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Abstract

Biomolecules like proteins are the basic building blocks of living systems. It has been observed that
the structure of a biomolecule plays an important role in defining its function. In this thesis, we
describe novel geometric and topological techniques to understand the structure of molecules. In
particular, we focus on the problems related to identification and visualization of cavities and chan-
nels in proteins. Cavities refer to empty regions within the molecule, while channels are pathways
through the cavities. We pursue an integrated geometric and topological approach towards solving
the problems in this domain. While topological structures provide efficient data structure represen-
tations of molecular space, geometric techniques allow accurate computation of various geometric
measures having biological significance.

In the first part of the thesis, we describe two methods: one for extraction and visualization of
biomolecular channels, and the other for extraction of cavities in uncertain data. We also describe
the two software tools based on the proposedmethods targeted at the end-user, the biologists. These
two web server tools publicly available for use are called ChExVis and RobustCavities.

The first method uses an alpha complex based framework for extraction and visualization of
geometrically feasible channels in biomolecules. We show that our proposed method has several
advantages in terms of representation power over existing channel finding algorithms. In addition,
we present novel ways of visualizing the amino-acids lining the channels together with their physico-
chemical properties. The secondmethod addresses the problem of cavity extraction in biomolecules
while taking into account uncertainties associated with empirically determined atomic positions
and radii. We propose an approach that connects user-specified cavities by computing an optimal
conduit within the region occupied by the molecule. The conduit is computed using a topological
representation of the occupied and empty regions and is guaranteed to satisfy well defined geometric
optimality criteria. We also describe a user interface with multiple linked views for interactive
extraction and exploration of stable cavities. We demonstrate the utility of both the proposed
methods using multiple case studies.

In the second part of the thesis, we describe efficient parallel algorithms for two geometric struc-
tures widely used in the study of biomolecules. One of the structures we discuss is discrete Voronoi
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diagram which finds applications in channel visualization, while the other structure is alpha com-
plex which is extremely useful in studying geometric and topological properties of biomolecules.

We introduce a variant of the jump flooding algorithm to compute the discrete Voronoi diagram
called Facet-JFA. The algorithm optimizes the number of pixels processed by computing only the
faces of the Voronoi tessellation. We observed speed-up of upto 10x over JFA. As an application
of the proposed algorithm, we present a GPU based method for extraction of channel centerlines
in biomolecules. Secondly, we propose a GPU based parallel algorithm for the computation of
the alpha complex, a subcomplex of the Delaunay triangulation that is widely used to represent
biomolecules. The algorithm exploits the knowledge of typical distribution and sizes of atoms in
biomolecules. Practically, we observed speed-up of upto 22x over the state-of-the-art algorithm
using our implementation.
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Chapter 1

Introduction

Fundamentally all biological processes are molecular in nature. So, it is essential to understand bio-
molecules and their interactions to gain better insight into living systems. Proteins are constituted
of chains of small building blocks called amino acids. These chains of amino acids fold in 3D space to
define structure of a protein. It is known that structure of biomolecules plays an important role in
defining its function. As evident from Figure 1.1(c), biomolecular structures contain complex fea-
tures such as pockets and protrusions on the surface, internal cavities and voids, channel and tunnel
like structures connecting external surface to functional sites buried deep inside the molecule [60].
Analysis of these features is very important for understanding of structure-function relationships,
engineering new proteins with required functional properties, or designing inhibitors for existing
proteins.

As shown in Figure 1.1(a) proteins are often represented in space-fill model as a union of balls,

(a) (b) (c)

Figure 1.1: ACH receptor transmembrane protein (PDB id: 1OED). (a) The space-fill model.
(b) The molecular surface. (c) The central transmembrane pore through this protein.

1



1. Introduction 2

where each ball corresponds to an atom. This model is ideal for application of geometric and topo-
logical techniques for detailed analysis. For example, geometric algorithms have been developed for
extraction of molecular surface (see Figure 1.1(b)) which is extremely important in the study of any
protein. Similarly, for accurate measurement of molecular volumes, identification and characteri-
zation of empty space within a molecule, methods from computation geometry and topology are
applied. This thesis is a contribution to this area of research with special focus on integrated geo-
metric and topological methods for visual analysis of cavities and channels in biomolecules. Refer to
Figure 1.2 for a 2D illustration of features of interest in a biomolecule and a brief overview of alpha
complex based representation of biomolecular space [32] which we use extensively for extraction
of these features in this thesis.

With increasing availability of structures of large proteins and protein complexes at atomic detail
through advancements in the field of crystallography, there is a need of designing faster and more
space efficient algorithms for their analysis. Another driver for the need of efficient geometric

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.2: 2D illustration of features of interest in a biomolecule. (a) Set of disks representing
a molecule in 2D. (b) Two cavities in the molecule. The green cavity is surrounded by atoms, is
therefore called a void. The blue cavity here has two openings, and thus called a pocket. (c) A
pore is a channel through the molecule. (d) While a tunnel is a channel which leads to a binding
site in the molecule. (e) The weighted Delaunay triangulation for this set of disks. The alpha
complex is shown in red. (f) The two cavities can be detected as maximally connected components
in the complement of alpha complex. (g) Similarly, the tunnel is a set of connected triangles in the
complement. (h) The dual of the set of triangles provides the path representation of the tunnel.
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algorithms is the availability of larger molecular dynamics trajectories, which are essentially time
varying molecular structures. Designing algorithms to address these challenges is the second major
focus of this thesis.

1.1 Extraction and visualization of channels
A channel is a pathway through empty space within the molecule. Understanding channels, that
lead to active sites or traverse the molecule, is important in the study of molecular functions such as
ion, ligand, and small molecule transport. Efficient methods for extracting, storing, and analysing
protein channels are required to support such studies. We develop an integrated framework that
supports computation of the channels, interactive exploration of their structure, and detailed visual
analysis of their properties [75]. Key contributions are summarized below:

• We describe a method for extraction of channels in biomolecules based on a representation of
the molecule using the alpha complex. This is exploited to capture all geometrically feasible
channels in a concise representation called channel network that supports querying for specific
channels. The extracted channels are represented as a set of connected tetrahedra.

• Novel methods are developed to automatically identify important channels within the net-

Figure 1.3: Transmembrane pore identified in PDB structure 1K4C using our channel extraction
method. The 3D view of the channel is shown on the left. Conservation and hydrophobicity
profiles are shown using a blue to red colormap in themiddle. Four different 2D box representations
of the channel are shown on the right. From left to right, boxes are labelled by amino acid type,
atom type, structure and chemical properties of the lining atoms.
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work and rank them based on their significance.

• The channel extraction method was compared with the existing software tools. The quality
of the results was observed to be better than or comparable to other tools – Mole, Caver,
MolAxis, and PoreWalker.

• Novel visualizationmethods are proposed to facilitate detailed study of the extracted channels.
Figure 1.3 shows visualization of potassium channel in a transmembrane protein.

• The integrated channel extraction and visualization framework was successfully used to study
multiple transmembrane pores and channels leading to active sites.

• These methods are implemented as a web-server calledChExVis1 which is available for public
use.

1.2 Connecting cavities in biomolecules
The tools and techniques developed for extraction of cavities in molecules are sensitive to uncer-
tainties in atomic position and radii (Refer to Figure 1.4 for an example). We study the problem
of cavity extraction in biomolecules while taking into account such uncertainties [73, 90]. We pro-
pose a simple and direct approach to address this problem, where the user examines the cavities and
identifies artifacts or undesirable disconnections. The user interacts with the multiple linked views
provided by the visualization and specifies a pair of cavities to be connected. Our cavity connection
algorithm efficiently and automatically computes an optimal conduit between the cavities. Key
contributions include:

• A simple, explicit, and flexible method for extracting cavities in biomolecules from uncertain
data with guaranteed bounds on the perturbation required.

• Efficient algorithms to compute a conduit between user selected cavities that satisfies well
defined optimality criteria.

• Interactive visualization of cavities in a molecule with multiple linked views that facilitates
identification of disconnected cavities.

• Case studies that demonstrate the benefits of the cavity connection based method.

• These methods are implemented as a web-server called RobustCavities
2 which is available

for public use.

1http://vgl.csa.iisc.ac.in/chexvis/
2http://vgl.csa.iisc.ac.in/robustCavities/

http://vgl.csa.iisc.ac.in/chexvis/
http://vgl.csa.iisc.ac.in/robustCavities/
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(a) (b)

Figure 1.4: (a) Biologically relevant transmembrane pore in the protein (PDB id: 2OAR) is identi-
fied as two disconnected cavities using existing methods. (b) Using our approach, we find the best
path to connect the two cavities and correctly identify the biologically significant pore.

1.3 Parallel computation of discrete Voronoi diagram
Voronoi diagram, a partitioning of space based proximity to input point sites, is one of the most
widely studied structures in computational geometry. In the context of structural biology, it plays a
key role in the identification of channels in proteins, computation of molecular surfaces, determin-
ing depth of binding sites, etc. Voronoi diagram also finds applications in computer graphics, image
processing, mesh processing, robot navigation, and for data analysis in several scientific and engi-
neering disciplines. In most cases, Voronoi diagrams are computed for the continuous case where
the space of interest is 2D or 3D Euclidean space and the input set of sites is finite. Discrete Voronoi

(a) (b)

Figure 1.5: (a) A transmembrane protein (PDB id: 1OED). (b) The channel network extracted
using Facet-JFA.
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diagram however requires the computation of regions on a discrete grid of finite pixels, with seed
points being some of the pixels themselves. Jump Flooding can be used to generate discrete Voronoi
diagrams. We introduce a variant of JFA, called Facet-JFA, wherein only the pixels that are located
near the Voronoi region boundaries are processed, thus immensely reducing the total amount of
work done by the algorithm [74]. The key results are summarized below:

• A novel variant of JFA, called Facet-JFA. This strategy enables both space optimization and
better running times in practice. We observed upto 10x speed-up over JFA using Facet-JFA.

• The algorithm uses an intrinsic quad tree-based approach and requires only log n steps to
compute the Voronoi diagram for an n× n grid of pixels.

• A GPU accelerated technique for extraction of the channel network in biomolecules in two
and three dimensions which uses Facet-JFA (See Figure 1.5).

• The proposed method allows extraction of channels at real-time interactive rates and is thus
suited for visual analysis of static and dynamic channel structures in Molecular Dynam-
ics (MD) simulation trajectories.

1.4 Parallel computation of alpha complex
Alpha complex, a subset of Delaunay triangulation, has been extensively used as a tool in the study
of biomolecular structures. It is crucial for the accurate computation of geometric properties of
biomolecule like volume and surface area. We propose an algorithm that avoids the expensive
Delaunay triangulation computation and instead directly computes the alpha complex for biomole-
cules. The key contributions are summarized below:

• A new characterization of the alpha complex – a set of conditions necessary and sufficient for
a simplex to be a part of the alpha complex.

• A new algorithm for computing the alpha complex of a set of weighted points in R3. The
algorithm identifies simplices of the alpha complex in decreasing order of dimension without
computing the complete weighted Delaunay triangulation.

• An efficient CUDA based parallel implementation of this algorithm for biomolecular data
that can compute the alpha complex for a 10 million point dataset in approximately 10 sec-
onds.

• A proof of correctness of the algorithm and comprehensive experimental validation to demon-
strate that it outperforms existing methods.
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1.5 Organization
This thesis is organized as follows. Chapter 2 discusses the necessary mathematical background for
representation of biomolecular structure. Chapters 3-5 constitute the first part of the thesis where
we focus on tools and techniques designed to address the challenges in cavity and channel extraction
from end user perspective. Specifically, in Chapter 3 we describe a tool called ChExVis designed
for extraction and visualization of channels in biomolecules. Chapter 4 discusses a web server
tool called RobustCavities proposed for extraction of robust cavities in uncertain data. Chapter 5
describes an integrated geometric and topological approach to connecting cavities in biomolecules
to facilitate exploration of cavities in uncertain data. Chapters 6 and 7 constitute the second part
of the thesis where we focus on designing efficient parallel algorithms for two geometric structures
widely used in the study of biomolecules. Specifically, Chapter 6 presents a GPU based parallel
algorithm for computation of discrete Voronoi diagrams, while Chapter 7 discusses a GPU based
algorithm for computation of alpha complex for biomolecules. Chapter 8 concludes the thesis.



Chapter 2

Mathematical Background

Here, we briefly introduce the mathematical background required to define and represent the struc-
ture of biomolecules. We use the alpha complex based representation of biomolecular structure,
which is described in detail in a book by Edelsbrunner [31]. For technical background on compu-
tational topology, the reader can refer to another book by Edelsbrunner [32]. In this chapter, we
will only describe the mathematical objects relevant for this thesis in short. For details, the reader
is referred to the above mentioned books.

2.1 Simplicial complex
A d-simplex σ is the convex hull of d+ 1 affinely independent points. A vertex, edge, triangle, and
tetrahedron are d-simplices of dimension 0 to 3. A simplex τ is a face of σ, τ ≤ σ, if it is the convex
hull of a non-empty subset of the k + 1 points. A simplex σ is called the coface of τ if τ is a face of
σ.

A simplicial complex K is a finite collection of simplices such that (a) σ ∈ K and τ ≤ σ implies

0-simplex 1-simplex 3-simplex2-simplex
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Figure 2.1: Left: Simplices of dimension 0 to 3,Right: An example of a two dimensional simplicial
complex.
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τ ∈ K, and (b) σ1, σ2 ∈ K implies σ1 ∩ σ2 is either empty or a face of both σ1 and σ2. Refer to
Figure 2.1 for an example. A subcomplex of K is a simplicial complex L ⊆ K.

2.2 Biomolecule representation
Protein molecules are often modelled as union of balls. The molecule B is defined as the set {bi =

(pi, ri)}. Here bi denotes a constituent atom of B modelled as a ball with center at pi and radius ri.

2.2.1 Voronoi diagram and Delaunay triangulation
Let S = {s1, s2, · · · , sk} be a finite set of points (also called sites) in Rd in general positions. The
Voronoi cell of a site si ∈ S is the set of points in Rd whose Euclidean distance to si is smaller than

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2: (a) Voronoi diagram of a weighted point set in R2, Voronoi edges are in green. This is
also called Power diagram. (b) The weighted Delaunay complex is the dual of the power diagram.
(c) The α-complex Kα for α = 0 is shown in red. This is the dual of the intersection of power
diagram and union of balls. Kα forms the occupied region (OR) of the molecule. (d) The empty
region (ER) in green. This region is defined by Delaunay flow. The green triangles do not belong
to OR and have flow towards a triangle within the molecule. The set of simplices in OR and ER
form the molecular region (MR). (e) Void and pocket in a collection of 2D balls. Void is shown
in yellow and pocket is shown in blue. (f) ER consists of two maximally connected components,
called cavities, shown in blue and yellow. (g) The alpha complex shown for some α > 0 where the
void has been filled up and original pocket has become a void. (h) The new void is highlighted using
blue, Delaunay edges (in black) and alpha complex (in red) are also shown to provide context.
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or equal to any other point in S. The collection of Voronoi cells of all the sites in S partitions Rd.
In 3D, the Voronoi cells are 3D convex polyhedrons. The boundary of Voronoi cells are convex
polygons and are called the Voronoi faces. The points on Voronoi faces are equidistant from two
input sites. The boundaries of Voronoi faces are line segments, and referred to as the Voronoi edges.
The points on Voronoi edges are equidistant from three input sites. The Voronoi edges meet at
points called Voronoi vertices. The Voronoi vertices are equidistant from four input sites. This
geometric structure of collection of Voronoi cells, along with Voronoi faces, Voronoi edges and
Voronoi vertices is referred to as the Voronoi diagram.

TheDelaunay triangulationD of S is the dual of the Voronoi diagram and partitions the convex
hull of S. The dual mapping is done such that k-dimensional Voronoi element is mapped to (d−k)-
dimensional simplex in Delaunay triangulation. So, the dual of a Voronoi cell is a point, the input
site corresponding to the Voronoi cell. The dual of a Voronoi face is aDelaunay edge corresponding
to the two input sites whose Voronoi cells share this Voronoi face. Similarly, the dual of Voronoi
edge is Delaunay triangle incident on three inputs sites, intersection of whose Voronoi cells create
this Voronoi edge. Lastly, the dual of Voronoi vertex is a Delaunay tetrahedron incident of four
input sites whose Voronoi cells meet at this Voronoi vertex. Clearly, the Delaunay triangulation
is a simplicial complex and is referred to as the Delaunay complex. One important property which
tetrahedra in Delaunay triangulation satisfy is called the empty circumsphere property, which states
that circumsphere of a Delaunay tetrahedron should not contain any other input site. This property
has been exploited in computation of 2D Delaunay triangulations where a given triangulation is
modified incrementally until all the triangles satisfy the empty circumcircle property.

The definitions of Voronoi diagram and Delaunay triangulation can be extended to the case
where the input sites are replaced by balls. These are called weighted Voronoi diagram and weighted
Delaunay triangulation, respectively. The distance between an input ball bi, with center pi and radius
ri, and a point q ∈ Rd is given by the power distance π(bi, q) = ‖q − pi‖2 − r2i . Similar to the case
of Voronoi diagram, Rd can be partitioned based on proximity to input balls in terms of the power
distance. The Voronoi cell of an input ball bi ∈ B is the set of points in Rd whose power distance to
bi is smaller than or equal to any other point in B. The collection of Voronoi cells of all the balls in
B is called the weighted Voronoi diagram or Power diagram. The weighted Delaunay triangulationD
ofB is the dual of the weighted Voronoi diagram. The weighted Voronoi diagram and the weighted
Delaunay triangulation are shown in Figures 2.2(a) and 2.2(b), respectively. The reader can refer
to the book by Aurenhammer [4] for a comprehensive account of Voronoi diagrams and Delaunay
triangulation, and their weighted avatars.



2. Mathematical Background 11

2.2.2 Alpha complex
The alpha complex is defined as a subcomplex of the weighted Delaunay complex based on a growth
model on the balls that is consistent with the power distance. The growth parameter α corresponds
to a radius

√
r2i + α for a ball bi centered at pi with radius ri. Positive values of α correspond to

growing the balls and negative values correspond to shrinking the balls. The weight wi of the ball
bi is defined as wi = r2i + α. The weight increases or decreases by α between −∞ and ∞. Note
that α = 0 corresponds to no growth. The parameter α can be varied from −∞ to ∞ to obtain
a filtration of simplices belonging to the weighted Delaunay complex. A sequence of α-complexes
(∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = D) containing progressively more triangles and tetrahedra is
obtained as α is increased from −∞ to∞. Figure 2.2(c) shows the α-complex at α = 0 as a subset
of D highlighted in red. Figure 2.2(g) shows alpha complex at for some α > 0. Clearly, more
simplices are part of the alpha complex at higher values of α; the input disks are also enlarged
according to α. We use the notation Kα to denote the alpha complex of B at the value α.

As α varies from −∞ to∞, topological features such as tunnels and voids appear in and disap-
pear from the alpha complex. The importance of a topological feature is captured by the notion of
topological persistence [40], which is equal to the length of interval of α for which the feature was
present in the alpha complex.

2.2.3 Cavities
The following characterization of cavities is motivated by the work on identification of protein
cavities by Liang et al. [64, 65, 66]. We present those ideas here in consolidated form and introduce
our own notations in order to present clear definition of cavities using alpha complex.

For a given molecule represented as a set of balls, letD be the weighted Delaunay triangulation
and Kα ⊆ D be the α-complex for value α. The Delaunay flow over D is defined as the collection
of flows between adjacent tetrahedra in D going from the tetrahedron from smaller circumsphere
to the larger one. Let Itet denote the set of tetrahedra in D whose Delaunay flow terminate within
D and I denote Itet together with the corresponding faces. For a given α value, we definemolecular
region MR as Kα ∪ I . The simplices in MR can be classified into two groups based on whether
they belong to the α-complex or not. The simplices in OR = Kα constitute the occupied region
in the molecule, while the remaining simplices ER = MR − OR capture the empty region in the
molecule. Refer to Figure 2.2(d) for an illustration of ER, OR and MR. In the figure, the green
region is ER while red region is OR. The union of ER and OR is the molecular region, MR.
The cavities are defined as maximally connected subregions in ER. Let the set of all cavities be
C = {C1, C2, . . . , Ck}, such thatER = C1∪C2∪· · ·∪Ck and Ci∩Cj = ∅. The tetrahedron ti ∈ Ci
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with highest α value is selected as the representative tetrahedron of Ci. Refer to Figures 2.2(e) and
2.2(f) for an illustration of cavities.

The cavities which are completely surrounded by atoms of the molecule are called voids, while
the cavities which have openings to region outside the molecule are called pockets. The openings of
these pockets are sometimes referred to as mouths. The pockets can be detected as voids in alpha
complex for some higher values of α. For example, the pocket shown in blue in Figure 2.2(f)
becomes a void at higher value of α as shown in Figure 2.2(h).



Chapter 3

ChExVis: A Tool for Molecular Channel
Extraction and Visualization

Protein channels are crucial for transport of ions, ligands, solvents and other macromolecules. Such
channels occur in diverse systems such as enzymes where they play a role in navigating the ligand to
a buried active site, or in channelling an intermediate through multiple entry and exit pathways, or
in membrane proteins that are involved in the transport of small molecules, ions etc. The selectivity
of the channels in permitting access to specific types of molecules and the micro-environment that
it provides is crucial to the nature of the molecule that it transports [101]. Indeed, it is important to
identify and study channels since mutations in residues lining the channel have resulted in channel
dysfunctions. Such channelopathies have been associated with defective insulin secretion, diseases
such as cystic fibrosis, epilepsy and kidney stone disease [53].

Geometrically, a channel is a pathway through the empty space within a molecule that connects
an internal point and the molecular exterior [87]. A channel that passes through the molecule and
connects two exterior points is called a pore. Other terms like tunnel and molecular path have also
been used to refer to channels. However, we will consistently use the term channel to refer to both
simple channels and pores. In this chapter, we study the problem of efficient computation and effec-
tive visual exploration of channels in biomolecules. There is a need for an integrated framework that
supports computation of the channels, interactive exploration of their structure, and detailed visual
analysis of their properties. Although there exist tools that partly address this need, they either do
not guarantee a robust computation of channels or they are found lacking in providing sufficient
support for interactive visualization of channels and their properties. We aim to address these short-
comings, and develop a tool that uses sound mathematical theory for extraction of channels and
also supports wide variety of intuitive and useful visualizations of channels and their properties.

13
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Related work
In recent years, numerous computational methods have been developed for detection and clas-
sification of empty spaces in proteins. Early techniques focused on finding cavities and pock-
ets in molecules. These included grid-based approaches such as Pocket [63], Ligsite [49] and
VICE [96]. To overcome the inaccuracy of grid based methods, geometric and topological tech-
niques were exploited to find cavities, more accurately, in software like CASTp [29], Caver [20]
and ProShape [56].

The problem of channel extraction1 was first addressed in Hole [88]. The proposed solution
involved splitting the molecule into slices along a user-specified vector and determining the largest
empty sphere within each slice using simulated annealing. Similar approaches were used in other
tools as well, most notably PoreWalker [79]. The idea of approximating the molecular space as
a grid and determining channels by processing grid voxels has also been exploited in tools such as
dxTuber [82], Hollow [51], 3V [98] and Chunnel [23]. Although this approach is computation-
ally efficient, the accuracy depends on the grid resolution. Voronoi diagram based techniques avoid
the need to choose approximate grid resolutions by directly representing balls and the space they
occupy. However a key assumption is that the ion or molecule that traverses the channel may be
represented by a ball. This approach is followed in Mole [87, 80], MolAxis [100], Caver [20, 57]
and state of the art techniques developed by Lindow et al. [68, 69] and Kim et al. [55]. Mole uses
pruned Voronoi diagram of atom centres for extracting channels. MolAxis and Caver support
differing atomic radii by approximating large atoms as a union of small balls with uniform radii.
Lindow et al. compute the Voronoi diagram of spheres to further improve the geometric accuracy
of channel centerlines. Our proposed channel extraction technique falls in the category of Voronoi
diagram based methods. Different from the above, we use the alpha complex, which is based on the
power diagram, to compute channels in biomolecules. The channels computed using this approach
are guaranteed to be feasible. Various channel extraction techniques are studied and compared in a
recent detailed review [12].

Many of the above-mentioned methods and software tools do not facilitate study of physico-
chemical properties of the extracted channels, and focus only on computing geometric properties
of the channel. After a recent update, Mole [87] supports computation of some physico-chemical
properties. However, there is a lot of scope for improvement in terms of how these properties are
visualized and presented to the user.

1We use the term channel extraction because we view the problem as a special case of the feature extraction problem.
The features of interest are channels and the data is a biomolecule represented in PDB format.
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Contributions
We describe a method for channel extraction, based on the alpha complex, that ensures extraction
of geometrically feasible channels. Our proposed alpha complex-based representation of channels
allows the storage of both the volumetric region occupied by the channel and its centreline in a
unified manner. We demonstrate the usefulness of this approach via multiple case studies describ-
ing the automatic extraction and ranking of transmembrane pores. To gain a deeper functional
understanding of extracted channels, we propose the computation of channel profiles. The second
contribution is the development of simple but information rich representations for effective visu-
alizations of the channel and its profiles. The methods presented in this chapter are implemented
within a software tool called ChExVis, which is available as a web-server. Finally, ChExVis is com-
pared with other channel extraction tools in terms of the supported features and evaluated based
on the ability to identify known channels in a set of transmembrane proteins.

