middle) and 74 (bottom) of the von Kármán vortex street
dataset. The split tree and critical points are overlaid. (b) A truncated version of the DM
showing the tree edit distance measure between all pairs of timesteps. Blue bands indicate
periodicity with time period 74-75. A half period of 37, corresponding to the alternating
nature of vortex shedding, is also visible.

4.4.2.3 Periodicity in time-varying data

Earlier studies of the Bénard-von Kármán vortex street dataset have successfully identified

periodicity in the dataset. Narayanan et al. [88] detect both a half period of 38 and the full

period of 75. We also aim to identify periodicity. Towards this, we compare the split tree of

time step 1 with the remaining 1000 timesteps of the dataset. We plot the tree edit distance

for timesteps 1 − 500, see top plot of Figure 4.10. We rerun the experiment and compare

all 1000 timesteps with all other timesteps. The distances are stored in a distance matrix

(DM). Each split tree contains approximately 55− 65 nodes. The distances were computed

in parallel using 12 threads and took approximately 25 minutes. A truncated version is

shown in Figure 4.11(b) for clarity. From Figure 4.11(b), we can also observe a periodicity of

37, which matches with the results reported by Narayanan et al. [88]. The tree edit distance

was computed in this experiment without stabilization. We also show the full version

containing all the 1000 timesteps in Figure 4.12.
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Figure 4.12: The full 1000× 1000 distance matrix shows a half-period of 37 in addition to the
periodicity of 74-75.
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(a) f1 (b) subsampled
f1

(c) smoothened
f1

(d) f2 (e) subsampled
f2

(f) smoothened
f2

(g) DM for f1,
original and
subsampled

(h) DM for f2,
original and
subsampled

(i) DM for f2,
ε = 0.5%

(j) DM for f1,
original and
smoothened

(k) DM for f2,
original and
smoothened

(l) DM for f2,
ε = 0.5%

Figure 4.13: Measuring the effect of subsampling and smoothing. (a),(d) Two synthetic func-
tions sampled over a 300 × 300 grid. (b),(e) Subsampled down to 30 × 30 over 9 iterations.
(c),(f) Smoothed in 9 iterations. (g)-(i) DMs showing distance between all pairs of subsam-
pled datasets without and with stabilization. (j)-(l) DMs showing distances for all pairs of
smoothed datasets. Row and column indices correspond to the iteration number, 0 cor-
responds to the original, 9 corresponds to the lowest resolution/extreme smoothing. Red
indicates high and blue indicates low values. Colormaps for f1 and f2 are not on the same
scale.
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4.4.2.4 Topological effects of subsampling and smoothing

The size of datasets are ever increasing and this mandates the use of subsampling and/or

smoothing of the data as a preprocessing step. The aim of this preprocessing is to reduce

the data size while ensuring a limited effect on geometric accuracy. However, the effect

on the topological features of the scalar field is often not quantified. We want to observe

how the tree edit distance measure captures these topological effects. We consider two

synthetically generated datasets of size 300×300 (iteration 0), see Figures 4.13(a), 4.13(d). The
data is downsampled over 9 iterations to a 30× 30 grid by reducing the number of samples

in each dimension by 30 within each iteration. We also apply 9 iterations of Laplacian

smoothing on both 300× 300 datasets. Next, we compare all merge trees corresponding to

the subsampled and smoothed datasets pairwise.

The distance matrix (DM) for the function f1 indicates that the distances are monotonic,

which conforms to the expected behavior. But we see a different pattern in the case of

function f2. A small stabilization applied on f2 with ε = 0.5% results in distance matrices

that conform to the expected behavior. This indicates that the stabilization may indeed be

required, particularly when the scalar functions contain flat regions and multi-saddles. In

both datasets, we notice that the distances between the lowest resolution (30× 30) dataset

and others is relatively high. We identified two reasons for the high values. First, the

number of critical points reduces significantly between iterations 8 and 9. For example, in

the case of f2, it goes down from 66 − 70 in earlier iterations to 58 in iteration 9. Second,

the function value at the critical points in the lowest resolution dataset are also different.

Hence, the relabel costs increase significantly, up to a factor of 1.5 in some cases.

4.4.2.5 Detecting symmetry / asymmetry

Identifying symmetric or repeating patterns in scalar fields enables feature-directed visu-

alization. For example, it supports applications such as symmetry-aware transfer function

design for volume rendering, anomaly detection, and query-driven exploration. A distance

measure is central to any method for identifying symmetry. Consider the synthetic dataset

in Figure 4.14 that contains six regions corresponding to six subtrees of the merge tree. Four

regions colored green in Figure 4.14(b) are symmetric copies. The remaining two regions,

colored orange and magenta, are slightly perturbed to cause asymmetry. We compute the

tree edit distance measure to compare each subtree corresponding to a region with other

subtrees. The measure clearly distinguishes between symmetric and asymmetric regions

as can be seen from the distance matrix (DM) in Figure 4.14(c). These results are consistent

with the premise upon which the data is generated.
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We present additional case studies that demonstrate the applicability of the tree edit

distance measure to symmetry identification. EMDB1 contains 3D electron microscopy den-

sity data of macromolecules, subcellular structures, and viruses. Some of these structures

contain symmetric subunits. We study two structures, EMDB 1654, and 1897, see Figure 4.15.

First, we compute the split tree for each structure. We then use a semi-automated method

to extract subtrees corresponding to significant features from the merge tree based on user

specified persistence and minimum scalar value thresholds. Next, we compute the tree edit

distance measure between subtrees corresponding to these regions of interest. We observe

two distinct groups from the DMs. The tree edit distance measure clearly identifies two

groups with 4 and 8 regions each in EMDB 1654, see Figure 4.15(a). Similarly, it identifies

two groups containing 3 and 6 symmetric regions each in EMDB 1897, see Figure 4.15(b).

Comparison with previous methods. Thomas and Natarajan [124] process the branch de-

composition of contour trees by building feature descriptors, and use them to identify

similar subtrees. We use merge trees instead of contour trees and avoid computation of

extremum graphs, geodesic distances, or contour shape descriptors in contrast to previous

methods [125, 126]. There are some disadvantages in our approach, the main problem be-

ing the need to cut the merge tree based on persistence to generate auxiliary trees which

are compared using mted. This requires the user intervention as the number of cuts are

crucial, a wrong number would result in missing some of the symmetric regions. Also the

auxiliary trees are not merge trees. So this is useful only when the user is already aware of

the number of symmetries present in the data. Also mted computation is costly compared

to the hierarchy descriptor based comparison [124].

4.4.2.6 Shape matching

Shape matching involves comparing geometric shapes and finding similarity between them.

A good distance measure helps quantify this notion of similarity more concretely. The

TOSCA non-rigid world dataset2 contains a set of different shapes, see Figure 4.16. The

shapes are in different poses and the project aims to develop methods to identify similarity

between shapes in a pose invariant manner. We compute the average geodesic distance

field [62] on the surface mesh. This field is well studied in the literature and is known to

be a good shape descriptor. We apply a persistence simplification threshold of 1% on the

merge trees both to remove topological noise and to reduce the number of nodes. Next,

1https://www.ebi.ac.uk/pdbe/emdb/
2http://tosca.cs.technion.ac.il/book/resources_data.html
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(a) Synthetic field (b) Segmentation (c) Distance matrix

Figure 4.14: Identifying symmetry and asymmetry. (a) Sum of 2D gaussians. (b) The DM
indicates presence of a symmetric group containing 4 regions. Two regions are correctly
identified as being different from the rest. (c) DM between various subtrees of the merge
tree.

we compute the tree edit distance measure between all pairs of shapes. It takes around

15 seconds to generate the distance matrix with the same setup used for the periodicity

experiment. Figure 4.17 shows the distance matrix. Each collection of shape appears as a

blue block irrespective of variations in pose. We also observe higher values for a pair of

shapes that are different. Note the blue blocks away from the diagonal. They correspond

to Michael vs Victoria, David vs Victoria, David vs Michael, and David vs Gorilla. These pairs

have similar shapes, which is more apparent in a few poses. Not all poses are shown in

Figure 4.16.

Query based matching. We also showcase query based matching, by retrieving the top-4

best matches for a given query shape. Figure 4.18 shows the results for four such queries.

We observe that in most cases we get shapes which are of the same class. We do get shapes

from different class (last row) but in that case all the shapes are humanoid and the distance

depends more on the pose than the class.

Comparison with the state-of-the-art. The shape matching problem has a long history and

has been addressed by a variety of solutions, see the recent surveys by Biasotti et.al. [13], [14]

and further updates by Zhou et.al. [147] and Sahilliog�lu [99] for more details. Use of topo-

logical descriptors are one of many such methods. While such descriptors come with some

in-built advantages like being abstract skeletal representations of the data, being invariant

to rigid body transformations, they discard geometry and are thus insufficient in many sce-
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(a) EMDB 1654

(b) EMDB 1897

Figure 4.15: Detecting groups of symmetric regions in EMDB datasets. (centre) DM showing
tree edit distance between various pairs of subtrees of the merge tree. Low values are
mapped to blue and high values to red. The DM indicates the presence of two distinct
groups. All regions within a group are symmetric copies of each other. (left, right) Volume
rendering where one region from each symmetric group is highlighted.
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Figure 4.16: Collection of shapes from the TOSCA non-rigid world dataset. The average
geodesic distance field [62] is computed on the surface. Each shape is available in multiple
poses (number of poses mentioned within parenthesis), only one pose is shown here.

narios. Many of the recent descriptors which also consider geometry, along with learning

based methods have resulted in algorithms which out perform topological descriptors. In

this regard, we use mted to showcase shape matching as a possible application. The state-

of-the-art methods would be faster and more accurate in many cases compared to mted

based approach.

4.4.2.7 Data Summarization

Exploring large scientific data, particularly time-varying data, and identifying patterns of in-

terest is often time consuming even with good visualization tools. Well designed abstract

representations provide good overviews of the data and direct the user to features of inter-

est. Abstractions such as the merge trees present a summary of spatial features. Temporal

summaries enable effective visualization of time-varying data. Central to the design of a

temporal summary is a good distance measure that can distinguish between periods of

significant activity and inactive time periods.

In this experiment, we consider the 3D Bénard-von Kármán vortex street dataset. The

velocity magnitude is available as a scalar field on a 192×64×48 grid over 102 time steps [51].
Figure 4.19 shows volume renderings and isosurfaces for a few timesteps. Topological fea-

tures of the velocity magnitude scalar field are represented using the split tree. Each split

tree had approximately 180 − 200 nodes. We compute the tree edit distance between all

pairs of timesteps. It takes around 4 seconds to generate the distance matrix (DM) with

the same setup used for the periodicity experiment.
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Figure 4.17: Tree edit distance matrix for all pairs of shapes from the TOSCA non-rigid world
dataset. Blocks of low values (blue) correspond to similar shapes but in different poses.

The DM shown in Figure 4.20 contains multiple patterns. A fluid dynamics expert helped

study and interpret the results. The distance between timesteps 2 − 28 are small because

the flow does not contain any vortices and the features do not change. The top left blue

block in the matrix corresponds to this time period. This is followed by the period when

new vortex structures are formed (small block highlighted in green that corresponds to

timesteps 29 − 39). Next, the vortices exhibit shedding, which is shown by the repeating

patterns present in the larger green block in the matrix (timesteps 40 − 85). Finally, the

vortices are significantly distorted, which is captured by the high values of distance in the

bottom right block. Thus we can use the patterns that emerge in the distance matrix to

distinguish between different types of behavior and summarize the scientific phenomena

using these patterns.

4.5 Further developments
We have implemented a merge tree comparison framework in Java with python front end

with the following functionalities.

• Computes bottleneck distance, Wasserstein distance, mted with CW and CO.
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(a) Query, horse0 (b) horse0 (c) horse14 (d) horse16 (e) horse6

(f) Query, cat10 (g) cat10 (h) cat8 (i) cat5 (j) cat0

(k) Query, gorilla12 (l) gorilla12 (m) gorilla17 (n) gorilla9 (o) gorilla6

(p) Query, Michael7 (q) Michael7 (r) Michael6 (s) David1 (t) Victoria18

Figure 4.18: Top-4 matches for a given shape query. The number used as suffix is the index
of the pose. In each row, the left-most figure is query, followed by the top-4 matches shown
with their name and pose index. Note that in case of Michael along with other objects in
the same class, we also get two objects from different classes (David,Victoria) since they
are all humanoid figures.
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Figure 4.19: The 3D Bénard-von Kármán vortex street dataset. (top) Volume rendering of the
velocity magnitude field for timesteps 15, 35, 58, 91, 98 ordered left to right. (bottom) Iso-
surfaces at isovalue 0.7 extracted for the above timesteps.

• Allows a set of trees to be compared.

• Three comparison modes involving

– Pair of trees

– One tree vs the rest

– All pairs of trees

• Provides simple visual output to show the mappings between the nodes of the com-

pared trees.

We plan to release this framework in the near future with more options and implement

it in C/C++ to offer better memory management and scalability.

4.6 Summary
We present two comparison distance measure oted and mted based on two models of tree

edit distances. We define appropriate costs based on topological properties of the merge

trees. The measures are parameter-free.

oted works in case there is a generic gap model and an order can be imposed.
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Figure 4.20: Tree edit distance matrix for all timesteps of the 3D Bénard-von Kármán vortex
street dataset. Columns corresponding to timesteps 15, 35, 58, 91, 98 are highlighted. Pat-
terns that help in generating a temporal summary are highlighted using black and green
boxes.
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mted on the other hand is more versatile. The distance measure is defined as the mini-

mum cost of a set of restricted edit operations that transforms one tree into another. The

edit operations and the associated costs are both intuitive and mathematically sound. The

measure satisfies metric properties, can be efficiently computed, and is useful in practice.

We study the properties of the measure and demonstrate its application to data analysis

and visualization using various computational experiments.
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Chapter 5

Local edit distance for merge trees (lmted)

In this chapter we present a comparison measure lmted [117] to facilitate local comparison

in merge trees. We also discuss various properties and applications.

5.1 Introduction
Most of the comparison measures described in Chapter 2 compare these structures globally.

While global comparisons help us address a variety of interesting problems it cannot be used

for finer analysis, specifically of the local structure or substructures of the corresponding

topological features. For example, consider the split trees rooted at i and j in Figures 5.1(a)

and 5.1(b). Global comparison measures convey the overall dissimilarity, but do not capture

the similarity between the regions that map to the pairs of subtrees rooted at (i10, j7) ,

(i8, j6) and (i7, j5) respectively. This type of fine grained or multi-scale analysis leads to

interesting applications and hence there is a need for a measure that detects similarity

both locally and across multiple scales. See Chapter 2.2.5 for more details. In this chapter,

we show how such merge tree edit distance mted can be extended towards a fine-grained

comparison of scalar fields. Specifically, the global mted is restricted to cases where only

the tree at the top of the hierarchy is guaranteed to be a merge tree. In contrast, lmted

facilitates comparison between all pairs of subtrees of merge trees by ensuring that all

comparisons are between trees that are guaranteed to be merge trees.

