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Abstract

Brachytherapy is a cancer treatment methodology based on highly localised delivery of radiation

to tumor regions. It ensures minimal damage to surrounding tissue and organs and provides

higher chance of long-term survival as well as lower recurrence rates in comparison to other

radiation based treatments. This project explores methods for creating geometrical models of

anatomical structures for assisting in Brachytherapy planning as well as for creating simulations

useful for training new practitioners.

Current work in the project is focused on segmenting out high-risk organs from a CT scan

of a patient automatically or semi-automatically, which is an important step in planning the

treatment. The goal is to create a fully automatic or interactive tool for contouring said high-

risk organs which can be integrated into the treatment workflow.
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Chapter 1

Introduction

Modern cancer treatment methods make extensive use of radiation therapy. Brachytherapy is

prominent among such methods for delivering highly targeted radiation to tumor regions while

avoiding damage to surrounding organs and tissues. The high precision allows for the ability

to expose tumor regions to high radiation dosages in a short time, making Brachytherapy a

relatively quicker alternative to other methods like External Beam Radiation Therapy (EBRT).

Brachytherapy can also be used as a complementary treatment to boost radiation dosage from

other treatment methods. Overall, Brachytherapy offers a relatively safer and surer method for

treatment of cancers in a multitude of tumor locations (head and neck, cervix, prostate, breast,

skin etc.)

1.1 Treatment Methodology

As stated earlier, Brachytherapy is based on highly localised delivery of radiation to tumor

regions. Delivery is made via permanently placed seeds containing radioactive material, or via

afterloaders that can deliver high-dose radiation in an unsupervised manner after proper setup.

This ensures minimal damage to surrounding tissue and organs and provides a higher chance

of long-term survival and lower recurrence rates. Brachytherapy can be classified as follows:

• Based on duration of radiation.

– Permanent: Very low dose seeds left permanently in body.

– Temporary: Higher dose sees positioned by afterloaders deliver radiation for a

period of time, and can be removed after treatment.

• Based on position of radionuclides.
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– Interstitial Brachytherapy: Radiation sources are placed inside the tumor.

– Contact Brachytherapy: Radiation sources are placed close to tumors. Includes

intracavitary and surface Brachytherapy.

• Based on dose-rate.

– Low Dose Radiation (LDR): In patient procedure. Involves a long continuous

delivery of low dose radiation.

– High Dose Radiation (HDR): Usually out-patient procedure. High dose is de-

livered in a short time.

– Pulsed Dose Radiation (PDR): Slightly lower dosage than HDR. Applied mul-

tiple times (pulses of ∼10 minutes).

1.2 Brachytherapy in India

Brachytherapy has a long history in India, its first documented usage being in 1920 [14]. Cur-

rently, HDR Brachytherapy is the norm, with around 250 HDR Brachytherapy centers across

India. The major use of Brachytherapy in India is for treatment of cervical cancer, of which

India gets a huge number of cases per year. GLOBOCAN’s 2018 estimate shows nearly 100,000

new cases for cervical cancer annually, with nearly 60,000 of them resulting in deaths [4].

Other than cervical cancer, head and neck cancers form another large portion of cancer cases

in India. Among women, breast cancer is the most common after cervical cancer. Somewhat

contrary to the focus on prostate cancer in literature, prostate cancer rates in India are much

lower than America (9-10 in 100,000 vs 106.5 in 100,000 [14]). Hence, prostate Brachytherapy

is not practiced much.

As for the planning methodologies in use, MRI guided Brachytherapy is generally infeasible

due to high costs (MRI guidance is useful correct position of radiation sources). Instead, using

CT and ultrasound scans is more prevalent. Studies show that overall survival and toxicity rates

observed using CT scans and ultrasounds is close to that offered by MRI guided Brachytherapy.