3.1 Channel extraction
In this section, we describe a method of channel extraction based on alpha complex. The reader
should refer to Chapter 2 for the necessary technical background. Figure 3.1 provides a brief re-
fresher. As shown in Figure 3.1(c), the alpha complex and its complement partition the weighted
Delaunay triangulation. For the case of α = 0, the alpha complex represents the region covered by
the atoms in the molecule. The complement of alpha complex, consisting of the remaining tetrahe-
dra, triangles and edges of the weighted Delaunay triangulation, represents the empty space within
the molecule.

The method proceeds as follows. First, a network of all geometrically feasible channels is con-
structed using the complement of alpha complex. Then, significant channels leading to active sites
and important pores are identified within this network, depending on user-specified input. For iden-
tifying important pores, important end points are determined based on topological persistence [40].
A significant pore is reported for each pair of important end points. In the case of transmembrane
proteins, a set of pores that traverse the membrane are identified and ranked in order of significance.
Each extracted channel has a tetrahedral representation which accurately captures the volume oc-
cupied by the channel. The tetrahedral representation is exploited to efficiently compute channel
profiles for every channel identified above. These profiles can be interactively visualized along with
various 3D representations of the channel in the context of the biomolecular structure.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) ( j)

Figure 3.1: 2D illustration of an alpha complex based representation of a molecule and the empty
space within. (a) Union of disks (balls in 3D represent atoms) where the contribution from each
disk is equal to its intersection with the corresponding Voronoi cell. (b) The weighted Delaunay
triangulation of the disks and the convex hull (bold). (c) Alpha complex at α = 0, shown in red,
is a subcomplex of the weighted Delaunay triangulation. (d) A cavity is a connected component
of the complement of the alpha complex. A cavity with atleast one opening is a pocket (blue),
while buried cavities are referred to as voids (green). (e) The empty space represented by the cavity
triangles. (f) A channel is a simply connected subset of simplices of a pocket each of whose triangles
has at most two neighbours and at least one boundary edge is a mouth edge. Here a pore (pink),
a channel with two openings, is shown represented as a subset of the complement of the alpha
complex. (g) A channel from the boundary to an interior point. (h) Underlying empty space of
the channel. (i) Simplices of the complement of the alpha complex that represent the channel. ( j) A
path representation of the channel in which nodes are located at the centers of the orthogonal circle
corresponding to each triangle and arcs connect nodes that correspond to neighbouring triangles.

3.1.1 Channel network
All channels lie within the empty space of the molecule by definition. Therefore, we restrict our
focus to those tetrahedra, triangles, and edges of the weighted Delaunay triangulation that do not
belong to the alpha complex. We construct the dual graph of the complement to obtain a channel
network in the molecule. The channel network is pruned by restricting to nodes that are accessible
from the exterior because the empty space within voids is not accessible. The channel network is
a subset of the power diagram of the set of atoms. A triangle in the empty space that lies at the
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.2: Channel extraction in a transmembrane protein. (a) Mechanosensitive Channel of Large
Conductance (MscL, PDB id 2OAR). (b) The path network. (c) Widest path tree. (d) Pruned
widest path tree. (e) Pores between top 10 boundary nodes in the network. (f) Transmembrane
pores between top 5 interior and 5 exterior nodes. (g) Top ranked transmembrane pore shown
using the skin surface (yellow). Other pores are shown for context.

interface of the molecular exterior and interior is called a mouth triangle, and represents an entry
point into the molecule. The nodes in the channel network corresponding to tetrahedra incident
on mouth triangles are called boundary nodes. Figure 3.2(b) shows the channel network for the
transmembrane protein 2OAR. Algorithm 1 computes an annotated channel network, given the
set of atoms in the molecule. The worst case running time complexity of this algorithm is defined
by running time complexity of weighted Delaunay triangulation which is known to be O(n2 log n)

for 3D input where n is the number of atoms. The other steps of the algorithm are linear in the
number of output simplices.

We also extract the widest path tree in the channel network by formulating it as a maximum
spanning tree computation. We will discuss this tree in more detail later in Chapter 5. Intuitively,
the ligands would prefer widest paths as geometrically they are paths of least resistance and least
obstruction, hence this tree provides a good overview of the channel structures in the molecule, see
Figure 3.2(c). The widest path tree can be further pruned so that it is a collection of paths between
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Algorithm 1 Construct Channel Network
Input: S: Set of atoms.
Output: CN = (N,E): Annotated channel network.
Output: B ⊂ N : Boundary nodes.

1: D := Weighted Delaunay triangulation of S.
2: Kα := Alpha Complex at α = 0.
3: CN = (N,E) := Dual graph of the tetrahedra and triangles in the set D −Kα.
4: Prune CN by restricting it to a subset whose nodes lie inside the pockets.
5: Mark a node as a boundary node and insert into B if it is adjacent to a pocket mouth.
6: For each node in N , store the four atoms centered at vertices of the corresponding tetrahedron

and the power distance.
7: For each edge in E, compute and store the length of edge and the minimum power distance

along the edge.
8: return CN , B

important nodes as shown in Figure 3.2(d). Although there is no guarantee that all biologically
functional channels will be successfully identified in the pruned tree, we observed this to be true in
most cases.

3.1.2 Significant channels
There exists multiple channels within the channel network between a given pair of nodes. We aim
to identify a small set of potentially significant channels, one or more of which may correspond
to biologically significant channel in the molecule. Short and wide channels are considered signifi-
cant. We quantify significance by assigning a cost to each edge in the channel network equal to the
ratio of the edge length to the minimum power distance along the edge. The power distance is an
indicator of the local width of the channel. Next, given a set of endpoints, we compute the shortest
paths between all pairs of endpoints using Dijkstra’s algorithm on the channel network. Dijkstra’s
algorithm is executed multiple times on the network to obtain a set of important channels instead
of a single most significant channel. After each iteration, weights on edges belonging to the detected
channel are made high enough to ensure that subsequent iterations report edge disjoint channels.
It should be noted that the naive strategy of executing Dijkstra’s algorithm only once and choosing
top channels, usually yields a set of very similar channels. In the discussion below, we distinguish
between the case when one of the end points is an active site and buried within the molecule and
the case when both endpoints lie on the boundary of the molecule.

For amolecule containing n atoms, the number of tetrahedra and triangles inD is at mostO(n2).
Hence, the size of CN is also bounded by O(n2). Let the number of endpoints be k. The worst
case running time complexity of computing significant channels between all pairs of endpoints is
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therefore O(k2 · n2 log n). It should be noted that for inputs with well distributed points as in the
case of biomolecules, the size of D is linear in n resulting in much faster running times in practice.

3.1.3 Channels to active sites
Enzymes contain buried active sites and it is often useful to compute and visualize channels lead-
ing to such sites. We accomplish this by first automatically determining a node from the channel
network to represent the active site. Dijkstra’s shortest path algorithm is employed to compute the
channel to the boundary. We use the Catalytic Site Atlas [45] and HETATM records of significant
ligands in the PDB file to determine important sites within the given molecule. Both methods pro-
vide a set of atomic locations (A = {p1, p2, · · · , pn}) from the active site. A representative node
may be determined by computing the node closest to the centroid of the atoms that constitute the
active site [87]. However, this approach may not work for large ligands where the centroid is typi-
cally far removed from the deepest point in the active site that interacts with the ligand. We assign a
depth value to each node in the channel network via an iterative wave-front propagation algorithm
that begins at boundary nodes and proceeds towards the interior. For each atom in the set A, we
determine the closest node and hence construct the set N(A). We select the node n ∈ N(A) with
the highest depth value as the representative node for the active site.

3.1.4 Extraction of pores
A channel both of whose endpoints are incident on mouth triangles is called a pore. Technically,
any path between two boundary nodes of the channel network is a pore.

Important pores. Computing significant channels between all pairs of boundary nodes to deter-
mine pores is a costly operation because the number of boundary nodes is usually large. We select
a representative node from each mouth. Specifically, we locate the mouth triangle with the high-
est persistence [37] and choose the corresponding node as the representative. This mouth triangle
roughly corresponds to the widest opening of the mouth. Our choice of the value of α is conser-
vative. We determine αmax ∈ [0,∞) at which the number of mouths attains a maximum value.
The mouths are extracted at αmax and the triangle with the maximum persistence is chosen as the
representative. The above procedure reduces the list of boundary nodes to a manageable size. Let
Bimp denote the reduced list of nodes. This list is sorted in decreasing order of the persistence value
of the tetrahedron corresponding to each node. Next, the top k boundary nodes are chosen from
the list, where k is a user-defined parameter. Given k, channels between all possible pairs of the k
nodes are automatically extracted as important pores in the molecule. Figure 3.2(e) shows the set
of pores extracted in 2OAR for k = 10.
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Transmembrane pores. Transmembrane pores are of special interest because of their functional
importance. We use the OPM database [71] to classify nodes in Bimp into three sets viz. Bin, Bout,
and Bmem corresponding to the nodes that lie inside, outside, or within the membrane, respec-
tively. When OPM data is not available, the TMHMM utility [58] is used to classify the nodes.
The pores are extracted such that one endpoint lies in Bin while the other lies in Bout. Figure 3.2(f)
shows the set of transmembrane pores. Let TM be the set of transmembrane pores extracted using
this approach. We rank the pores in TM based on three criteria – length, bottleneck width, and
straightness. Straight pores suggest highly regular and symmetric cavity structure around the chan-
nel centreline [79]. Straight pores are therefore preferable over winding pores in transmembrane
proteins. The score f(x) assigned to a transmembrane pore x ∈ TM is defined as follows:

f(x) =
1

3

(
|x|

maxy∈TM |y|
+

bn(x)

maxy∈TM bn(y)
+ s(x)

)
,

where |x| is the length of the pore x, bn(x) is the bottleneck width of the pore, and s(x) is a measure
of how straight the pore is. The straightness is computed by calculating the deviation of path nodes
from the best fit line. Let P denote the ordered list of uniformly distributed sample points along
the path representation of the channel. The straightness term is given by the following expression:

s(P ) =

∑|P |/2
d=1

∑|P |−2d
i=1 d× cos∠(P [i], P [i+ d], P [i+ 2d])∑|P |/2

d=1

∑|P |−2d
i=1 d

The average curvature is computed at different scales from the set P . Curvature is approximated
by the cosine of the angle formed by three equally separated sample points. The distance is varied
to capture the straightness of the channel at different scales. The pore with the highest score f is
reported as the best transmembrane pore. Figure 3.2(g) shows the best transmembrane channel de-
tected in 2OAR. It should be noted that correctness of identified transmembrane pores is dependent
on the accuracy of the information provided by the OPM database and TMHMM utility regarding
the orientation and placement of protein with respect to the membrane.

3.1.5 Advantages of using alpha complex for channel extraction
Compared to earlier Voronoi based approaches [80, 68], our proposed alpha complex based ap-
proach has the following advantages:

• The detected channels are guaranteed to be geometrically feasible. This follows from the
definition of alpha complex. Delaunay triangulation based-approach, as used in Mole [80],
can also provide tetrahedral representation for channels, but these channels are not guaranteed
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to be geometrically feasible as reported earlier by Chovancova et al. [20].

• The tetrahedral representation of the volume occupied by the channel enables accurate com-
putation of volumes and surface areas [72].

• The tetrahedral representation may be used for other computations such as those requiring
finite element analysis.

• The tetrahedral representation is also used for computing channel profiles and hence plays a
crucial role in our channel visualizations.

• EuclideanVoronoi diagramof spheres allows extraction of geometrically accurate channels [68,
55], but a channel may not necessarily be represented as a set of tetrahedra using this approach.

3.2 Channel visualization

3.2.1 Channel profiles
We propose the computation and visualization of channel profiles, 1D real-valued functions defined
on the channel, with the aim of facilitating a quantitative analysis of the computed channels. Let
P ⊂ R3 denote the centreline of a channel. A channel profile is a real-valued function defined on
P. Let p0 be one end-point of the channel. The centreline can be parametrized using the geodesic
distance from p0. So, the channel profiles are, indeed, real-valued functions defined on an interval
[0, d], where d is the length of the channel.

Radius profile. We compute the variation of the square root of power distance along the channel.
We call this the radius profile because it is the radius of the orthogonal sphere to the three closest
atoms. This profile provides a good estimate of the width of the channel, and is therefore useful for
gaining information about the potential bottlenecks along the channel.

Electrostatic potential profile. Electrostatic potential is computed for the whole molecule using
the finite element method APBS [6]. The computed electrostatic field is available as a sample over
a grid. We use tri-linear interpolation to determine the electrostatic potential values at points along
the centerline. The use of default parameters for electrostatic potential computation and approxi-
mation along centerline may lead to a situation where this profile may provide a false impression
of the charge distribution inside the channel. Therefore, the electro-static potential should be used
for analysis with care.
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Physico-chemical profiles. We compute the average of different physico-chemical quantities over
the four atoms of each tetrahedron in the channel. Important physico-chemical profiles include hy-
dophobicity [61], charge, bulkiness, and secondary structure related profiles. We use ProtScale [46],
which assigns a scalar value for each amino acid to represent a physico-chemical quantity.

Conservation profile. Conservation captures the tendency of an amino acid residue to remain un-
changed over long periods of evolution. Conserved residues may be of functional significance. We
use the ConSurf server [3], which uses multiple sequence alignment over a large set of sequences,
to obtain conservation score for all amino acid residues in the protein. The conservation score at
each node is computed as an average of the conservation scores of the four amino acids incident on
the corresponding tetrahedron.

(a)

(b)

Figure 3.3: Channel profile visualization of the transmembrane pore in 2BG9. (a) Conservation
profile shown as a color map over the radius profile, which in turn is shown as a symmetric graph
plot. (b) Hydrophobicity and conservation profiles shown in a split visualization over the radius
profile.

3.2.2 Profile visualization
Channel profiles are visualized as a simpleXY-plot that shows the variation of the property along the
channel. To capture the correlation of the radius profile with a second channel profile, we compute
a 2D projection of the channel using the radius profile. The second profile is shown using color-
mapping1 within the resulting region, see Figure 3.3(a). This visualization may also be extended to
display the correlation between the radius profile and two different profiles. The 2D projection is
split into two, and each region displays a different channel profile using color-mapping as shown in
Figure 3.3(b).

1We use blue to red diverging color map, where blue corresponds to low values while red represents high values.
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3.2.3 Channel visualization in 2D and 3D

Figure 3.4: Illustration of 2D representation of a channel in a synthetic 2D example. Top: The
molecule is shown as a set of disks (grey). The channel is shown as a path (red) and as a set of
triangles (blue). In 2D, each node in the path corresponds to a triangle, while a path edge corre-
sponds to an edge in the triangulation. Each disk is given an alphabetic label, while the nodes of the
path are given numeric labels. Bottom: The proposed 2D visual metaphor of the channel is shown.
Each vertical box denotes a node in the path (and thus denotes a triangle within the channel). The
three small boxes within the node box denote the disks incident on the triangle corresponding to
the particular node box. Also, consecutive nodes boxes are connected by two edges. These edges
denote the edge shared by the consecutive triangles in the channel. For example, node boxes 3 and 4
denote triangles cbf and cgf , respectively. Their shared edge is cf , so the atom boxes corresponding
to discs c and f are connected by edges. This representation naturally extends to the 3D case, with
the only modification that each node box will denote a tetrahedron and will thus contain four atom
boxes. Two consecutive node boxes will be connected by three edges denoting the common triangle
shared by the adjacent tetrahedra.

We design a novel visualization metaphor for channels based on tetrahedral representation of
channels. A channel is visualized using the 2D projection. We use the correspondence between
the channel network nodes and the weighted Delaunay triangulation tetrahedra, and between the
channel network edges and the weighted Delaunay triangulation triangles to effectively visualize
different properties along the channel. Each node is displayed as a node box containing four smaller
atom boxes, which correspond to the four atoms at the vertices of the tetrahedron. The channel is
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(a)

(b)

(c)

Figure 3.5: 2D representation of a channel. (a) 2D box representation of the atoms lining a portion
of the channel in 2BG9. (b) and (c) Boxes are merged and coloured by atom type and polarity of
residues. The numbers below the boxes are tetrahedron indices, which makes it clear that this
visualization corresponds to a subset (tetrahedra 46-56) of the complete channel.

shown as a sequence of node boxes. Adjacent node boxes are connected by three edges that corre-
spond to the triangle shared by the two adjacent tetrahedra. Figure 3.4 illustrates this representation
for a 2D example, while Figure 3.5 demonstrates this visual representation in the 3D case for a part
of the transmembrane pore in 2BG9. Consecutive atom boxes are merged into one if they corre-
spond to the same atom (Figures 3.5(b) and 3.5(c)). The power of this representation is realized
when we treat each atom box as a place holder. Each box is given a label and a color. Appropriate
choices of a colormap and labels for the boxes based on the physico-chemical properties results in
a concise and effective visualization of the channel. This representation can be viewed along with
profile visualization to obtain richer information about the channel. This visualization metaphor
can be used for representing any channel represented as a set of tetrahedra. In particular, this vi-
sualization may also be used by tools like Mole to show variation of physico-chemical properties
across a channel.

The channel is also visualized in 3D within the context of the molecule. We support visualizing
channels as tetrahedra, union of balls, or as a surface of the union of balls. The union of balls
representation of the channel is obtained by computing the orthogonal sphere for each channel
tetrahedron. The skin surface is a smooth surface that wraps around the given set of spheres [18].
We compute the skin surface for the union of balls representation of the channel. In addition to
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displaying the channel, we optionally show atoms or amino acid residues lining the channel. This
may help the user to further inspect the physico-chemical properties of the channel. We also provide
pymol scripts to facilitate download and visualization of the channel properties. The combined view
of the channel and residue is pointing into the channel lumen coupled to their physico-chemical and
biochemical properties and conservation in related proteins would be useful in assessing mutability
of channel residues and their mapping on to the protein 3D structure.

3.3 ChExVis

The channel extraction and visualization methods presented in this chapter are implemented into
a software tool called ChExVis. A web-server1 has been implemented and made freely available.
The web-server is comparable to existing state-of-the-art channel extraction software in terms of
functionality.

3.3.1 Web server features
The ChExVis web-server supports submission of jobs by specifying the PDB ID or uploading a
PDB file. Biological assemblies of proteins can also be uploaded. While the default values for the
parameters often produce required results, the user may optionally tune multiple parameters. Fur-
ther, the server also computes transmembrane pores similar to existing tools like PoreWalker that
exclusively detect such channels. The unique and novel 2D representation of the channel enables
a detailed analysis of its physico-chemical properties at a level of detail not supported by other
existing software. The extracted channels and their properties are displayed within the browser
using Java/JSMol based applets. PyMOL [28] scripts for individual channels are also generated and
may be downloaded for detailed off-line study. See Figure 3.6 for typical output of the web-server.
With default parameters, for typical input PDB files containing upto 20,000 atoms, the web-server
takes around two minutes for computation of channels, most of which is spent in computation
of weighted Delaunay triangulation and alpha complex. Note that these running times are for se-
rial implementation of Delaunay triangulation and alpha complex computation. With GPU based
implementation, we believe the running times will improve significantly.

3.3.2 Comparison with other channel extraction tools
We compare ChExVis web-server with four channel extraction tools viz. Mole 2.0 [87], Caver
Analyst 1.0 [57], MolAxis [100] and PoreWalker [79]. Table 3.1 summarizes the features pro-
vided in these tools. As evident from the comparison table, the primary novelty of ChExVis is the
advantage of extensive visual analysis of channels using channel profiles along with information-

1http://vgl.csa.iisc.ac.in/chexvis/

http://vgl.csa.iisc.ac.in/chexvis/
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Figure 3.6: Screen-shot of output generated by ChExVis for PDB-id 2BG9. The output page
has 3 main regions (coloured boxes shown only in this illustration). On top left (red box), the
automatically computed channels extracted by ChExVis are listed along with their properties in
tabular form. The user can select one of the rows of these tables to view that particular channel.
On top right (blue box), the 3D view of the currently selected channel is shown in the context of
the protein within JMol browser plug-in. At the bottom (green box), the 2D representation of the
channel is shown in a Java applet called ChExVis properties viewer. Both the 3D and 2D views of
the channel are highly interactive and provide rich visualization features. The views are linked to
tables listing the channels. Selecting a different channel immediately updates the 2D and 3D views.
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Figure 3.7: The results of extraction of channels in a select set of enzymes using different tools viz.
ChExVis, Mole, Caver and MolAxis.

rich 2D representation of channels. However, we also claim that the proposed channel extraction
method is significantly better than the other tools. To support our claim, we compared the results
of these methods for a set of 29 diverse protein structures. The channels detected in the seven en-
zymes which are a part of our dataset, are summarized in Figure 3.7, while pores extracted in 22
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Table 3.1: Comparison of features supported in different channel extraction tools
Feature ChExVis Mole Caver MolAxis PoreWalker

Computation of channels leading
to internal molecular sites

Yes Yes Yes Yes No

Automatic suggestion of internal
sites using CSA

Yes Yes Yes No No

Channels to multiple internal sites Yes Yes Yes No No

Filtering of similar channels No Yes Yes No No

Computation of pores Yes Yes No Limited Only trans-
membrane
pores

Computation of transmembrane
pores

Yes No No Limited Yes

Multiple transmembrane pores Yes No No No No

Ranking of pores Yes No No No Not applicable

Computation of physico-chemical
properties

Yes Yes No No No

Interactive visualization of
physico-chemical properties

Yes No No No No

Conservation profile Yes No No No No

User Interface Web-server Web-server
and GUI

GUI Web-server Web-server

Interactive visualization of chan-
nels

Yes Yes Yes No No

Good default parameters Yes Yes Yes Limited Yes

Computation speed Reasonable Fast Reasonable Reasonable Slow

PyMOL export Yes Yes Yes No No

PyMOL plugin No Yes Yes No No

transmembrane structures by different methods are shown in Figures 3.8, 3.9 and 3.10.
For comparison, we used the default parameters for channel extraction provided by the respec-

tive tool. ChExVis computes three types of outputs viz. channels leading to active sites, pores and
transmembrane pores. Mole computes channels leading to active sites1 as well as pores, whileCaver
computes only the former. In addition to computing channels leading to a site in the molecule,Mo-

lAxis can also extract transmembrane pore if the axis and a constraint sphere are provided. Pore-
Walker computes a single transmembrane pore. We compare ChExVis channels with the channels
computed byMole,Caver andMolAxis. ChExVis pores are compared withMole pores. The top
transmembrane pore computed by ChExVis is compared with the transmembrane pore computed

1
Mole and Caver use the term tunnel to refer to a channel that leads to a site inside the molecule, i.e., tunnels

have one end point incident on a group of atoms buried inside the molecule while the other end point is close to the
molecular exterior.
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by MolAxis and PoreWalker.

3.3.3 Summary of comparison
The qualitative comparison of results produced by different tools using default input parameters are
summarized in Figures 3.7, 3.8, 3.9 and 3.10. For the 22 transmembrane structures in our dataset,
we also attempt a quantitative comparison of pores identified by these tools, by reporting the num-
ber of structures in which biologically significant pores are correctly identified. The biologically
significant pores (the ground truth) are determined based on prior studies reported elsewhere in
literature. See Table 3.2.

Table 3.2: Quantitative comparison of ChExVis with other tools in their ability to correctly
identify transmembrane pores in 22 protein structures in our dataset.

Software Correct Partially Correct Wrong
Mole 5 0 17

MolAxis 12 0 10
PoreWalker 17 3 2
ChExVis 19 3 0

Mole. Mole provides excellent stand-alone and web-based interactive interface for extraction of
multiple channels. Mole utilizes the CSA database [45] and HETATM records to automatically
identify catalytic sites in the protein. This facility is also supported by the ChExVis web-server. As
evident from results in Figure 3.7, compared to ChExVis, Mole reports more tunnels leading to
active sites. This is due to the fact that ChExVis reports a single best channel from each active site,
while Mole extracts multiple tunnels and clusters the extracted channels to reduce the number of
reported channels. The option to extract multiple channels from a single point of origin is available
in a stand-alone version of ChExVis.

However, Mole does not support extraction of transmembrane pores. We used its pore ex-
traction option to determine pores and compared the results against pores extracted by ChExVis.
Among the 22 transmembrane proteins, using default parameters Mole fails to identify correct
transmembrane pore in 17 structures. In comparison, ChExVis identifies correct transmembrane
pores in 19 structures and partially correct pores in the remaining 3 structures (see Figures 3.8,
3.9 and 3.10). Figure 3.11 compares the results obtained by Mole and ChExVis in the PDB struc-
ture 3EAM. Mole fails to identify the long and wide pore going across the membrane, and instead
identifies a few side channels. ChExVis, on the other hand, correctly identifies the biologically sig-
nificant pore [8] as the top ranked transmembrane pore. It also identifies some of the side channels
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identified byMole. Figure 3.12 demonstrates another example whereMole does not report correct
transmembrane pores in 2J1N.

Caver. Caver is a command-line based channel extraction tool. A commercial GUI front-end of
this tool was released recently as Caver Analyst 1.0 [57]. We used the evaluation version of Caver
Analyst 1.0 for the experiments. Caver Analyst supports automatic identification of active sites
using CSA database. However, the number of origin points in a particular run is limited to one.
The tunnels extracted by Caver are reported in Figure 3.7. Qualitatively, the results reported by
Caver are not better than those reported byChExVis. Caverwas not used for comparison of pores
extracted in transmembrane proteins, as it does not provide special support for extraction of pores
in general and specifically transmembrane pores.