5.2 Contributions
We propose a local tree edit distance based method to compare substructures of scalar

fields across multiple scales. The comparison measure is an adaptation of the global tree

edit distance for merge trees (mted) introduced by Sridharamurthy et al. [120]. However, it
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(a) Split tree 1 (b) Split tree 2

Figure 5.1: Scalar fields f1 and f2 that are not globally similar but contain locally similar
regions. Split trees are overlaid on top of the scalar fields

is substantially different in terms of the definition, properties, approach to its computation,

and applications.

1. A novel local tree edit distance (lmted) to compare substructures in scalar fields.

2. A proof that it satisfies metric properties.

3. A dynamic programming algorithm to compute the lmted efficiently.

4. A notion of truncated persistence to compute costs of matching / correspondences,

which brings in the additional benefit of saving computation time by reducing the

number of comparisons.

5. Experiments to demonstrate the practical value of the distance towards symmetry

detection at multiple scales, analysis of the effects of smoothing and subsampling, a

fine grained analysis of topological compression, and applications to feature tracking.

Themted supports only a few of the above-mentioned applications. Even in these cases, it is

restricted to comparisons on a coarser level or requires a higher level of user intervention.

Feature tracking is not possible with mted without significant modifications.
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(a) Split tree 1 (b) Split tree 2

Figure 5.2: Split trees corresponding to the scalar fields shown in Figure 5.1. One persistence
pair is shown within each split tree (orange link). When comparing subtrees T1[i8] or T2[j5],
nodes i5 and j4 are unpaired. So, dummy nodes i′10 and j

′
7 are inserted with |f1(i10)−f1(i′10)| <

ε and |f2(j7)− f2(j′7)| < ε to serve as root and as a pair of the unpaired node.

5.3 Local merge tree edit distance lmted
In this section we describe the necessary modification required to go from mted to lmted,

define lmted, discuss the new cost model and its properties, describe the DP algorithm

to calculate lmted, describe the implementation details such us refinements and finally

showcase applications.

5.3.1 Truncated persistence and truncated costs

The cost of edit operations in mted [120] is based on the topological persistence of the

node(s). Specifically, their L∞ cost CW is the L∞ distance between the point pair in the

persistence diagram corresponding to the two nodes (relabel) or the distance between

the point in the persistence diagram and the diagonal (insert / delete). While comparing

subtrees such as T2[j5] (Figure 5.2(b)), a node j4 whose persistence pair is the global root j

contributes a large value to the edit distance. Using the same cost for j4 while comparing

all subtrees containing the node may not be appropriate. For example, subtrees T2[j5] and
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T2[j] map to two regions in the domain that are vastly different in size. To alleviate this

inconsistency, we introduce the notion of dummy nodes and truncated persistence. While

comparing the subtree T2[j5] with other subtrees, we insert a dummy node j′7 that serves

as a root of the subtree T2[j5] and as the pair of j4. The function value at the dummy node

differs from the parent of j5 at most by a small value ε.

An unpaired node in a subtree corresponds to a leaf whose persistence pair is outside

the subtree. We use iu and ju to denote unpaired nodes in T1[i] and T2[j], respectively.

Dummy nodes corresponding to T1[i] and T2[j] are denoted by i′ and j′. For an unpaired

node iu ∈ T1[i] and a truncated root that is represented by a dummy node i′, we define

truncated persistence as

tpi′(iu) = |f1(iu)− f1(i
′)|. (5.1)

Note that a leaf node will be unpaired in some subtree and, in some cases, it can be unpaired

in multiple subtrees (for example, j4). The subscript i′ in the definition specifies the subtree

under consideration.

The cost of the edit operations need to be updated based on the truncated persistence

for unpaired nodes iu and ju. Let γ denote the original cost of an edit operation derived

from the L∞ cost CW used in mted. We define a new truncated cost γ′ as

γ′(i −→ j) =






γ(i −→ λ), i (= iu, j = ju|λ,

γ(λ −→ j), i = iu|λ, j (= ju,

γ(i −→ j), i (= iu, j (= ju,

0, i = iu|λ, j = ju|λ,

(5.2)

5.3.2 Definition

We now describe a new local tree edit distance that is appropriate for localized comparison

of merge trees, discuss its properties, and present an algorithm for computing the distance.

The local tree edit distance (lmted) for a pair of trees rooted at i and j is denoted lmted(i, j)

and defined as follows:

lmted(i, j) = D′(i, j) + Γ(iu −→ ju). (5.3)

Here, Γ(iu −→ ju) denotes the relabel cost computed using the truncated persistence values

of iu and ju. D′(i, j) is the modified edit distance between the two trees that excludes the
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cost between the unpaired nodes from each tree.

We now describe the recursive formulation ofD′(i, j). The key difference between lmted

and mted is the way in which unpaired nodes are handled. The original formulation (as

for Dc) applies as is for the paired nodes, not for the unpaired nodes. The unpaired node

changes depending on the level of the subtree, as we move from the leaves towards the root

of the merge tree. As we traverse a merge tree bottom-up considering all possible subtrees, a

node can be unpaired until we reach the level containing its pair, following which it remains

paired until the end. When the node is unpaired, at every level its contribution changes. We

account for the contribution from the unpaired node to D′(i, j) in a final step and so we are

able to retain a recursive formulation. Once the node is paired, its contribution (equal to

its persistence) does not change further. This demands a new recursive formulation which

can handle both the scenarios. The new formulation D′ will thus be a modification of Dc.

From Figure 5.3 and using similar terminology as before, let i1, i2, . . . , ini be the children

of i and j1, j2, . . . , jnj be the children of j. Let T1[i] denote the subtree rooted at i and F1[i]

denote the unordered forest obtained by deleting the node i from T1[i]. Again, iu and ju are

unpaired nodes in T1[i] and T2[j], respectively. Let iui be the child lying on the path between

i and iu in T1[i] and juj be the child lying on the path between j and ju in T2[j].

Recall that θ denotes the empty tree and Dc(, ) denotes mted. Then D′ is recursively

defined as follows:

D′(θ, θ) = 0, (5.4)

D′(F1[i], θ) =
ni∑

k=1,k *=ui

Dc(T1[ik], θ) +D′(T1[iui ], θ), (5.5)

D′(T1[i], θ) = D′(F1[i], θ) + γ′(i −→ λ), (5.6)

D′(θ, F2[j]) =

nj∑

k=1,k *=uj

Dc(θ, T2[jk]) +D′(θ, T2[juj ]), (5.7)

D′(θ, T2[j]) = D′(θ, F2[j]) + γ′(λ −→ j), (5.8)

minT2 = min





min

1≤t≤nj ,t *=uj

{Dc(T1[i], T2[jt])−Dc(θ, T2[jt])},

{D′(T1[i], T2[juj ])−D′(θ, T2[juj ])}
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Figure 5.3: Illustrating lmted. To compute lmted between subtrees rooted at i and j, we
treat the subtrees containing the unpaired nodes iu, ju, labeled as iui , juj and highlighted
in orange, differently. For other nodes, the formulation is same as mted. For iu, ju, we
use truncated persistence to determine the costs. In the matching required to compute
M ′

r(i, j), we consider truncated persistence to determine the weights of all edges incident
on iui , juj (highlighted in orange). s and t are the source and destination nodes of the flow
problem that is equivalent to the matching problem to determineM ′

r(i, j). The cardinalities
of the two sides are made equal by inserting a set of nj dummy nodes adjacent to s and ni

dummy nodes adjacent to t.
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minT1 = min





min

1≤s≤ni,t *=ui

{Dc(T1[is], T2[j])−Dc(T1[is], θ)},

{D′(T1[iui ], T2[j])−D′(T1[iui ], θ)}

minFj = min





min

1≤t≤nj ,t *=uj

{Dc(F1[i], F2[jt])−Dc(θ, F2[jt])},

{D′(F1[i], F2[juj ])−D′(θ, F2[juj ])}

minFi = min





min

1≤s≤ni,t *=ui

{Dc(F1[is], F2[j])−Dc(F1[is], θ)},

{D′(F1[iui ], F2[j])−D′(F1[iui ], θ)}

D′(T1[i], T2[j]) = min






D′(θ, T2[j]) +minT2 ,

D′(T1[i], θ) +minT1 ,

D′(F1[i], F2[j]) + γ′(i −→ j).

(5.9)

D′(F1[i], F2[j]) = min






D′(θ, F2[j]) +minFj ,

D′(F1[i], θ) +minFi ,

min
M ′

r(i,j)
γ′(M ′

r(i, j)).

(5.10)

All terms that involve subtrees containing the unpaired node (orange) are updated to

incorporate D′, whereas the constrained edit distance Dc appears elsewhere. The bipartite

graph formulation that is used to compute the minimum cost restricted mapping between

forests is also updated to incorporate D′ and is now denoted asM ′
r(i, j) (Figure 5.3, bottom).

5.3.3 Cost models and properties

We can employ either of the costs, the L∞ cost CW or the overhang cost CO introduced for

the mted [120, Section 4.2]. Both costs are proven to be metrics. If they remain so even with

the newly introduced cost based on the truncated persistence, then by Zhang [144] the lmted

satisfies metric properties. The proofs of non-negativity and symmetry is straightforward
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because γ′ together with Γ is defined in terms of γ, which in turn satisfies both properties

because it is a combination of sum, max, and min of absolute values.

We now prove the triangle inequality for γ′ together with Γ. Let T1[i], T2[j], and T3[k] be

three subtrees with unpaired nodes iu, ju, ku. We insert dummy nodes i′, j ′, k′ and construct

trees T1[i′], T2[j′], and T3[k′]. The truncated persistence values tpi′(iu), tpj′(ju), tpk′(ku) in

subtrees T1[i], T2[j], T3[k] are respectively equal to the regular persistence values within

trees T1[i′], T2[j′], T3[k′]. For a given triple i1 ∈ T1[i], j1 ∈ T2[j], k1 ∈ T3[k], we will show that

triangle inequality holds by considering different cases.

Case 1: Nodes i1, j1, k1 are all unpaired or are all paired. When all the nodes i1, j1, k1 are

paired, γ′ = γ and hence triangle inequality holds. If all are unpaired, γ′(i1 −→ j1) =

γ′(j1 −→ k1) = γ′(i1 −→ k1) = 0. Further, Γ(i1 −→ j1), Γ(j1 −→ k1) and Γ(i1 −→ k1) are

equal to relabel costs (γ) for the trees T1[i′], T2[j′] and T3[k′] and hence triangle inequality

holds [120, Section 4.3].

Case 2: Two nodes are unpaired. The case where i1 and k1 are unpaired while j1 is paired

is impossible because of the constraint that unpaired nodes are mapped to unpaired nodes

and the operation is forced to be a relabel.

Case 2.1: i1 and j1 are unpaired. Then the LHS

γ′(i1 −→ j1) + γ′(j1 −→ k1) + Γ(i1 −→ j1) (5.11)

= 0 + γ(λ −→ k1) + Γ(i1 −→ j1) (5.12)

= γ(λ −→ k1) + Γ(i1 −→ j1), (5.13)

and the RHS

γ′(i1 −→ k1) = γ(λ −→ k1). (5.14)

Since Γ(i1 −→ j1) ≥ 0 always, we have LHS ≥ RHS.
Case 2.2: j1 and k1 are unpaired, then the LHS

γ′(i1 −→ j1) + γ′(j1 −→ k1) + Γ(j1 −→ k1) (5.15)

= γ(ii −→ λ) + 0 + Γ(j1 −→ k1) (5.16)

= γ(ii −→ λ) + Γ(j1 −→ k1), (5.17)
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and the RHS

γ′(i1 −→ k1) = γ(i1 −→ λ). (5.18)

Since Γ(j1 −→ k1) ≥ 0 always, we again have LHS ≥ RHS.
Case 3: A single node is unpaired. This is impossible because of the constraint that unpaired

nodes are mapped only to unpaired nodes via a relabel edit operation.

In all cases, the truncated cost γ′ together with Γ satisfies the triangle inequality. So, it

follows from Zhang [144] that lmted is indeed a metric.

5.3.4 Algorithm and computation

We propose a modified dynamic programming based algorithm for computing lmted be-

tween merge trees. The use of truncated persistence as cost of the edit operations implies

that lmted can be computed using solutions to non-overlapping sub-problems for comput-

ing Dc. However, the dynamic programming formulation needs to be modified because D′

recursively depends both on D′ and Dc.

5.3.4.1 Dynamic Programming tables

Consider the subtrees T [i10] and T [i8] in Figure 5.2. The node i5 is unpaired. Within the

subtree T [i8], node i5 has truncated persistence tpi′8(i5). But, its truncated persistence is

equal tpi′10(i5)when considering the subtree T [i10]. Dynamic programming works by storing

the results of sub-problems within a table so that it can be reused. Entries corresponding

to both (in general, more than two) values of truncated persistence are required for the

computation.

Consider a subtree T [i] with an unpaired node iu and the path from iu to the global root

r as shown in Figure 5.4. Let iv be the pair of iu, clearly iv ∈ ancestor(i). While processing

the unpaired node iu, we need to distinguish between two cases:

O: The contribution of iu is measured by persistence as defined in the usual sense.

M: The contribution of iu is measured by an appropriate instance of truncated persis-

tence.

Case O corresponds to all subtrees rooted at ia ∈ ancestor(i), where iv ≤ ia ≤ r in the

directed path highlighted in green in Figure 5.4. Case M corresponds to trees rooted at ia
such that iu ≤ ia < iv , which also includes i as highlighted in red in Figure 5.4.

We wish to design an algorithm that makes a single pass over the two input merge trees

and computes lmted between all pairs of subtrees. In order to achieve this objective, we
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Figure 5.4: Illustration of Cases O and M. The portion of the path colored in red corresponds
to case M while the portion of the path colored in green corresponds to case O.

propose a modified dynamic programming method that uses two tables. One table stores

the values of Dc for sub-problems, as defined and proposed for mted [144]. We introduce a

second table that storesD′, partial solutions to the modified edit distance for sub-problems.

Figure 5.5 and Figure 5.6 show the dynamic programming table corresponding to Dc and

D′, respectively. Entries in the second table D′ are defined as follows:

1. To compute the entry (i, j), we need first populate the entries for the subtrees of T1[i]

and T2[j]. Say, we need to compute the entry at (ik, jl), where ik ∈ T1[i], jl ∈ T2[j].

If the subtrees rooted at ik and jl do not contain the unpaired nodes iu and ju, i.e.,

iu /∈ T1[ik] and ju /∈ T2[jl], then we pick the corresponding entry from Dc, namely

Dc(T1[ik], T2[jl]). Figure 5.7 and Figure 5.8 shows the entries required to compute the

entry (i, j) in both tables.

2. If the subtrees rooted at ik and jl contain the unpaired nodes, we refer to the modified

table D′, whose entries are computed using truncated persistence.

Figure 5.5 shows the original table used to compute Dc. It does contain entries cor-

responding to different pairs of subtrees, but only the global entry (i, j) corresponds to a

distance between two merge trees. Other local comparisons involve subtrees that are not

merge trees. Figure 5.6 is the modified table storing values of D′. Figures 5.7 and 5.8 show

the difference between the original and modified tables, and the entries that are required to

calculate Dc(i10, j7) and D′(i10, j7). The labels correspond to the merge trees from Figure 5.2.