1.3 Challenges and Opportunities

The major challenge in India is the lack of infrastructure to handle all cases. Further, the

current reimbursement models for Brachytherapy end up making other treatment methods more

lucrative for practitioners. Finally, there is a severe lack of skilled professionals for procedures

like needle insertion and applicator placement. These challenges present us with the following

opportunities:
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• It is possible to speed up the treatment process by speeding up the time consuming

planning phase using computational techniques.

• To train new practitioners, there is a need to create simulation systems that help trainees

to practice on patient specific simulations instead of practicing on actual cases, which is

extremely risky.
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Chapter 2

Problem Description

Owing to the prominence of cervical cancer cases in India, and the need for segmenting out

organs from 3D volume data for both treatment planning and simulation, work so far has focused

on segmenting out organs at risk for cervical cancer Brachytherapy, namely the bladder, rectum

and sigmoid.

Figure 2.1: Example segmentation of CT-scan volume. Upper view shows a volume-rendering
of the scan, along with the segmented organs. Lower view shows segmentations on selected 2D
slices along the axial, coronal and sagittal planes. The segmented organs are bladder (green),
rectum (yellow) and sigmoid (brown). Visualization generated with 3D Slicer

4
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2.1 Formal Statement

Given an input tensor X of size p × q × r with scalar values at each voxel (representing the

CT volume), the aim is to output another tensor T of size p× q × r, each of whose elements is

the correct label identifying the corresponding element in X to be part of one of a predefined

set of regions. For the cervical cancer scenario we are considering, there are 4 possible labels:

”bladder”, ”rectum”, ”sigmoid” and ”none of these”.

2.2 Contributions

• Data collection – 132 CT scans collected from HCG Ramaiah Cancer Center, anonymized

and converted to suitable formats for easy analysis and model training.

• Baseline automatic segmentation model with UNet3D.

• Investigation of various losses for automatic segmentation.

• Training and testing a 2D interactive segmentation method – InterCNN

• Design, implementation and evaluation of a 3D extension of InterCNN.

5



Chapter 3

Related Work

Medical image segmentation is a challenging problem due to unclear boundaries and varia-

tions in imaging methodologies. There has been a lot of work on both automatic and semi-

automatic/interactive methods.

3.1 Automatic Segmentation

The original U-Net [23] by Ronneberger et al was a CNN-based deep neural network for segment-

ing 2D images. It used a U-shaped encoder-decoder architecture along with skip connections.

It was later extended in work by Çiçek et al to a 3D version called 3D U-Net [7]. A very similar

3D extension architecture in the form of V-Net [19] was proposed around the same time by

Milletari et al. Later automatic segmentation methods include HighRes3DNet [15] - which is

a CNN-based neural network focused on efficient usage of CNN building blocks like residual

connections and dilated convolutions to make a more compact network, MultiPlanarUNet [22] -

which aims to be a general purpose, efficient and easy to use method by learning to segmenting

slices of volumes along random axes and combining them to get better segmentation, and nn-

Former - which experiments with using the popular Transformer architecture for segmentation

tasks.

3.2 Interactive Segmentation

Besides automatic segmentation, there has been a lot of work attempts towards utilizing inter-

active inputs from a human user in order to achieve more accurate segmentation results. Early

methods include the the work by Boykov et al [3] where they utilize graph-cut algorithms to

find optimal segmentations for n-dimensional images. Another early method is GeoS [9] by

Criminisi et al where they utilize Geodesic distances to pose and solve segmentation as an en-
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ergy optimization problem. More modern, neural network based approaches include InterCNN

[5] by Bredell et al - which trains a CNN to update a given segmentation on the basis of user

interactions, DeepIGeoS by Wang et al - which incorporates deep learning with the previous

GeoS framework, work by Lin et al [16] - which seeks to utilize the first click on a 2D image

as a guide for more accurate segmentations, and work by Liao et al, which proposes to use

multi-agent reinforcement learning to train a model to segment interactively.
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Chapter 4

Data Collection and Preprocessing

All of the data so far has been collected from the HCG Ramaiah Cancer Center, Bangalore.