MolAxis. MolAxis uses a Voronoi-based approach for channel detection. It automatically uses
the center of largest cavity as the origin point of the channel. This is a useful heuristic but this single
point may not correspond to an active site. Further, channels leading to multiple sites cannot be
extracted in a single run. As shown in Figure 3.7,MolAxis fails to identify channels leading to active
sites in two of the seven enzymes. MolAxis also provides an option of extracting a transmembrane
pore, but it requires specification of the pore axis and a guiding sphere, which requires prior analysis
of the protein and smart inputs by the user. As a result, it is difficult to identify transmembrane
pores usingMolAxis. When reasonable default values are chosen for pore axis and a guiding sphere,
we observed thatMolAxis computes correct transmembrane pores in 12 out of 22 transmembrane
proteins (see Figures 3.8, 3.9 and 3.10). In cases of success, the extracted transmembrane poremostly
agrees with the top transmembrane pore detected by ChExVis.

PoreWalker. PoreWalker is the state-of-the-art tool specially designed for extraction of trans-
membrane pores. Given a transmembrane protein, PoreWalker reports the best transmembrane
pore and residues lining that pore. This tool correctly identified biologically significant pore in 17
out of 22 structures while partially correct pores in 3 other structures (see Figures 3.8, 3.9 and 3.10).
However, it was unsuccessful in identifying correct pores in two structures in our dataset. One such
example is reported in detail in Figure 3.12. Here, instead of identifying any of the three biologically
significant pores through the beta-barrels, PoreWalker incorrectly identifies the empty space be-
tween three units as the most significant transmembrane pore. Moreover, PoreWalker is designed
to report only one transmembrane pore. So, in cases such as 2J1N (Figure 3.12), PoreWalker does
not report all three transmembrane pores, which are equally important. ChExVis overcomes this
problem by reporting multiple transmembrane pores, and in this example correctly identifies all
three pores as shown in Figure 3.12(e).
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Figure 3.8: The results of extraction of pores in transmembrane proteins using different tools viz.
ChExVis, Mole, MolAxis and PoreWalker.
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Figure 3.9: The results of extraction of pores in transmembrane proteins using different tools viz.
ChExVis, Mole, MolAxis and PoreWalker.
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Figure 3.10: The results of extraction of pores in transmembrane proteins using different tools viz.
ChExVis, Mole, MolAxis and PoreWalker.
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(a) 3EAM (b) MOLE pores

(c) ChExVis pores (d) ChExVis top TM pore

Figure 3.11: Comparison of pores extracted by Mole and ChExVis in 3EAM. (a) Cartoon rep-
resentation of the transmembrane protein 3EAM. The 3D view is such that the transmembrane
pore is perpendicular to the plane of the page. (b) The pores extracted by Mole in this structure.
Mole identifies a few side channels going from central pore to outside, but it fails to identify the
transmembrane pore. (c) On the other hand, ChExVis identifies the main transmembrane pore as
well as some side channels. (d) Also, the top transmembrane pore suggested by ChExVis is verified
to be the correct transmembrane pore in this structure [8].
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(a) 2J1N (b) MOLE pores (c) MolAxis pore

(d) PoreWalker result (e) ChExVis pores (f) ChExVis top TM pore

Figure 3.12: Comparison of pores extracted by Mole, MolAxis, PoreWalker and ChExVis in
2J1N. (a) Cartoon representation of the transmembrane protein 2J1N. This structure consists of
three beta-barrel subunits going across the cell membrane. The figure shows top view of the protein
such that cell membrane is parallel to the plane of the page. (b) Mole identifies two pores in this
structure, both of them are not correct transmembrane pore passing through beta-barrels. Mole

wrongly identifies the narrow space between the three units as a transmembrane pore. (c)MolAxis

also identifies a pore going through space between three subunits. This maybe due to the specified
input parameters. (d) PoreWalker also fails to identify the correct transmembrane pores in this
structure. It identifies the empty space between three subunits as the only transmembrane pore.
By design, PoreWalker would not have been able to identify all the three transmembrane pores
as it extracts only one transmembrane pore. (e) ChExVis is able to correctly identify transmem-
brane pores through all the three subunits, using default parameters for finding pores. (f) Unlike
other tools which identify pore through the space between subunits, the top transmembrane pore
identified by ChExVis is one of the pore passing through a beta-barrel subunit.
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3.4 Applications to the analysis of channels in proteins
The 2D and 3D visualization of the channel, coupled to a display of its various properties of the
channel through profile plots, is an important feature and advancement over existing channel visu-
alization tools. The biochemical layout of the channel lining residues and capture of their physico-
chemical properties such as radius, volume and solvent accessibility are useful in appreciating the
channel type and its lining residues. A novel feature is the inclusion of conservation scores derived
through comparison of residue propensities in related channels using the ConSurf web-server [3].
This is useful in evaluations of the observed mutability amongst closely related homologues and
in evaluating residues that may be substituted in experimental mutagenesis, or in guiding the deci-
sions on the substitutions that are likely to be tolerated. Further, the profile layouts help evaluate
the importance and contribution of the observed amino acids at various positions, to appreciate
interactions that are observed in the channel and are crucial to its function. With the following
examples we describe some applications of ChExVis in the detection of channels and its use in
appreciating the function of the channel at various levels of detail.

3.4.1 Comparison of open and closed states of the protein
Pentameric ligand-gated ion channels. Pentameric ligand-gated ion channels constitute a large
family of ionotropic channels that are ubiquitously represented and fairly conserved in the animal
kingdom [86]. The 3D structures of a number of such channels were submitted to ChExVis to
derive pore features. A homo-pentameric organization that is constituted by a highly conserved
extracellular domain folded as a beta-sandwich and a helical transmembrane domain [24], is cap-
tured in all the queried proteins. We compared profile views of the ligand-gated ion channel in its
closed (2VL0:ELIC) and open states (3EAM:GLIC), to determine if ChExVis could capture the
similarities and differences in these states through analysis of features such as: a) the changes in
the diameter of the channel, b) accessible solvent area / volume of the channel, c) residues lining
the channel, and, d) physico-chemical properties of residues lining the channel. As seen in the
profile views, in both states, pore-interfacing residues from all the five chains lie in fairly equiva-
lent positions. The 2D profile plots of the residue contributions to the channel show that the side
chain atoms of the channel-lining residues point into the channel lumen (see Figures 3.19 and 3.20).
Differences in the open (3EAM:GLIC) and non-conducting closed conformation of the channel
(2VL0:ELIC) include a constriction lined by hydrophobic residues, possibly contributing to ion-
selectivity and corresponding to a bottle-neck radius of 2.21Å while this is 5.12Å in the open state
(3EAM:GLIC) [26]. Labelled view of the profiles show that F246 in 2VL0 lies at the narrowest
region of the channel, as reported elsewhere [19]. The open and closed states of the channel also
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Figure 3.13: The pentameric ligand-gated ion channels extracted in closed and open conforma-
tions. The channels are wide and hydrophilic in extra-cellular region which is less conserved. The
constricted transmembrane spanning helical channel section is hydrophobic and highly conserved.
The bottleneck radius is 2.21Å in closed configuration while it is 5.12Å in open state.

show marked differences in their relative solvent accessibility, as reported through their DSSP ac-
cessibility scores. The pore opening in 3EAM is lined predominantly by hydrophilic residues and
subsequently followed by hydrophobic residues (Figure 3.13), in line with the structural findings
of a 12Å wide extracellular hydrophobic vestibule and a funnel shaped transmembrane-spanning
helical region. The conducting conformation in 3EAM, where the hydrophobic constriction has
opened to an aqueous funnel-shaped channel is also captured [50].

ChExVis also correctly identifies the tetrameric assembly of the Transient Receptor Poten-
tial (TRP) channel and lists residues lying on the outer pore, central canal, and selectivity filter. As
seen in Figure 3.14, the entry to the channel is a wide funnel-shaped pore in both the closed (3J5P)
and open (3J5Q) states of the channel. The residue-label view shows that the narrowest region of
the channel is lined by residues G683, I679 and Y671 with their side chains pointing into the chan-
nel. I679, the bulkiest residue in the lower gate of the channel, from each subunit comes together
to form the most constricted point in the gate that seals off further access to the channel. In line
with structural findings, its conservation scores shows that it is conserved in all homologues [67].
The radius of the hydrophobic seal in the lower gate changes from 2.6Å to 4.7Å in the two struc-
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Figure 3.14: Transient Receptor Potential (TRP) channels extracted in closed and open state.
The constricted region of the channel (highlighted by rectangles) is both highly conserved and
hydrophobic. The bottleneck radius is 2.6Å in closed configuration while it is 4.66Å in open state.

tures. Clearly, although lining residues do not change remarkably, side chains re-orient as a result
of gating, resulting in a wider pore in the open state of 3J5Q. See Figures 3.21 and 3.22 for detailed
comparison of channels).

3.4.2 Comparison of channels exhibiting wide substrate specificities

Figure 3.15: Outer Membrane (OM) carboxylate channels in structures 3SYS and 3SY7. These
channels are narrower compared to channel porin (2J1N) indicating that they are more selective.

The outer membrane proteins of several gram negative bacteria enable uptake of nutrients ei-
ther through non-specific channels/porins and therefore, at high substrate concentrations, or in a
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Figure 3.16: Properties of membrane carboxylate channel in 3SYS. The 2D profile is coloured
by conservation and hydrophobicity of residues. It can be observed that the channel constriction
is more conserved than the rest of the channel. According to box representation of first row, the
amino acids lining the channel shows higher proportion of Arginine. Most of the residue side chains
point towards the channel as can be concluded by many red boxes in the second row. The third
row shows that channel is surrounded by loops (coloured yellow), specially at the constriction.
Although some residues at channel end points belong to outer beta-barrel structure. Lastly, the
fourth row shows the chemical properties of the residues lining the channel. The basic residues
which play an important role in the function of this channel are correctly identified by ChExVis.
They are represented as dark blue boxes.

substrate-specific manner through outer membrane carboxylic acid channels (Occ family). Since
the Occ channel proteins are dedicated to the uptake of wide variety of substrates, we derived the
pore features for different members of this family (3SY7, 3SY9, 3SYB, 3SYS, 3SZD, 3SZV, 3T0S,
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3T20 and 3T24) and compared them to determine if the visual capture of the channel properties
through 2D and 3D views could distinguish their various sub-types. Comparisons of the two OM
channels, OccD1 (3SY7) and OccK1 (3SYS) shows that both channels form monomeric barrels
around a central channel that is constricted at a region lined predominantly by basic residues such
as arginine and lysine (see Figures 3.15, 3.16 and 3.23). Four of the seven residues forming the ba-
sic ladder in this class of proteins (OccK1:3SYS) are captured by ChExVis while projections of the
channel neighbourhood capture other basic residues that are typical of the family (R22, R126, R158,
R324, R306, R381 and R363). The plots also show that the constricted regions are contributed by
loops and lined by residues that are poorly conserved in related homologues except for regions in
the immediate vicinity of the constriction. Pore size can dictate the size of the substrate that can
pass through the channel [70]. The differences in the pore size of the two amilies, with larger pore
size observed in OccK family members to recognize a wider range of mono-cyclic substrates such as
glucoronate and aromatic amino acids is correctly captured [44]. Contrastingly, the OccD family
proteins have smaller pores that are highly specific and prefer smaller amino acids such as arginine.
We also compared theOcc channels with porins (2J1N), which are non-specific channels with larger
pores, and observe that the pore size of Occ family protein is indeed small and selective for small
molecules [44]. We anticipate that visualization tools such as ChExVis that capture various views
and properties of the residues lining the channel will add to knowledge on channel specificity and
residue layout within the pore and a better appreciation of the differences between seemingly related
molecules.

3.4.3 Comparison of channels in homologues and the impact of residue mu-
tations on channel properties

Voltage-activated cation channels aremembrane proteins that selectively conductK+,Na+ andCa2+

ions in response to changes in membrane voltage. The KcsA potassium channel contains two trans-
membrane segments and a P-loop signature that harbours a selectivity filter, which selects for the
conductance of K+ over Na+ ions. Residues with a role as the filter from the four subunits, project
into the channel centre to form a narrow pore. The K+ ion-binding sites formed by residues G79,
Y78, G77, V76 and T75, that form the ion binding site and square anti-prism around K+ [91], are
consistently identified by ChExVis in all the fourteen KcsA channels in the dataset (see Figure 3.17).
Although the path into the cavity is not identified by the method, the rest of the channel and a large
central cavity (≈ 10Å), on the intracellular side, is correctly defined. Further, comparison of the
structures at low (1K4D) and high salt (1K4C) concentrations shows that the conformation of the
channel changes and moves from a closed to open state with increasing salt concentration (Fig-
ure 3.18). G77 contributes to channel constriction in 1K4D with a channel radius of 2.01Å. In
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Figure 3.17: KcsA channels extracted in different structures by ChExVis. The PDB ID of the
structures are shown below each figure.

1K4C, the open state, V76 also lines the channel and coordinates the K+ ion through its carbonyl
oxygen. Replacement of T75 with C75 in the mutant channel [102] also results in a widening of
the channel, changing the bottle-neck radius from 2.26Å to 2.55Å. The mutant channel has low
K+ conductivity because of the absence of crucial oxygen atoms. This minor but critical change is
captured by ChExVis visualizations (Figures 3.18 and 3.24).

3.5 Conclusions
We developed a new method for the extraction, visualization, and visual exploration of channels in
biomolecules through a software tool, ChExVis, that is available as a web server. The method is
automated and accepts 3D co-ordinates of the structure or its PDB ID as input. Channel location in
the protein may be guided using bound ligand information, CSA, or be specified by the user. Here,
channels are represented as a set of connected tetrahedra derived from the alpha complex. This
representation enables efficient computation and interactive visualization of the channels together
with different geometric and physico-chemical profiles.

The availability of visualization tools such as ChExVis that can identify multiple channels will
be useful to understand the properties of the multiple channels detected in the protein family of
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Figure 3.18: The KcsA potassium channels extracted in structures 1K4C, 1K4D and 1S5H. On
left, channel extracted in 1K4C (high K+ concentration) is shown. The channel has four highly
conserved K+ sites which are surrounded by carbonyl Oxygen atoms as shown in the profile shown.
The channel closes in low K+ concentration (1K4D) as captured by next profile. The channel in
this structure is more constricted and one of the site is surrounded by Carbon atoms instead of
carbonyl Oxygen atoms. Lastly, on right a mutant channel (1S5H) is shown which has reduced K+

conduction capability. This is attributed to replacement of Oxygen atoms with Carbon atoms at
crucial site no. 4, which is correctly captured by ChExVis in the profile shown.

interest and the multiple routes that might be available for regulation of protein function in the
family. The method is shown to perform well using a number of examples. As with all channel
visualisation tools, manual intervention and intuition are vital to assess the importance of the re-
ported channels. Examples of its application in understanding the biological function of the protein
at various levels such as in the comparison of open and closed states of the protein, or in appreciat-
ing the wide substrate-specificities of the channel or comparison of channels with homologues have
already been shown here. Further, the method lists the top channels for the protein and also reports
all channels observed in the protein. Such studies coupled with information on conservation within
the protein family and mutability of residues lining the channel will further the understanding of
the basic biology of transport through membrane proteins.
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Figure 3.19: Properties of pentameric ligand-gated ion channel in the open structure 3EAM. The
plots show residues from all five chains that interface with the pore in equivalent positions. The
wall of the pore is lined primarily by the side chain atoms of various residues. The view shows that
pore interior from positions 32-58 is least accessible while the positions 1-30 are solvent accessible.
Channel positions 34-47 lined by residues I240, A237, I233, S230 are hydrophobic and lie on alpha-
helices that correspond to the helical wall of the transmembrane spanning regions in the protein.
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Figure 3.20: Properties of pentameric ligand-gated ion channel in the closed structure 2VL0. Com-
pared to channel in open state (3EAM), the channel in 2VL0 is much more constricted at the trans-
membrane helical region. There is also a drastic reduction in solvent accessibility of this region from
40Å2 to 10Å2. Some changes in chemical properties of the the lining residues are also observable in
closed conformation, as N250 and F246 protrude towards the pore around constriction as against
I240 and I233 in open state. Also, in these channels the extra-cellular tunnel lined by hydrophilic
residues is not very conserved, while the narrow selective region lying in transmembrane region is
highly conserved.
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Figure 3.21: Properties of transient receptor potential channel in the closed structure 3J5P. In this
structure, the radius of the channel is only 2.6Å at the narrowest point. The 2D profile is coloured
by conservation and hydrophobicity, red color denoting high values while blue denotes low values.
It can be observed the constricted region is highly conserved and hydrophobic. The next five rows
of box representations show the properties of amino-acids lining the channel. From this data, it can
be concluded that I679 lies at the narrowest point of the channel. Further I679 is a bulky residue
with side-chain protruding towards the channel and it has low accessibility. According to third row,
most of the residues lining the channel are part of alpha-helices and small helical turns towards the
end.
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Figure 3.22: Properties of transient receptor potential channel in the open structure 3J5Q. In this
structure, the radius of the channel is 4.66Å at the narrowest point, which is substantial improve-
ment over closed structure bottleneck radius of 2.6Å. The 2D profile is coloured by conservation
and hydrophobicity, revealing that the constricted region is highly conserved and hydrophobic. It
can be seen most of residues lining the channel are same as that in 3J5P. Again I679 is an important
residue lying at the constriction point. It is important to observe that accessibility of the channel
residues in 3J5Q is higher than in closed state i.e. 3J5P. Specially, accessibility of I679 goes up from
16Å2 to 65Å2.
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Figure 3.23: The 2D representations of channels from top to bottom correspond to 3SYS, 3SY7 and
2J1N respectively. The split-profiles are coloured by conservation and hydrophobicity of residues,
red denoting higher values while blue denotes low values. The amino acids lining these channels
are also shown using box representation. A high proportion of basic residue Arginine (coloured as
light brown box) in the channel neighbourhood can be clearly observed.
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Figure 3.24: From top to bottom, properties of channels in 1K4C, 1K4D and mutant 1S5H are
shown. The mutation of T75 to C75 is correctly captured by ChExVis as highlighted by a box
in 1S5H lining residues. We can clearly observe a few green boxes change to orange in the mu-
tated channel. This mutation also affects the physico-chemical properties of the channel as shown
subsequent rows of the above figure. For example, chemical property, hydrophobicity and polar-
ity exhibit clear change. Moreover, in the mutated structure there are fewer Oxygen lining the
channel, which are critical for functionality of this transmembrane channel. Also, the channel be-
comes constricted in lower concentration of K+ ions as captured in 1K4D channel profile. In this
configuration, the critical Oxygen atoms are replaced by Carbon atoms as highlighted by a box.



Chapter 4

RobustCavities: Reliable Extraction and
Exploration of Cavities in Proteins

As we described earlier in Chapter 2, empty spaces within the protein molecule are called cavities.
Cavities with and without openings are referred to as pockets and voids, respectively. These struc-
tural features are known to play a key role in determining the stability and function of proteins [83].
Pockets often form part of the active site of enzymes or interacting sites for other proteins, while
internal voids are often relevant structurally as features that affect the overall thermodynamic sta-
bility of the protein [62]. It is established that filling up internal voids improves the packing of the
protein thus increasing stability [54]. In this respect, detecting and visualizing structurally robust
cavities inside the protein informs the biologist on which mutations to perform to improve internal
packing and get a stable protein. Given the importance of cavities in protein structure study, several
algorithms and software are available to compute them given protein structure data, such as from
the Protein Data Bank [7].

Protein structures are most commonly determined from X-ray crystallography data. Inaccura-
cies, noise, and more generally, uncertainty in the data adversely affects existing cavity detection
methods. Small inaccuracies may already cause a difference in the reported number of cavities. The
atom radii are also empirically determined and hence not precisely defined values. For example, as
illustrated in Figure 4.1(a) and 4.1(b), presence of such inaccuracies may result in a cavity detec-
tion method reporting two distinct cavities instead of one, or report very small volume cavities.
Faulty fragmentation and reporting of small cavities distract the focus to biologically irrelevant cav-
ities. Figure 4.1(c) illustrates the problem as it occurs in a lyzosyme protein. To the best of our
knowledge, uncertainty in the data and its effect on cavity computation is not considered by any
of the available tools. Our goal is to develop an interactive method to compute robust cavities in

49
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proteins, which enables the user to reduce, if not completely eliminate, the inaccuracies in cavity
computation.

Figure 4.1: (a) Two cavities that are apparently very near to each other may be a single cavity.
(b) A very small cavity may be reported whereas no such cavity may exist. (c) The two cavities
that appear very near to each other in a lyzozyme protein (200L) may be a single cavity. The solid
surface represents cavities while the protein is shown as cartoon to provide context.

Numerousmethods have been proposed for identification of cavities in proteinmolecules. These
methods employ a wide variety of approaches – grid and occupancy based, graph based, model
fitting, Monte Carlo simulations on solvent molecules, and Voronoi diagram based. Early tools
used grid-based approaches to extract cavities [49, 63]. Thesemethods discretized the space occupied
by the protein thereby trading off accuracy in favour of computational efficiency. The notion of
cavities and their classification as voids and pockets was more formally defined using the alpha shape
model of a molecule proposed by Edelsbrunner et al. [33, 34] and Liang et al. [65, 66]. This enabled
accurate identification of cavities and further supported the computation of geometric properties
like volumes and surface areas. Tools based on the above approach are available and widely used [30,
56]. Graph based methods have also been used to identify cavities and compute their volumes [78,
94]. Given an estimate of the empty space, Varadarajan et al. describe a Monte Carlo procedure
to position water molecules within to improve the accuracy of the extracted cavity [17]. Several
recent methods are based on the Voronoi diagram of the atoms [68, 74, 75, 80, 81]. Techniques for
identification of cavities and channels are summarized very well in a recent review paper by Krone
et al. [60].
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Figure 4.2: 2D illustration of cavities and robust cavities. (a) A molecule is represented as a set of
discs (balls in 3D). (b, c)Weighted Delaunay triangulation and alpha complex are computed for the
input discs. The alpha complex is always a subset of the Delaunay triangulation and its complement
represents the empty space within the molecule. (d) The connected components within the empty
space denote cavities. (e) For a given value of ε, we simulate the growing/shrinking of select atoms
by modifying the alpha complex resulting in merging of cavities. (f) The set of robust cavities are
found by detecting connected components in the modified complement space. (g) In addition,
the parameter π is also used to prune out cavities with low persistence. (h) In the formation of
robust cavities, the original cavities are either retained or merged or pruned. This mapping between
original and robust cavities is captured using the cavity map diagram.

We use the notion of robust cavities proposed earlier by Sridharamurthy et al. [89]. These cav-
ities are stable under small perturbations of atomic radii. We describe an efficient method for the
computation of robust cavities, which builds upon the alpha shape-based framework of cavity ex-
traction. This method is implemented and available as a web-server tool called RobustCavities

1.
1http://vgl.csa.iisc.ac.in/robustCavities/

http://vgl.csa.iisc.ac.in/robustCavities/
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The web-server, in addition to detecting robust cavities and calculating volumes, also provides an
interactive framework that the biologist can use to explore and study important cavity structures
within the molecule. The software also supports exporting the detected cavities with the relevant
biochemical context to enable their visualization in PyMOL [28]. Finally, we use this software to
demonstrate the applicability of the notion of robust cavities in detection of potential channels,
pockets and other biologically relevant cavities in several proteins.

4.1 Robust cavities and their computation
We recommend that the reader refer to Chapter 2 for technical background on alpha complex based
cavity representation. Also, detailed discussion on robust cavities, their properties and efficient
computation, is also available in the methodology papers [89, 90]. The notion of robust cavities is
based on two parameters, one local and another global. The local parameter is referred to as stability
and the global parameter is specified by topological persistence. A cavity is called an ε-stable cavity
if it remains a single connected cavity within all α-complexes for α values in the range [−ε, ε].
Topological persistence of a cavity is defined as the range of α values when the cavity is present
in D −Kα. A cavity is π-persistent if its topological persistence is greater than π. Combining the
two notions of robustness, a cavity is called (ε, π)-stable if it is both ε-stable and π-persistent. The
term robust cavities refers to cavities that are either stable as is or can be made stable via a small
perturbation in atomic radii. In order to identify robust cavities, we describe a method which
symbolically modifies the radii of a select set of atoms by systematically processing and modifying
the alpha filtration.

Given the molecule as a set of ballsB, and values for ε and π, the robust cavities can be computed
in five steps:

Step A: Compute weighted Delaunay triangulation of B.

Step B: Compute alpha complex at α = 0. The value of α can also be supplied as an input param-
eter.

Step C: Depending on value of ε, identify triangles and tetrahedra in the alpha complex which can
be safely moved to the end of the filtration. This crucial step is called filtration modification
and its consequence is that nearby cavities get merged into single cavity.

Step D: Identify connected components in the complement of the alpha complex to determine the
cavities.

Step E: Robust cavities are pruned further based on persistence parameter π.

The above steps are illustrated using a 2D example in Figure 4.2. It should be noted that if steps
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C and E are not executed, the method reduces to well known method for computing cavities using
the alpha shape-based model. We also compute cavities without executing steps C and E; the set of
cavities obtained in this fashion is referred to as the set of original cavities.

Cavity map diagram
The relationship between the sets of original and robust cavities is captured by a bipartite graph
called cavity map diagram. Nodes in the bipartite graph are connected by an edge if the corre-
sponding pair of original and robust cavities share common tetrahedra or triangles. Based on the
definitions and the proposed method, it can easily be shown that any original cavity can be con-
nected to at most one robust cavity. The cavity map diagram thus captures the merging behaviour
of cavities in a succinct graphical representation, which can be leveraged for interactive exploration
of cavities in the protein. By default, we color the node based on its classification as a void or pocket.
However, the criteria can be varied to highlight different cavities in the diagram depending on user
input. Figure 4.2(h) shows the cavity map diagram for the corresponding 2D example.