We denote tree distance entries by dc(, ) and d′(, ), and forest entries by fc(, ) and f ′(, ). The

node i5 is unpaired in T1[i10] and j4 is unpaired in T2[j7]. In case of Dc, there is no dis-

tinction between paired and unpaired nodes. So, Dc(i10, j7) depends only on the following
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Figure 5.5: Dynamic programming table for Dc. The only useful entry in this table is the
one corresponding to (i, j). Other entries do not represent a meaningful distance because
the subtrees compared to compute the entries are not merge trees. Entries in the row and
column labeled −1 correspond to comparison with the empty tree θ.

Figure 5.6: The modified DP table corresponding to D′, which is used to compute lmted.
This table contains an additional row and column when compared to the table for Dc. This
additional row and column stores the truncated persistence values for the unpaired nodes
corresponding to the current level. Entries in this table represent valid (and useful) distance
between merge trees, which are subtrees of the trees rooted at i and j, respectively.

entries of the original table – dc(i10,−1), dc(−1, j7), dc(i7, j7), dc(i8, j7), dc(i10, j5), dc(i10, j6),
and fc(i10, j7). In case of D′, for all subtrees involving unpaired nodes (T1[i8], T2[j5]), the

corresponding entries are read from the modified table, while the remaining entries are

read from the table for Dc. So, the required entries include d′(i10,−1), d′(−1, j7), dc(i7, j7),
d′(i8, j7), d′(i10, j5), dc(i10, j6), and f ′(i10, j7). Further, the entries in the additional row and

column are also required. They contain the truncated persistence values for the unpaired

nodes corresponding to the current level.

5.3.4.2 Pseudocode and analysis

Zhang described an algorithm for computing the tree edit distance for labeled unordered

trees [144]. It is a dynamic programming based algorithm that follows from the properties

80



Figure 5.7: Entries required to calculate Dc(i, j) ( ) and D′(i, j) ( ) in the table for Dc. The
required entry is denoted by a green square.The lower triangle entries correspond to forests
and upper triangle entries to trees.

Figure 5.8: Entries required to calculate D′(i, j) ( ) in the modified table. The required entry
is denoted by a green square.The lower triangle entries correspond to forests and upper
triangle entries to trees.

discussed in Section 3.7.1.2. We adapt this dynamic programming based method for comput-

ing lmted but compute and maintain two tables Dc and D′ simultaneously. The algorithms

fills entries in both tables Dc and D′ iteratively. An entry within a table is computed and

filled if entries corresponding to all sub-problems are already filled in previously. This im-

plicitly corresponds to traversing the two input trees in a bottom up fashion in tandem.

After both tables are filled, lmted is computed for all pairs of subtrees following the def-

inition i.e., as a sum of D′ and Γ. Algorithm 2 computes the lmted. Here γ denotes the

original cost model and γ′ denotes the truncated cost model. Line 2 initializes the distances

between two empty trees to 0. The loops spanning lines 3− 8 and 9− 14 fill the table en-

tries for both Dc and D′ corresponding to the distances between the empty tree and all

trees and forests. Note that lines 6, 7 and 12, 13 are new additions compared to the mted

algorithm, which depend on values from both Dc and D′. The nested loops spanning lines

15 − 26 fill the entries that correspond to distances between non-empty forests and trees.
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Again, lines 19 − 24 are additions to the mted algorithm. To avoid clutter, the expressions

minFj ,minFi ,minT2 ,minT1 are written separately, though they are part of the expressions

calculating D′ in lines 23, 24. Though the expressions look complicated, if we substitute D′

with Dc, γ′ with γ, and M ′
r with Mr in the RHS of the expressions in lines 23, 24 we get the

original mted expressions which are in lines 17, 18. The entry Dc(T1[m], T2[n]) in the table

with m = |T1| and n = |T2| corresponds to the final result for mted. In case of lmted, if
we are interested in the distance between the pair of subtrees rooted at i and j, then the

distance is given by

lmted(i, j) = D′(i, j) + Γ(iu −→ ju). (5.19)

Γ(iu −→ ju) denotes the relabel cost computed using the truncated persistence values of

iu and ju.

Algorithm 2: LocalTreeEditDistance (lmted) [144]
Data: Merge trees T1, T2.
Result: D′(T1[i], T2[j]) and Dc(T1[i], T2[j]), where 1 ≤ i ≤ |T1|, 1 ≤ j ≤ |T2|

1 begin
2 Dc(θ, θ) = 0, D′(θ, θ) = 0
3 for i = 1 to |T1| do
4 Dc(F1[i], θ) =

ni∑
k=1

Dc(T1[ik], θ)

5 Dc(T1[i], θ) = Dc(F1[i], θ) + γ(i −→ λ)

6 D′(F1[i], θ) =
ni∑

k=1,k *=ui

Dc(T1[ik], θ) +D′(T1[iui ], θ)

7 D′(T1[i], θ) = D′(F1[i], θ) + γ′(i −→ λ)
8 end
9 for j = 1 to |T2| do

10 Dc(θ, F2[j]) =
nj∑
k=1

Dc(θ, T2[jk])

11 Dc(θ, T2[j]) = Dc(θ, F2[j]) + γ(λ −→ j)

12 D′(θ, F2[j]) =
nj∑

k=1,k *=uj

Dc(θ, T2[jk]) +D′(θ, T2[juj ])

13 D′(θ, T2[j]) = D′(θ, F2[j]) + γ′(λ −→ j)
14 end
15 end

In the worst case, the algorithm computes lmted between all pairs of subtrees in

O(|T1|× |T2|×(deg(T1)+deg(T2))×log2(deg(T1)+deg(T2))) time, similar to mted. In practice,
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16

17 for i = 1 to |T1| do
18 for j = 1 to |T2| do
19

Dc(F1[i], F2[j]) = min






Dc(θ, F2[j]) + min
1≤t≤nj

{Dc(F1[i], F2[jt])−Dc(θ, F2[jt])},

Dc(F1[i], θ) + min
1≤s≤ni

{Dc(F1[is], F2[j])−Dc(F1[is], θ)},

min
MM(i,j)

γ(MM(i, j)).

20

Dc(T1[i], T2[j]) = min






D(θ, T2[j]) + min
1≤t≤nj

{Dc(T1[i], T2[jt])−Dc(θ, T2[jt])},

Dc(T1[i], θ) + min
1≤s≤ni

{Dc(T1[is], T2[j])−Dc(T1[is], θ)},

Dc(F1[i], F2[j]) + γ(i −→ j).

21

minFj = min
{

min
1≤t≤nj ,t #=uj

{Dc(F1[i], F2[jt])−Dc(θ, F2[jt])},

{D′(F1[i], F2[juj ])−D′(θ, F2[juj ])}

22

minFi = min
{

min
1≤s≤ni,t #=ui

{Dc(F1[is], F2[j])−Dc(F1[is], θ)},

{D′(F1[iui ], F2[j])−D′(F1[iui ], θ)}

23

minT2 = min
{

min
1≤t≤nj ,t #=uj

{Dc(T1[i], T2[jt])−Dc(θ, T2[jt])},

{D′(T1[i], T2[juj ])−D′(θ, T2[juj ])}

24

minT1 = min
{

min
1≤s≤ni,t #=ui

{Dc(T1[is], T2[j])−Dc(T1[is], θ)},

{D′(T1[iui ], T2[j])−D′(T1[iui ], θ)}

25

D′(F1[i], F2[j]) = min

{
D′(θ, F2[j]) +minFj ,

D′(F1[i], θ) +minFi ,

min
M′

r(i,j)
γ′(M ′

r(i, j))

26

D′(T1[i], T2[j]) = min

{
D′(θ, T2[j]) +minT2 ,

D′(T1[i], θ) +minT1 ,

D′(F1[i], F2[j]) + γ′(i −→ j).
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the computation is restricted to a much smaller set of entries that need to be filled within

both tables. This restricted set of entries is identified in a preprocessing step as described

in the following section. Also, note that the time is amortized over all pairs of subtrees.

5.3.5 Refinement and optimization

Given two merge trees, we observe that in many applications it is unnecessary to compute

lmted between all pairs of subtrees. This section describes refinements that reduces the

number of pairs of subtrees that are considered for lmted computation. This optimization

leads to faster computation times. This step may be skipped if it is necessary to compare all

pairs of subtrees. We also describe a refinement that ensures that all subtrees considered

for comparison are merge trees.

5.3.5.1 Ordering subtrees

The dynamic programming algorithm works for any ordering of nodes. The entries required

to compute the distance between a pair of subtrees are computed if they are not already

available from the table. However, we choose to order the nodes by assigning a priority

based on the size of the subtree rooted at the node and on the number of grid points in the

domain mapped to the subtree (i.e., volume of the corresponding region in the domain).

This ordering facilitates easy identification of similar regions via visual inspection of the

distance matrix because subtrees of similar size appear in the close vicinity of one another

within the matrix.

5.3.5.2 Comparison refinement

Since lmted is computed between all pairs of subtrees of the two input trees, the number

of comparisons is determined by the size of the two trees. In general, the scalar fields to

be compared are unrelated, defined on different domains, and have different ranges. So,

comparing all pairs of subtrees is necessary and unavoidable. However, in several applica-

tions, it is not necessary or meaningful to compare all pairs of subtrees. We describe two

such scenarios to motivate a refinement step that reduces the number of comparisons.

1. Symmetry detection: The scalar field is compared with itself. So, we can discard com-

parisons between subtrees with vastly different sizes (for example, T1[i4] and T1[i10]

in Figure 5.2) or a subtree that is contained within another subtree (like T1[i11] and

T1[i8]).

2. Time-varying data analysis: While analyzing a time-varying scalar field, assuming a

fine enough temporal resolution, we may discard comparisons between subtrees with
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vastly different sizes. We may also discard comparisons between subtrees that map

to regions in the domain with significantly different sizes (area / volume).

We define a set of criteria used to direct the refinement. Each criterion is a ratio between

measures or a statistic computed for a subtree. Let T1, T2 be the two input merge trees

with nodes {i1, i2, . . . , ini} and {j1, j2, . . . , jnj}, and roots r1 and r2, respectively. Consider

a subtree T1[ik] and the mapping to its associated region in the domain. This region is a

connected component of the preimage of the range of scalar values corresponding to T1[ik].

Assuming that the scalar function is defined over a 3D domain, the volume of this region

may be approximated by counting the number of sample points (vertices or grid points,

depending on whether the domain is represented using a tetrahedral mesh or a cube grid).

The aggregate persistence Pik of the subtree is computed as the sum of persistence of all

persistence pairs contained within the subtree. Given a pair of subtrees T1[ik] and T2[jl], we

use the ratio between

1. number of nodes in the subtrees |T1[ik]| / |T2[jl]|,

2. volume (or area) of the domain that maps to the two subtrees, and

3. aggregate persistence of the subtrees Pik/Pjl

to determine the refinement. Thresholds for the ratios are determined empirically. For

each criterion, we plot the number of pairs of subtrees against increasing values of the

ratio, identify the value of the ratio corresponding to a sharp decline or the ’knee’ of the

curve, and choose this value of the ratio as threshold. If the plot does not exhibit a clear

knee then we set the threshold to 0.5. Further, if T1 = T2 then we discard all comparisons

between T1[ik] and all subtrees contained within T1[ik].

5.3.5.3 Subtree refinement

Next, we preprocess the input to ensure that we compare only those subtrees that are

merge trees.

The subtrees that constitute the sub-problems in the dynamic programming algorithm

for mted [120] are not necessarily merge trees. Consider the scenario in Figure 5.2. While

trees T1[i] and T2[j] rooted at i and j are merge trees, T1[i8] and T2[j5] are not merge trees as

they contain unpaired nodes, namely i5 and j4. The entryDc(i8, j5) in the DP table (Figure 5.5)

contains a value that is used to computed the mted between T1[i] and T2[j]. But, it is not

a meaningful distance between subtrees T1[i8] and T2[j5] because the cost model used for

operations related to unpaired nodes i5, j4 depends on their original persistence. From
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Figure 5.9: Understanding lmted. Columns of the distance matrix (DM) represent subtrees
rooted at nodes of merge tree T1, rows represent subtrees rooted at nodes of tree T2. Nodes
are ordered as per the priority described in Section 5.3.5.1. lmted values are shown using a
blue-red colormap (0 0.1)

.

Figure 5.1, it is clear that the regions associated to the two subtrees are similar to each

other but the value of Dc(i8, j5) does not reflect this similarity.

We insert a dummy node i′10 in T1[i8] with |f1(i′10) − f1(i10)| < ε for a small ε > 0. In

subsequent computations, we consider T1[i′10] as the merge tree corresponding to the sub-

tree T1[i8]. Similarly, T2[j5] contains the unpaired node j4. We insert a dummy node j′7 and

consider T2[j′7] as the merge tree corresponding to T2[j5]. This conversion is consistent with

the mapping between subtrees and regions of the domain and hence results in meaningful

distances.

5.4 Applications
In this section, we demonstrate the utility of lmted in applications like symmetry detection,

feature tracking, and spatio-temporal exploration of scientific data. We also describe results

of a comprehensive analysis of the effects of subsampling, smoothing, and topologically

controlled compression. In all cases where a global comparison is meaningful, results based

on mted [120] are taken as a baseline.

5.4.1 Understanding the local tree edit distance

We begin with a simple study to understand lmted, by comparing two scalar fields shown

in Figures 5.1, whose split trees are shown in Figure 5.2. Figure 5.9 shows the distance matrix

(DM), entries corresponding to subtree pairs that are discarded during the refinement step
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(a) Volume rendering of the Rubisco
RbcL8-RbcX2-8 complex(EMDB-1654)

(b) Distance Matrix (DM)

Figure 5.10: lmted values in the DM are shown using a blue-red colormap (0 0.1)
.

are blank. We observe two blue blocks of size 4×6 and 2×3 in the DM, confirming that there
are two sets of similar regions and the pair of similar subtrees T1[i10], T2[j7]. Note that the

distances between these similar regions are very small ≤ 0.000093 in contrast to the larger

value of mted (= 0.33) between the two trees. Such instances of local similarity without

global similarity is common in scientific data. Further, lmted also captures similarity at

different scales.

5.4.2 Symmetry Detection

Finding symmetric structures in scalar fields is a challenging problem [124, 125, 126]). The

mted driven approach [120] extracts a particular set of high persistent subtrees that are

known to be symmetric and compares them to verify symmetry. We take a different ap-

proach where we detect symmetry directly based on local similarity by comparing the scalar

field with itself. We use CryoEM data from EMDB1, which contains 3D electron microscopy

density data of macromolecules, subcellular structures, and viruses. We first compute the

simplified merge tree (using a small persistence threshold < 1%) and consider pairs of

subtrees after refinements described in Section 5.3.5.

We illustrate and analyse the results using the Rubisco RbcL8-RbcX2-8 complex (EMDB-

1654) shown in Figure 5.10(a). We compute lmted between all pairs of subtrees of its merge

1https://www.ebi.ac.uk/pdbe/emdb/
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tree after the refinement step. The resulting DM is shown in Figure 5.10(b). Blank regions

correspond to subtree pairs that are discarded during the refinement step. Submatrices

highlighted in black correspond to regions in the data that are symmetric. For clarity, we

have shown these submatrices together with the corresponding regions in Figures 5.11, 5.12.

We observe that lmted detects symmetric regions at different scales.