Although the persons in charge at the HCG Centre have agreed to provide access to all data

available, due to software issues, and concerns about anonymity of patients, data collection

has been relatively slow. At first, 50 total cases (CT scans along with contour/segmentation

data) were collected, all in DICOM format. The results on the baseline model are based on

this smaller dataset. The dataset has been since expanded to 132 samples, of which 100 were

used for training, 12 for validation and 20 for testing. This split was decided randomly and

remained fixed for the rest of the duration of the project.

4.1 Preprocessing

Due to an inconsistency in naming of patients in CT scans and corresponding contour data

(DICOM RT format), the data had to be processed to fix the inconsistency. Further, all

patient identifying fields were scrubbed or replaced in order to anonymize the data. A python

script based on the source code from [20] was created for this purpose.

After anonymization, the data had to be converted to formats more standard in machine

learning applications - namely NumPy and Nifti. This was accomplished using the tool provided

in [1].
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Chapter 5

Baseline Model

As a baseline, a 3D-UNet [7] was selected for the segmentation task. Due to the large volume

size (around 512x512x120, varying across examples), training the network with whole volumes

failed. As a result, training with patches was employed.

Figure 5.1: The 3D-UNet architecture. Blue boxes represent feature maps. The number of
channels is denoted above each feature map. (Source: [7])

The TorchIO library [21] was used to efficiently load in data, sample patches, and create

data loaders for use with the PyTorch implementation of 3D-UNet network. The loss function

used for training was the DICE Score (or rather, 1 - DICE Score), which is defined as

DICE Score =
2× |X ∩ Y |
|X|+ |Y |

9



where X and Y represent either of target and predicted segmentations.

5.1 Choice of Loss Function

Besides the DICE score, another very similar and widely used loss for segmentation tasks is the

Jaccard similarity, or the Intersection over Union (IoU) score, defined as follows.

IoU =
|X ∩ Y |
X ∪ Y

There isn’t a clear choice between DICE score and IoU. It can be shown that they are

always positively correlated (if, on a given sample, a classifier achieves higher IoU than another

classifier, then it will also necessarily have higher DICE score, and vice versa). In fact, the IoU

is bounded as DICE/2 ≤ IoU ≤ DICE [2].

5.2 Training Details

The following augmentations were applied to the data before being fed into the training pipeline:

• Histogram normalization

• Z normalization

• Crop/padding the volume to size 256x256x128

• Random motion artifacts

• Random bias field (inhomogeneity introduced by variations in a magnetic field)

• Random noise

• Random flipping

• One of a random affine transformation or elastic deformation.

Due to unexpected duplicacies in the collected dataset and the unavailability of all three

organs under consideration in all the samples, the data usable for training was reduced to 38

samples. 30 of these were used for training, while 8 were used for validation. Batch size for

both training and validation was fixed to 2.

During training, a fixed number of patches (4) were randomly sampled from each batch and

the model ran on those. Similarly for validation.
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5.3 Training Results

After testing with smaller patch sizes (32 × 32 × 32 and 64 × 64 × 64) the model was unable

to get a satisfactory score either in training or validation data (DICE score was stuck around

0.25 after a while). This was possibly due to the patches being too small to capture patterns

in a whole segment (corresponding to either the bladder, rectum or sigmoid). Increasing the

patch size to 1283 alleviated this, and the model was able to obtain a better average DICE

score of 0.686 on the validation set (after 35 epochs of training). We also experimented with

resampling the CT volumes to 1283 instead of using patches, and along with the larger dataset,

this improved the validation DICE score to 0.7.
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Chapter 6

More Losses

In order to improve the results of the baseline model, we tried a few alternative losses.

6.1 Generalized DICE

The generalized DICE score, introduced in the work by Sudre et al [25] aims to weight the

contribution of each class to the overall loss based on the relative volume occupied by that

class. It is calculated as follows:

Generalized DICE = 2

∑n
l=1wl × (|Xl ∩ Yl|)∑n
l=1wl × (|Xl|+ |Yl|)

Where n is the number of classes, wi are corresponding weight, and Xl, Yl are respectively,

correct and predicted segmentation for class l. Here, wl were calculated as the inverse of

volume occupied by each class, thus giving highest weightage to classes that occupy the least

volume.