4.2 Results

4.2.1 Benchmarking and validation
To validate whether the method is able to correctly identify cavities, we created a set of 137 model
mutants with known cavity locations. Given a protein, a model mutant is created by replacing
a buried hydrophobic residue in the protein core with Alanine [92, 93]. We used 13 wild-type
structures as base; they were mutated in-silico to provide 137 structures with artificial cavities. The
replacement of a bulky residuewith the small Alanine side chain results in the creation of an artificial
cavity in the mutant (M ) at a known location, which can be approximated as the centroid (pM ) of
atoms removed from the bulky residue to form the mutant.

A cavity is computed as a set of connected tetrahedra. A cavity can also be represented as a set
of orthogonal spheres where each sphere corresponds to a tetrahedron constituting the cavity. We
can then define distance from a point q in space to the cavity as the minimum distance from q to
the centres of spheres representing the cavity. Using this measure, we can find the distance to the
closest cavity from any given point q.

For a given mutant (M ), cavities are extracted using RobustCavities in bothM and the wild-
type (W ) structure from which M is obtained. Since the residue which is mutated is completely
buried in wild-type structure, we expect the distance dW to the nearest cavity from the expected
mutant cavity location (i.e. pM ) to be high in wild type structure. However, the mutation should
create a cavity very close to pM in M , and thus distance to nearest cavity dM should be smaller.
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Figure 4.3: Demonstration of validation experiment with an example PDB structure and some of its
mutants. In first row the wild type structure of 193L, and the cavities extracted by RobustCavities

(light green) are shown. In the next four rows results for four model mutants are shown. The name
of the mutant is mentioned on the left. A mutant is given name ‘XyA’ if the residue X in the wild
type structure with id y is mutated to Aniline (A) in the mutant model. For example, M12Ameans
the residue id 12 which was a Methionine is mutated to Alanine. In the first column, the original
(not mutated) residue in the wild type structure is shown as red spheres. In the second column, the
mutated residue i.e. Alanine which replaces the original residue is shown (red spheres) in themutant
model. Replacement of a large buried residue with small Alanine is expected to create a detectable
cavity. The third column shows the cavities extracted by RobustCavities. The cavity which is
distinct from the cavities extracted in wild-type is highlighted in blue. In the fourth column, we
show the new cavity detected (blue spheres) in the mutant along with the Alanine residue (red
spheres). Compare the images in the fourth column with the first and second columns, the blue
spheres correspond exactly to the atoms removed to create the model mutant, thus confirming the
ability of RobustCavities to detect these cavities.
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So, if we find dM < dW , then it is indicative of successful detection of the artificial cavity in the
mutant. Out of 137 mutants, we observed dM < dW for 135 structures resulting in success rate of
98.5%. For the two remaining mutants, we observed dM = dW indicating the artificial cavity in the
mutant was not detected. These two structures had Valine to Alanine mutations. Valine is one of
the smaller hydrophobic residues and its replacement would result in very small cavities, which is
probably why RobustCavities failed to identify them. Refer to the Figure 4.3 for validation result
for on of the protein in our dataset.

Validation results
The tables 4.1, 4.2 and 4.3 list detailed observations for the benchmarking experiment performed to
validate the correctness of the implementation of RobustCavities for cavity detection by assessing
its ability to detect cavities in artificially created mutants with known cavities. Please note that this
experiment was not performed to observe the effect of the parameters ε and π. Experiments to
observe the effect of the parameters ε and π were also performed and have been reported in papers
by Sridharamurthy et al. [89, 90].

Thirteen PDB structures (193L, 1A19, 1BVI, 1FKD, 1HFX, 1IG5, 1LZ1, 1MBD, 1RUV, 1STN,
2CI2, 2EQL, 3DFR) were taken. From these wild type structures, 137 model mutants were created
by replacing in silico a buried hydrophobic residue with Alanine. The mutant is given name ‘XyA’
if the residue X in the wild type structure with id y is mutated to Aniline (A). For example, M12A
means the residue id 12 which was a Methionine is mutated to Alanine. The mutation should
create a small cavity in the molecule, expected location (p) which can be estimated by computing
the centroid of the set of atoms removed from the wild-type structure to create the mutant. dW
is the minimum distance from the expected cavity location p to the cavities detected in wild type
structure. Similarly, dM is the minimum distance from p to the cavities detected in the model
mutant. If RobustCavities correctly identifies the artificial cavity then we can expect dM < dW .
We observed this condition to be true in 135 out of the 137 cases. These are marked as ‘X’ in the
last column. For two mutant dM was found to be equal to dW , which suggests the mutant cavity
was not detected by RobustCavities. These cases are marked as ‘X’ in the Result column. Both
these mutants are Valine to Aniline mutations, which results in very small cavities. The parameters
used for this experiment were: ε = 0, π = 0.0 and solvent radius = 1.2 Å.
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Table 4.1: Validation results for RobustCavities on mutant models

PDB Mutation Cavity Centroid (pM )
dW dM dW − dM Result

x y z

193L

I55A -0.165 16.870 14.121 3.257 0.994 2.263 X
I58A 1.473 17.755 23.746 3.203 0.956 2.247 X
L17A -8.215 19.752 19.226 4.645 1.026 3.619 X
L56A -1.478 20.335 18.297 3.190 1.036 2.154 X
L83A 2.115 13.394 23.086 3.206 0.808 2.398 X
L8A -3.756 18.178 11.511 3.263 1.125 2.138 X

M105A -4.602 27.080 20.113 3.141 0.479 2.662 X
M12A -5.830 19.549 14.617 3.209 0.165 3.044 X
V29A -5.627 23.076 10.326 7.779 1.858 5.921 X
W28A -6.869 23.681 19.369 3.111 0.088 3.023 X

1A19

F56A 84.320 54.227 6.977 3.133 0.283 2.850 X
F74A 91.081 58.676 0.029 3.137 0.489 2.648 X
I5A 93.053 53.627 5.871 3.169 1.626 1.543 X
I84A 90.471 56.976 -5.796 6.313 0.967 5.346 X
I86A 86.620 53.899 -2.211 3.202 1.017 2.185 X
L16A 91.149 58.640 8.905 3.13 1.031 2.099 X
L20A 94.392 58.595 4.271 3.177 1.256 1.921 X
L37A 92.715 62.816 1.647 3.246 1.018 2.228 X
L41A 92.573 61.618 -2.965 3.179 0.972 2.207 X
L49A 94.753 55.130 -4.049 3.189 1.161 2.028 X
L51A 91.392 53.994 0.822 4.137 1.363 2.774 X
L71A 84.495 56.142 2.196 3.202 1.010 2.192 X
L88A 83.849 51.315 2.370 3.202 1.093 2.109 X
W53A 88.668 54.303 6.075 3.060 0.398 2.662 X

1BVI

F80A 10.221 22.486 44.244 3.086 0.055 3.031 X
I61A 14.749 15.56 52.257 3.383 0.869 2.514 X
I90A 21.187 22.229 47.819 3.197 0.878 2.319 X
V78A 13.781 18.105 48.484 3.331 1.865 1.466 X
V79A 17.504 22.934 44.581 5.607 1.883 3.724 X
W59A 8.671 21.948 51.361 3.145 0.198 2.947 X

1FKD

I76A 11.865 33.789 6.502 5.687 0.967 4.720 X
L103A 13.976 26.026 19.810 3.626 1.012 2.614 X
L74A 10.124 30.648 11.558 5.899 0.965 4.934 X
L97A 12.715 31.102 0.795 3.198 0.807 2.391 X
M66A 9.854 28.452 16.549 3.064 0.576 2.488 X
V101A 12.052 26.174 12.154 3.226 1.971 1.255 X
V24A 16.139 24.248 14.311 3.226 1.835 1.391 X
V63A 14.613 29.735 15.448 3.226 1.777 1.449 X

1IG5

F66A 6.604 9.232 25.794 3.085 0.231 2.854 X
L23A 6.562 14.673 26.945 3.389 0.835 2.554 X
L28A 11.117 13.149 24.807 3.158 1.053 2.105 X
L31A 8.786 11.034 29.908 5.236 0.908 4.328 X
L69A 11.609 10.541 20.991 3.158 0.935 2.223 X
V61A 6.905 14.911 20.495 3.155 1.783 1.372 X
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Table 4.2: Validation results for RobustCavities on mutant models (cont.)

PDB Mutation Cavity Centroid (pM )
dW dM dW − dM Result

x y z

1HFX

F53A 8.393 18.446 14.717 3.078 0.265 2.813 X
I29A 8.852 22.741 6.837 3.306 0.951 2.355 X
I30A 10.229 17.169 10.435 3.209 1.098 2.111 X
I55A 10.602 22.964 19.590 3.155 1.013 2.142 X
I95A 7.191 26.711 17.862 3.562 0.969 2.593 X
L12A 5.714 14.301 11.785 3.132 1.052 2.080 X
L15A 2.901 18.766 13.356 3.262 0.950 2.312 X
L27A 6.846 13.203 5.737 5.751 0.911 4.840 X
L52A 12.043 14.649 13.593 4.343 1.312 3.031 X
L80A 11.449 19.986 22.469 3.240 0.755 2.485 X
L8A 9.411 12.315 10.719 3.741 0.862 2.879 X
V92A 5.757 21.218 15.900 4.764 4.764 0 X
W104A 8.380 24.780 12.925 3.097 0.231 2.866 X
W26A 5.112 20.651 10.218 3.083 0.096 2.987 X

1LZ1

F57A 13.029 17.200 27.980 3.092 0.267 2.825 X
I56A 9.394 18.038 24.699 3.283 0.900 2.383 X
I59A 10.639 12.826 32.608 3.179 0.867 2.312 X
L12A 14.547 22.574 25.973 3.171 1.031 2.140 X
L31A 16.883 13.210 26.443 3.178 0.775 2.403 X
L84A 6.384 14.822 33.238 3.182 0.953 2.229 X
L8A 12.028 21.774 22.530 3.171 0.926 2.245 X
M17A 16.421 21.797 30.713 6.082 0.322 5.760 X
M29A 16.555 21.767 20.678 5.178 0.619 4.559 X
V100A 19.988 15.872 33.950 5.413 5.413 0 X
W28A 19.002 18.846 29.388 6.530 0.303 6.227 X

1MBD

F138A 9.838 22.890 6.155 3.106 0.690 2.416 X
F33A 21.523 22.480 -5.915 3.076 0.319 2.757 X
I111A 16.605 17.226 5.212 3.169 1.304 1.865 X
I142A 6.403 26.241 4.037 3.262 0.935 2.327 X
I28A 20.685 17.682 3.262 3.167 1.220 1.947 X
L115A 19.438 13.322 9.054 3.168 1.202 1.966 X
L135A 12.131 16.643 7.069 3.198 1.055 2.143 X
L29A 21.785 23.044 -0.496 3.156 0.839 2.317 X
L32A 17.023 19.784 -3.927 3.230 0.917 2.313 X
L61A 26.070 24.189 -3.368 3.140 0.985 2.155 X
L69A 21.161 21.119 6.935 3.169 0.797 2.372 X
L72A 14.681 21.252 8.415 3.195 1.202 1.993 X
L76A 13.443 19.440 12.402 3.198 1.303 1.895 X
M131A 14.456 14.032 10.555 3.126 0.787 2.339 X
V10A 12.576 14.718 14.546 3.201 1.895 1.306 X
V17A 22.062 17.152 10.976 3.168 1.891 1.277 X
W14A 18.731 19.316 12.167 3.066 0.241 2.825 X

2CI2

I39A 6.458 -25.470 14.641 6.056 1.022 5.034 X
I76A -0.405 -20.698 14.913 3.156 0.802 2.354 X
L68A 4.339 -20.415 14.989 3.945 0.911 3.034 X
V66A 8.318 -23.463 11.755 5.145 1.892 3.253 X
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Table 4.3: Validation results for RobustCavities on mutant models (cont.)

PDB Mutation Cavity Centroid (pM )
dW dM dW − dM Result

x y z

1RUV

F120A 32.498 18.138 12.221 2.418 0.205 2.213 X
F46A 24.410 15.146 15.709 5.370 0.290 5.080 X
F8A 28.150 23.088 10.290 2.403 0.075 2.328 X
I106A 34.755 21.283 16.471 6.149 0.400 5.749 X
I81A 32.742 16.114 19.525 2.185 0.487 1.698 X
M30A 22.507 9.927 12.164 2.220 0.272 1.948 X
V108A 34.415 23.673 11.397 5.937 1.232 4.705 X
V47A 29.603 20.434 17.619 6.838 1.123 5.715 X
V54A 30.183 25.435 16.497 2.604 1.276 1.328 X
V57A 35.776 26.838 15.401 6.144 1.321 4.823 X

1STN

F34A 11.678 27.346 20.607 3.461 0.171 3.290 X
I92A 8.964 27.497 15.166 3.163 0.910 2.253 X
L103A 4.793 19.837 9.470 5.500 0.859 4.641 X
L125A -2.874 24.668 13.736 6.716 1.274 5.442 X
L25A 14.060 27.598 16.024 3.168 0.984 2.184 X
L36A 6.541 22.675 14.447 3.166 1.235 1.931 X
V104A -2.813 20.538 10.561 3.210 1.835 1.375 X
V23A 12.302 23.351 14.367 3.168 1.726 1.442 X
V39A 1.307 20.523 14.471 5.088 1.702 3.386 X
V66A 12.755 25.096 9.801 3.168 1.835 1.333 X
V74A 10.511 31.537 18.405 5.746 2.133 3.613 X
V99A 7.204 25.205 10.104 3.302 1.679 1.623 X

2EQL

F57A 29.612 -3.201 18.891 3.103 0.360 2.743 X
L12A 30.897 -5.410 13.729 3.182 1.227 1.955 X
L56A 29.129 0.296 15.867 3.626 0.961 2.665 X
L59A 29.979 -1.938 24.682 3.157 1.031 2.126 X
L83A 33.266 2.071 24.537 3.187 0.983 2.204 X
L8A 27.731 -1.851 11.315 3.182 1.319 1.863 X
M17A 32.475 -8.884 17.148 6.659 0.392 6.267 X
M31A 24.515 -5.096 19.387 3.125 0.489 2.636 X
V29A 25.352 -5.782 10.463 5.865 2.057 3.808 X
W28A 28.163 -10.09 17.786 6.166 0.103 6.063 X

3DFR

F103A 2.445 23.384 21.744 3.099 0.144 2.955 X
F3A 1.946 19.551 24.781 3.087 0.278 2.809 X
I96A 4.195 23.028 28.188 4.014 1.026 2.988 X
L113A -3.814 16.668 23.861 3.249 0.894 2.355 X
L118A -8.688 28.979 13.777 3.214 1.101 2.113 X
L4A -4.181 27.567 25.848 3.182 0.934 2.248 X
M39A 1.931 32.149 28.820 3.744 0.616 3.128 X
V115A -7.233 21.215 19.759 3.155 2.007 1.148 X
V40A 6.712 26.275 30.190 4.370 1.705 2.665 X
V41A 5.535 31.319 26.128 3.156 1.707 1.449 X
V60A 8.540 29.137 33.005 3.238 2.040 1.198 X
V61A 10.873 33.282 27.851 6.718 1.815 4.903 X
V82A 9.573 24.578 32.365 3.218 1.964 1.254 X
V95A -1.606 26.107 30.465 3.160 1.896 1.264 X
W5A -2.918 21.714 19.964 4.667 0.153 4.514 X
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4.2.2 Web-server workflow
RobustCavities accepts a protein structure in the PDB file format. The user can either provide a
PDB ID or upload a file. The user also supplies values of the solvent radius and the two stability
parameters (ε and π). The parameter ε is a local measure of stability, which determines if nearby
cavities can be merged into a single cavity. Higher values mean select atomic radii can be perturbed
by a greater amount resulting in more merged cavities. Thus higher ε may be used to model more
flexible and packing deficient structures. However, we recommend that ε is kept below 1.53 which
corresponds to a maximum radius perturbation of 0.5Å for any structure, as exceeding this value
may result in spurious connections. The second parameter π corresponds to persistence, and is a
global measure of the importance of the cavity. Higher value of π implies that a larger number of
small cavities would be pruned out from the set of robust cavities. If π = 0, none of the cavities will
be removed. It should be noted that persistence roughly corresponds to the volume of the cavity,
which means removing low persistence cavities usually removes cavities with low volumes. Probe
radius is another parameter which can be provided by the user. The default value corresponds to the
solvent radius for water i.e. 1.4Å. We recommend it should not be modified for most cases. Refer
to Figure 4.4 for snapshot of job submission form and more details about the input parameters.

For the supplied input, the web-server computes both the original and robust cavities, along
with their properties such as volume, surface area, and chemical composition. The results for the
given input are displayed within the browser window using JSMol. The result page offers a lot
of flexibility in terms of interactive exploration of cavities. The cavities can be viewed as union
of balls or as skin surface, while the protein can be displayed in space-fill, cartoon or wire-frame
representations. The cavity map diagram is also displayed depicting the merging behaviour of the
cavities.

In the default display mode (Figure 4.5), either all original or all robust cavities can be viewed at
a time. The properties of the cavities are shown in a tabular form. A row in the table can be selected
to highlight the corresponding cavity in the JSMol viewer. The web-server also supports a single
cavity mode (Figure 4.6), in which the cavity map diagram becomes interactive. The nodes in the
cavity map diagram can be highlighted based on different criteria. The user can then select a node
in the diagram to view the corresponding cavity in detail. Optionally, the atoms lining the cavity
can also be listed and highlighted in the viewer. The geometric properties and physico-chemical
composition of the selected cavity is also displayed. Moreover, the cavities can be downloaded and
explored off-line using PyMOL scripts generated by the server.

TheRobustCavitiesweb-server can be used for extraction and interactive exploration of robust
cavities in any protein structure. The method works equally well for computing either completely
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Figure 4.4: The Job submission form of RobustCavities server. Four inputs are essential without
which the job cannot be submitted. Firstly, either PDB id should be specified or a PDB file in simple
text format should be uploaded. Second, the stability parameters ε and π should also be specified.
The default values work well in general, however they can be modified if required. Hovering over
the fields gives succinct information about that parameter and the recommended range of values
which should be supplied. The fourth essential parameter is the solvent radius. The default value
used is 1.4 Å, which corresponds to the radius of water molecule. We recommend the value of
solvent radius to be kept around the default value, as very low values may result in detection of
single huge single cavity covering the whole empty space inside the protein. Lastly, there are two
optional parameters. One is check box for generation of skin meshes for all cavities. This is a time
consuming step but switched on by default, as it enhances user experience of exploration. This can
be turned off to speed up the computation time significantly. Optionally, the user can also specify
the Email ID. In such cases, the link to the job result page would be mailed after completion of the
job. This is helpful if the job is time consuming, or there is long queue of submitted jobs on the
web-server.
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Figure 4.5: The default Results page generated for the protein 200L by the RobustCavities server.
At the top, the download link for the generated results is provided. The zip file contains PyMol
script for exploring the cavities offline. In the center of the page, the JSMol interactive applet is
displayed. To its left is the control panel, through which the visual representations of the molecule
and the cavities can be changed. The user can toggle between robust and original cavities. The prop-
erties of the selected cavities are shown in the properties table at bottom. The table is interactive,
i.e. selecting a row highlights the corresponding cavity in JSMol.
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Figure 4.6: The Results page also supports a single cavity mode as shown above. This mode is
activated by checking the ‘Single Cavity Mode’ check box, and deactivated to go back to default
all cavities view by un-checking it. In this mode, only one cavity (coloured blue) is displayed at a
time. Also, the cavity map diagram becomes active in this mode. A node can be selected in that
diagram to highlight and explore the corresponding cavity in detail (here, robust cavity with id 1
is selected). The nodes in the cavity map diagram can be highlighted based on different criteria
which is controlled by the button panel above the diagram. The geometric properties and chemical
composition of the selected cavity is shown at the bottom. The atoms lining the cavity can be
highlighted (coloured yellow) in the JSMol view and listed in the text area in the control panel.
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buried voids or partially exposed pockets. A few pre-computed examples are available on the web-
server. In the next section we describe a particular use case of the method i.e. detection of potential
channels.

Figure 4.7: The demonstration of the capability of RobustCavities to detect potential channels.
The top row shows the original cavities while the bottom row shows the robust cavities. The PDB
ids are mentioned at the bottom. The protein is shown in cartoon representation, while red and
blue dotted planes denote outer and inner layers of the cell membrane. (a) The known transmem-
brane channel in 2OAR is detected as fragmented in original cavities. The channel is successfully
identified as a contiguous robust cavity in roust cavities. (b) The three columns show the result for
different PDB structures of SecY transmembrane protein [97, 76]. The transmembrane channel is
not detected in all three structures in original cavities. RobustCavities cavities successfully detects
the transmembrane channel in the half-open mutants 2YXR and 2YXQ, although the same channel
is not found in the closed wild type structure 1RHZ, which is known to be more tightly packed.

4.2.3 Detection of potential channels
Passage of solutes through the cell membrane is tightly regulated by membrane proteins by opening
or closing their channels. In general, cavity detection programs are unable to detect a clear channel
through closed or half open conformations of membrane proteins. Using RobustCavities with
appropriate input parameter values and the cavity diagram interface, the channel can be detected
as a single robust cavity. This is of value since few membrane protein structures are available and
often structures for different conformational state for the same membrane protein are unavailable.
A similar approach helps in finding potential pockets that may be incorrectly labelled as voids due
to inaccuracies in the data. For example, Figure 4.7(a) shows a mechanosensitive channel for large
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conductance (2OAR). While the original cavities get fragmented because of the small neck of the
closed protein, the robust cavities (at ε = 1.4) show a clear channel through the protein. Similarly,
Figure 4.7(b) shows the SecY membrane protein which forms an integral part of the translocon
assembly [97]. In its closed state (1RHZ), the plug domain of the proteins maintains a tight seal
and prevents any leakage [76]. In the closed state both the original cavities and robust cavities do not
show a transmembrane channel. However, even in the two half-open states of the protein (2YXQ
and 2YXR), the original cavities are unable to capture the channel while robust cavities successfully
delineated the channel (at ε = 1.4).

4.2.4 Robust cavities in Hemoglobin
We studied cavity structures in low and high affinity states of the protein Hemoglobin. As shown
in Figures 4.8(a) and 4.8(c), both low and high affinity structures consist of four heme sites sur-
rounding a central cavity. Also, all these cavities are disconnected at α = 0 in both the structures.
However, after modifying filtration, while the topology of cavities in low affinity structure remains
unchanged (Figure 4.8(b)), two heme sites in chains B and D of high affinity structure merge with
central cavity (Figure 4.8(d)). It is known that Oxygen binding to heme in hemoglobin causes a
conformational change in the rest of the structure which leads to an increase in oxygen binding
affinity. The binding results in the conformation transition from tense form (low affinity T state)
to relaxed form (high affinity R state). This important conformational change is being correctly
captured by the change in topology of the cavities of the R state (Figure 4.8(d)).

4.2.5 Robust cavities in Myoglobin
Myoglobin functions as an oxygen storage and delivery protein in the heart and skeletal muscles.
The gas molecule ligand binds to the Fe atom present in the heme moiety buried deep within the
protein [13]. The Fe-ligand bond is photosensitive and many studies have used this property to
probe Myoglobin dynamics [21, 14]. Further, Myoglobin binds xenon (Xe) where Xe populates
four pre-existing cavities in Myoglobin [95].

We computed original and robust cavities in wild-type sperm whale myoglobin (1DUK) bound
to heme and Fe. As shown in Figure 4.9, the original cavities contain the four separate Xe binding
sites (Xe1 to Xe4) along with the distal pocket (DP) where ligand carbon monoxide (CO) binds
to Fe, apart from many other smaller cavities. It has been shown in previous structural studies
that upon dissociation due to photolysis, CO occupies the Xe4 [14] and Xe1 [21] cavities for the
maximum amount of time before exhibiting geminate binding or escape from protein matrix into
solvent. Both these sites (Xe1 and Xe4) are successfully detected by the original cavities. Extended
molecular dynamics simulation have shown that the path that CO takes to migrate from the distal
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(a) 1HGA - Original (b) 1HGA - RobustCavities

(c) 1BBB - Original (d) 1BBB - RobustCavities

Figure 4.8: Cavity structures in two states of Hemoglobin. In all the images, central cavity is shown
in blue color, while red, cyan, green and magenta colors are used for heme sites in chains A, B, C
and D, respectively. The first row in the figure is for 1HGA which is low affinity T state, while
second row corresponds to high affinity R state (1BBB) of Hemoglobin. (a) The central cavity and
four heme cavities in low affinity state of Hemoglobin. (b) Even after applying modification, the
heme sites do not merge with central cavity. (c) The central cavity and four heme cavities in high
affinity state of Hemoglobin. (d) The heme sites in chains B and D merge with the central cavity
after application of RobustCavities.

side of heme to proximal side traverses through the alternate Xe binding site [10]. We extracted
robust cavities at ε = 1.15 which corresponds to a maximum radius perturbation of 0.27Å. As
shown in Figure 4.9(c), the robust cavities detects a single cavity corresponding to xenon binding
sites, DP and two other cavities, thus revealing a connection from the distal cavity to the proximal
side of heme. RobustCavities suggests direct connections between Xe1 and Xe2, Xe2 and Xe3,
and between Xe3 and Xe4 via other smaller cavities. Thus, proximal Xe1 is connected with Distal
Pocket tracing a direct path through xenon binding sites around the hememoiety. This result agrees
completely with the results of the extended molecular dynamics simulation which have previously
been performed [10].
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(a) (b) (c)

Figure 4.9: Extraction of robust cavities in Myoglobin. Myoglobin is shown in cartoon representa-
tion while hememoiety is shown in red using stick representation. The residue His 93 is also shown
in green using stick representation for context. The region above heme is the distal side while the
region below is the proximal side. (a) In original cavities, the five relevant binding sites appear
disconnected. Only DP and Xe4 (blue) are connected. (b) The original cavities which include the
significant sites and a few other cavities in the vicinity (light-blue). No path from DP to Xe1 is
found. (c) RobustCavities with ε = 1.15 reports a single robust cavity connecting the cavities
shown in (b). Direct connections between sites Xe1 and Xe2, and sites Xe2 and Xe3 are found. Xe4
is found to be indirectly connected to the sites Xe2 and Xe3 via small intermediate cavities including
Ph1 and Ph2.