Any selection of submatrices from Figure 5.10(b) with a common color corresponds to

a set of symmetric regions, we highlight some of them. In some cases matrix entries cor-

responding to symmetric regions may not appear adjacent to each other as a submatrix.

But, it may be possible to visually identify the entries as belonging to a single cluster.

A row/column reordering helps the identification of these clusters, see Behrisch et al. [9]

for details. The reordering may be restricted to a chosen submatrix to save computation

time. We have chosen two examples – EMDB 1603 (12 Angstrom resolution cryo-electron

microscopy reconstruction of a recombinant active ribonucleoprotein particle of influenza

virus) to show how the symmetric regions are found without any matrix reordering and

EMDB 1897 (AMP-Activated Protein Kinase) to illustrate the case where reordering might

be required. The volume rendering of EMDB 1603 is shown in Figure 5.13(a) The modified

DP is calculated for the merge tree of EMDB 1603, which has pairs of subtrees marked

based on refinement criteria to get the distance matrix DM as shown in Figure 5.13(b). The

empty regions in the DM corresponds to pairs of subtrees which are not being compared

as they are eliminated by the refinement steps discussed in Section 5.3.5. Consider the sub-

matrices highlighted, these correspond to set of regions in the data which are symmetric.

For clarity, we have shown the submatrices and the corresponding set of regions in Fig-

ures 5.14(a), 5.14(b), 5.14(c), 5.14(d). We can observe that we are able to detect multiple set

of symmetric regions in different scales. Note that the set of regions corresponding to

4 × 4 submatrix given by 122, 125 is detected even though it belongs to the noisy regions

outside the molecule because of its large size. Since the method prioritizes larger regions,

the submatrix occurs at the bottom right.

A volume rendering of EMDB 1897 is shown in Figure 5.15(a). The distance matrix DM is

shown in Figure 5.15(b). We observe that the symmetric regions do not appear as subma-

trices. It is difficult to visually inspect the matrix and detect the submatrices (unlike EMDB

1654). Matrix reordering techniques (leaf-reordering [9]) are applied on the DM to obtain

the matrix shown in Figure 5.15(c). After reordering, we observe that the symmetric regions

appear together. The highlighted submatrices correspond to a set of symmetric regions in

the data. For clarity, we have shown the submatrices and the corresponding set of regions

in Figure 5.16. We observe multiple sets of symmetric regions at different length scales.
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(a) DM 124 (b) DM 97

(c) volume 97 (d) volume 124 (e) volume 129

(f) volume 139 (g) volume 143

Figure 5.11: Highlighted submatrices from Figure 5.10 and corresponding regions. (d)-(g) Re-
gions corresponding to submatrices highlighted in (a). (c) Region corresponding to subma-
trix shown in (b)
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(a) DM 10 (b) volume 10 (c) DM 18 (d) volume 18

(e) DM 22 (f) volume 22 (g) DM 44 (h) volume 44

(i) DM 56 (j) volume 56 (k) DM 77 (l) volume 77

Figure 5.12: Smaller regions of the Rubisco RbcL8-RbcX2-8 complex (EMDB-1654) correspond-
ing to the highlighted submatrices.
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(a) Volume rendering of EMDB 1603

       
(b) Distance Matrix DM with highlighted sub-
matrices 1 and 2

Figure 5.13: lmted values in the DM are shown using a blue-red colormap (0 0.1)

Comparison with previous methods. Thomas and Natarajan [124] process the branch de-

composition of contour trees by building feature descriptors, and use them to identify

similar subtrees. The main limitation of this approach to symmetry detection is that it is

based exclusively on the structure and may fail when symmetric regions do not manifest as

repeating subtrees. For example, if the field is noisy, subtrees corresponding to noise have

high persistence, or when the field has large flat regions. Their proposed hierarchy descrip-

tor and similarity measure is a good estimate but not as accurate as examining the complete

hierarchy. It also ignores the geometry of repeating regions leading to regions with dif-

ferent geometry grouped together and regions with similar geometry grouped differently.

We use grid points mapped to subtrees, as an easy-to-compute substitute for geometric

information. This also helps us to find symmetry in multiple scales. We use merge trees

instead of contour trees and avoid computation of extremum graphs, geodesic distances,

or contour shape descriptors in contrast to previous methods [125, 126]. lmted computa-

tion is costly compared to the hierarchy descriptor based comparison [124]. We observe

results similar to previous methods based on explicit geometric shape descriptors [126], but

a theoretical guarantee requires further study.
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(a) Submatrix 1 (b) Submatrix 2

(c) regions 74 . . . 82 and
85 . . . 93

(d) regions 113 . . . 121 and
122 . . . 125

Figure 5.14: Regions and the highlighted submatrices. Each of the submatrices highlighted
in Figure (a) and (b) with the corresponding sets of symmetric regions (c), (d). In (c) two
representative regions are shown in dark blue and dark green respectively along with re-
gions which are symmetric to these two colored with lighter shade of blue and green. In
(d) two representative regions are shown in dark green and red respectively along with
regions which are symmetric to these two colored with lighter shade of green and orange.
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(a) Volume rendering of EMDB 1897 (b) Distance Matrix DM

(c) Reordered Distance Matrix DM with
highlighted submatrices 1 and 2

Figure 5.15: lmted values in the DM are shown using a blue-red colormap (0 0.2)
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(a) Submatrix 1 (b) Submatrix 2

(c) regions 80 . . . 84 (d) regions 82 . . . 85

(e) regions 52 . . . 72 and
67 . . . 68

(f) regions 73 . . . 77 and
75 . . . 79

Figure 5.16: Regions and the highlighted submatrices. Figure (a) and (b) are zoomed in ver-
sions of the submatrices 1 and 2 highlighted in 5.15(c). Each of the submatrices highlighted
in Figure (a) and (b) with the corresponding sets of symmetric regions (c), (d), (e), (f). In (c),
(d) a representative region is colored in red and the symmetric regions colored in yellow.
In (e), (f) two representative regions are shown in red and blue respectively along with
region symmetric as yellow and grey.
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5.4.3 Analysis of subsampling, smoothing, and topology based compres-

sion

We analyse the effects of subsampling, smoothing and topology based compression [115].

While subsampling and smoothing is applied uniformly across the domain, the effects of

compression vary in different parts of the domain. We showcase how lmted can be used

to analyse these effects meaningfully.

Effects of subsampling and smoothing. Topology changes due to subsampling and smooth-

ing are not thoroughly quantified. While previous work does present some analysis based

on the mted, it is global and not capable of providing fine-grained analysis or explain the

non-monotonic variation in many cases. We present a fine-grained analysis using lmted on

a scalar field denoted as f2 [120, Section 5.4] and we use the images of the scalar fields and

the DMs from [120, Figure 14] in Figure 5.17 to illustrate the benefits.

The non-monotonic variation of the distance along a row / column can be due to multi-

ple factors. While the subsampling and smoothing affects the number of critical points, and

therefore affects the distance, it is not the only deciding factor. The distance is also affected

by (a) type of critical points inserted / removed, (b) their function values, and (c) changes in

persistence and pairing. We construct the DMs of the mted and lmted for the subsampled

functions. To highlight the utility of lmted, we pick the non-monotonic entries indexed

(3, 4), (3, 5), (3, 6) from Figure 5.17(d). The trees are |T3| = 62, |T4| = 66, |T5| = 62, |T6| = 66.

We observe that |T3| = |T5| but Dc(T3, T5) > Dc(T3, T4) and Dc(T3, T5) > Dc(T3, T6) even

though |T3| (= |T4|, |T3| (= |T6|. Thus, size cannot explain the non-monotonicity. Also, we
notice that T3 and T5 are structurally similar, all edits are relabels and there is negligible

difference in the function values of the critical points too. The DMs (Figures 5.18(a),5.18(b))

show small changes in the pattern, but the values are similar. The bottom-right portions

of the DMs along with the values are shown in Figures 5.18(c), and 5.18(d). The diagonal

entries in left portion of Figure 5.18(c) related to (3, 4) shows a gradual increase, while in

case of Figure 5.18(d) related to (3, 5) we observe an upward spike in the last entry. The

corresponding entries for mted in both cases change gradually, even though for (3, 5) the

increase is higher. lmted uses truncated persistence for all subtrees and effect of change in

persistence pairings is seen only in the global comparison, causing a jump. So, the change

in distance means that the subsampling has caused a change in persistence pairing when

we go from resolution 4 to 5 and 5 to 6 but no such change when we go from 3 to 4.

Observation of the pairings confirms this. We also saw that the pairing changes in 4 to 5
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(a) scalar func-
tion f2

(b) subsampled
f2

(c) smoothened
f2

(d) DM for f2, original
and subsampled

(e) DM for f2, original
and smoothened

Figure 5.17: Measuring the effect of subsampling and smoothing (Images sourced from Fig-
ure 14 from [120, Section 5.4]). (a) A synthetic function f2 sampled over a 300 × 300 grid.
(b) f2 subsampled down to a 30× 30 grid over 9 iterations. (c) f2 smoothed in 9 iterations.
(d) DM showing distance between all pairs of subsampled datasets. (e) DMs showing dis-
tances between all pairs of smoothed functions. Row and column indices correspond to
the iteration number, 1 corresponds to the lowest resolution/extreme smoothing, 10 corre-
sponds to the original. We again use a blue-red colormap (low high). The scales on
colormaps for (h) and (k) are different
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(a) lmted DM for sub-
tree pair (T3, T4), size
62× 66

(b) lmted DM for sub-
tree pair (T3, T5), size
62× 62

(c) Zoomed DM for (T3, T4) (d) Zoomed DM
for (T3, T5)

Figure 5.18: Measuring the effect of subsampling using lmted. We use a blue-red colormap
for the distances (0 0.1). Entries that are discarded due to the refinement are marked
with 1.000.

was reversed from 5 to 6, thus resulting in a lower value in the entry (3, 6).

Fine-grained analysing using lmted. lmted can be used in conjunction with mted to

quantify the changes caused by subsampling (or smoothing). This is achieved by computing

mted across all resolutions and checking if the variation is monotonic. If yes, then the

subsampling is likely to have caused changes only in terms of (a) the number of critical

points, (b) the function values of the critical points, and (c) persistence of critical points. If

the variation is non-monotonic with a jump in the last entries of corresponding lmted, then

irrespective of other factors, there are changes in persistence pairing resulting in changed

matching costs and large changes in distance. Due to the use of truncated persistence in

lmted, we can detect such changes as jumps in distances. While both mted and lmtedmay

be unstable, we observe in practice that they are more discriminative than bottleneck and

Wasserstein distances.

Effect of topologically controlled lossy compression. Soler et al. [115] describe a method

to compress scalar fields that guarantees topology preservation. The method ensures that
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Figure 5.19: Topological effects of compression. Yellow stars in the DM for the subtree pair
T0.5, T1 correspond to regions that remain unchanged. Distances in the DM are shown using
a blue-red colormap (0 0.4).

98



the bottleneck distance between the persistence diagrams of the compressed and uncom-

pressed field is less than a user specified threshold. Naturally, the method does not consider

spatial or hierarchical structure since it is restricted to the persistence diagrams. We present

here a fine-grained analysis of the effects of compression using lmted. Soler et al. employ a

topological compression followed by zfp. In our experiments, we use only the former. We

begin by computing merge trees for both the compressed (Tc) and uncompressed data (Tu).

Since the two scalar fields are defined over a common domain, we select pairs of subtrees

of Tc and Tu that correspond to the same region in the domain and order them based on

region size. We compute lmted between these subtree pairs and note that as we move up

the tree hierarchy, the distance remains 0.0 for some pairs. The largest among the pairs

represent regions that remain unchanged post compression. Other lmted values follow

a staircase pattern, staying level for a few pairs followed by a jump in value. The jump

indicates that compression has caused a change in the corresponding subtree. Thus we

may identify and isolate regions where compression has no effect in terms of the function

value followed by regions that are affected, and traversing the hierarchy of the merge tree

lends itself to a multi-scale analysis of the effects of topological compression.

We show results of our analysis applied on AMP-Activated Protein Kinase (EMDB-1897).

We apply topological compression using compression thresholds 0.5%, 1%, 2%, and compute

merge trees T0.5, T1, T2 using TTK [128]. To reduce the tree sizes in the experiment, we

consider T0.5 as the baseline uncompressed data. We choose regions with 100% overlap and

compute lmted. In Figure 5.20, we highlight region(s) that remain unchanged for various

thresholds of compression at multiple scales together with a region that is affected due to

compression. Figure 5.19 shows the DM for the subtree pair T0.5, T1, highlighting unchanged

regions by a yellow star. We notice that 19 regions remain unchanged between T0.5 and T1,

and 3 regions remain unchanged between T0.5 and T2. A threshold on lmted may be used

to highlight regions that are either affected or remain unaffected for various compression

thresholds.

5.4.4 Spatio-temporal exploration and feature tracking

We demonstrate an application of lmted to time-varying scalar fields, in particular for

identifying and tracking features across time. We consider two scenarios – identify and

track all features to provide an overview and an interactive query-driven mode for feature

tracking.

In order to identify and track all interesting topological features, we begin by comput-

ing a sequence of lmted DMs between consecutive timesteps. We apply the refinements
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Figure 5.20: CryoEM image of AMP-Activated Protein Kinase (EMDB-1897) using different
compression thresholds - 0.5%, 1%, and 2%. The region in red is the largest region that
remains unaffected, the region in light red is the largest region that remains unaffected for
compression threshold of 1%, and orange corresponds to 2%. Regions in shades of green are
symmetric to the regions in light red and orange but are affected by the compression. The
regions in shades of blue are also affected by compression. The entire protein is rendered
grey and transparent for context.

Figure 5.21: Visualizing the top k tracks in the 3D von Kármán vortex street data. The tracks
are generated based on lmted and spatial overlaps, and sorted based on the weights of the
tracks. The top tracks capture the temporal evolution of a set of primary and secondary
vortices.
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(a) Query, a pri-
mary and a sec-
ondary vortex

(f) Symmetric vor-
tices

Figure 5.22: Tracking query regions in the 3D von Kármán vortex street data. A query
containing a primary (green) and secondary (red) vortex in time step 399 is selected (a).
lmted is used to compute regions (light green and orange) in the same symmetry class as
the query (f). All regions in the symmetry class are tracked backward in time (Top row),
and forward in time (Bottom row).

described in Section 5.3.5 and compute spatial overlaps between regions that correspond

to the reduced set of subtree pairs. We construct a track graph whose nodes represent

each region and insert an edge between two nodes in consecutive timesteps if there is

a significant overlap between the corresponding regions. Long paths in the track graph

correspond to long-lived features. We visualize all long-lived features and their evolution

over time including birth, death, split, and merge events. The individual tracks are also

used as a starting point for further analysis. An alternative approach is to allow the user

to specify one or many features within a particular timestep. We compute regions that are

symmetric to the given feature, compute tracks for each of these regions, and visualize the

tracks.

We demonstrate both scenarios using a 3D Bénard-von Kármán vortex street dataset.

The Okubo-Weiss criterion, indicative of high vorticity regions, is sampled on a regular

grid [101]. The scalar field is available on 192× 64× 48 grid with 508 timesteps. We compute

merge trees for all timesteps and simplify them using a small persistence threshold of

0.8% to remove noise. We compute lmted on the simplified merge trees after applying the

appropriate refinement steps mentioned in Section 5.3.5. The weight of an edge in the track

graph is set equal to the spatial overlap (volume of overlap normalized by the volume of

union) between the corresponding regions. Overlaps below a 2% threshold are considered
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negligible and not included into the track graph.