This score ended up having a critical flaw when used as a loss for segmentation training. It

is possible to get a ”good enough” generalized DICE score by predicting the whole volume to

be the background. While training, this lead the network learning to do exactly this, and then

being unable to improve further, with a generalized DICE of around 0.4. To alleviate this, we

tried to ”warm start” the network by training it with the usual DICE until it could do better

than 0.4 generalized DICE score, and then trained it with the generalized DICE score instead

of the usual DICE score. Results are shown in the following figure.
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Figure 6.1: Training results with generalized DICE loss and a ”warm started” 3D UNet

6.2 Weighted DICE

This loss was simply a variant of the usual DICE where the DICE scores, calculated for each

class separately, were given weights and added together to form the final loss. Let n be the

number of classes, w1, w2, . . . , wn ∈ (0, 1) be weights assigned to them, and D1, D2, . . . , Dn be

the corresponding DICE scores. The weighted DICE score is calculated as

Weighted DICE = w1D1 + w2D2 + . . .+ wnDn

The 3D UNet was trained with similar a similar training setup as before. To improve the

lower DICE scores on the Rectum and Sigmoid classes, the weights were assigned as follows:

• Background: 0.05

• Bladder: 0.2

• Rectum: 0.3

• Sigmmoid: 0.45

Even with these highly skewed weights, training results ended up being the same as in the

case of usual DICE loss. That is, the overall DICE score on the validation set turned out to

be the same as before, and there was no improvement in the scores for Rectum and Sigmoid

classes.

13



6.3 Topological Loss

With the baseline model, we noticed that in a few cases, none of the voxels in the volume were

marked as belonging to a some classes. For example, in one output segmentation, none of the

voxels were marked to be belonging to Sigmoid, even though the Sigmoid was supposed to be

present in the volume. This motivated us to incorporate a loss that would make sure that

the topology/shape of the output segmentations is correct (most importantly, the number of

components).

We used the loss described in the work by Clough et al [8]. The basic idea is to calculate

the persistence homology of the super level sets of each segmented object, then comparing the

calculated homology to the expected Betti numbers for the object. The persistence barcode,

listing the birth and death point of each topological feature, is used to determine the most

persistence features, make sure they add up to the required Betti numbers, and minimize the

persistence of other features.

If β∗
k denotes the expected k-dimensional Betti number, bk,l and dk,l denote the birth and

death values for lth most persistent k-dimensional feature from the persistence barcode, then

the topological loss can be calculated as follows:

Lk(β
∗
k) =

β∗
k∑

l=1

(1− |bk,l − dk,l|)2 +
∞∑

l=β∗
k

|bk,l − dk,l|2

Ltopo =
∑

Lk(β
∗
k)

This enforces exactly β∗
k bars of length equal to 1 (assuming the filtration for persistence

calculation is performed on a probability distribution predicted by a model). During training,

this loss was used in combination with the usual DICE loss, with a weight of 0.005. Making the

overall loss equal to: DICE Loss + 0.005×Ltopo Further due to the computationally expensive

nature of this loss, it was calculated on volumes resampled to 16 × 16 × 16. Again, the same

baseline neural network similar training parameters were used. Training results are shown

below.
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Figure 6.2: Training results with topological + DICE loss

Evident from the results, incorporating the topological loss didn’t bring much improvement

over the usual DICE loss.