4.3 Discussion and conclusion
RobustCavities is the first attempt in the direction of cavity extraction from uncertain data. We
demonstrated that RobustCavities was able to pull out biologically relevant channels when run
on a set of membrane proteins, despite the protein being present in a closed conformation. In com-
parison, CASTp [30] which also uses alpha shape-based framework, fails to identify these channels.
When compared to CASTp, RobustCavities allows radii of select atoms to be grown or shrunk,
and therefore supports a search over space of molecular structures to compute relevant cavities.
Hence, this method provides a flexible framework for computing cavities from uncertain input
data.

The utility of accounting for small changes in atomic radii can be fairly judged when studying
a packing deficient protein such as Myoglobin. Running RobustCavities on the wild type sperm
whale Myoglobin structure with default parameters, we successfully report the two major cavities
which the cognate ligand CO resides in during the geminate binding phase of dissociation. Move-
ment of the CO from its actual binding site, the distal pocket (DP) towards the Xe4 site is facilitated
by mutation of a single Leucine residue to Tyrosine [14]. This small positional change is implicitly
captured by themethod to report a biologically significant cavity. However themethodwith default



4. RobustCavities 67

parameters is still not able to connect the distal and proximal binding sites of CO. This is because the
conformational change required for the CO to move from distal to proximal side is more than what
can be accounted for by default parameters. When we increase the value of ε appropriately (from
1.0 to 1.15), the method is able to capture the conformational change and reports a channel which
connects DP to Xe1 via Xe4, Xe3 and Xe2. In an extended molecular dynamics simulation study
by C. Bossa et. al. on wild type sperm whale myoglobin it was observed that over the time-scale
of 80 ns, transient cavities form and collapse due to protein dynamics [10]. Two cavities which the
authors labelled as Phantom 1 (Ph1) and Phantom 2 (Ph2), highlighted in Fig 4.9(b) were deemed
important. Whereas Ph1 seemed a stable cavity existing for 98% of time, Ph2 was a transient cavity
occurring 33.5% of the time over the duration of the simulation. These cavities played a crucial
role in movement of CO from DP to Xe1 since they connected the spatially distant Xe4 and Xe3

sites in Myoglobin. Indeed it was found that during the course of its journey CO resides in Ph2 for
0.1 ns and inhabits Ph1 for as long as 3.2 ns. Our results, obtained by running the program on a
static structure, agree completely with the results of the molecular dynamics simulation. As seen
in Fig 4.9(c), the robust cavities delineate a path connecting DP to Xe4, Ph1, Ph2, Xe3, Xe2 and
then to Xe1 (in that order). Despite close spatial proximity of Xe4 and Xe2 the program does not
directly connect the two and instead chooses a more circuitous path to connect cavities, which is
consistent with the results of the extended molecular dynamics simulation. This aptly showcases
the ability of the method to extract meaningful connections between cavities. An important caveat
while using the method is to keep the value of ε within reasonable limits. Increasing its magnitude
in a bid to account for more uncertainty will lead to irregular results.

The RobustCavitiesweb-server interface provides significant improvements over existing tools
in terms of analysis and visualization of cavities. Highly interactive exploration of cavities, sup-
ported by the novel cavity map diagram interface, within the browser is a feature not offered by
most tools. Secondly, the web-server supports multiple representations of cavities. In addition to
the volumes and surface areas of the cavities, chemical composition of the cavity is also computed
and displayed, which allows study of physico-chemical properties of the cavities. In the single cavity
mode, cavity lining residues can also be displayed leading to quick identification of cavity or residue
of interest. Positions of atoms in a protein may have different degrees of uncertainty based on the
structural feature (loops, helices, etc.) that they are part of, and based on their location (core, near
the surface) within the protein. Similarly, uncertainty in atomic radii may vary based on atom type.
RobustCavities currently does not consider these aspects and assumes the degree of uncertainty to
be same across the molecule. In future, it would be interesting to consider use of different uncer-
tainty parameters for different regions in a protein. Computation of robust cavities and channels
in molecular dynamics data at interactive rates is another challenging problem worth exploring.



Chapter 5

An Integrated Geometric and Topological
Approach to Connecting Cavities in
Biomolecules

Study of cavities and channels in molecular structure is a crucial step in understanding the function
of biomolecules. Current tools and techniques for extracting these structural features are sensitive
to uncertainties in atomic position and radii. In this chapter, we study the problem of cavity extrac-
tion in biomolecules while taking into account such uncertainties. We propose an approach that
connects user-specified cavities by computing an optimal conduit within the region occupied by the
molecule. The conduit is computed using a topological representation of the occupied and empty
regions and is guaranteed to satisfy well defined geometric optimality criteria. Visualization of the
set of all cavities with multiple linked views serves as a useful interface for interactive extraction
of stable cavities. We demonstrate the utility of the proposed method in successfully identifying
biologically significant pathways between molecular cavities using several case studies.

5.1 Introduction
In Chapter 4, we discussed how uncertainty in the data adversely affects existing cavity detection
methods (See Figure 5.1). In general, the existing methods for extraction of cavities do not explicitly
handle the adverse effects of uncertainty in the data. Some methods support user-specified param-
eters such as solvent radius or a growth factor but they are almost always global parameters that
affect all extracted cavities. To the best of our knowledge, the two-parameter solution we described
in Chapter 4 for extraction of robust cavities is the first attempt in the direction of addressing the
problem of uncertainty explicitly. However, that solution is also global in the sense that the param-

68
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Figure 5.1: Left: The transmembrane channel through the protein 2OAR is detected as discon-
nected cavities. The default parameters are used to compute the cavities. Right:However, it can be
connected by perturbing a few atoms around its bottleneck.

eters affect all extracted cavities. Such a solution may produce undesirable results by connecting
cavities that lie outside the region of interest.

In this Chapter, we propose a simple and direct approach to address the problem, where the
user examines the cavities and identifies artifacts or undesirable disconnections. The user interacts
with the multiple linked views provided by the visualization and specifies a pair of cavities to be
connected. Our cavity connection algorithm efficiently and automatically computes an optimal
conduit between the cavities. Key contributions of this work include:

• A simple, explicit, and flexible method for extracting cavities in biomolecules from uncertain
data with guaranteed bounds on the perturbation required.

• Efficient algorithms to compute a conduit between user selected cavities that satisfies well
defined optimality criteria.

• Interactive visualization of cavities in a molecule with multiple linked views that facilitates
identification of disconnected cavities.

• Three case studies that demonstrate the benefits of the cavity connection basedmethod – com-
puting ion transport channels from uncertain data, comparing cavities obtained from various
mutants of a protein, and computing the migration path of carbon monoxide in myoglobin.

We evaluate the method by comparing the results with those obtained using a global parameter-
driven cavity extraction method described in Chapter 4. We also note that our method may be
used in conjunction with any of the Voronoi diagram based method [68, 80, 81] to improve the
results.
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(a) (b) (c) (d) (e)

Figure 5.2: Illustration of cavity connection method based on Bottleneck criterion using a 2D
example. (a) The two cavities which are required to be connected are shown in the context of the
molecule shown as a set of grey disks. The GMR is shown in green. (b) The maximum spanning
tree (MaxST ) is computed for the network. (c) The representative nodes of the two cavities in the
MaxST are coloured red. (d) The connecting path detected between these cavities. (e) The only
edge of the path which belongs to OR is highlighted in red. The lining atoms of this edge can be
perturbed to physically connect these cavities.

(a) (b) (c) (d) (e)

Figure 5.3: Demonstration of cavity connection method applied to the protein 2OAR. (a) The
two cavities which are required to be connected are shown in the context of the molecule shown
in cartoon representation. (b) The complete dual graph GMR. The edges which belong to OR
are coloured red while edges belonging to ER are coloured yellow. (c) The MaxST computed
for GMR. Same colouring scheme is used to identify edges in OR and ER. (d) The MaxST is
further pruned by restricting to paths connecting the cavity representatives. Here blue spheres
show the cavity representatives. (e) Using cavity connection algorithm, the best path connecting
the representative nodes of the two cavities shown in (a) is computed. The atoms are perturbed
appropriately to obtain the merged cavity shown in this figure.

5.2 Cavity connection
Before continuing further, we recommend that the reader refer to Chapter 2 for the mathematical
background required for this section. Cavities in a biomolecule, as defined in Chapter 2, are clearly
sensitive to perturbations in atomic positions and radii. For example, Figure 5.1 illustrates a scenario
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where perturbing a few atoms results in detection of a single large cavity instead of disconnected
cavities. Recognizing the existence of such a single connected cavity and extracting it by performing
the required perturbation is an interesting and challenging problem. Current approaches to cavity
extraction employ global parameters to address this problem resulting in undesired merging of
multiple cavities. We aim to develop a flexible user-driven method that can improve the results of
the cavity extraction algorithm by supporting the automatic computation of an optimal conduit
between two given cavities.

5.2.1 Problem statement
Given two disjoint cavities, the cavity connection problem is the computation of an optimal conduit
between the cavities that (a) lies within the molecular region and (b) together with the two input
cavities forms a single connected cavity after suitable perturbation of the atoms. We consider three
optimality criteria that lead to different algorithms for connecting the cavities.

• Bottleneck : This is a min-max criterion where the objective is to minimize the maximum
perturbation on an atom that will result in the formation of a conduit between the cavities.

• Proximity : The objective here is to minimize the number of atoms perturbed to form the
conduit.

• Bottleneck_Proximity : This is a hybrid of the above criteria. The number of perturbed
atoms is minimized given an upper bound on themaximum perturbation allowed on an atom.

5.2.2 Cavity connection methods
We now describe efficient algorithms to connect cavities satisfying each of the above-mentioned
optimality criteria.

Bottleneck criterion

The uncertainty in atom locations and radii determined from x-ray crystallography maps motivate
the development of methods that perturb the values to extract connected cavities. The Bottle-

neck criterion aims to limit this perturbation in the atom radii to the least possible value.
Consider the dual graph GMR of the tetrahedra and triangles in the Molecular Region (MR).

Nodes of this dual graph correspond to the tetrahedra and the arcs correspond to the triangles.
A weight is associated with each arc of GMR, equal to the smallest value of α at which the cor-
responding triangle is inserted into the filtration. Let Ci and Cj be the two cavities that the user
would like to connect. Let ti be a representative tetrahedron belonging to the cavity Ci and tj be
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the representative of Cj . Let ni and nj be the nodes in GMR corresponding to ti and tj , respec-
tively. The conduit between Ci and Cj may be represented by an alternating sequence of triangles
and tetrahedra in MR and hence by a path in GMR. In particular, we are interested in the path
between ni and nj where the minimum weight over all arcs is maximized. We design a simple and
efficient algorithm for computing this optimal path by recognizing that the path always lies within
the maximum spanning tree of GMR.

claim. The maximum spanning treeMaxST of the weighted graphGMR contains a path satisfying the
Bottleneck criterion for all pairs of cavities.

Proof. Consider two nodes ni and nj inGMR. LetPij denote an optimal path between the two nodes
and aij denote the minimum weight arc within the path. We describe a proof by contradiction. Let
P ′ij ( 6= Pij ) denote the unique path between ni and nj in MaxST and a′ij denote the minimum
weight arc within the path. If the weights of a′ij and aij are equal then P ′ij is also an optimal path.
If the weight of a′ij is smaller than aij then we can show that a new tree may be constructed with
weight greater than MaxST resulting in a contradiction. Delete the arc a′ij from MaxST . This
results in two disconnected trees containing the nodes ni and nj respectively. Let bij ∈ Pij be an
arc connecting the partitions. Clearly, the weight of bij is greater than or equal to the weight of aij
and hence the weight of a′ij . Replace a′ij with bij inMaxST to obtain a spanning tree with greater
weight thanMaxST , a contradiction. Hence,MaxST always contains an optimal path. 2

The conduit may be computed from the optimal path Pij by perturbing the atoms lining Pij .
The triangles in MR that are dual to arcs in Pij belong to the Occupied Region (OR) and Empty
Region (ER). We perturb the atoms incident on triangles in OR. Their radii are reduced by a value
corresponding to the α-value at which the triangle is inserted into the filtration, thus establishing
the connection between the cavities. Figures 5.2 and 5.3 illustrate this technique in 2D and 3D,
respectively. A connection may also be established by perturbing the position of the atoms lining
the path. However, computing such a perturbation without introducing steric clashes is a non-
trivial and challenging task.

Proximity criterion

Atoms that lie within the interior of the molecule are subject to greater physical constraints when
compared to those lining the surface and hence less suitable for perturbation. The Proximity cri-
terion limits the number of atoms that are perturbed and hence limits the number of perturbed
interior atoms.

Consider the dual graph GMR as described earlier. Assign unit weight to the arcs that belong to
OR and zero weight to arcs in ER. Let ni and nj be the representative nodes of cavities Ci and Cj
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in GMR, respectively. The optimal conduit between Ci and Cj is represented by the shortest path
Pij between nodes ni and nj in the weighted graph GMR.

The conduit corresponding to Pij may be computed by selecting one atom per arc in the path
and shrinking it by a value corresponding to the α-value at which the triangle is inserted into the
filtration. The number of atoms perturbed is thus equal to the length of the path contained in OR.

Bottleneck_Proximity criterion

The Bottleneck_Proximity is a hybrid of both criteria described above. Again, the optimal con-
duit is represented as a path. Given cavities Ci and Cj , we first compute the path Pij satisfying
the Bottleneck criterion. Let αmin be the weight of the minimum weight arc in the optimal path
Pij . Construct a sub graph G of GMR induced by arcs whose weight is greater than αmin. Now,
construct an optimal path P ′ij inG satisfying the Proximity criterion. Alternatively, αmin may also
be specified by the user instead of computing it using the Bottleneck criterion.

The conduit may be computed from P ′ij by selecting one atom per arc similar to the Proxim-
ity criterion. However, the reduction in atom radius is now limited by αmin.

5.3 Visualization and interaction
We describe three linked interactive visualizations to help the user identify important cavities and
connect them based on different criteria. Figure 5.4 shows these three views.

3D Visualization

In this view, the cavities are shown in the context of the molecule. The cavities can be shown as
union-of-balls, where each tetrahedron in the cavity is represented by its power ball whose centre
is equidistant from the four atoms and radius is equal to the power distance. Alternately, we can
also display the cavity in its dual graph representation, where nodes are drawn at the centre of the
power ball for each tetrahedron, and edges between the nodes correspond to the common triangle
face. Each cavity is given a unique color which is consistently used across different visualizations
to help identify the cavity quickly. The user can pick multiple cavities for connection by simply
clicking on the 3D view of the cavity. The detected connecting paths are shown as a set of cylinders
in the 3D view. The MaxST and the pruned MaxST which connects the cavity representatives
can also be visualized in this view.

2D Visualization

This view shows the abstract representation of the cavities and their connections based on Bot-

tleneck criterion. We construct a pruned sub-graph of the MaxST containing only the edges
and nodes needed for connecting the representative nodes of all the cavities. The graph is further



5. Connecting Cavities in Biomolecules 74

Figure 5.4: The three linked views of cavities in 2OAR are shown. Cavities may be selected from any
of these views. (a) The 3D view shows the two cavities selected for connection in green and violet
colors. Other cavities are shown in grey. (b) 2D graph visualization of the cavities. (c) This panel
shows the cavity dendrogram in which the height is proportional to the αmin of the connecting
path between cavities. Some additional 3D views are shown in the bottom row. From left to right:
the dual graph representation, the simplifiedMaxST , and the two cavities to be connected.
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minimized by collapsing paths into edges. After pruning and collapsing, the graph contains the rep-
resentative nodes of all the cavities and a few connecting nodes. These nodes are connected by edges,
each of which represents a path in the original MaxST . The nodes can be coloured and labelled
based on different criteria. The edges are labelled by the minimum value of α in the corresponding
path. This visualization is interactive and linked to other visualizations. The user can pick different
cavities by selecting nodes in the graph. The connecting path is shown by highlighting the nodes
and edges in the graph.

Hierarchical dendrogram

The negation of αmin of the optimal path Pij connecting the cavities Ci and Cj can be treated as
cavity distancemeasure. It can be shown cavity distance measure satisfies the non-negativity, coinci-
dence, symmetry and triangle inequality properties. Based on this distance measure, we can cluster
the cavities using hierarchical clustering and obtain the hierarchical dendrogram. This diagram
shows the proximity of cavities based on Bottleneck criterion. It is a useful representation for
showing the cavity hierarchy and may be used to identify cavities to connect. However, we do not
use clustering to obtain this diagram, and instead construct this simultaneously during computation
ofMaxST .

User interaction

In addition to multiple interactive views of the cavities and their connections, the user is provided
with other tools to identify important cavities. One such example is persistence based pruning of
cavities. The user can interactively specify a threshold persistence value. The views are immediately
updated and the cavities having less persistence than the specified threshold are removed from the
three views. Another tool is automatic connection of all cavities using a perturbation below a given
threshold. This is similar to what was proposed in [89].

5.4 Results and discussion
In this section, we first briefly discuss the implementation and runtime results. Then, we describe a
qualitative comparison of our method with existing approaches for connecting cavities. Lastly, we
demonstrate the utility of cavity connection using three example case studies. We show that our
method can be used for connecting fragmented cavities to form channels. We can also study the
propensity of a pathway being open based on the value of αmin. Using Myoglobin case study, we
show that our cavity connection method can be used to reach similar conclusions as those reached
after extensive molecular dynamics simulations. These case studies were carried out in collabora-
tion with molecular biologists who are studying protein cavities and their effect on the stability of
proteins. For all these examples, we use α = 0, solvent radius of 1.4Å and Bottleneck criterion
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for cavity connection unless specified otherwise.

5.4.1 Runtime results
Cavity connection method is implemented as a standalone interactive software in Java 1.6 and
OpenGL 3.2. The following experiments were performed on a workstation with 8 core Intel Xeon
processor and 16GB of RAM. The program requires weighted Delaunay complex, alpha complex
and Delaunay flow as input. We assume these are already available. Using this as input, we compute
the cavities, cavity representatives, cavity attributes such as persistence,GMR,MaxST , and pruned
MaxST in a preprocessing step. The preprocessing times for the five molecules we discuss in this
chapter are provided in Table 5.1. It should be noted that compared to α-complex computation
time which takes a few seconds, the preprocessing time is significantly low. After preprocessing,
the GUI is set-up and user can choose cavities for connection based on different criteria. The cavity
connection time was observed to be in the range 2ms to 20ms for these molecules. This ensures that
cavity connection can be done interactively.

Table 5.1: Preprocessing times for different molecules in the study.

PDB id #Atoms Preprocess (sec)
2OAR 5772 0.357
1RHZ 4901 0.336
2YXQ 4853 0.337
2YXR 4789 0.298
1DUK 1256 0.111

5.4.2 Comparison
We perform qualitative comparison of our results with RobustCavitiesmethod proposed by Srid-
haramurthy et al. [89] and discussed earlier in Chapter 4. RobustCavities also attempts to remove
inconsistencies in cavity detection by merging cavities into stable cavities using a global parameter
ε. It is claimed that RobustCavities ensures that minimal change is done to the cavity volume by
carefully modifying the atomic radii only for atoms lining the split triangles.

Figure 5.5 shows the result of our method and the RobustCavities for three protein structures.
The cavity connection method causes limited perturbation to the atoms along the edges of the
detected path (only edges in OR are modified). On the other hand, RobustCavities ends up con-
necting multiple cavities and significantly changes the volume of the merged cavity. The method
proposed here provides more flexibility and finer control over cavity connection, and does very
little change to the cavity volume, a desired outcome.



5. Connecting Cavities in Biomolecules 77

(a) 2OAR (b) (c)

(d) 2YXQ (e) (f)

(g) 2YXR (h) (i)

Figure 5.5: Comparison of cavity connection results with RobustCavities. (a) The disconnected
channel detected as two separate cavities (coloured green and orange) in 2OAR. (b) The cavity
connection result. (c) The RobustCavities result. Clearly, the volume of the merged cavity has
increased by a significant amount as compared to the result obtained by our cavity connection
method. (d)–(f) Similar result is obtained for the protein 2YXQ. (g)–(i) The result obtained for the
protein 2YXR.

It should be noted that other cavity and channel detectionmethods have user-defined parameters
like solvent radius which can in principle be used to connect cavities. But they are global in nature,
and significantly affect the cavity volume. Change in volume induced by RobustCavities is less
than that induced by changing the solvent radius and extracting the cavities. Since, our method is
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performing better than RobustCavities, we expect similar results when compared against other
methods.

5.4.3 Mechanosensitive Channel of Large Conductance: Identifying a chan-
nel

(a) (b) (c) (d) (e)

Figure 5.6: Cavity connection results for MscL transmembrane protein (PDB id: 2OAR). (a) All
cavities detected in this protein are shown in the context of the molecule. The membrane is shown
as red and blue layers. (b) We select two cavities at either end of the membrane for connection.
(c) The connecting path found by the method is shown in pink. The two cavities shown in the
dual graph representation for context. The maximum perturbation for the connecting path was
found to be 0.4Å. (d) Single connected cavity after atom perturbation. (e) The connecting path
helps identify the known ion transfer channel.

Thismolecule has been used as a running example in this chapter (Figures 5.1 and 5.3). MscL (PDB
id: 2OAR) is a transmembrane ion transport channel. The transmembrane channel is detected as
fragmented set of cavities instead of a single connected channel. The user selects two cavities at
opposite ends of the channel (Figure 5.6(b)) and uses cavity connection method to find a good con-
necting path tomerge these cavities. Theαmin for the connecting pathwas found to be−1.38, which
corresponds to maximum atomic perturbation of 0.4Å. Refer to Figure 5.6 for detailed results.

5.4.4 Translocase SecY: Comparing mutants
Translocase SecY is a transmembrane transporter proteinwhich forms an integral part of the translo-
con assembly [97]. In its wild type closed state (PDB id: 1RHZ), the plug domain of the proteins
maintains a seal and prevents any leakage [76]. Half and full plug deletion mutants of this pro-
tein were created to study this protein (PDB ids: 2YXQ and 2YXR, respectively). Even after plug
deletion, these mutants attain packed structures and the channel is detected as a set of fragmented
cavities. However, experimental data shows that plug deletions lead to increased rate of transloca-
tion of proteins and small molecules.
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(a) 1RHZ (b) 1RHZ (c) 1RHZ (d) 1RHZ (e) 1RHZ

(f) 2YXQ (g) 2YXQ (h) 2YXQ (i) 2YXQ (j) 2YXQ

(k) 2YXR (l) 2YXR (m) 2YXR (n) 2YXR (o) 2YXR

Figure 5.7: The results for Translocase SecY case study. (a) The cavities detected in the wild type
protein (1RHZ). (b) The cavities selected for connection. (c) The connecting path (pink) between
these cavities. The maximum perturbation for this connecting path was found to be 0.69Å. (d) The
resulting cavity after perturbation of atoms. (e) The connecting path as a channel across the mem-
brane. (f)–(j) Similar results for the half plug deletion mutant (2YXQ) of the protein. The maxi-
mum perturbation for the connecting path was found to be 0.42Å. (k)–(o) The results for the full
plug deletion mutant (2YXR) of the protein. The maximum perturbation was found to be 0.43Å.

We applied the Bottleneck criterion to connect the cavities along the channel on all the three
structures. The detailed results are shown in Figure 5.7. The αmin of connecting paths were found
to be −1.76, −1.41 and −1.43 for 1RHZ, 2YXQ and 2YXR, respectively. These values correspond
to maximum atomic perturbations of 0.69Å, 0.42Å and 0.43Å, respectively. This clearly indicates
that it is easier to open the channel in the mutants as compared to the wild-type, which supports
the experimental evidence that the mutants are more conducive to transport of molecules through
the channel.

5.4.5 Myoglobin: Identifying the migration path
Myoglobin (PDB id: 1DUK) functions as an oxygen storage and delivery protein in the heart and
skeletal muscles. The gas molecule binds to the Fe atom present in the heme moiety buried within
the protein [13]. This primary binding site where ligand carbon monoxide (CO) binds to Fe is
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: The results for Myoglobin case study. (a) The set of cavities detected in Myoglobin
bound with heme. (b) The cavities of interest in this protein that have been studied earlier are
labelled. We are interested in finding the connecting path between DP and Xe1. (c) A connecting
path (pink) fromXe1 is detected that traverses throughXe2, Xe3, Ph2, Ph1 andXe4 to reachDP. This
connection was suggested after extensive molecular dynamics simulations. However, we are able to
detect this connection directly using the cavity connection method. The maximum perturbation
required for detecting the path is found to be only 0.25Å. (d) The detected path (pink) along with
dual graph representations of the two selected cavities. (e) The merged cavity (blue) formed after
atom perturbation. (f) Using Proximity criterion for finding the connecting path between DP and
Xe1 results in detection of direct path (pink) which does not pass through other Xe sites. The
maximum perturbation for this path was found to be 2.16Å which suggests that direct connection
between DP and Xe1 is highly improbable.

referred to as the distal pocket (DP). Interaction of Myoglobin and Xenon (Xe) has been studied
earlier and it was observed that Xe populates four pre-existing cavities in Myoglobin referred to as
Xe1 to Xe4 [95]. Further, it has been shown in previous molecular dynamics simulation studies
that CO occupies the cavities Xe1 [21] and Xe4 [13] for the maximum amount of time. Xe4 is
close to the distal pocket while Xe1 is on the proximal side of the heme. The path taken by CO
to migrate from distal side of heme to the proximal side and vice versa is of crucial significance for
understanding the functionality of this protein.