We process the track graph to enumerate top tracks ordered by either the length of

the track or the sum of weights (high to low). Further, short tracks (length < 10) and

tracks whose sum of weights is low (< 3.0) are removed from consideration. We observe

that the first track is a thin region close to the cylinder obstruction, which remains almost

stationary. Other tracks that appear at the top of the list include the primary and secondary

vortices as identified by [101], see Figure 5.21. These vortices are represented as isosurfaces

(isovalue 0.1).

In the second scenario, we use a primary and secondary vortex from time step 399 as

a query feature, see Figure 5.22. First, we compute symmetric regions within the same

time step in order to highlight other primary and secondary vortices. Next, we compute

tracks that contain the query regions and visualize them. We observe that in the first step

lmted can discriminate between the primary and secondary vortices and, next, it helps

efficiently track the features (vortices) over time. This demonstrates the utility of lmted in

the exploration of time-varying data.

There are a few exceptional situations where lmted is unable to discriminate between

primary and secondary vortices. This happens when, say, the chosen vortex is a secondary

vortex, corresponds to a leaf node in the merge tree, and matches with a leaf node that

corresponds to a primary vortex. Further spatial overlap tests are necessary to identify

that the two regions do not correspond to each other. To summarize, lmted supports

the generation of a good overview visualization and serves as a starting point for feature

detection and tracking. Subsequent interaction and visualization tasks are often necessary

and these tasks may closely depend on application specific requirements.

5.5 Summary
We described a local comparison measure (lmted) between two scalar fields by comparing

subtrees of their merge trees. The comparison measure supports local and fine-grained

analysis and visualization of similarities and differences between two scalar fields. The

measure satisfies metric properties and can be efficiently computed. We demonstrate its

practical utility via applications to feature tracking, study of topology controlled compres-

sion, and symmetry identification.
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Chapter 6

Comparing extremum graphs (pdeg) and

(gweg)

In this chapter [118] we describe comparison measures for a different topological structure

called the extremum graph.

6.1 Introduction
Most of the comparative measures cater to set-based or graph-based structures as ob-

served by Yan et.al [141] and very few have been defined for complex-based structures like

Morse/Morse-Smale complex or its substructure, the extremum graph. While structures like

persistence diagrams, merge trees and Reeb graphs capture the topology very well, they

don’t capture the geometry and all these structures need explicit augmentation in case

geometry is required. On the other hand Morse/Morse-Smale complexes and extremum

graphs, to some extent, capture both these aspects well and as topological descriptors they

provide a holistic picture of the scalar field. The extra geometric information is crucial in

many applications.

Many studies from physics (exploration of cosmic filaments [113]), biology (electron tran-

sition studies [77]), chemistry (exploration of molecular systems [12] or combustion stud-

ies [16]), material sciences (capturing pore networks [57], interstitial geometry extraction [59],

study of ion diffusion in AIMD simulations [60], study of granular materials [90]), either nat-

urally give rise to complex based structures or can be analyzed better using such complex

based structures and comparison measures designed specifically for such structures would

be beneficial in such scenarios.

One important reason for lack of many comparison measures for complex-based struc-
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tures is their sensitivity to noise. Because they depend on the gradient field, small variations

in the scalar function results in drastic changes in the structure.

6.2 Contributions and challenges
We describe the contributions and challenges in this section.

6.2.1 Contributions

In this chapter we propose two ways to facilitate comparison of scalar fields via their ex-

tremum graphs, Gromov-Wasserstein distance (gweg) and persistence distortion distance

between extremum graphs (pdeg). The measures are adaptations of Gromov-Wasserstein

distance defined by Memoli [81] and the persistence distortion distance for metric graphs

(pdmg) defined by Dey et.al [34] to extremum graphs. We make the following key contribu-

tions:

1. Two comparison measures gweg and pdeg between extremum graphs.

2. Choice of suitable underlying metric and its relevance to facilitate the two measures.

3. Theoretical properties.

4. Experimental comparison of the two measures with emphasis on ease of interpreta-

tion.

5. Experiments to demonstrate the practical value of the measures using various appli-

cations.

6.2.2 Challenges

We discuss various challenges in adapting dPD and dGW extremum graphs and their so-

lutions. Firstly, we discuss the common challenges which are to be addressed for both

measures then we move to the specific ones.

6.2.2.1 Common challenges

Choice of the extremum graph: Extremum graph can be defined and computed in multiple

ways. It can be defined as a sub-structure of the Morse-Smale complex and thus computed

by first computing the Morse-Smale complex followed by extraction of the graph. Further

the Morse-Smale complex can be discrete ([98]) too. It can also be defined directly using

just the maxima and n − 1-saddles and their connectivity and computed likewise. There
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(a) Scalar field f

(b) Extremum graph of f

(c) Extremum graph without single-degree saddles

(d) Extremum graph after edge bundling and bypassing all saddles.

Figure 6.1: Available extremum graph alternatives. (a) Scalar field f showing 3rd time-step
of the 2D vortex street. (b) Extremum graph of f embedded in the domain with all possible
connections. (c) Extremum graph of f with single degree saddle removed. (d) Saddles are
known to be unstable compared to the maxima, so all the saddles can be bypassed and
discarded so that only the maxima remain in the base point set for computation of pdeg.

can be many single degree n − 1-saddles (Figure 6.1(b)), also between two maxima there

can be multiple n − 1-saddles (Figure 6.1(c)). All these saddles can be retained as it is or

except the saddle with the highest function value, rest can be removed (by edge bundling)

to avoid multiple paths. If we retain only one saddle between two maxima which has the

highest function value, it will lead to destruction of cycles of length 4 since such cycles will

be reduced to a path of length 2. Such cycles occur at high activity regions and may be

important based on the application. They don’t affect gweg much since it depends mainly

on the all pairs shortest path (APSP) distances, but it has a substantial effect on pdeg since

it considers both 0-th and extended persistence diagrams. This leads to two variants, one

where only one saddle is retained and 0-th persistence diagram is considered (for gweg)

and the other where all such saddle except single degree saddles are retained and both

persistence diagrams are considered (for pdeg).

Choice of the metric: The extremum graph if considered with just the location of the nodes,

comes with the usual metric, i.e. the euclidean distance dE . If the graph is embedded in

the domain it comes with the geodesic distance dGD since it captures some geometry of
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the scalar field. These two might seem like the obvious choice, but these metrics while

capturing the connectivity of the graph, if used alone, fail to capture the properties of the

scalar function since they don’t consider the function values at the critical points. Other

options include, the function metric df defined by Bauer et.al [7], a variation d′f modified

function metric where we add the intervals instead of taking a single interval, and then

take minimum over all paths, or a combination of one of these. Wherever the scalar fields

are to be directly compared, the function values are relevant, the function metric df or

its variation d′f can be used. If the scalar field is constructed to be a substitute to derive

connectivity, then dE or dGD is a better choice. While there is no rigorous justification, we

make the case for these choices experimentally in further sections.

6.2.2.2 Challenges specific to persistence distortion distance

Choice of dPD version: There are two version of dPD , continuous and discrete. The contin-

uous version considers all points (including the points internal to the arcs) as base points,

the discrete version considers only the nodes of the graph as base points. If m denotes

the total number of nodes and arcs of the graph and n denotes the number of nodes, the

running time of continuous dPD is given by O(m12 logm) and the running time of discrete

dPD is given by O(n2m1.5 logm). For an extremum graph, the node set consisting of the

maxima and n − 1-saddles are more meaningful compared to the regular points. Also, the

running time of continuous dPD though polynomial is prohibitively expensive to be useful

in scenarios which need interactive visualization. Due to these two reasons, we choose the

discrete version.

Choice of base points: The saddles in general are known to be unstable (Figure 6.1(d))

compared to the maxima, so we restrict the base points to be just the maxima of the

extremum graph. This also speeds up the running time in practice.

6.2.2.3 Challenges specific to Gromov-Wasserstein distance

Choice of weight matrix W , probability distribution p and loss function L : The weight

matrixW has entries for a pair of nodes i, j computed as the all-pairs shortest path distance

using the appropriate metric. We use uniform distribution as it has been used in many

applications before. Since we retain only the extrema we want to emphasize all those

extrema equally, thus opting for a uniform distribution. We use quadratic loss function as

defined in Section 3.6.3.

With these challenges addressed, we proceed to define pdeg and gweg as follows.
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(a) Original graph (b) Computing pdeg as Hausdorff distance between sets of persis-
tence diagrams

(c) Base point a (d) Persistence dia-
gram for a

(e) Base point b (f) Persistence dia-
gram for b

Figure 6.2: Computing pdeg. Figure (a) shows the extremum graph, (c), (e) show different
choice of base points, (d), (f) show corresponding persistence diagrams and (b) illustrates
two such sets built in the same way, computation of Hausdorff distance between them.

6.3 The persistence distortion (pdeg) and Gromov-Wasserstein

(gweg) distances for extremum graphs
Given two metric extremum graphs G1 = (G1, dG1) and G2 = (G2, dG2) where G1 = (V1, E1)

and G2 = (V2, E2) are extremum graphs and dGi is one of the metrics discussed in Sec-

tion 6.2.2.1. Let M1,M2 be the maxima sets of G1, G2.

Consider a point s ∈ G as a base point. For any point x ∈ G, we can use the distance

from s, f(x) = dG(s, x), to construct the 0, 1-dimensional persistence diagrams D0f ,D1f .

Consider base points s ∈ M1, dG1,s : G1 −→ R and t ∈ M2, dG2,t : G2 −→ R and
corresponding persistence diagrams as Ps and Qt. Map the metric graphs G1 and G2 to
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Figure 6.3: Illustrating computation of gweg. W1(i, k) and W2(j, l) comes from the APSP
entries, p1, p2 are probability distribution supported by the nodes of the graphs. Ci,j and
Ck,l comes from the coupling matrix π.

the set of (infinite number of) points in the space of persistence diagrams D given by
C := {Ps|s ∈M1} and F := {Qt|t ∈M2}.
Definition pdeg: The persistence-distortion distance between two metric extremum graphs

G1 and G2 , denoted by dPDE(G1,G2), is the Hausdorff distance dH(C,F) between the two

sets C and F where the distance between two persistence diagrams is measured by the

bottleneck distance.

dPDE(G1,G2) = dH(C,F) = max{max
P∈C
min
Q∈F

dB(P,Q),max
Q∈F
min
P∈C

dB(P,Q)}. (6.1)

Figure 6.2 illustrates how pdeg can be computed.

Similarly, given twometric extremum graphs of the formG1(V1,W1, p1) andG2(V2,W2, p2)

with function metrics df , dg respectively, where W1,W2 are the matrices containing the

APSP entries for df , dg and p1, p2 are uniform distributions,

Definition gweg: The Gromov-Wasserstein distance between two metric extremum graphs

G1 and G2, denoted by dGWE(G1, G2), is

dGWE(G1, G2) =
1

2
min
C∈C

∑

i,k∈[n1],j,l∈[n2]

|W1(i, k)−W2(j, l)|2Ci,jCk,l (6.2)

where [n1], [n2] are index sets corresponding to G1, G2, |V1| = n1, |V2| = n2. Ci,j and Ck,l

comes from the coupling matrix π. Figure 6.3 illustrates how gweg can be computed.

6.3.1 Properties

We discuss the properties of both pdeg and gweg in this section.
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6.3.1.1 Properties of pdeg

Stability: Dey et.al. [34, Theorem 3] prove that persistence distortion distance is stable w.r.t

the Gromov-Hausdorff distance.

dPD(G1,G2) ≤ 6dGH(G1,G2) (6.3)

This proof considers the fact that the two graphs are metric graphs and Gromov-

Hausdorff quantifies the metric distortion of any pair of metric spaces.

In the present situation, the extremum graphs are metric graphs, but they are highly

sensitive to the changes in the scalar function. So this proof cannot be extended to construct

a proof similar to stability of the bottleneck distance where the distance is always bounded

by the infinity norm of the two scalar functions. We conjecture that there are scalar fields

where small changes lead to a drastic change in the connectivity of the extremum graphs

leading to high metric distortion. But as long as the extremum graphs are stable, pdeg

would also be stable. This is not always true but it is a valid assumption in cases like time-

varying scalar field where the extremum graphs may not change drastically between two

time-steps.

Discrimination: pdeg is more discriminative than the bottleneck distance, since it considers

the extremum graph as the underlying topological structure and depends on an optimiza-

tion involving many persistence diagrams computed from the base points instead of the

original function.

6.3.1.2 Properties of gweg

Stability: The original Gromov-Wasserstein dGW distance will be lower bounded by the

Gromov-Hausdorff distance dGH since dGW satisfies additional constraints. While Mémoli [81]

proves that shape signatures/invariants are quantitatively stable under dGW the same can-

not be directly assumed in case of extremum graphs. We again conjecture that given the

sensitive nature of the extremum graph w.r.t perturbations in the original scalar fields, sta-

bility w.r.t to the fields may not be possible. But if the graphs are stable, like pdeg the gweg

would also be stable.

Discrimination: Since dGW is lower bounded by dGH , in theory, gweg should be more

discriminative compared to pdeg (within the constant multiplicative factor of 6 due to Dey

et.al. [34, Theorem 3]) assuming the graphs are stable. But in practice we need to explore

the possibility by ensuring stable extremum graphs.
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6.3.2 Algorithm and computation

We discuss the preprocessing steps and algorithm used to compute both the distances.

6.3.2.1 Computation of pdeg

Preprocessing: We list the preprocessing steps along with justification.

• The implementation provided by Dey et.al [34] is specific to meshes which arise in

shape matching application and hence they sub-sample the mesh to reduce computa-

tion. In case of extremum graphs which are typically small compared to such meshes

the sub-sampling can be skipped.

• They consider the edge weights of the mesh edges using euclidean distance which

is appropriate for shapes. In case of extremum graphs different metrics are required

based on application such as df and so on.

• In case of df , there can be nodes which have the same distance w.r.t a base point,

the simple version of simulation of simplicity used by Dey et.al [34] to break ties lead

to contour tree instead of split tree. Since the computation is dependent only on

persistence diagrams, this is not a huge problem, but we order nodes to consistently

construct split trees.

• We remove single-degree saddles, since they occur mostly on the boundaries of the

data and are not important.

• We do edge-bundling depending on the application, in that case we add one more

step to store cycles of length 4 which would be eliminated due to edge bundling so

that extended persistence diagrams are calculated correctly.

Algorithm: After these initial steps, computation of pdeg follows the same algorithm given

by Dey et.al [34] and has the same analysis in terms of running time O(n2m1.5 logm).

6.3.2.2 Computation of gweg

In contrast with the extensive preprocessing required for pdeg, the computation of gweg

only depends on the APSP matrix (W ) and a set of probabilities (p) corresponding to the

nodes of the extremum graph. Once the APSP matrix is constructed. In general gweg is

NP-Hard, but many heuristics have been proposed with run time complexity of O(n3). We

compute gweg using the implementation provided by the python optimal transport (POT)

library [48].
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6.3.3 Discussion

There are some crucial differences between the two comparison measures. Understanding

will help in choosing the appropriate measure based on the requirement of the particular

application.