15



Chapter 7

Interactive Segmentation

7.1 InterCNN

InterCNN is an interactive segmentation model proposed by Bredell et al [5]. The idea is train

a CNN to update a given segmentation output, based on scribble inputs from a user. As such,

there are two major parts to it: an automatic segmentation model (AutoCNN) that provides

an initial, possibly less accurate segmentation, and another interactive part which learns to

correct this initial segmentation based on user inputs (InterCNN). The following figure gives a

general overview of the segmentation process:

Figure 7.1: Segmentation process in InterCNN (Source: [5])

Note that scribbles are supposed be a bunch of pixels on particular slices, marked by a user

to be incorrectly classified. While training, both the automatic and interactive networks were

chosen to be 2D UNets. The CT-scan volumes were split into slices and fed during training

in batches of size 8. The Adam optimizer with a learning rate of 10−3 was used. Notably, the

authors of this paper used the cross entropy loss during training and only used the DICE score

16



for validation. We used the same configuration.

Another important detail is that a robot user was to generate scribbles while training the

interactive. This user randomly selected incorrectly classified pixels for each class in a given

slice, and marked all the wrongly classified pixels around the selected pixel with a box of size

9 × 9 as the scribble. During training, for each slice, the number of interactions allowed with

the robot user is fixed to be 10.

(a) Results for automatic part (b) Results for interactive part

Figure 7.2: Training results for 2D InterCNN

The results show an overall increase in segmentation accuracy for the validation set with

the incorporation of user interaction.

7.2 InterCNN-3D

While InterCNN produces much better results than automatic segmentation methods, it only

works on a slice-by-slice basis, meaning that a user would have to interact with each slice of a

volume individually in order to obtain a segmentation of a the whole volume. This is requires

too much interaction, and calls for a method that requires less interaction, preferably with the

whole volume instead of slices. Thus motivated, we tried to extend InterCNN to a 3D version,

where a 3D network would learn to update a full 3D segmentation based on user inputs.

The segmentation networks from the original InterCNN can be easily translated to 3D

(using 3D UNets instead of 2D). The only challenge is to decide on how a user would provide

feedback to the interactive part, and creating a corresponding robot user for training. We

tested multiple approaches to this, but haven’t succeeded in producing results better than just

automatic segmentation.
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The first approach allows the user to draw scribbles on slices (along any of the three prin-

ciple axes) of their choice in the volume, and then incorporate the scribbled slices back into a

volume input. The second approach takes clicks on incorrect pixels from the user and produces

volumetric Gaussian fields around those clicks in a volume. Results for incorporating both of

these methods are shown in the following figures.

Figure 7.3: 3D AutoCNN (UNet) training

The AutoCNN results above are as expected for training of 3D UNet, with a validation

DICE of 0.7. The following figures show training results for the other, interactive half, with

different user-interaction policies.

(a) With slice based interaction (b) With click based interaction

Figure 7.4: Training results for interactive part of InterCNN-3D with different interaction
methods

Apart from the interaction, the training setup for both the automatic and interactive part

18



was similar to the how we trained 3D UNets before. We experimented with different number of

interactions with the robot user during training. The results above correspond to training with

20 interactions. The results so far have failed to show any improvement upon the incorporation

of user interaction. Possible causes maybe issues with the network architecture and its ability

to detect and make use of user inputs, as well as the way interactions (scribbles/clicks) are

encoded and passed to the model. This is still under investigation.
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Chapter 8

Conclusion & Future Work

8.1 Conclusion

In conclusion, work in the project has so far focused on obtaining automatic or semi-automatic

segmentation of CT volume data. We experimented with several techniques to try and improve

the automatic segmentation results, after which we sought to utilize user interaction, which

ended up yielding better results. There is still scope for reducing the number of interactions

required to get a satisfactory segmentation, as well as experimenting with methods besides

InterCNN for interactive segmentation. Coming back to aiding Brachytherapy treatments,

future work will include developing a full-fledged and easy-to-use tool for interactive segmenta-

tion, followed by using the tool as a building block for development of a treatment simulation

framework.

8.2 Future Work

Future work in the project consists of the following.

• Find and fix problems with InterCNN-3D.

• Build a fully-fledged GUI tool for segmentation.

• Incorporate obtained segmentations into patient specific treatment simulations.
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