In an extended molecular dynamics simulation study by C. Bossa et al. on wild type sperm
whale myoglobin, it was observed that over the time-scale of 80 ns, transient cavities form and
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collapse due to protein dynamics [10]. Two cavities which the authors labelled as Phantom 1 (Ph1)
and Phantom 2 (Ph2), highlighted in Figure 5.8(b), were deemed important. Whereas Ph1 seemed
a stable cavity existing for 98% of time, Ph2 was a transient cavity occurring 33.5% of the time over
the duration of the simulation. These cavities played a crucial role in movement of CO from DP
to Xe1 since they connected the spatially distant Xe4 and Xe3 sites in Myoglobin. It was found that
during the course of its journey CO resides in Ph2 for 0.1 ns and inhabits Ph1 for as long as 3.2 ns.

We applied Bottleneck criterion of cavity connection to find the connecting path between DP
and Xe1. We found that the connecting path passes through Xe4, Ph1, Ph2, Xe3 and Xe2 to reach
Xe1. The αmin for the connecting path was found to be −1.11, which corresponds to maximum
atomic perturbation of 0.25Å. This connection is shown in Figures 5.8(c), 5.8(d) and 5.8(e). Thus,
we found that the proximal Xe1 is connected with the distal pocket tracing a direct path through
xenon binding sites around the heme moiety. This result agrees completely with the results of the
extended molecular dynamics simulation performed earlier [10].

We also applied Proximity criterion to find connecting path between DP and Xe1. A short
direct path with only two edges in OR was obtained, as shown in Figure 5.8(f). But, αmin for this
connection was found to be −2.56 which corresponds to maximum perturbation of 2.16Å. This
clearly suggests that direct connection between distal and proximal sides of the heme is impossible,
or highly improbable. Hence, the path obtained by applying Bottleneck criterion is biologically
significant.

5.5 Conclusions
Cavity detection methods suffer from unstable behaviour due to uncertain nature of protein struc-
ture data. We have described a novel solution via connecting molecular cavities under different
optimization criteria. We described efficient solutions using an α-complex based internal represen-
tation of the cavities and the region occupied by the molecule. The computed connection helps
in quantifying the ‘connection distance’ between cavities. This connection distance signifies the
stability of the cavity in the presence of uncertainty. A larger distance implies increased difficulty
to connect the cavities. Hence, they are expected to be more stable in uncertain dynamic environ-
ments experienced by the protein. An interactive visual interface with linked views aids the user in
identifying interesting cavities to connect. There is scope to improve these visualizations and the
user experience further. It is important to address the problem of channel and cavity extraction
in uncertain data based on sound theoretical foundations. The methods proposed in this chapter
can be adapted for other Voronoi diagram based methods like CAVER [81], MOLE [80] and the
techniques proposed by Lindow et al. [68]. We believe that a user-driven flexible cavity connection
capability would be a useful addition to these established channel and cavity detection tools.



Chapter 6

Facet-JFA: Faster Computation of Discrete
Voronoi Diagrams

Voronoi diagram is one of the most widely used tools in computational geometry, with applications
in computer graphics, image processing, mesh processing, robot navigation, and for data analysis in
several scientific and engineering disciplines. A Voronoi diagram partitions space into regions given
a set of seed points, with each point in a particular region being closer to its corresponding seed
than to any other seed. The computation of Voronoi diagrams is one of the best studied problems
in computational geometry, with optimal algorithms known for computing Voronoi diagrams on
the plane [4, 5].

Discrete Voronoi diagram requires the computation of regions on a discrete grid of pixels, with
seed points being some of the pixels themselves. Due to the inherent parallelism, this problem has
been approached using the GPU. The first attempts to solve this problem using the GPUwere done
due to Hoff et al. [52]. Rong et al. [84] then used Jump Flooding, a parallel extension to flood-fill
algorithm, which propagates label information from a pixel to the entire grid, to construct approx-
imate Voronoi diagram. The GPU is harnessed to enable all the labelled pixels to propagate their
label information, instead of a wave-front like approach. It can be easily shown that this approach
requires log n steps to flood an n×n grid of pixels. Jump Flooding can be used to generate discrete
Voronoi diagrams and the resulting algorithm is referred to as JFA ( Jump Flooding Algorithm).
Assuming fixed grid of size n × n with seed points already placed in the grid, JFA computes the
Voronoi diagram in log n steps, and is thus independent of the number of seeds. The discrete nature
of the problem introduces errors, which have been extensively documented in [84]. The algorithm
has been implemented by Rong et al. using textures and pixel shaders and is one of the most effi-
cient methods for computing the discrete Voronoi diagram till date. Cao et al. [16] proved that the

82
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dual of the discrete Voronoi diagram constructed by flooding approach gives a geometrically and
topologically correct dual triangulation.

In this chapter, we introduce a variant of JFA, called Facet-JFA, wherein only the pixels which
are located near the Voronoi region boundaries are processed, thus immensely reducing the total
amount of work done by the algorithm. The proposed approach first determines the lowest grid
resolution at which seed points can be projected to the nearest grid pixel without conflict. Following
this, the algorithm marks the grid pixels which are destined to lie in the interior of the Voronoi
regions and refines the boundaries of these regions. This algorithm uses an intrinsic quad tree-
based approach. Like JFA, the proposed approach also requires log n steps to compute the Voronoi
diagram for an n × n grid of pixels. But, for larger grids with fewer seed points (and hence large
Voronoi regions), almost all the pixels will be marked as interior and hence will not be processed.
This strategy enables both space optimization and better running times in practice. We explore
the speed-ups obtained over JFA for different grid and seed set sizes. We implement the original
JFA and Facet-JFA using CUDA to compute Voronoi diagrams in two and three dimensions. We
report experimental results concerning the running time and other parameters across multiple GPU
architectures.

As an application of Facet-JFA, we present a GPU accelerated technique for extraction of the
channel network in biomolecules in two and three dimensions. The proposed method allows ex-
traction of channels at real-time interactive rates and is thus suited for visual analysis of static and
dynamic channel structures in Molecular Dynamics (MD) simulation trajectories. With examples,
we demonstrate that the discrete representation and the use of Facet-JFA is appropriate for the
typical resolutions required for visualizing the channels in MD trajectories at interactive rates.

6.1 Discrete Voronoi diagram computation

6.1.1 Definitions
Definition 6.1. Let [n] be the set {0, 1, . . . , n − 1}. A grid is defined as the Cartesian product [n]d of
the set [n]. Here, d is the dimension of the grid and n is the size of the grid. A d-dimensional grid of size
n is denoted by [n]d. Any element p ∈ [n]d is a d-dimensional vector (x1, x2, . . . , xd) and called a pixel.

Definition 6.2. Given a grid [n]d with a distance metric δ defined on it and a set of k seeds S =

{s1, s2, . . . , sk} ⊆ [n]d, the discrete Voronoi diagram is a function f defined as follows:

f : [n]d → S

such thatf(p) = si ⇐⇒ ∀j 6= i, δ(p, si) 6 δ(p, sj)
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To make the above definition well defined, we will always assign lowest indexed seed to the pixel
p whenever p is equidistant to multiple seeds. For any seed si ∈ S, f−1(si) is called the discrete
Voronoi region of si.

Definition 6.3. Let ∆1 = {−1, 0, 1}. The neighbourhood of a pixel p ∈ [n]d is the set of pixels Np,
defined as follows:

N ′p = {p+ δ1 such that δ1 ∈ ∆d
1}

Np = N ′p ∩ [n]d \ {p}

There are at most 3d − 1 pixels in the neighbourhood of a pixel p ∈ [n]d. If the pixel lies on the
boundary of the grid then size of neighbourhood sets is smaller than 3d − 1.

Definition 6.4. A cell of size l at a pixel p ∈ [n]d is a smaller grid of size l at origin p. The set of pixels
in the cell of size l at pixel p, denoted by C(p, l), is given by:

C(p, l) = {p+ δ such that δ ∈ [l]d}

In 2D, a cell is a pixel in a grid of resolution (n/l)×(n/l). That is, every pixel in an (n/l)×(n/l)

grid represents a cell in an n× n grid, each containing l × l pixels.

Figure 6.1: Left: A Cell C(p, 4) in a grid [8]2. Right: Its refinement into four cells of size 2.

Definition 6.5. The refinement of a cell C(p, l), denoted by R(C(p, l)), is the partition into 2d equal
sized cells. It is defined as follows:

∆ l
2

= {0, l
2
}

R(C(p, l)) = {C(p+ δ l
2
,
l

2
) such that δ l

2
∈ ∆d

l
2

}
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In 2D, refinement refers to increasing the resolution of the grid form an (n/l) × (n/l) grid to
an (2n/l)× (2n/l) grid. Refer to Figure 6.1 for an example of a cell and its refinement.

Definition 6.6. For a discrete Voronoi diagram f of a grid [n]d, a pixel p is called a boundary pixel if
there exists q ∈ Np such that f(p) 6= f(q). The other pixels in the grid are called interior pixels.

Figure 6.2: Comparison of execution of JFA and Facet-JFA on a 256×256 grid with 10 seed points.
(a) JFA completes in 8 steps for this grid. In each step, all the pixels update their labels based on the
seed closest to them. Notice that in earlier steps many pixels are coloured black as they have not
received any valid seed till then. (b) Facet-JFA also takes 8 steps for completion. For this example,
8 × 8 grid is determined to be the initial resolution, on which JFA is executed resulting in coarse
Voronoi diagram (frame with l = 1). In subsequent steps, the coarse boundaries are refined till
the final resolution is reached. In refinement steps, the pixels coloured black are those which are
marked and remain inactive, resulting in faster computation.

6.1.2 Jump Flooding and JFA
The idea of utilizing graphics hardware to compute geometric constructions is not new. The first
attempt to compute Voronoi diagrams using graphics hardware was done by K. Hoff [52]. The
algorithm described by Hoff uses projections of cones from seed points, drawing region boundaries
where two cones meet. This was vastly improved in the more recent attempt by Rong et al. [84],
using a parallel approach to flooding, known as Jump Flooding. This algorithm is based on the
observation that while flooding an area with a label, each labelled pixel can transmit its label, instead
of just the ones on the boundaries of the labelled region. This ensures an exponential growth in the
number of labelled pixels in a grid and thus, can be computed in O(log n) time, for an n× n grid.

The work by Rong et al. [84] introduces two variants of the flooding algorithm, one with a
halving step length and the other with a doubling step length. It is also shown that the former
approach results in fewer errors, as compared to the latter one. The experiments in this chapter use
the halving approach to flood label information. The jump flooding algorithm to compute Voronoi
diagrams utilize this flooding. The JFA algorithm using jump flooding in the halving step mode
proceeds in the following way:
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1. Initially, each pixel corresponding to a seed s records a tuple 〈s, position(s)〉 and all other
pixels record 〈nil, nil〉.

2. In step l, each pixel (x, y) passes the tuple corresponding to the seed closest to it to the pixels
(x + i, y + j), i, j ∈ {−l, 0, l}. In cases when a pixel is closest to more than one seed, the tie
is broken based on the indices of seeds.

3. The step size halves in each iteration and the above step is repeated starting with l = n till
l = 1 when the algorithm halts.

Figure 6.2(a) demonstrates how JFA proceeds on a 256× 256 grid. There are several variants of
JFA described in [84] and [85], including JFA+1, JFA+2, JFA2 and 1+JFA. We use JFA+1, which
is JFA with one additional round of flooding for the experiments in this chapter.

6.1.3 Facet-JFA
A great amount of work is done in the original JFA in the flooding of label information by the
pixels which are in the interior of Voronoi regions. Much of this flooding can be seen as extraneous
as it does not affect the boundaries of the Voronoi regions being formed. The proposed algorithm
aims to eliminate this overhead by computing the region boundaries alone, instead of processing
every pixel in each region. The proposed algorithm is presented as Algorithm 2 for 2D case. This
algorithm can easily be extended to higher dimensions as well.

Just like JFA, the proposed algorithm also takes log n steps to finish. The algorithm marks the
interior pixels, thus lowering the number of threads that need to be launched. This greatly reduces
the total amount of work done by the algorithm and thus the running time, as demonstrated in
the experiments. This algorithm can perform as bad as JFA if initial grid resolution m is close
to or same as n. Figure 6.2 demonstrates the steps involved in Facet-JFA and how those steps
compare with the steps involved in JFA. In the first logm steps, Facet-JFA essentially executes JFA
to obtain the Voronoi diagram at a lower resolution ofm×m. In the next log n− logm steps, the
boundary cells are identified and refined iteratively. During refinement, a new pixel acquires a label
corresponding to its parent or the label of the parent’s neighbour. Executing single step of JFA with
l = 1 accomplishes this refinement.

6.1.4 Runtime and space analysis
JFA and Facet-JFA both take log n steps to finish. Each of these steps involve processing multiple
pixels in parallel. But the advantage of using Facet-JFA is that it processes smaller girds in initial
stages, while at later stages when grid size becomes larger, many of the pixels are not processed.
We perform qualitative assessment of Facet-JFA in terms of the number of pixels processed by the
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Algorithm 2 Facet-JFA

Input: S: Set of seeds.
Input: n: Grid size.
Input: m: Initial grid resolution (optional).
Output: M: n × n grid where pixels on the Voronoi region boundary are set to the index of the
seed.
1: If m is not provided, compute the smallest value m = 2p, p ∈ N such that for every two seeds

(i1, j1) and (i2, j2), i1·mn 6=
i2·m
n

or j1·m
n
6= j2·m

n
.

2: M := Create an m×m grid.
3: Unmark each pixel in the m×m grid.
4: Run JFA on the m×m grid with seeds (i, j) replaced by ( i·m

n
, j·m
n

).
5: Initialize q tom and repeat steps 6 to 9 doubling q after each iteration and halting when q ≥ n.
6: M := Create a 2q × 2q grid.
7: Refine each unmarked pixel (i, j) in the q × q grid to 4 pixels, (2i, 2j), (2i + 1, 2j), (2i, 2j +

1), (2i+ 1, 2j + 1) in the 2q × 2q grid.
8: With l = 1, run one step of JFA on the gridM with seeds (i, j) replaced by ( i·2q

n
, j·2q

n
). Launch

threads only for the unmarked pixels.
9: Mark all pixels in M which have identically labelled neighbours. Again, launch threads only

for the unmarked pixels.
10: return M

algorithm after performing JFA on the initial coarse grid. The lower the number of these pixels, the
larger would be the performance gain, both in terms of timing benefit and potential space savings.
We show that the algorithm processes O(d · kd d2 e · nd−1 · log n) pixels in the general case, and at
most 5 · (3k − 6) · n log n pixels in the specific case of a 2D grid. This is a factor of n improvement
over JFA, which processes log n ·n2 pixels in its complete execution. Including the number of pixels
processed in the JFA execution on the initial grid, the total number of pixels processed by Facet-JFA
is at most O(d · kd d2 e · nd−1 · log n+m2 · logm).

6.1.4.1 2D grid

Lemma 6.1. The number of boundary pixels in the discrete Voronoi diagram of a two dimensional grid
[n]2 with seed set of size k is linear in k and n. The number of boundary pixels is at most 5 · (3k−6) ·n.

Proof. The Voronoi diagram is the dual of the Delaunay triangulation. So, number of edges in the
2D Voronoi diagram is equal to that in the Delaunay triangulation. The number of vertices in the
Delaunay triangulation is exactly k i.e. the number of seeds. Since the Delaunay graph is planar,
the number of edges is at most (3k − 6).

Now, any line passing through [n]2 can contribute at most 5n boundary pixels (Refer to Fig-
ure 6.3 for an example and Lemma 6.2 for proof in d dimensions). So, each Voronoi edge can
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Figure 6.3: The set of boundary pixels (red) due to intersection of a line (red) with a [10]2 grid.

contribute at most 5n boundary pixels. Therefore, the total number of boundary pixels in a two
dimensional discrete Voronoi diagram is at most 5 · (3k − 6) · n. 2

Theorem 6.1. Total number of pixels processed by Facet-JFA while computing the discrete Voronoi
diagram for k seeds in a [n]2 grid is bounded by 5 · (3k − 6) · n log n.

Proof. Facet-JFA subdivides the grid in a quad tree fashion. The leaves of the quad tree are the
pixels in the grid, while the internal nodes are the cells in the grid. The construction of the discrete
Voronoi diagram of a grid using Facet-JFA involves reaching the boundary pixels of the Voronoi
regions using this tree. By Lemma 6.1, we know that the number of boundary pixels in a discrete
Voronoi diagram is at most 5 ·(3k−6) ·n. In a quad tree, to reach a leaf node we need to access log n

internal nodes. So, during the course of a run of Facet-JFA, the total number of pixels processed is
at most 5 · (3k − 6) · n log n. 2

6.1.4.2 d-Dimensional grid

Lemma 6.2. The number of boundary pixels resulting because of intersection of a hyperplane inRd with
the grid [n]d is at most O(d · nd−1).

Proof. In [n]d, all neighbours of a grid pixel are within a distance of
√
d. We consider two parallel

hyperplanes at the distance of
√
d from the given hyperplane. Refer to Figure 6.3 for an illustration.

The given hyperplane is shown as bold red line while the two parallel hyperplanes are shown as
dotted lines. Now, it is easy to see that boundary pixels can not lie outside the volume bounded by
the two hyperplanes. So, estimating the maximum number of pixels that can lie in this volume will
give an upper bound on the number of boundary pixels.
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Given one of the d axes, the volume consists of at most nd−1 columns of pixels along this axis.
We claim that for a suitable choice of axis the number of boundary pixels within each column is at
most (2d+1). Let r be the length of a column within the volume bounded by the two hyperplanes,
see Figure 6.3. We choose the axis that minimizes the angle θ and maximizes cos θ. In this case,
cos θ ≥ 1/

√
d where the equality holds when the hyperplane and its normal subtend the same

angle with all the axes. Further, r · cos θ = 2
√
d. So, the value of r is at most 2

√
d ×
√
d = 2d. A

column length of 2d within the volume corresponds to at most (2d + 1) pixels. Counting pixels
within all columns results in an upper bound of (2d+ 1) · nd−1 = O(d · nd−1) boundary pixels. 2

For the case of d = 2, the number of boundary pixels due to a Voronoi edge is at most 5n.

Lemma 6.3. The number of boundary pixels in the discrete Voronoi diagram on a grid [n]d with seed
set of size k is upper bounded by O(d · kd d2 e · nd−1).

Proof. We know from Lemma 6.2 that intersection of any hyperplane can result in O(d · nd−1)
boundary pixels in a grid. Also, it is known that there areO(kd

d
2
e) Voronoi facets in a d-dimensional

Voronoi diagram [27]. It follows that the total number of boundary pixels in a discrete Voronoi
diagram is bounded by O(d · kd d2 e · nd−1). 2

Theorem 6.2. Total number of pixels processed by Facet-JFA for computation of discrete Voronoi dia-
gram for k seeds in a [n]d grid is O(d · kd d2 e · nd−1 · log n).

Proof. The argument given in Theorem 6.1 can be extended to the d dimensional case as well.
By Lemma 6.3, we know that the number of boundary pixels in a discrete Voronoi diagram is
O(d · kd d2 e ·nd−1). In a d dimensional quad tree, to reach a leaf node we need to access log n internal
nodes. Thus, the total number of pixels processed is at most O(d · kd d2 e · nd−1 · log n). 2

6.1.5 Pre-processing in Facet-JFA: Computation of m
The computation of m in the first step of Facet-JFA is done on the CPU and is considered as a
preprocessing step. In practice,m can be directly provided by the user, determined based on a user-
defined error tolerance, or it can be domain specific and based on closest possible pair. Here we
briefly discuss a few possible approaches to compute m.

Problem Given seed set S = {s1, s2, · · · , sk} of size k and maximum grid size n. Compute the
smallest grid sizem = 2p, which ensures projection of the k seeds without conflict. That is, no two
seeds should share the same pixel in the m×m grid after projection.

We suggest following three solutions for this problem:

1. Closest pair method: The grid size that does not cause any conflicts may be computed by
estimating the distance between the closest pair of seeds. The value ofm can be computed in
constant time given the closest pair distance.
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2. Domain specific: The closest pair information can be domain specific. For example, in case
of molecules, it is known that two atoms cannot be physically closer than a threshold distance.
That threshold can be directly used to compute m in constant time. The domain expert can
also provide an error tolerance threshold in terms of distance below which two seeds can be
considered to be the same. This information can again be used to compute m in constant
time.

3. Brute force with grid: We have to allocate an n×n grid for computation of Voronoi diagram
using Facet-JFA. We can exploit this available space to determinem. For each seed point, set
the pixel to which it is projected as 1. If after the projection it is found that the pixel is already
set, then we have to consider higher values of m. Also, we can use binary search to identify
a valid value of m. This approach can therefore determine m and simultaneously place the
seeds in O(k log log n) time.

The performance of above methods can be improved further by exploiting parallelism. For
example, a brute force comparison of all pairs of seed points can be performed in parallel.

6.1.6 CUDA implementation
We implement jump flooding on CUDA using a gather-style approach, wherein in step l, each
pixel gathers the label information from 8 neighbours l pixels away from it. It can easily be shown
that this approach is equivalent to the halving mode of jump flooding. This approach is free from
write-conflicts and the GPU based approach greatly benefits from this fact, as GPUs are inherently
massively parallel. We used this gather-style approach to jump flooding to implement JFA and
Facet-JFA.

In the implementation of JFA, the grid is copied only once to the device memory. A total of
log n calls are made to the kernel, each call corresponding to a step of the flooding algorithm. The
implementation of Facet-JFA involves multiple kernels as the algorithm consists of several phases.
Facet-JFA requires the initial grid resolutionmwhich is computed as described in previous section.
Oncem has been determined, Facet-JFA first computes Voronoi diagram at the coarsest resolution
of m × m using JFA. Then the algorithm proceeds by repeatedly launching the cell refinement,
JFA and marking steps in succession till the final resolution n × n is reached. At an intermediate
grid resolution of q × q, q2 threads are launched, which return immediately after launching if the
pixel is marked. Otherwise, they update the Voronoi region using one step (l = 1) of JFA on that
grid. The cell refinements to obtain the 2q × 2q grid and the marking of interior pixels is also
done using CUDA kernels. The main overhead in this implementation lies in the launching of
threads for every pixel, irrespective of whether it is marked or not. A better and thus more efficient
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approach would be to launch threads only for the unmarked pixels, thus greatly reducing the launch
overhead. Selective launching of threads only for unmarked pixels is non-trivial and not supported
on all CUDA architectures.

It should be noted that space requirement in the current implementation is n2 which is used for
storing the n × n matrix. The refinement step which results in doubling of resolution is handled
carefully within the allocated space so that no extra space is required even temporarily. Theoret-
ically, Facet-JFA requires much less space than JFA as discussed in 6.1.4, but achieving that limit
would require special indexing structures.

6.2 Experimental results

6.2.1 Experimental setup
The experiments have been performed simultaneously on two different GPU architectures from
nVidia, namely the latest Kepler and the older Fermi. The GPUs used for the experiments are the
GTX-660 Ti and Tesla C2050. The CPU in both cases was an Intel Xeon octa core, running at
2GHz and with 16 GB of main memory. The following experiments were done.

1. Time comparisons for JFA and Facet-JFA in a 2D case on the Kepler and Fermi architec-
tures (Tables 6.1 and 6.2).

2. Time comparisons for JFA and Facet-JFA in a 3D case on the Kepler architecture (Table 6.3).

3. Comparison of the number of threads launched in JFA and Facet-JFA (Table 6.4).

The experiments were run at resolutions ranging from 256× 256 to 4096× 4096, with the reso-
lution doubling in each run. The number of seeds was increased from 10 to 100,000 incrementally
for each resolution. The default random number generator, rand() was used to generate the seed
locations. Running times are reported in milliseconds and are calculated separately for the actual
kernel execution and copying of the grid from the host to the device and back. In the case of Facet-
JFA, the time taken to generate the starting resolution is taken as a preprocessing step and is not
included in the timing computation. In each experiment, the time reported is the average taken
over 100 runs of the algorithm.

6.2.2 Observations
The speed-up obtained on the GTX-660Ti GPU has been plotted in Figure 6.4. The performance
of Facet-JFA was superior to that of JFA in most cases, with speed-ups as high as 10x in the case of
10 seeds on a 4096×4096 grid on the GTX-660Ti. It was observed that the number of seeds and the
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Table 6.1: Timing results for Facet-JFA and JFA for 2D grids on nVidia GTX-660 Ti
Grid size #Seeds Facet-JFA time (ms) JFA time (ms) Total Exec.