Correspondences: pdeg is based on Hausdorff distance between a set of points which are

persistence diagrams themselves where the individual distance is measured by bottleneck

distances. So we finally get the distance as the “weight” of one edge and since Hausdorff

distance does not provide one to one correspondences between the sets, this would even-

tually mean that it also does not provide such correspondences between the nodes of the

graph. Even when the Hausdorff distance is replaced by other distances which provide

correspondences, we still get them for a partial set of nodes which represent the features

of the base point function, many of the nodes of the extremum graph may become “reg-

ular” points for base point functions. From Figures 6.4(a),6.4(b) we see that nodes labelled

1, 2, 3, 5, 6, 7 and so on become “regular” points w.r.t base point function from the node 0.

gweg on the other hand provides a coupling which optimizes the distance, which has

correspondences but the correspondences between the nodes are probabilistic or “soft”, i.e.

there can be multiple nodes mapped to one and vice versa. This is sometimes desirable

when the application involved requires such one-to-many or many-to-one mappings but

not in cases where the mapping needs to be bijective. In case a one-to-one mapping is

needed, the node with highest probability can be chosen.

Transparency: The computation of pdeg is straightforward and with an embedding of the

graph as per the chosen metric, changes in the distance can be traced back to particular

changes in the graph with some effort. This can also be inferred from the stability of pdeg

w.r.t Gromov-Hausdorff distance which measures to what extent two metric spaces differ.

This gives the user a better understanding of the distance.

gweg on the other hand is oblivious to the structure of the graph as it works on an

APSP matrix, so it is difficult to infer how changes in the graph affects the distance without

substantial knowledge of the internals, also gweg solves an optimization problem using

Sinkhorn iterations [93]. That also mandates understanding of the internal working of the

optimization to interpret the distance.

6.4 Applications
In this section we provide illustrative examples to understand and interpret both pdeg,gweg

and showcase their utility in applications like periodicity detection.
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(a) Time step 0 (b) Base point 0

(c) Time step 8 (d) Base point 0

(e) Persistence diagram

Figure 6.4: Understanding pdeg. Figures (a),(c) represent labeled extremum graphs for time
steps 0, 8, the area where vortices are formed is zoomed in to avoid clutter. Figures (b),(d)
represents the graphs w.r.t the base point 0. Figure (e) represents the persistence diagrams
(blue points for 0, red points for 8). The points inside black ellipses have negligible distances,
while points inside the red ellipses are unmatched.
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6.4.1 Understanding the comparison measures

We illustrate the comparison measures pdeg and gweg by considering a pair of time steps

from the 2D von Kármán vortex street data set. Specifically we pick the time steps given

by 0 and 8, with ε = 0% from the graphs in Figure 6.8 we observe that

dPDE(0, 8) = 0.36791

dGWE(0, 8) = 0.00061

We analyse both the measures to explain how the computation happens and why there

might be such a discrepancy.

Figures 6.4(a) and 6.4(c) show the extremum graphs constructed for two time steps 0, 8.

The single degree saddles have been removed, edge bundling has been applied, cycles of

length 4 which have been eliminated by edge bundling have been stored separately, and

saddles have been bypassed while taking their contribution into account. We use df as the

metric.

Figures 6.4(b) and 6.4(d) show the graphs reoriented w.r.t the base point labelled 0 and

with nodes contributing to 0-th and extended persistence diagrams labelled. This is the

base point for both the time steps which gives the pdeg and hence this is considered for

our analysis.

Figure 6.4(e) shows the persistence diagrams of both time steps 0, 8 overlapped. We

represent the diagram for time step 0 with blue rhombuses and the diagram for time step

8with red triangles. We highlight two sets of points using black and red ellipses. The points

in the black ellipses are close to each other and their contribution to the bottleneck distance

will be negligible. The points in the red ellipses are unmatched. In the case highlighted

with ×2, there are two red points but only one blue point. The persistence of these three
points add up resulting in a high pdeg.

By constructing the graphs with respect to base points and analysing the persistence

diagrams, we can explain the results of pdeg.

Figure 6.5(a) shows the all pairs shortest path (APSP) matrices for time steps 0, 8. We

observe that while there is some difference around the row/column 16, the matrices mostly

look the same. By computing APSP we tend to ignore the cycles which results in a low

distance in case of gweg. pdeg without the extended persistence diagram which captures

the 1-cycles is also low (0.02479) confirming this. Figure 6.5(b) shows the coupling matrix

which provides the optimal coupling. As mentioned before the “mapping” is probabilistic,
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(a) All pairs shortest path matrices for time steps 0, 8

(b) gweg mapping for 0, 8

Figure 6.5: Understanding gweg. The similarity in the APSP matrices show that some
information is lost especially related to the cycles which leads to low gweg value.
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(a) gweg DM for ε = 0% (b) gweg DM for ε = 1%

Figure 6.6: Distance matrices for gweg for two simplification thresholds 0%, 1% We show
the matrix for time steps 0− 380

higher probability value implies “strong” mapping.

In general gwegmay not be amenable to easy interpretation, since there are cases where

despite the matrices being dissimilar, gweg may still be low. We explore this aspect in the

future.

6.4.2 Periodicity detection

Earlier studies of the 2D von Kármán vortex street dataset like Sridharamurthy et.al. [119, 120]

and Narayanan et al. [88] have successfully identified periodicity in the dataset. They detect

both a half period of 38 and the full period of 75. We also repeat the same experiment to

showcase the utility of both pdeg and gweg. Towards this, we construct extremum graphs

for all the time steps, compare the extremum graph of time step 0 with the remaining 1000

time steps of the dataset. We show the plots for both pdeg and gweg for 500 steps, the

rest of the graph is similar and we restrict it to 500 to avoid clutter. Each graphs contains

approximately 40 nodes since only maxima are considered. From the top plot in Figure 4.10

we see that gweg detects both the periods successfully irrespective of the simplification

threshold, but we see that the distance increase with the threshold. We also show the

distance matrices for two simplification thresholds 0%, 1% for gweg in Figure 6.6. Note

that while the distances for 1% might be higher the variation is smoother compared to the

0% as can be seen from Figures 6.6(a), 6.6(b). We also show the distance matrix of pdeg for
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Figure 6.7: Distance matrices for pdeg for simplification threshold 1% We show the matrix
for time steps 0− 250

the simplification threshold of 1% in Figure 6.7. In case of the rows 2, 3 in Figure 6.8 we

see that while pdeg detects both half and full periods with simplification threshold 1% in

case of 0% when the extended persistence diagram is used, it fails to detect the half period.

We also observe that the graphs have a lot of spikes, and the two graphs representing only

extended persistence and combination of 0 and extended persistence coincide.

These anomalies are due to the following reasons. Extremum graph is not as stable as

merge trees/contour trees and small changes in the function value might add new features

which may even have high persistence values in the sense of extended persistence. Also the

base point function results in split trees which are simple and have features which have

small persistence resulting in low bottleneck distances for the 0 persistence diagrams caus-

ing the extended persistence to dominate the bottleneck distances. These factors combine

resulting in spiky behaviour and also the missing of the half period. In other words while

pdeg is stable with respect to changes in the graph, it is not stable with respect to changes

in the scalar function.

6.4.3 Comparing pore networks

Comparing pore networks in materials is an extremely important problem. Such com-

parison helps in designing new materials via computation and study its properties before

actual physical design. It is crucial to find structures in such hypothetical materials de-

signed computationally which are similar to well-known structures with desirable physical

properties.

Lee et.al. [69] study similarity between pore structures in nanoporous materials. They
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Figure 6.8: Comparing distance measures on the von Kármán vortex street dataset.
(top) Plot of gweg distance measures between the first time step and others for simpli-
fication threshold values of 0%, 1%. (rows 2-3) show pdeg for simplification threshold
values of 0%, 1% with pdeg computed using both 0 and extended persistence diagrams,
using only 0-persistence diagram and using only extended persistence diagram. Note that
in row 1 the scale is an order of magnitude less.
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use zeolite structures from IZA1, hypothetical PCOD database2 containing around 3000000

zeolites and CoRE-MOF database3. Typically the materials are represented by a unit cell

which forms the foundation block which can be repeated in 3D to build the actual ma-

terial. Since these cells vary in size depending on the material, to make the comparison

meaningful, they first build super cells from the unit cells so that all the cells are roughly

of the same size. Then they use persistence landscape distance [19] to compare their persis-

tence barcodes which are built by using VR-complexes of the pore surfaces corresponding

to particular probe molecules.

We start from constructing the super cells in similar fashion. Then we construct dis-

tance fields for these structures using Zeo++ (by Martin et.al [74]) and compute extremum

graphs which gives the structure of the pore network. In this case we choose to construct

minimum graphs since they capture features that are similar to those captured by the VR-

complexes in contrast to the maximum graphs we use in periodicity detection. Since we

want to capture the prominent cycles which are captured by the VR-complex, we use a high

persistence threshold of around 20% to eliminate many of the smaller cycles. The distance

field serves as a placeholder to aid the computation of the pores but in contrast to the

2D and 3D vortex street, the distance field has no meaningful physical interpretation when

it comes to the properties of the pore. So instead of the function metric df we choose

euclidean distance as the metric in this experiment. Then we compare these structures

using both pdeg and gweg.

We report some preliminary results, we compare a set of materials found to be similar

by Lee et.al. [69] (Figure 3). We construct the minimum graphs of the materials (afupex,

sehsuu, sehtef) as shown in Figure 6.9 and report both pdeg and gweg.

We use euclidean distance and geodesic distance as underlying metrics. The pdeg and

gweg values for euclidean distance are as follows

dPDE(afupex, sehsuu) = 0.104664

dPDE(afupex, sehtef) = 0.119698

dPDE(sehsuu, sehtef) = 0.194006

dGWE(afupex, sehsuu) = 0.017195

1http://www.iza-structure.org/databases/
2https://zenodo.org/record/4030232
3https://zenodo.org/record/3370144
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dGWE(afupex, sehtef) = 0.015988

dGWE(sehsuu, sehtef) = 0.027770

The pdeg and gweg values for geodesic distance are as follows

dPDE(afupex, sehsuu) = 0.118493

dPDE(afupex, sehtef) = 0.120278

dPDE(sehsuu, sehtef) = 0.250497

dGWE(afupex, sehsuu) = 0.032347

dGWE(afupex, sehtef) = 0.017636

dGWE(sehsuu, sehtef) = 0.035498

We observe that in general pdeg is always an order of magnitude greater than gweg as

it is the case in periodicity detection too. While we expect that the distance between these

zeolites to be similar in case of pdeg there is some difference, e.g. dPDE(sehsuu, sehtef) is

alomst two times the distance between the other two pairs in both euclidean and geodesic

distance. One crucial aspect which might be influencing the distance is the persistence

simplification parameter which might have to be different for different data set instead of

20% which we have applied to all. We explore this in the future work.

Comparison with Lee et.al [69]: Lee et.al [69] uses persistence homology where each pore

is represented by a 1-cycle in the VR-complex. While they do not provide the exact distance

values we conjecture the values to be very small. In our case we use minimum graphs, we

assume that to make a fair comparison, we should be able to retain all the 1-cycles which

represent the pores at the persistence threshold which we use. In some cases it may not

be so if we use a high persistence threshold. On the other hand, lower thresholds lead to

graphs with too many nodes and arcs causing many spurious cycles. We explore this too

in future.

6.5 Summary
We introduced two comparison measures pdeg and gweg to compare extremum graphs

to facilitate comparative analysis and visualization of scalar fields. We discuss theoreti-

cal properties and we demonstrate their utility in periodicity detection and similarity de-

tection in pore networks.
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(a) Supercells of afupex, sehsuu, sehtef

(b) Distance fields constructed for afupex, sehsuu, sehtef

(c) Minimum Graphs constructed for afupex, sehsuu, sehtef

Figure 6.9: We construct the supercells followed by the distance fields for three materials
afupex, sehsuu, sehtef followed by minimum graph construction and comparison by pdeg
and gweg

120



Chapter 7

Time Varying Extremum Graphs (tveg)

In this chapter, we present the time-varying extremum graph (tveg), an extension of ex-

tremum graphs to facilitate visual analysis of time-varying scalar fields [31]. We discuss the

construction and showcase its utility in various experiments.

7.1 Introduction
tveg captures temporal events like creation/destruction, merge/split of topological features

that are represented within the extremum graph of the scalar field at individual time steps.

Figure 7.1 shows a time-varying 2D scalar field together with the extremum graph of the

field at each time step. The temporal arcs of the tveg correspond to split, merge, and

continuation of a collection of topological features.

7.2 Contributions
We introduce the time-varying extremum graph (tveg), a topological structure for repre-

senting the combinatorial structure of the Morse decomposition of a scalar field and its

evolution over time. We discuss its applications to feature exploration and tracking. While

tracking is an important application, tveg is not limited to tracking, it is a time-varying

data structure with potential for expansion. Key contributions include

• A definition of a novel topological structure, the time-varying extremum graph (tveg).

• An algorithm for constructing the tveg based on a formulation as an optimization

problem.

• Application to the study of interesting features and topological events in synthetic

and simulation datasets that demonstrate the utility of the topological structure.
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(a) Time-varying field with extremum graphs (b) Temporal arcs of tveg

Figure 7.1: tveg of a 2D time-varying scalar field. (a) Three time steps f1, f2, f3 of a time-
varying scalar field together with the respective extremum graphs G1, G2, G3 embedded on
the domain. Each peak is associated with a unique segment. Maxima are shown in red,
saddles in green. (b) A subset of the temporal arcs of the tveg. Green arcs correspond to a
feature in G1 that splits into two in G2 and continues in G3. The orange arcs correspond
to two features in G1 that continue onto G2 but merge in G3. The grey arcs correspond to
a continuation of a feature from G1 onto G3. The remaining (grey) arcs that correspond to
continuation of features and the saddle critical points are not shown for clarity.

7.3 Time varying extremum graphs tveg
We describe a design of tveg for representing the temporal dynamics of a time-varying

scalar field F. The design aims to capture the temporal dynamics of both individual topo-

logical features and of a cluster of features that lie within a spatial neighborhood. We

require that temporal slices of the tveg at all sampled time steps of F result in an ex-

tremum graph. The node set of the tveg consists of maxima and (n − 1)-saddles of F at

every time step. An arc in the tveg either belongs to an extremum graph of F restricted to

a given time step or is a temporal arc that connects nodes between two consecutive time

steps.

Let Gt(V t, Et) denote the extremum graph of F at a given time step t, 1 ≤ t ≤ T . The tveg

G∗(V ∗, E∗) is a graph that contains all Gt as subgraphs in addition to arcs between nodes

from consecutive time steps. Thus, the node set V ∗ can be expressed as V ∗ =
⋃T

t=1 V
t =

{
⋃T

t=1 M
t,
⋃T

t=1 S
t}. We further distinguish between the maxima and (n − 1)-saddles of

V t, and collect them into sets M t and St, respectively. The arc set E∗ can be expressed as

E∗ = {
⋃T

t=1 E
t,
⋃T−1

t=1 At}, consisting of two types of arcs namely the extremum graph arcsEt

and the temporal arcs At. An arc in Et connects a maximum and a (n−1)-saddle. A temporal
arc in At represents the correspondence between two maxima that lie in extremum graphs

of two consecutive time steps. In other words, an element e ∈ At is a temporal arc such that

e = (mt
i,m

t+1
j ) representing correspondence between maximum mt

i ∈ M t and mt+1
j ∈ M t+1

belonging to extremum graphs at time steps t and t+ 1, respectively.