(n) (k) Mem. Exec. Total Mem. Exec. Total Speed-up Speed-up

256

10 1.20 0.34 1.54 1.22 0.55 1.77 1.15 1.61
100 1.21 0.42 1.62 1.20 0.58 1.78 1.10 1.40
500 1.23 1.11 2.34 1.25 1.10 2.35 1.01 0.99
1000 1.28 1.31 2.58 1.24 1.39 2.62 1.02 1.06

512

10 1.81 0.66 2.47 1.79 2.08 3.88 1.57 3.17
100 1.81 1.21 3.02 1.77 2.24 4.01 1.33 1.86
500 1.82 3.87 5.69 1.75 3.41 5.16 0.91 0.88
1000 1.77 4.41 6.19 1.80 4.19 6.00 0.97 0.95

1024

10 3.62 1.34 4.96 3.58 8.04 11.61 2.34 5.99
100 3.61 2.43 6.04 3.51 8.39 11.90 1.97 3.45
500 3.63 7.83 11.46 3.49 12.05 15.54 1.36 1.54
1000 3.67 14.64 18.31 3.49 14.37 17.86 0.98 0.98
10000 3.63 23.77 27.40 3.48 22.99 26.46 0.97 0.97

2048

10 10.66 3.73 14.38 9.75 28.95 38.70 2.69 7.77
100 10.46 6.59 17.05 9.60 31.37 40.97 2.40 4.76
500 10.38 15.33 25.71 9.74 47.83 57.57 2.24 3.12
1000 10.27 27.62 37.89 9.74 57.02 66.76 1.76 2.06
10000 10.38 90.38 100.76 10.71 95.38 106.09 1.05 1.06

4096

10 36.10 12.13 48.22 35.48 131.88 167.36 3.47 10.87
100 35.77 18.52 54.28 35.38 140.51 175.89 3.24 7.59
500 35.73 37.70 73.43 35.54 199.05 234.58 3.19 5.28
1000 36.07 67.49 103.56 35.22 236.12 271.34 2.62 3.50
10000 35.52 368.32 403.84 35.62 331.23 366.85 0.91 0.90
100000 36.90 506.09 542.98 35.62 494.46 530.08 0.98 0.98

speed-up observed are inversely related, as the presence of a larger number of seeds would generally
result in smaller regions, resulting in fewer interior points. This could also be due to the fact that,
in Facet-JFA, the starting resolution of a grid would increase in proportion to the number of seeds,
thus necessitating larger numbers of threads to be launched in the initial call to JFA. Nevertheless,
in cases where JFA outperformed Facet JFA, the slow down was marginal (0.9x). The threshold on
the number of seeds for which JFA starts to outperform Facet-JFA was experimentally observed
to be approximately n seeds for an n× n grid.

The pattern of speed-up observed on the Tesla C2050 almost exactly mirrored the observations
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Table 6.2: Timing results for Facet-JFA and JFA for 2D grids on nVidia Tesla C2050
Grid size #Seeds Facet-JFA time (ms) JFA time (ms) Total Exec.

(n) (k) Mem. Exec. Total Mem. Exec. Total Speed-up Speed-up

256

10 3.08 0.40 3.47 2.97 0.46 3.44 0.99 1.17
100 2.96 0.45 3.41 2.89 0.54 3.43 1.00 1.20
500 2.84 0.75 3.60 3.06 0.66 3.72 1.03 0.88
1000 2.96 0.84 3.79 2.98 0.73 3.72 0.98 0.88

512

10 3.64 0.77 4.41 3.90 1.76 5.66 1.28 2.28
100 3.45 1.01 4.47 3.54 2.12 5.66 1.27 2.09
500 4.00 2.89 6.89 3.65 2.47 6.12 0.89 0.85
1000 3.44 3.22 6.66 3.90 2.73 6.62 0.99 0.85

1024

10 4.98 1.75 6.73 4.90 7.37 12.27 1.82 4.22
100 5.75 2.67 8.42 5.11 8.69 13.80 1.64 3.25
500 5.97 11.10 17.07 5.54 10.36 15.90 0.93 0.93
1000 4.98 13.02 18.00 5.18 11.77 16.95 0.94 0.90
10000 5.08 21.54 26.62 5.15 23.27 28.42 1.07 1.08

2048

10 13.67 4.90 18.56 13.40 30.72 44.12 2.38 6.28
100 13.92 8.24 22.16 13.27 35.87 49.14 2.22 4.35
500 14.45 13.87 28.32 13.93 40.78 54.71 1.93 2.94
1000 13.42 28.19 41.62 14.94 46.50 61.44 1.48 1.65
10000 13.67 89.31 102.98 13.28 84.74 98.01 0.95 0.95

4096

10 45.29 16.18 61.47 43.53 136.62 180.15 2.93 8.44
100 43.53 22.20 65.73 43.77 153.36 197.12 3.00 6.91
500 45.51 35.92 81.43 43.54 177.32 220.85 2.71 4.94
1000 41.69 68.41 110.10 53.50 199.25 252.75 2.30 2.91
10000 53.90 361.26 415.16 43.49 372.48 415.97 1.00 1.03
100000 45.53 573.48 619.01 44.16 607.98 652.13 1.05 1.06

on the GTX-660Ti, albeit at a slightly lower factor. This can be attributed to fewer number of cores
on the Tesla (448, as compared to 1344 on the GTX-660Ti). We also observe similar speed-ups in the
3-dimensional case. For example, for a 5123 grid with 1000 seeds, we observed a speed-up of around
6x. The time taken to copy the contents of the host memory to the device and back dominated the
total running time in the 256×256 and 512×512 grids, whereas the time taken to execute the kernel
assumed prominence from the 1024× 1024 grid onwards. The speed-up was most pronounced, as
expected, for the largest grid.

Refer to Table 6.4. We note a marked improvement in the number of threads launched (fewer
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Table 6.3: Timing results for Facet-JFA and JFA for 3D grids on nVidia GTX-660 Ti
Grid size #Seeds Facet-JFA time (ms) JFA time (ms) Total Exec.

(n) (k) Mem. Exec. Total Mem. Exec. Total Speed-up Speed-up

32

10 1.20 0.63 1.83 1.46 0.90 2.35 1.29 1.44
100 1.19 0.71 1.90 1.49 1.14 2.64 1.39 1.62
500 1.19 1.59 2.78 1.16 1.88 3.04 1.09 1.18
1000 1.22 2.18 3.39 1.30 2.18 3.48 1.03 1.00

64

10 2.13 2.27 4.40 1.91 7.38 9.28 2.11 3.26
100 1.91 2.86 4.76 1.93 6.96 8.89 1.87 2.44
500 1.92 10.18 12.10 1.94 10.42 12.36 1.02 1.02
1000 1.88 11.66 13.54 2.15 12.08 14.23 1.05 1.04

100000 2.01 18.95 20.96 1.98 18.80 20.77 0.99 0.99

128

10 6.33 9.45 15.78 5.76 52.20 57.96 3.67 5.52
100 6.01 16.73 22.74 6.01 52.30 58.31 2.56 3.13
500 5.88 37.08 42.96 5.77 75.28 81.05 1.89 2.03
1000 5.98 90.34 96.32 5.71 86.63 92.34 0.96 0.96
10000 6.12 131.57 137.69 5.97 128.20 134.18 0.97 0.97
100000 6.29 197.60 203.89 6.41 194.46 200.87 0.99 0.98

256

10 38.60 41.48 80.09 39.53 422.78 462.31 5.77 10.19
100 38.89 73.31 112.20 39.30 427.80 467.09 4.16 5.84
500 40.37 138.50 178.87 39.20 603.65 642.85 3.59 4.36
1000 38.65 263.23 301.89 38.68 681.13 719.81 2.38 2.59
10000 37.59 1007.48 1045.07 39.72 987.67 1027.39 0.98 0.98
100000 35.13 1394.19 1429.32 38.18 1372.33 1410.51 0.99 0.98

512

10 278.03 179.64 457.67 277.91 3616.64 3894.55 8.51 20.13
100 283.79 305.84 589.63 250.35 3694.71 3945.06 6.69 12.08
500 283.55 514.93 798.47 263.49 5114.14 5377.63 6.73 9.93
1000 248.13 974.90 1223.02 259.58 5700.99 5960.56 4.87 5.85
10000 245.70 8137.42 8383.12 260.08 7952.83 8212.91 0.98 0.98
100000 255.63 10812.28 11067.91 254.95 10669.75 10924.69 0.99 0.99

than JFA) in most of the cases under consideration. The trend we observed in this experiment
almost exactly mirrors the trends observed in the speed-up, implying that speed-up is a direct con-
sequence of the number of threads launched. However, we observed that the speed-up is a scaled
down value of the ratio of the improvements in the number of launched threads (e.g. 88 times fewer
active threads translated into 11x speed-up).

Comparison of three parallel algorithms. In Figure 6.5 we compare, in detail, the Facet-JFA
runtime performance against JFA and the parallel brute-force algorithm. In the brute-force algo-
rithm, each pixel iterates over the seed set and finds the seed closest to itself. All pixels are processed
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(a) 2D case (b) 3D case

Figure 6.4: Facet-JFA speed-ups in 2D and 3D case.

Figure 6.5: Comparison of Facet-JFA with JFA and brute-force algorithm.
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Table 6.4: Unmarked pixels in Facet-JFA for 2D case and the savings ratio
Grid size (n) #Seeds (k) Unmarked pixels Total pixels Savings ratio

256

10 10,260 65,536 6.39
100 36,300 65,536 1.81
500 65,536 65,536 1.00

1,000 65,536 65,536 1.00

512

10 19,801 262,144 13.24
100 83,055 262,144 3.16
500 258,289 262,144 1.01

1,000 262,144 262,144 1.00

1024

10 50,180 1,048,576 20.90
100 180,754 1,048,576 5.80
500 552,137 1,048,576 1.90

1,000 1,048,576 1,048,576 1.00
10,000 1,048,576 1,048,576 1.00

2048

10 92,772 4,194,304 45.21
100 376,677 4,194,304 11.14
500 909,660 4,194,304 4.61

1,000 2,322,336 4,194,304 1.81
10,000 4,194,304 4,194,304 1.00

4096

10 190,093 16,777,216 88.26
100 796,206 16,777,216 21.07
500 2,420,779 16,777,216 6.93

1,000 5,595,679 16,777,216 3.00
10,000 16,777,216 16,777,216 1.00
100,000 16,777,216 16,777,216 1.00

in parallel. The running time of this algorithm is linear in k, the seed set size. In this experiment,
we fixed the grid size n to be 1024, while k was varied from 32 to 2048 with a step size of 32. The
execution times for the three algorithms were averaged over 100 runs for each value of k. The seeds
were placed randomly in the grid for each run, and all the algorithms processed the same input data.

From the plot in Figure 6.5, it can be observed that for very small values of k < 150, the
brute-force algorithm performs better (the blue region). For higher values of k > 1024, Facet-JFA
performance is similar to or slightly worse than that of JFA (the red region). The window in which
Facet-JFA out-performs the other two algorithms (150 < k < 1024) is coloured green. Designing
an automatic decider to select an algorithm based on the values of k and n is an interesting challenge
that can be explored in future.
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6.3 Application to biomolecular channel extraction
A channel is a pathway through the empty space within a molecule that connects an internal point
and the molecular exterior [80]. Channels are crucial for the migration of ions, solvent, and small
molecules through proteins, and their ultimate binding to the functional sites. Channels through
transmembrane proteins selectively transport ions and small molecules across cell membrane. In
recent years, continuous Voronoi diagrams have been used to determine center-lines of the channels
in biomolecules [68, 81, 100, 75]. The set of all channel center-lines is usually referred to as the
channel network of the biomolecule.

Biomolecules are not static entities, they undergo various structural changes dynamically which
are important for their function. Molecular Dynamics (MD) simulation trajectories are series of
snapshots of the biomolecule as it undergoes changes over time. This simulation data has proved
crucial in understanding dynamic behaviour of biomolecules. Recently, there has been great interest
in development of fast techniques for analysis of MD trajectories [59, 78]. Lindow et al. [69] ad-
dressed the problem of channel extraction in MD trajectories using continuous Voronoi diagrams
with focus more on the accuracy of detected channels rather than interactive analysis. Discrete
Voronoi diagrams can be utilized to overcome the time-consuming step of computing continuous
Voronoi diagram, and the extracted discrete channel network is sufficient for visual analysis. Fur-
ther, here we are interested in computation of Voronoi edges only, which makes Facet-JFA an ideal
candidate.

In this section, we present a GPU accelerated technique for computation of channel center-lines
in biomolecules. We motivate this problem and present our technique using 2D synthetic data.
However, the method can be easily extended to 3D. We show results both for 2D and 3D data. We
exploit the fast computation of Voronoi facets by Facet-JFA for extracting channel network in the
biomolecule. The Voronoi edges provide the locus of points which are locally farthest from the
closest pair of atoms. The Voronoi edges can be restricted to empty regions inside the molecule to
obtain the channel network. The discrete Voronoi diagram is computed using the GPU accelerated
Facet-JFA. We additionally propose parallel methods for all other stages of the channel extraction
algorithm. This implementation can process molecules of considerable size at a grid size suited
for fast volume rendering on modern GPUs. Thus, using the proposed method, it is possible to
interactively analyse static as well as dynamic channel structures in MD trajectories.

6.3.1 Channel extraction algorithm
Algorithm 3 describes the proposed parallel approach for fast extraction of channel network. To
simplify notation, we refer to disks and union of disks in the 2D data also as atoms and molecules,



6. Facet-JFA 98

respectively. The working of this algorithm is demonstrated with a 2D example in Figure 6.6. Brief
demonstration for a 3D example is provided in Figure 6.7.

Algorithm 3 Extract Channel Network
Input: S: Set of atoms.
Input: rs: Solvent radius.
Input: n: Grid size.
Output: CN: n× n grid where pixels on channel center-lines are set to 1 while other pixels are 0.
Output: AM: n × n grid where pixels occupied by atoms of biomolecule are set to 1. This is an
optional output.
1: VD := Construct discrete Voronoi diagram for S using Facet-JFA.
2: VE := Extract Voronoi edges by processing each pixel in VD in parallel. Set such edge pixels

to 1. This step is not required in 2D, as VD already consists of only edges.
3: AM := Process each atom a ∈ S in parallel and set pixels lying inside the ball of radius ra + rs

to 1. AM is called atomic region mask.
4: Shoot n rays in X direction in parallel into AM and determine their first and last intersections

with AM. Repeat the same procedure for Y direction.
5: Construct MM, the molecular region mask where the pixel is set to 1 if they lie inside at least

one of the intersection intervals determined in previous step.
6: IM := AM xor MM. IM is called molecular inside mask.
7: CN := VE and IM. Restrict Voronoi edges to inside region of molecule to obtain the channel

network for the molecule.
8: return CN, AM

6.3.2 Discussion
As mentioned earlier, the proposed GPU accelerated extraction of channels is particularly suited
for gaining a quick overview of channels in Molecular Dynamics (MD) trajectories. With fast chan-
nel extraction, the user can view the evolution of channels over time in MD data which typically
consists of thousands of steps, and identify critical time steps. Further, channels can be computed
for different solvent (probe) radii at interactive rates. An example use of this technique for study of
dynamic channels in a 2D synthetic MD trajectory is shown in Figure 6.9.

Figure 6.8 shows the quality of results obtained for biomolecules with number of atoms ranging
from few hundreds to thirteen thousand. The grid resolution used is 128 × 128 × 128 which is
enough for computing a good overview of the channel network in the molecule. This resolution
is ideal for high quality volume rendering at interactive rates on modern graphics hardware. The
results shown in Figure 6.8 can be computed and simultaneously visualized at interactive speed of 10
FPS. Currently we don’t support analysis of the extracted channels, like identification of connected
components or pruning of small channels. This facility can be introduced to give the user a richer
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(a) Input atoms (b) SAS (c) Voronoi diagram (d) Voronoi edges

(e) Atomic Region (f) Molecular Region (g) Interior (h) Channels

Figure 6.6: Demonstration of GPU accelerated extraction of biomolecular channel network. (a)
A synthetic molecule in 2D. (b) Solvent accessible surface constructed by incrementing the atomic
radii by the solvent radius. (c) Voronoi diagram for set of atom centres. Each Voronoi region is
given a random colour. (d) Voronoi edges. (e) The atomic region mask obtained by projecting each
atom on the grid. This mask is computed by processing the atoms in parallel. (f) The molecular
region mask obtained by shooting rays on atomic region mask. We shoot n rays from the bottom
and the left, and determine each ray’s first and last intersection points with the atomic region mask.
Again parallelism is exploited by processing rays in parallel. (g) Pixels in the molecular interior
are determined by performing XOR operation on atomic region mask and molecular region mask.
The pixels in molecular interior are exactly those which lie inside the molecular region but are not
occupied by atoms of the molecule. (h) Finally, the Voronoi edges are restricted to the region inside
the molecule to obtain the channel network. This is accomplished by simply performing AND
operation on Voronoi edge mask and molecular interior mask.

experience. We believe this minimal analysis can also be performed at interactive rates.

6.4 Conclusions
We proposed a variant of JFA, Facet-JFA, to compute discrete Voronoi diagrams using a GPU,
which optimises on the number of threads launched, and hence the running time. The proposed
algorithm has been studied both theoretically and via experiments on large data sizes. Several im-
provements are possible over the proposition. Facet-JFA uses a quad tree to refine the starting grid.
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(a) 1OED (b) Atomic region (c) Voronoi edges

(d) Interior (e) Channels

Figure 6.7: Extension of 2D channel extraction algorithm to 3D. (a) A trans-membrane channel
protein, PDB id: 1OED, is shown in cartoon representation. (b) The atoms are projected onto the
3D gid to determine atomic region. (c) The Voronoi edges are computed using Facet-JFA. (d) The
region inside the molecule (shown in yellow) is determined by shooting rays in 3 orthogonal direc-
tions. (e) The Voronoi edges are restricted to the molecular inside region resulting in highlighting
the molecular channel network.

(a) 1GRM (184) (b) 2J1N (8,142) (c) 2OAU (13,573) (d) 200L (1,289)

Figure 6.8: A few channel networks extracted are shown in blue along with the atomic region (or-
ange). These images were generated using 1283 grid resolution at interactive speeds. Number of
atoms are in the brackets.
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Figure 6.9: An example of dynamic channel in Molecular Dynamics simulation trajectory. The
molecule in this synthetic dataset has two gates which are both closed initially. In Frame 2, the gate
at the top opens resulting in channel to central cavity. In Frame 5, the top gate closes completely
while bottom gate starts to open revealing a dynamic channel from top to the bottom. By Frame 7,
the molecule regains its closed state.

The starting grid could have been non-uniform, thus starting with varying levels of refinement in
various regions. This would require a divide and conquer approach to merge regions with the same
quad-tree level, resulting in the launch of fewer threads, as compared to Facet-JFA. Also, in most
real world applications, the computation of approximate Voronoi boundaries might suffice. Hence,
fewer iterations of the refinement steps of Facet-JFAmight provide an acceptable resolution for the
application.



Chapter 7

Parallel Computation of Alpha Complex for
Biomolecules

Alpha complex, a subset of the Delaunay triangulation, has been extensively used as the underlying
representation for biomolecular structures. We propose a GPU based parallel algorithm for the
computation of the alpha complex, which exploits the knowledge of typical spatial distribution
and sizes of atoms in a biomolecule. Unlike existing methods, this algorithm does not require prior
construction of the Delaunay triangulation. The algorithm computes the alpha complex in two
stages. The first stage proceeds in a bottom up fashion and computes a superset of the edges, trian-
gles, and tetrahedra belonging to the alpha complex. The false positives from this estimation stage
are removed in a subsequent pruning stage to obtain the correct alpha complex. Computational
experiments on several biomolecules demonstrate the superior performance of the algorithm, upto
50× when compared to existing methods that are optimized for biomolecules.

7.1 Introduction
The alpha complex of a set of points in R3 is a subset of the Delaunay triangulation. A size param-
eter α determines the set of simplices (tetrahedra, triangles, edges, and vertices) of the Delaunay
triangulation that are included in the alpha complex. It is an elegant representation of the shape of
the set of points [36, 35, 39] and has found various applications, particularly in molecular modeling
and molecular graphics. The atoms in a biomolecule are represented by weighted points in R3 and
the region occupied by the molecule is represented by the union of balls centered at these points.
The geometric shape of a biomolecule determines its function, namely how it interacts with other
biomolecules. The alpha complex represents the geometric shape of the molecule very efficiently.
It has been widely used for computing and studying geometric features such as cavities and chan-

102
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nels [65, 66, 30, 75, 90, 73, 60]. Further, an alpha complex based representation is also crucial for
accurate computation of geometric properties like volume and surface area [64, 34, 72].

Advances in imaging technology has resulted in a significant increase in the size of molecular
structure data. This necessitates the developments of efficient methods for storing, processing, and
querying these structures. In this chapter, we study the problem of efficient construction of the
alpha complex with particular focus on point distributions that are typical of biomolecules. In
particular, we present a parallel algorithm for computing the alpha complex and an efficient GPU
implementation that outperforms existing methods. In contrast to existing algorithms, our algo-
rithm does not require the explicit construction of the Delaunay triangulation.

7.1.1 Related work
The Delaunay triangulation has been studied within the field of computational geometry for several
decades and numerous algorithms have been proposed for its construction [4]. Below, we describe
only a few methods that are most relevant. A tetrahedron belongs to the Delaunay triangulation
of a set of points in R3 if and only if it satisfies the empty circumsphere property, namely no point
is contained within the circumsphere of the tetrahedron. The Bowyer-Watson algorithm [11, 99]
and the incremental insertion algorithm by Guibas and Stolfi [47] are based on the above charac-
terization of the Delaunay triangulation. In both methods, points are inserted incrementally and
the triangulation is locally updated to ensure that the Delaunay property is satisfied. The incre-
mental insertion method followed by bi-stellar flipping works in higher dimensions also [43] and
can construct the Delaunay triangulation in O(n log n + ndd/2e) time in the worst case, where n
is the number of input points in Rd. A second approach to constructing the Delaunay triangula-
tion is based on its equivalence to the convex hull of the points lifted onto a (d + 1)-dimensional
paraboloid [42].

A third divide-and-conquer approach partitions the inputs points into two or multiple subsets,
constructs the Delaunay triangulation for each partition, and merges the pieces of the triangulation
finally. The merge procedure depends on the ability to order the edges incident on a vertex and
hence works only in R2. Extension to R3 requires that the merge procedure be executed first [22].
The divide-and-conquer strategy directly extends to a parallel algorithm [77, 15]. The DeWall al-
gorithm [22] partitions the input point set into two halves and first constructs the triangulation of
points lying within the boundary region of the two partitions. The Delaunay triangulation of the
two holes is then constructed in parallel. The process is repeated recursively resulting in increased
parallelism. Cao et al. [15] have developed a GPU parallel algorithm, gDel3D, that constructs the
Delaunay triangulation in two stages. In the first stage, points are inserted in parallel followed by
flipping to obtain an approximate Delaunay triangulation. In the second stage, a star splaying pro-
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cedure works locally to convert non-Delaunay tetrahedra into Delaunay tetrahedra. The algorithm
can be extended to construct the weighted Delaunay triangulation for points with weights. Cao
et al. report upto 10× speed up over a sequential implementation for constructing the weighted
Delaunay triangulation of 3 million weighted points.

All existing algorithms for constructing the alpha complex [35, 72, 25] require that the Delaunay
triangulation be computed first. Simplices that belong to the alpha complex are identified using a
size filtration in a second step. In the case of biomolecules, the size of the alpha complex is a
small fraction of the size of the Delauanay triangulation and hence the Delaunay triangulation
construction is often the bottleneck in the alpha complex computation. The key difficulty lies in
the absence of a direct characterization of simplices that belong to the alpha complex.

7.1.2 Summary of results
We propose an algorithm that avoids the expensive Delaunay triangulation computation and in-
stead directly computes the alpha complex for biomolecules. Key contributions of this chapter are
summarized below:

• A new characterization of the alpha complex – a set of conditions necessary and sufficient for
a simplex to be a part of the alpha complex.

• A new algorithm for computing the alpha complex of a set of weighted points in R3. The
algorithm identifies simplices of the alpha complex in decreasing order of dimension without
computing the complete weighted Delaunay triangulation.

• An efficient CUDA based parallel implementation of this algorithm for biomolecular data
that can compute the alpha complex for a 10 million point dataset in approximately 10 sec-
onds.

• A proof of correctness of the algorithm and comprehensive experimental validation to demon-
strate that it outperforms existing methods.

While the experimental results presented here focus on biomolecular data, the algorithm is applica-
ble to data from other application domains as well. In particular, the efficient GPU implementation
may be used for points that arise in smoothed particle hydrodynamics (SPH) simulations, atomistic
simulations in material science, and particle systems that appear in computational fluid dynamics
(CFD).
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7.2 Background
Although we discussed the mathematical definitions in detail previously in Chapter 2, here we
provide a brief summary again with additional details relevant for this chapter.

We review the necessary background on Delaunay triangulations required to describe the al-
gorithm and also establish a new characterization of the alpha complex that does not require the
Delaunay triangulation. For a detailed description of Delaunay triangulations, alpha complexes,
and related structures, we refer the reader to various books on the topic [4, 38, 32].

(a) (b) (c)

(d) (e)

Figure 7.1: 2D weighted Delaunay triangulation and alpha complex. (a) A set of weighted points
B in R2 shown as disks. (b) The weighted Voronoi diagram of B. Voronoi edges and vertices
are highlighted in green. (c) The weighted Delaunay complex is the dual of the weighted Voronoi
diagram. (d) The alpha complex Kα for α = 0 is shown in red. This is the dual of the intersection
of the weighted Voronoi diagram and union of balls. (e) The alpha complex shown for an α > 0.
It is the dual of the intersection of the weighted Voronoi diagram and union of balls after growing
them to have radius

√
r2i + α.