Figure 7.2 shows a subgraph of a tveg consisting of temporal arcs between time steps t
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Figure 7.2: An illustration of a tveg showing two time steps t and t + 1. Sets {mt
1, . . . ,m

t
5}

and {st1, st2} consists of maxima and (n−1)-saddles from the extremum graph at time step t.
Similarly, sets {mt+1

1 ,mt+1
2 ,mt+1

3 } and {st+1
1 , st+1

2 } are maxima and saddles of the extremum
graph at time step t+1. Arcs of the extremum graph are in blue, temporal arcs are shown as
green dashed edges, and connections to nodes outside the figure are shown as black dashed
edges. We observe that maximamt

2 andm
t
3 do not have a suitable temporal correspondence

and hence die at time step t whereas mt+1
2 is born. Maxima mt

4 and m
t
5 merge into m

t+1
3 .

and t + 1. Note that At does not include temporal arcs between saddles. Maxima exhibit

relatively higher stability over time in terms of spatial movement when compared to sad-

dles. So, we chose to restrict temporal correspondence to those between maxima. The arcs

set At of G∗ can be effectively used to represent the temporal variation in F together with

topological events such as split, merge, generation, and deletion of features. Figure 7.1 illus-

trates how the tveg captures the different events in a 2D time-varying scalar field. Arcs in

Et (light-gray) connect maxima with saddles within a time step. Arcs in At (green, orange,

gray) highlight temporal arcs that capture different topological events.

7.3.1 Temporal correspondences

A temporal arc in At represents the correspondence between a pair of maxima from two

consecutive time steps. We now elaborate upon an optimization criterion that determines

the temporal arcs.

Equation 7.2 describes two correspondences for a maximum mt
i with two maxima m

t+1
j1

and mt+1
j2 from time step t + 1. The scores associated with the two correspondences are

expressed as the smallest and second smallest value of an objective function over all maxima
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mt+1
j ∈ M t+1 subject to some structural constraints (Equation 7.3). We define the arc set

At as the maximum cardinality set of arcs between maxima mt
i in time step t and their

correspondences in time step t+ 1:

max |At|, where

At ⊆
⋃

mt
i∈M t

{(mt
i,m

t+1
j1 ), (mt

i,m
t+1
j2 )} (7.1)

mt+1
j1 = argmin

mt+1
j ∈M t+1

P(mt
i,m

t+1
j ) + J(mt

i,m
t+1
j ) +D(mt

i,m
t+1
j ) +N(mt

i,m
t+1
j )

mt+1
j2 = argmin

mt+1
j ∈M t+1\mt+1

j1

P(mt
i,m

t+1
j ) + J(mt

i,m
t+1
j ) +D(mt

i,m
t+1
j ) +N(mt

i,m
t+1
j )

(7.2)

subject to the constraint that

(mt
k,m

t+1
j1 ) (∈ At and (mt

k,m
t+1
j2 ) (∈ At for all mt

k ∈M t \mt
i

(7.3)

We allow for two correspondences between mt
i and maxima in time step t + 1, thereby

supporting the representation of split events. The framework is designed to support any

number of correspondences per maximum if desired. However, a larger number of corre-

spondences results in increased complexity of the extremum graph and the resulting tveg

tracks, which might be difficult to visualize. Further, the extremum graphs within each

time step are simplified prior to tveg construction, which removes critical point pairs that

are functionally similar and hence reduces the number of potential correspondences.

The objective function for the scores consists of four components – functional persis-

tence of the maxima, function value at maxima, spatial location of the maxima, and neigh-

borhood of the maxima within the respective extremum graphs Gt and Gt+1. The persistence

component P(mt
i,m

t+1
j ) is equal to the absolute difference between the topological persis-

tence of mt
i and m

t+1
j . The functional component J(m

t
i,m

t+1
j ) = |f(mt

i)− f(mt+1
j )| measures

the absolute difference between function values at the maxima. The distance component

D(mt
i,m

t+1
j ) is equal to the Euclidean distance between the maxima. The neighborhood

component N(mt
i,m

t+1
j ) = |η(mt

i) − η(mt+1
j )|, where η(m) for a maximum m is defined as

η(m) =
∑i=|N(m)|

i=1 |f(m)−f(i)| i.e., the sum of absolute difference of function values between
the maximum m and all saddles in its neighborhood N(m). While the first three compo-
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nents depend exclusively on the maxima and the topological feature that they represent,

the component N captures the differences between the local connectivity of the maxima in

consecutive steps. Hence, this component is crucially dependent on the extremum graph.

Topological persistence is a a good stable measure of the topological feature represented

by a maximum-saddle pair, and hence included in the objective function. The functional

and spatial components are local properties of the maxima that incorporates finer grained

analysis of similarity and correspondence between consecutive time steps. Finally, the

fourth component helps capture topological similarity in terms of the neighborhood of the

maxima within the respective extremum graphs.

In order to reduce the effect of noise on the score, low persistent maxima are canceled

in a first step based on a user specified persistence threshold and the objective function

is computed post-simplification [42, 44]. Critical point pair cancellations are performed

independently within the two time steps. Finally, the structural constraints ensure that no

arc participates in both a merge and split event by disallowing ’z’-shaped configurations.

7.3.2 Algorithm

We compute tveg in two steps. The first step constructs the extremum graphs for all the

time steps of the time-varying scalar field F by either employing the approach of Correa

et al. [30] or computing the MS complex [110, 32, 12] and extracting the substructure. The

Topology toolkit (TTK) by Tierny et.al. [127] provides an alternate method to compute MS

complex based on Discrete Morse Theory [49]. In either case, the graph is simplified using

a persistence threshold ε to remove noise. Corresponding to each node of the extremum

graph, we store a tuple that contains attributes related to the critical point (see Table 7.1).

An arc connecting a pair of critical points v1, v2 is stored in Et as (v1.id, v2.id).

The second step computes the correspondences between maxima from consecutive time

steps. We now describe the algorithm TemporalArcs (Algorithm 3) that computes and

records temporal arcs of the tveg for all pairs of consecutive time steps over a given range

1 ≤ p < r ≤ T . Apart from computing temporal arcs, it also detects and records topological

events such as merge, split, deletion, and generation in the sets Em∗, Es∗, Ed∗ and Eg∗, respec-

tively. TemporalArcs begins by initializing the set At∗ that stores all temporal arcs, setsM0

and M1 that store the collection of maxima in the two time steps, and sets for recording

topological events. Iterating over pairs of consecutive time steps (lines 4-24), the algorithm

computes the correspondence scores for all maxima using ComputeScores (Algorithm 5).

The scores are recorded in S, and further refined using FilterScores (Algorithm 6) based on

a threshold derived from the variance of the scores. The score computation and refinement
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Algorithm 3: TemporalArcs
Input : A set of extremum graphs [Gp, . . . ,Gr]
Output: Temporal arc set At∗

Topological event sets Em∗,Es∗,Ed∗, and Eg∗

1 Initialization: At∗ ← ∅; At ← ∅; M0 ← ∅; M1 ← ∅;
/* Initialize M0 as maxima set of Gp */

2 M0 ←Mp

/* Initialize all topological event sets */
3 {Em∗,Es∗,Ed∗,Eg∗}← ∅
4 for i← p+ 1 to r do

/* Initialize M1 as maxima set of Gi */
5 M1 ←M i

6 S← ComputeScores(M0,M 1)
7 S← FilterScores(S)

/* Compute the temporal arc set At */
8 foreach (m0,m1, s) ∈ S do
9 At ← At ∪ (m0,m1)
10 end

/* Detect topological events */
11 Em ← DetectMerge(S, i)
12 Es ← DetectSplit(S, i)
13 Ed ← DetectDel(S,M0, i)
14 Eg ← DetectGen(S,M1, i)

/* Remove z-shape configurations. */
15 W← Em

⋂
Es

16 repeat
17 w ← MaxScoreEdge(W)
18 At ← At \ w
19 Em,Es ← UpdateMergeSplitEdges(Em,Es, w)
20 W← Em

⋂
Es

21 until W = ∅
/* Populate temporal arc set */

22 At∗ ← At∗ ∪ At

/* Update topological event sets */
23 Em∗ ← Em∗ ∪ Em

24 Es∗ ← Es∗ ∪ Es

25 Ed∗ ← Ed∗ ∪ Ed

26 Eg∗ ← Eg∗ ∪ Eg

/* Re-initialize for next iteration */
27 At ← ∅, M0 ←M1

28 end
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Table 7.1: List of different attributes of the critical points.
Fields Description
id A unique id assigned to the critical point

index Index
x̄ Coordinates

pers Topological persistence
ascmfold Ascending manifold
dscmfold Descending manifold
geom Ascending / Descending manifold geometry

t The time stamp of the scalar field

is described later in this section. After refinement, S records the set of correspondences

and scores and set At is updated with the temporal arcs.

Next, the various topological events are recorded in sets Em,Es,Ed, and Eg (lines 11-

14). We then resolve any co-occurrences of merge and split or ‘z’-shaped configurations

between two time steps (lines 15-21). These co-occurrences are recognized as a subset of

the intersection of Em and Es. This subset is computed using a greedy approach that

iteratively removes the largest score edge in a ’z’-configuration from At. Finally, the set At∗

containing temporal correspondences over all iterations, the sets containing topological

events per iteration, and the global containers for arcs and events are updated (lines 22-

26). TemporalArcs computes the global temporal arc set of a tveg in quadratic time O(n2),

where n = max |M t|, p ≤ t ≤ r, the largest cardinality of the maxima sets over all time steps

in the given input time range [p, r].

Score computation. The subroutine ComputeScores (Algorithm 5) uses Equation 7.2 to com-

pute correspondence scores between two sets of maxima M0 and M1. For each maximum

m0 ∈ M0, it iterates exhaustively over all maxima in M1, computes the objective function

from equation 7.2 using the attributes (pers, x̄, F(x̄)), and records them. The distance com-

ponent is computed as the Euclidean distance between pair of maxima. The neighborhood

component is computed by considering the local neighborhood contribution η of the max-

ima. The two lowest scores are identified for m0 and finally the output S containing the

correspondences and their scores is returned as a set of tuples (m0,m1, s) of length three. In

practice, to ensure that the addition of the four components in Equation 7.2 is meaningful,

we normalize them so that the values lie within [0, 1].

Score refinement. The set of scores returned by ComputeScores (Algorithm 5) need to be

further refined to assess whether a particular correspondence is meaningful and should

be retained within S. The refinement may lead to topological events such as deletion and
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Algorithm 4: UpdateMergeSplitEdges Update the set of edges participating in
merge/split events
Input : Edge sets Em, Es, maximum score edge w
Output: Modified Edge sets

/* Remove edge adjacent to w in Es and Em */
1 u← edge that participates in split with w
2 Es ← Es \ {w, u}
3 U ← set of edges that participate in merge with w
4 if U == {u} then
5 Em ← Em \ u
6 Em ← Em \ w
7 return Em, Es

generation. FilterScores (Algorithm 6) processes the input set S and refine the set based

on a threshold. The procedure records all scores in a list Y, computes the mean(µ) and

the standard deviation(σ) of scores, and sets the threshold τ to µ + σ. Finally, all tuples

corresponding to scores greater than or equal to τ are removed from S.

7.4 Applications
We demonstrate the utility of tveg on a synthetic sum of 3D Gaussians dataset consist-

ing of spatio-temporal movement of the centres of eight 3D Gaussians, a viscous fingers

dataset [108] that simulates the temporal mixing of salt and water resulting in finger like

spatial structures, and a 3D Bénard-von Kármán vortex street dataset [101, 51]. The above-

mentioned datasets are 3D time-varying scalar fields, so we use pyms3d [110] to compute

the MS complex and extract the extremum graph as a substructure for all time steps. It

is likely that multiple saddles are adjacent to a given pair of maxima. In all experiments,

we retain the saddle with the highest function value to record the adjacency between the

segments associated with the maxima, and discard the other saddles to reduce clutter. The

tveg is computed using the method described in Section 7.3.2.

7.4.1 Moving Gaussians

The first case study consists of experiments on a synthetic dataset called Gauss8 defined

on a 128 × 128 × 128 grid over 50 time steps. It represents the movement of eight 3D

Gaussians whose centres move along predetermined paths while being restricted to the

x = 0 plane. The dataset is defined as the sum of eight 3D Gaussians, whose maxima are

located exactly at the Gaussian centres. The trajectories of the centres are designed to
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Algorithm 5: ComputeScores Compute all correspondences and scores for a given
set of maxima
Input : Two maxima sets M0,M 1

Output: A set of optimal scores S = {(u, v, s)} s.t.(u, v) ∈M0 ×M1 and s ∈ R
1 Initialization: S← ∅
2 foreach m0 ∈M0 do
3 Q← ∅
4 foreach m1 ∈M1 do

/* Compute score for (m0,m1) */
5 s← |m0.pers−m1.pers|+ |F(m0.x̄)− F(m1.x̄)|+ |m0.x̄−m1.x̄|2
6 Q← Q ∪ s
7 end

/* Insert two lowest scores to S */
8 s1 ← min(Q), S← S ∪ (m0,m1, s1)
9 Q← Q \ s1
10 s2 ← min(Q), S← S ∪ (m0,m1, s2)
11 end
12 return S

Algorithm 6: FilterScores Filter the input set of scores based on a threshold
Input : A list of scores S from Algorithm 5
Output: A filtered version of S

1 Initialization: Y← ∅
2 foreach (m0,m1, s) ∈ S do
3 Y← Y ∪ s
4 end
/* Compute the mean and standard deviation of all scores */

5 µ← mean(Y), σ ← std(Y)
/* Refine S using the threshold τ */

6 τ ← µ+ σ
7 foreach (m0,m1, s) ∈ S do
8 if s ≥ τ then
9 S← S \ (m0,m1, s)
10 end
11 return S
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Algorithm 7: DetectMerge Detect merge events between two consecutive time
steps
Input : A list of scores S from Algorithm 5;

Time step t
Output: Set of merges Em in S between time t and t+ 1

1 Initialization: Em ← ∅
2 foreach (m0,m1, s) ∈ S do
3 e← m1

/* Count correspondences mapped to e */
4 c← 0; K← ∅
5 foreach (m0,m1, s) ∈ S do
6 if m1 == e then
7 K← K ∪ (m0, t); c← c+ 1
8 end

/* Merge detected. Update Em */
9 if c > 1 then
10 Em ← Em ∪ (e, t+ 1) ∪K
11 c← 0; K← ∅
12 end
13 return Em

Algorithm 8: DetectSplit Detect split events between two consecutive time steps
Input : A list of scores S from Algorithm 5;

Time step t
Output: Set of splits Es in S between time t and t+ 1

1 Initialization: Es ← ∅
2 foreach (m0,m1, s) ∈ S do
3 e← m0

/* Count correspondences mapped from e */
4 c← 0; K← ∅
5 foreach (m0,m1, s) ∈ S do
6 if m0 == e then
7 K← K ∪ (m1, t+ 1); c← c+ 1
8 end

/* Split detected. Update Es */
9 if c > 1 then
10 Es ← Es ∪ (e, t) ∪K
11 c← 0; K← ∅
12 end
13 return Es
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Algorithm 9: DetectDel Detect deletion events between two consecutive time
steps
Input : A list of scores S from Algorithm 5;

A list of maxima M t for time step t;
Time step t

Output: Set Ed with all the deletion events detected from S between time t and t+1

1 Initialization: Ed ← ∅; K←M t

/* Record maxima with no edges to t+ 1 */
2 foreach (m0,m1, s) ∈ S do
3 K← K \m0

4 end
/* Add time step information */

5 foreach e ∈ K do
6 Ed ← Ed ∪ (e, t)
7 end
8 return Ed

Algorithm 10: DetectGen Detect generation events between two consecutive time
steps
Input : A list of scores S from Algorithm 5;

A list of maxima M t+1 for time step t+ 1;
Time step t

Output: Set Eg with all the generation events detected from S between time t and
t+ 1

1 Initialization: Eg ← ∅; K←M t+1

/* Record maxima with no edges to t+ 1 */
2 foreach (m0,m1, s) ∈ S do
3 K← K \m1

4 end
/* Add time step information */

5 foreach e ∈ K do
6 Eg ← Eg ∪ (e, t+ 1)
7 end
8 return Eg
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Algorithm 11: ExGraph3D Compute extremum graph
Input : A scalar field F(t) at time step t

A persistence threshold ε
Output: Extremum Graph Gt = (V t, Et)

1 Initialization: V t ← ∅;Et ← ∅
2 Compute MS complex: C← MS3D(F(t), ε)
/* Store neighborhood maxima and saddles */

3 foreach c ∈ C do
4 if c.index == 2 then
5 M ← c.ascmfold
6 foreach m ∈M do
7 mt ← m, V t ← V t ∪mt

8 Et ← Et ∪ (c.id,m.id)
9 end
10 ct ← c, V t ← V t ∪ ct

11 end
12 V t ← set(V t)
13 return Gt = (V t, Et)

induce multiple topological events such as merges and splits. Figure 7.3 shows three time

steps that exhibit splits and merges together with a change in the numbers and locations

of maxima. We demonstrate the utility of tveg tracks by emphasizing upon two aspects

of Gauss8 as observed from the tracks, see Figure 7.4. The temporal tracks in the figure are

a collective representation of the temporal arcs from tveg and represents correspondence

between maxima along time. The 3D domain of the scalar field is scaled along the z-axis,

multiple instances of the domain are stacked to represent the space-time domain. Figure 7.4

shows one such scaled domain in brown together with the extremum graph at that time

step. All maxima (red) in the extremum graph lie on a plane as expected and continue to

be restricted to the plane over time, as is evident from the flat appearance of the temporal

tveg tracks outlined by the cyan box. We study two tasks that rely on the tveg tracks.

Topological event detection. The merges and splits among the Gaussians can be visually

identified from the tveg tracks in Figure 7.4. From the overview of the temporal tracks

(Figure 7.4, top-right) computed over the entire time range of 50 steps, we observe multiple

merges followed by splits. We note an increasing number of cross correspondences as the

tracks approach a merge event or subsequent to a split event. The existence of such cross

temporal arcs between corresponding maxima over a time range can indicate gradually

decreasing spatial distance between global components such as super-level sets eventually

leading to topological merges/splits. A specific track segment of interest, A, is highlighted.
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Figure 7.3: Dynamics in a synthetic sum of Gaussians dataset Gauss8. The data is visualized
by displaying the intersection of descending 3-manifolds of maxima with volume enclosed
by the isosurface at scalar value 21. The resulting blobs merge over time to form larger
components and subsequently split into multiple components. The merge and split behav-
ior is also observable from the extremum graphs.

Figure 7.4: Temporal tracks from the tveg of Gauss8. (top-right) A view from top of the
stacked domains shows the tracks for all time steps. A subset of tveg tracks (Y) that exhibits
symmetry along time is highlighted in blue. (middle) Track A is a subset of a longer track,
consisting of time steps 9-11 and includes merge and split events. Inset depicts the blobs
in the corresponding time steps 9, 10, and 11. Track B (red), a subset of Y, is selected to
showcase the structural similarity between extremum graphs (inset) sampled at time steps
15, 16, and 17.
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The maxima merge, die, and are born at time steps 9,10,11. We choose an isosurface extracted

at scalar value 21 to visualize the field. Each component of the isosurface associated with a

maximum is identified by computing the intersection with the descending 3-manifold of the

maximum. The blobs merge and subsequently split corresponding to the topological events

in the extremum graph. Along track A, the maxima are colored to indicate their temporal

correspondence. The corresponding maxima in the scalar domain and their associated

isosurface components are also highlighted with the same color. The purple maximum

continues between time steps 9 and 10, whereas the orange maxima in time step 9 merge

in time step 10. As a result of this interaction one component of the isosurface in time step

10 is jointly represented by the purple and orange maxima. The purple maximum vanishes

between time steps 10 and 11 and a new yellow maximum appears, resulting in one of

the isosurface components splitting into two. The tveg temporal tracks help interpret the

topological events similar to a tracking graph.

Similarity pattern within extremum graphs. The tracks of the Gaussian centres in Gauss8

are designed to be symmetrical as can be seen in the overview of the tracks over 50 time

steps (Figure 7.4, top-right). One such temporally symmetric region is labelled as Y (blue)

within the overview. We studied structural changes within the extremum graphs from

the time range when the tveg tracks exhibit symmetry. One such segment, track B (red),

is highlighted to demonstrate the result of the study and three time steps (15, 16, and 17)

from this segment are shown. Maxima that belong to track B are highlighted within the

extremum graph using a red enclosing circle. One neighboring saddle and a maximum

in the neighborhood of the saddle are also highlighted using a red circle. We observe a

structural similarity between the highlighted regions of the extremum graphs in these time

steps. This observation suggests that temporal geometric patterns within tveg tracks, if any,

are indicative of a repetitive local structural pattern within the corresponding extremum

graphs over time.

Comparison with the Lifted Wasserstein Matcher (lwm) [116] implemented in TTK [128].

We use the Gauss8 dataset in this comparison. We first generate tracks using tveg and then

we use lwm provided by the TTK to compare our results as shown in Figure 7.5. For the

lwm tracks, we use the same parameters as specified by the authors - extrema weight = 1.0,

saddle weight 0.1, x,y,z weights = 1.0,1.0,1.0. To facilitate comparison we embed the tracks

in the domain like it is done in TTK. We note that while lwm is provided as a ttkfilter with

an easy interface, the current implementation does not provide an option to do the post

processing. So in case of lwm without post processing, split/merge events are identified as

birth/death events. tveg handles the merge/split events directly.
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Figure 7.5: Comparison of tracks obtained by tveg (left) and lwm (right) for Gauss8 dataset.
All maxima in the first timestep are highlighted. The apparent breaks in lwm tracks are
due to a missing post-processing step in the current implementation.

Figure 7.6: Visualizing the top 20% tracks in the 3D von Kármán vortex street data. The
tracks are generated based on tveg and spatial overlaps, and the regions associated with
maxima in the tracks are displayed. The top tracks include the temporal evolution of many
of the primary and secondary vortices.

7.4.2 Vortex Street

We demonstrate the utility of tveg in feature tracking by presenting two use cases – com-

puting a summary view by tracking features that are automatically computed, and tracking

features that are specified as a user query. We demonstrate both use cases on a 3D Bénard-

von Kármán vortex street dataset. The Okubo-Weiss criterion, which indicates regions of

high vorticity, is a scalar field sampled on a regular grid [101]. It is available on a 192×64×48
grid over 508 time steps. Previous results [101, 117] identify two classes of vortices, primary

Figure 7.7: Visualizing tracks computed in response to a query consisting of two max-
ima (left). The spatial location of the maxima varies substantially even though they repre-
sent the same feature over time. (left to right) The tracks are shown using high transparency
for earlier time steps. As the maxima and the corresponding features evolve over time, the
opacity of the track is increased and the maxima are also displayed.
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(a) Time step 223 (b) Time step 224 (c) Time step 225

(d) tveg edges between 224 and 225

Figure 7.8: Illustrating challenges in tracking vortices in the 3D von Kármán vortex street
data. (a)-(c) Vortices in time steps 223-225. (d) Temporal arcs between a particular feature
in time 224 (left) and time 225 (right). The extremum graphs within each time step are
displayed with black arcs to provide context. The white feature in time 224 should have
ideally been mapped to the red feature in time 225. Instead, there is no temporal arc
connecting it to any feature in 225. The red feature in 224 is connected with the red feature
in 225 via the temporal arc shown in gray with higher thickness.
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and secondary, and track them across time.

Overview of features. In order to identify and track all topological features that can be

captured using an extremum graph, we first compute the tveg and consider all temporal

arcs. Among the multiple possible correspondences between a maximum in time step t

and a maximum in time step t + 1, tveg provides the top two correspondences based on

a score. Each maximum has an associated region, which is spanned by its descending

manifold clipped by the isosurface at scalar value 0.1. The threshold value of 0.1 represents

high vorticity regions. For the two correspondences, which are stored as temporal arcs,

we calculate the spatial overlaps between the regions associated with the maxima. We

pick the arc with the higher spatial overlap between the regions. Arcs where the spatial

overlap is small and short length tracks (< 10 time steps) are removed. We observe that

each secondary vortex is represented by a single maximum, but a primary vortex may

comprise of regions associated with a collection of maxima. In the latter case, the multiple

maxima spanning a primary vortex are connected in the extremum graph via saddles. So,

we collate such tracks in a post-processing step. We observe that the top 20% tracks sorted

in decreasing order of track length consists of most primary and secondary vortices, see

Figure 7.6. The regions associated with maxima in the tracks are displayed at different time

steps to visualize the tracks. We observe that none of the temporal arcs connect a primary

vortex with a secondary and hence note that the tveg is able to provide a good summary

of the two types of vortices.

Query driven feature tracking. User queries consisting a set of maxima from primary or

secondary vortices or both may be used to visualize specific tracks. Figure 7.7 shows one

such query. Again, we observe that the temporal arcs either connect two primary vortices

or two secondary vortices. One challenge that is typically encountered while analyzing this

vortex street data is that, even though the spatial movement of vortices is along a smooth

curve, the maxima that represents the vortices follow a tortuous path. The temporal arcs

in the tveg play a crucial role in finding the correspondences between such maxima. It

provided a foundation upon which the additional spatial overlap criterion could be applied.

Discussion. Overall, we find that the tveg serves as a good underlying representation

that supports the development of feature tracking methods. The four components of the

objective function are sufficient to identify meaningful correspondences in most cases, but

there are exceptions.

The simplification threshold which is uniformly applied across all time steps affects

the extremum graph and therefore the segmentation. While a maximum may continue to

represent the same vortex across different time steps, its spatial location within the vortex
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may vary substantially as seen in Figure 5.22(a). These two factors may lead to instances

where the top two temporal arcs from a maximum in time t to maxima in time t+ 1 may

not represent the desired feature correspondences. Further, filtering the correspondences

in a refinement step may result in zero temporal arcs incident on a maximum and hence

discontinuation of tracks.

We show one such case occurring in time steps 223-225 in Figure 7.8. A feature rep-

resented by a maximum in 223 splits, resulting in a primary vortex represented by two

maxima. One of those maxima, which represents a partial vortex in time 224, contains tem-

poral arcs to features in time 225, but there is no arc for one feature (see Figure 7.8(d)). As

a consequence, the track containing the white feature in time 224 terminates in time 225,

thereby causing the anomaly highlighted in Figure 7.8(b). Such early terminations lead to

smaller length tracks in the 3D vortex street, specifically for primary vortices.

The neighborhood component N of the score helps balance the effect of the variation

in the location of maxima. A time step-specific simplification threshold may have resulted

in a single maximum representing the primary vortex, alleviating this anomaly.

7.5 Summary
We introduced tveg, a time-varying extremum graph to facilitate analysis and visualization

of time-varying scalar fields. To the best of our knowledge, tveg is one of the first time-

varying topological structures based on extremum graphs. The structure is easy to compute

and interpret. We demonstrate its utility in feature tracking tasks and analysis of synthetic

and simulated data.
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Chapter 8

Conclusions and future work

The contributions of this thesis are two fold. One, comparison measures for merge trees,

global and local. Two, comparison measures for extremum graphs. We have also presented

time-varying extremum graph which extends the extremum graph to time-varying data.

We have provided some theoretical guarantees and efficient algorithms to compute them.

The focus has been on intuitive measures. We have showcased their utility with a lot of

applications which handle data many scientific domains.

8.1 Impact
There have been many comparison measures for merge trees that were introduced follow-

ing our work. We name two such measures which are similar in flavor to our measures,

Pont et.al. [94] extend mted to define Wasserstein distance between merge trees which

allows computation of barycenters. Wetzels et.al [136] define branch decomposition inde-

pendent tree edit distance which is asymptotically slow (O(n4) since it uses branch decom-

positions instead of the trees) but independent of the choice of branch decompositions.

8.2 Future work
We discuss potential future directions specifically for the comparison measures which we

have presented, followed by some general directions which can be explored.

8.2.1 Merge tree measures

The oted algorithm is limited by the slow running time, but considers a general gap model

which might be useful if the model can be adapted for the type of changes merge trees

undergo. A definition of a meaningful ordering upon merge trees can also enhance its

utility.
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Theoretical properties of the mted needs more work. The mted, though a metric is not

stable. While we use a stabilization parameter to alleviate this effect in practice, a stabi-

lization strategy with theoretical guarantees will make the mted truly stable. In practice

we observe that mted is more discriminative than bottleneck distance but a theoretical

guarantee will strengthen this claim. This also applies to the local measure lmted. Such

guarantees also would help in determining the relationship between these measures and

other existing measures in terms of their discriminative power.

A comparative visualization framework including all these measures is an ongoing work

which we aim continue in the near future, leading to a publicly available tool.

8.2.2 Extremum graph measures

In case of the extremum graph based measures pdeg and gweg, stability results are harder,

since the graphs themselves are not very stable w.r.t the scalar fields. Analysis of how the

measures are related and whether a hierarchy of measures can be built based on their

discriminative power is another potential direction which requires further exploration.

Another challenge is to extend these measures to Morse-Smale graphs (i.e. 1-skeletons of

Morse-Smale complexes) which includes saddle-saddle connections.

The criteria employed to compute temporal correspondences in tveg may be extended

to incorporate other attributes of critical points and extremum graphs. Analyzing the effect

of these attributes on the correspondences is an interesting topic for future work.

8.2.3 General directions

Many of the comparison measures for merge trees use the hierarchy but are bottom-up in

nature. A measure which can be computed top-down would lead to progressive comparison

measures which can be computed for coarser trees first and then finer details can be added

if required. This would eliminate the need for simplified trees.

While running times ranging from O(n2) to O(n4) sounds great in theory, in practice

where interactive visualizations are required, this might still be costly. Parallel algorithms

to compute comparison measures would make the measures scalable.

Comparison measures for multi-fields is still nascent stage. Topological descriptors like

Jacobi sets and Reeb spaces are less understood which makes designing measures a chal-

lenging prospect.
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