Let B = {bi} denote a set of balls or weighted points, where bi = (pi, ri) represents a ball
centered at piwith radius ri. We limit our discussion to balls inR3, so pi = (xi, yi, zi) ∈ R3. Further,
we assume that the points in B are in general position, i.e., no 2 points have the same location, no 3
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points are collinear, no 4 points are coplanar, and no subset of 5 points are equidistant from a point
in R3. Such configurations are called degeneracies. In practice, a degenerate input can be handled
via symbolic perturbation [41].

7.2.1 Simplex and simplicial complex
A d-dimensional simplex σd is defined as the convex hull of d + 1 affinely independent points.
Assuming the centres of balls in B are in general position, all (d + 1) sized subsets of B form a
simplex σd = (pσ0 , p

σ
1 , . . . , p

σ
d). For simplicity, we sometimes use bi instead of the center pi to refer

to points incident on a simplex. For example, we may write σd = (bσ0 , b
σ
1 , . . . , b

σ
d).

A non-empty strict subset of σd is also a simplex but with dimension smaller than d. Such a
simplex is called a face of σd. Specifically, a (d− 1)-dimensional face of σd is referred to as a facet of
σd. A set of simplicesK is called a simplicial complex if: 1) a simplex σ ∈ K implies that all faces of
σ also belong to K, and 2) for two simplices σ1, σ2 ∈ K, either σ1 ∩ σ2 ∈ K or σ1 ∩ σ2 = ∅.

7.2.2 Power distance and weighted Voronoi diagram
The power distance π(p, bi) between a point p ∈ R3 and a ball bi = (pi, ri) ∈ B is defined as

π(p, bi) = ‖p− pi‖2 − r2i .

The weighted Voronoi diagram is an extension of the Voronoi diagram to weighted points. It is a
partition of R3 based on proximity to input balls bi in terms of the power distance. Points p ∈ R3

that are closer to the ball bi compared to all other balls bj ∈ B (j 6= i) constitute the Voronoi region
of bi. Points equidistant from two balls bi, bj ∈ B and closer to the two balls compared to other balls
constitute a Voronoi face. Similarly, points equidistant from three balls and fours balls constitute
Voronoi edges and Voronoi vertices of the weighted Voronoi diagram, respectively. Figure 7.1(b)
shows the weighted Voronoi diagram for a set of 2D weighted points or disks on the plane. Similar
to the unweighted case, the Voronoi regions of the weighted Voronoi diagram are convex and linear.
However, the weights may lead to a configuration where the Voronoi region of bi is disjoint from
bi. This occurs when bi is contained within another ball bj . Further, the Voronoi region of bi may
even be empty.

7.2.3 Weighted Delaunay triangulation
The weighted Delaunay triangulation is the the dual of the weighted Voronoi diagram, see Fig-
ure 7.1(c). It is a simplicial complex consisting of simplices that are dual to the cells of the weighted
Voronoi diagram. The following equivalent definition characterizes a simplex σd belonging to a
Delaunay triangulation D [Weighted Delaunay Triangulation] A simplex σd = (pσ0 , p

σ
1 , . . . , p

σ
d) be-
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longs to the weighted Delaunay triangulationD of B if and only if there exists a point p ∈ R3 such
that

DT1: π(p, bσ0 ) = π(p, bσ1 ) = · · · = π(p, bσd), and

DT2: π(p, bσ0 ) ≤ π(p, bi) for bi ∈ B − σd.

A point p that satisfies the above two conditions, DT1 and DT2, is called a witness for σd. We
call a point that minimizes the distance π(p, bσ0 ) and satisfies both conditions as the closest witness,
denoted by pσmin. This minimum distance π(pσmin, b

σ
0 ) is called the size of the simplex σd. A point

that minimizes the distance π(p, bσ0 ) and satisfies DT1 is called the ortho-center pσortho of simplex σd.
The distance π(pσortho, b

σ
0 ) is called the ortho-size of the simplex σd. Clearly, the size of a simplex

is lower bounded by its ortho-size. Figure 7.2 shows the two possible scenarios, namely when
ortho-size = size and ortho-size < size.

7.2.4 Alpha complex
Given a parameter α ∈ R, we can construct a subset of the weighted Delaunay triangulation by
filtering simplices whose size is less than or equal to α, see Figures 7.1(d) and 7.1(e). The resulting
subset is a subcomplex of the Delaunay complex and is denoted Kα:

Kα = {σd ∈ D such that size(σd) ≤ α}.

The following equivalent definition characterizes simplices of the alpha complex without explicitly
referring to the Delaunay triangulation. [Alpha complex] A simplex σd = (pσ0 , p

σ
1 , . . . , p

σ
d) belongs

to the alpha complex Kα of B if and only if there exists a point pσmin ∈ R3 such that the following
three conditions are satisfied:

AC1: π(pσmin, b
σ
0 ) = π(pσmin, b

σ
1 ) = · · · = π(pσmin, b

σ
d),

AC2: π(pσmin, b
σ
0 ) ≤ π(pσmin, bi) for bi ∈ B − σd, and

AC3: π(pσmin, b
σ
0 ) ≤ α or size of σd is at most α.

7.3 Algorithm
We now describe an algorithm to compute the alpha complex and prove its correctness. The al-
gorithm utilizes the characterizing conditions introduced above. It first identifies the tetrahedra
that belong to the alpha complex, followed by the set of triangles, edges and vertices. Figure 7.3
illustrates the algorithm as applied to disks on the plane.
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(a)

(b) (c)

Figure 7.2: Size and ortho-size of a simplex. (a) A set B of weighted points. Two edges (bold)
belong to the Delaunay triangulation. (b) This size of edge b1b2 is equal to its ortho-size. Points p,
p′, pmin and portho are witnesses. Each one is equidistant from b1 and b2 and farther away from other
disks in B. The distance is proportional to the length of the tangent to the disk that represents the
weighted point. The next closest disk from these points is b3. In this case, pmin and portho coincide
and hence size = ortho-size. (c) b4b5 is also a Delaunay edge. The location of a neighboring disk
b6 could lead to a different configuration. The point portho is closest to b4 and b5 among all the
points that are equidistant from both. However portho is closer to b6 as compared to b4 and b5. The
closest point pmin that satisfies DT1 and DT2 is farther away, hence size of b4b5 is greater than its
ortho-size.
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7.3.1 Outline
The alpha complex consists of simplices of dimensions 0–3, Kα = K0

α ∪ K1
α ∪ K2

α ∪ K3
α, where

Kd
α ⊂ Kα is the set of d-dimensional simplices in Kα. We initialize Kd

α = ∅ and construct Kα in
five steps described below:

Step 1: Compute the set of all simplices σd such that ortho-size(σd) ≤ α. Let this set be denoted
by Σortho = Σ0

ortho ∪ Σ1
ortho ∪ Σ2

ortho ∪ Σ3
ortho.

Step 2: For all tetrahedra σ3 ∈ Σ3
ortho, check condition AC2 using p = pσortho. If σ3 satisfies AC2

then insert it into K3
α.

Step 3: Insert all triangles that are incident on tetrahedra in K3
α into K2

α. Let Σ2
free = Σ2

ortho −
Facets(K3

α), where Facets(K3
α) denotes the set of facets of tetrahedra inK3

α. For all triangles
σ2 ∈ Σ2

free, check condition AC2 using p = pσortho. If σ2 satisfies AC2 then insert it into K2
α.

Step 4: Insert all edges incident on triangles in K2
α into K1

α. Let Σ1
free = Σ1

ortho − Facets(K2
α),

where Facets(K2
α) denotes the set of facets of triangles in K2

α. For all edges σ1 ∈ Σ1
free,

check condition AC2 using p = pσortho. If σ1 satisfies AC2 then insert it into K1
α.

Step 5: Insert all end points of edges in K1
α into K0

α. Let Σ0
free = Σ0

ortho − Facets(K1
α), where

Facets(K1
α) denotes the set of balls incident on edges inK1

α. For all balls bi = (pi, ri) ∈ Σ0
free,

check condition AC2 using p = pi. If pi satisfies AC2 then insert it into K0
α.

Step 1 selects simplices that satisfy AC3. Step 2 recognizes tetrahedra that belong to the alpha
complex by checking AC2 using p = pσortho. Triangle faces of these tetrahedra also belong to Kα.
The other “dangling" triangles belong to K2

α if they satisfy AC2. Step 4 identify edges similarly.
First all edge faces of triangles in K2

α are inserted followed by those “dangling" edges that satisfy
AC2. Vertices are identified similarly in Step 5.

7.3.2 Proof of correctness
We now prove that that the algorithm described above correctly computes the alpha complex of the
given set of weighted points by proving the following four claims. Each claim states that the set of
simplices computed in Steps 2, 3, 4 and 5 are exactly the simplices belonging to the alpha complex.

Claim 1. Step 2 computesK3
α correctly.

Proof. We assume that the input is non-degenerate. So, for a tetrahedron σ3, pσortho is the only point
that satisfies condition AC1. In Step 2 of the proposed algorithm, we check if AC2 holds for pσortho.
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(a) (b) (c)

(d) (e) (f)

Figure 7.3: Illustration of the proposed algorithm in 2D. (a) The set of disks B grown by the
parameter α. (b) First, compute the set of edges Σ1

ortho whose ortho-size ≤ α (red). The triangles
Σ2
ortho that satisfy this condition are also computed but they are not shown here. (c) Next, identify

the triangles that satisfy AC2 (red). (d) Collect edges in Σ1
ortho that are not incident on triangles in

K2
α into Σ1

free. Check if these edges satisfy AC2 with p = pσortho. For example, the edge b1b2 does
not satisfy this condition because b3 is closer to portho than b1 and b2. (e) Only one edge survives
the AC2 check and thus belongs to Kα. (f) The alpha complex is obtained as the union of K2

α, K1
α

and K0
α.

If yes, then pσortho is a witness for σ3, i.e., pσortho = pσmin. Further, since ortho-size(σ3) ≤ α and
pσortho = pσmin, we have size(σ3) ≤ α thereby satisfying AC3. Therefore, σ3 belongs to K3

α because
it satisfies all three conditions. 2

We now prove that the algorithm correctly identifies the triangles of the alpha complex.

Lemma 7.1. A triangle σ2 ∈ Σ2
free belongs toK2

α if and only if it satisfies AC2 with p = pσortho.

Proof. We first prove the backward implication, namely if σ2 ∈ Σ2
free satisfies AC2 with p = pσortho,

then σ2 ∈ K2
α. Note that pσortho satisfies AC1 by definition. Further, it satisfies AC2 by assumption

and hence size(σ2) = ortho-size(σ2). We also have ortho-size(σ2) ≤ α because σ1 ∈ Σ2
free ⊆

Σ2
ortho. So, size(σ2) ≤ α thereby satisfying AC3. The triangle σ2 with p = pσortho satisfies all three
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Figure 7.4: The radical axis of a triangle σ2 is drawn such that pσortho is at the origin. A ball
bi ∈ B − σ2 divides the radical axis into two half intervals. Points in the half interval I+(bi) are
closer to bσ0 as compared to bi, i.e. for all p ∈ I+(bi), π(p, bσ0 ) < π(p, bi). Consider the set Bv of
balls that are closer to pσortho as compared to bσ0 So, I+(bi) does not contain pσortho. The intersection
of these intervals, denoted by I+(Bv), is equal to one of the intervals I+(bi). For example, here
I+(Bv) = I+(b3). The end point of the interval I+(b3) is the closest witness for the tetrahedron
σ2 ∪ b3.

conditions and hence belongs to K2
α.

We will now prove the forward implication via contradiction. Suppose there exists a triangle
σ2 ∈ Σ2

free that belongs toK2
α but does not satisfy AC2 with p = pσortho. In other words, there exists

a ball bi ∈ B − σ2 for which π(pσortho, bi) < π(pσortho, b
σ
0 ). Let Bv denote the set of all such balls bi.

The set of points that are equidistant from the three balls (bσ0 , b
σ
1 , b

σ
2 ) corresponding to σ2 form a

line perpendicular to the plane containing σ2 called the radical axis. Each ball bi ∈ Bv partitions the
radical axis into two half-intervals based on whether the point on radical axis is closer to bi or to bσ0 ,
see Figure 7.4. Let I+(bi) denote the half interval consisting of points that are closer to bσ0 compared
to bi. Let I+(Bv) denote the intersection of all such half intervals I+(bi). We have assumed that
σ2 ∈ K2

α, so there must exist a closest witness pσmin and it has to lie within I+(Bv). Thus, I+(Bv) is
non-empty. In fact, I+(Bv) = I+(bj) for some bj ∈ Bv and pσmin is exactly the end point of I+(bj).
This implies that pσmin is also a closest witness for the tetrahedron σ3 = (bσ0 , b

σ
1 , b

σ
2 , bj). So, σ3 belongs

to K3
α and its size is equal to size(σ2). However, this means that σ2 /∈ Σ2

free, a contradiction. So,
the forward implication in the lemma is true. 2

Claim 2. Step 3 computesK2
α correctly.

Proof. If a simplex σ3 belongs toKα then naturally all of its faces also belong toKα. The algorithm
includes such triangles intoK2

α and remove them from Σ2
ortho to obtain the set of free triangles Σ2

free

that have ortho-size ≤ α and are not incident on any tetrahedron in Kα. It follows directly from
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Lemma 7.1 that AC2 is a necessary and sufficient condition for a triangle in Σ2
free to belong toK2

α.
Hence, Step 3 correctly computes the triangles belonging to K2

α. 2

Figure 7.5: The radical plane of an edge σ1 is drawn such that pσortho is at the origin. A ball
bi ∈ B − σ1 divides the radical plane into two half planes. The half plane H+(bi) consists of points
that are closer to bσ0 as compared to bi, i.e. for all p ∈ H+(bi), π(p, bσ0 ) < π(p, bi). Let Bv denote the
set of balls that are closer to pσortho as compared to bσ0 . The half planesH+(bi) do not contain pσortho.
The intersection of these half planes, denoted by H+(Bv), is a convex region (yellow). The power
distance from bσ0 to a point p ∈ H+(Bv) is minimized at a point on the boundary of the convex
region H+(Bv). But the boundary of H+(Bv) is a union of line segments that bound half planes
H+(bi). Here, the point at which the distance is minimum lies on the boundary of the half plane
H+(b3). This point is the closest witness for the triangle σ1 ∪ b3.

The above arguments need to be extended to prove that the edges of the alpha complex are also
correctly identified.

Lemma 7.2. An edge σ1 ∈ Σ1
free belongs to K1

α if and only if it satisfies the condition AC2 with p =

pσortho.
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Proof. First, we assume that σ1 ∈ Σ1
free satisfies AC2 with p = pσortho. The point pσortho satisfies AC1

by definition. Further, it satisfies AC2 by assumption and hence size(σ1) = ortho-size(σ1). We
also have ortho-size(σ1) ≤ α because σ1 ∈ Σ1

free ⊆ Σ1
ortho. So, size(σ1) ≤ α thereby satisfying

AC3. The edge σ1 with p = pσortho satisfies all three conditions and hence belongs to K1
α.

Wewill prove the forward implication via contradiction. Suppose there exists an edge σ1 ∈ Σ1
free

that belongs to K1
α but does not satisfy AC2 with p = pσortho. In other words, there exists a ball

bi ∈ B − σ1 such that π(pσortho, bi) < π(pσortho, b
σ
0 ). Let Bv denote the set of all such balls bi.

The set of points that are equidistant from the two balls (bσ0 , b
σ
1 ) corresponding to σ1 form a plane

perpendicular to the line containing σ1 called the radical plane. Each ball bi ∈ Bv partitions the
radical plane into two half-planes based on whether the point on the radical plane is closer to bi
or to bσ0 , see Figure 7.5. Let H+(bi) denote the half-plane consisting of points that are closer to
bσ0 compared to bi. Let H+(Bv) denote the intersection of all such half-planes H+(bi). We have
assumed that σ1 ∈ K1

α, so there must exist a closest witness pσmin and it has to lie within H+(Bv).
Thus,H+(Bv) is non-empty. In fact, pσmin lies on the envelope ofH+(Bv) because it minimizes the
distance to bσ0 . Let pσmin lie on the bounding line corresponding to H+(bj) for some bj ∈ Bv. This
implies that pσmin is also a closest witness for the triangle σ2 = (bσ0 , b

σ
1 , bj). So, σ2 belongs toK2

α and
its size is equal to size(σ1). However, this means that σ1 /∈ Σ1

free, a contradiction. So, the forward
implication in the lemma is also true. 2

Claim 3. Step 4 computesK1
α correctly.

Proof. All edge faces of triangles in K2
α naturally belong to K1

α. Step 4 inserts all edges incident on
triangles in K2

α into K1
α as valid edges and removes them from Σ1

ortho to obtain the set of free edges
Σ1
free. It follows directly from Lemma 7.2 that AC2 is a necessary and sufficient condition for an

edge σ1 ∈ Σ1
free to belong to K1

α. Therefore, Step 4 correctly computes the edges belonging to K1
α.

2

Claim 4. Step 5 computes K0
α correctly.

Proof. All vertices incident on K1
α naturally belong to K1

α. Step 5 inserts all such vertices in K0
α

as valid vertices and removes them from Σ0
ortho to obtain the set of free vertices Σ0

free. Next, the
vertices in Σ0

free for which the center of the ball bi = (pi, ri) satisfies AC2 are also inserted intoK0
α.

Clearly, these vertices also satisfy AC3 because they belong to Σ0
ortho. The condition AC1 is not

relevant for 0-dimensional simplices. Therefore, these vertices clearly belong to the alpha complex.
Similar to Lemmas 7.1 and 7.2, it is easy to prove that checking for AC2 for p = pi is necessary and
sufficient condition to decide whether a vertex in Σ0

free belongs to the alpha complex or not. That
is, it is possible to show that vertices in alpha complex that have non-empty Voronoi regions but
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do not satisfy AC2 for p = pi would be incident on some edge inK1
α, and therefore must have been

already detected by Step 4 and hence can not belong to Σ0
free. Therefore, Step 5 correctly computes

the vertices belonging to K0
α. 2

7.4 Parallel Algorithm for Biomolecules
Although the algorithm as described above is provably correct, a straight forward implementation
will be extremely inefficient with a worst case running time of O(n5), where n is the number of
weighted points in B. This is because Step 1 requires O(n4) time to generate all possible tetrahedra.
In later steps, we need O(n) effort per simplex to check AC2. However, the input corresponds
to atoms in a biomolecule. We show how certain properties of biomolecules can be leveraged to
develop a fast parallel implementation.

7.4.1 Biomolecular data characteristics
Atoms in a biomolecule are well distributed. The following three properties of biomolecules are
most relevant:

• The radius of an atom is bounded and very small compared to the size of the biomolecule.
The typical radius of an atom in a protein molecule ranges between 1Å to 2Å [9].

• There is a lower bound on the distance between the centres of two atoms. This is called the
van der Waals contact distance, beyond which the two atoms start repelling each other. In the
case of atoms in protein molecules, this distance is at least 1Å. This property together with
the upper bound on atomic radii ensures that no atom is completely contained inside another.
This means that the weighted Voronoi regions corresponding to the atoms in a biomolecule
can be always be assumed to be non-empty.

• Structural biologists are interested in small values of α. The two crucial values are 0Å and
1.4Å. The former corresponds to using van der Waals radius and the latter corresponds to the
radius of water molecule, which acts as the solvent.

In the light of the above three properties, we can say that the number of simplices of the alpha
complex that are incident on a weighted point (atom) is independent of the total number of input
atoms and is bounded by a constant [48].

7.4.2 Acceleration data structure
The algorithm will benefit from an efficient method for accessing points of B that belong to a
local neighborhood of a given weighted point. We store the weighted points in a grid-based data
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structure. Let rmax denote the radius of the largest atom and assume that the value of the parameter
α is available as input. First, we construct a grid with cells of size

√
r2max + α and then bin the input

atoms into the grid cells. In our implementation, we do not store the grid explicitly because it may
contain several empty cells. Instead, we compute the cell index for each input atom and sort the list
of atoms by cell index to ensure that atoms that belong to a particular cell are stored at consecutive
locations. The cell index is determined based on a rowmajor or columnmajor order. Alternatively,
a space-filling curves like the Hilbert curve could also be used to order the cells.

After the atoms are stored in grid cells, the alpha complex is computed in two stages. In the first
stage, we employ a bottom up approach to obtain a conservative estimate of the edges, triangles,
and tetrahedra belonging to the alpha complex. The false positives from the first stage are removed
in a subsequent pruning stage resulting in the correct alpha complex.

7.4.3 Potential simplices
The first stage essentially corresponds to Step 1 of the algorithm described in the previous section.
We compute the set Σortho of potential simplices for which ortho-size(σd) ≤ α. However, for
efficiency reasons we process the simplices in the order of increasing dimension. First, we identify
edges that satisfy the AC3 condition. Given the size of the grid cell, end points of edges that satisfy
the condition either lie within the same grid cell or in adjacent cells. So, the grid data structure
substantially reduces the time required to compute the list of potential edges Σ1

ortho. Beginning
from this set of edges, we construct the set of all possible triangles and retain the triangles whose
ortho-size is no greater than α, resulting in the set Σ2

ortho. Finally, we use the triangles in Σ2
ortho

to construct the list of tetrahedra that satisfy the ortho-size ≤ α condition. The above procedure
works because the ortho-size of a simplex is always greater than or equal to the ortho-size of its
faces. The set of simplices identified in this stage contains all simplices of the alpha complex. False
positives are pruned in the the second stage described below.

7.4.4 Pruning
The second stage corresponds to Steps 2-5 of the algorithm and processes the simplices in the decreas-
ing order of dimension. This stage checks the characterizing condition AC2 to prune Σortho into
Kα. The tetrahedra are processed by checking if any of the input balls are closer to the ortho-center
than the balls incident on the tetrahedron. If yes, the tetrahedron is pruned away. Else, the tetrahe-
dron is recognized as belonging to the alpha complex and inserted into K3

α. Triangles incident on
these tetrahedra also belong to the alpha complex and are inserted into K2

α after they are removed
from the list of potential triangles Σ2

ortho. Next, the triangles in Σ2
ortho are processed by checking if

they satisfy AC2. If yes, they are inserted into K2
α. Else, they are pruned away. All edges incident
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on triangles belonging toK2
α are inserted intoK1

α and removed from the set Σ1
ortho. Next, the edges

in Σ1
ortho are processed by checking if they satisfy AC2. Edges that satisfy AC2 are inserted intoK1

α

and the others are pruned away. All the vertices in Σ0
ortho are directly inserted intoK0

α without AC2
check because for biomolecular data we assume that Voronoi regions of all the atoms are non-empty.
The check for condition AC2 for each simplex is again made efficient by the use of the grid data
structure. Atoms that may violate AC2 lie within the same cell as that containing the ortho-center
or within the adjacent cell. Atoms that lie within other cells may be safely ignored.

7.4.5 CUDA implementation
We use the CUDA framework [1] and the thrust library [2] within CUDA to develop a parallel
implementation of the algorithm that executes on the many cores of the GPU. The grid compu-
tation is implemented as a CUDA kernel where each atom is processed in parallel. The potential
simplices computation and pruning stages are broken down into multiple CUDA kernels and par-
allelized differently in order to increase efficiency. We now describe the parallelization strategy in
brief. For computing the set of potential edges Σ1

ortho, the initial enumeration of all possible edges
is parallelized per atom where atom indices are used to ensure that no duplicate edges are generated.
Subsequently, the ortho-size condition is checked for the edges in parallel. Similarly, for computing
potential triangles Σ2

ortho, the initial enumeration of all possible triangles is parallelized per atom,
while the ortho-size condition is checked within a separate kernel and parallelized per triangle.
The same strategy is used for computing the set of potential tetrahedra Σ3

ortho. The pruning stage is
parallelized per tetrahedron, triangle, and edge as required.

7.4.6 Handling large data sizes
Typical protein structures consist of upto 100,000 atoms. Our implementation can handle datasets
of this size easily for reasonable values of α. However, the size of datasets is ever increasing. Pro-
tein complexes that are available nowadays may consist of millions of atoms, necessitating smart
management of GPU memory while handling such data sets.

We propose two strategies and implement one of them. The first strategy is to partition the
grid by constructing an octree data structure and choosing an appropriate level in the octree to
create partitions. Each partition together with its border cells can be processed independently of
other partitions. So, we can copy one partition and its border to the GPU memory, compute its
alpha complex, and copy the results back from GPU to CPU memory. After all the partitions are
processed, the list of simplices can be concatenated followed by duplicate removal to generate the
final alpha complex.

The second strategy is to partition the sorted list of atoms into equal sized chunks and to process
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each chunk independently. Here, we assume that the complete list of atoms together with the
grid data structure fits in the GPU memory. This is a reasonable assumption considering that
datasets containing several million atoms can easily fit on modern GPUs, which typically have at
least 2GB video memory. Also, the main difficulty in handling large protein structures is managing
the large lists of simplices generated within the intermediate steps of the algorithm, when compared
to handling the input list of atoms or the output list of simplices. We compute the alpha complex
by executing the algorithm in multiple passes. Each pass computes the alpha complex for a single
chunk and copies it back to the CPU memory. We have implemented this second strategy and can
handle data sizes of upto 16 million atoms on a GPU with 2GB of memory. Results are reported
in the next section.

7.5 Experimental Results
Wenowpresent results of computational experiments that demonstrate that the parallel algorithm is
fast in practice and significantly better than the state-of-the-art. We also performed runtime profiling
to better understand the bottlenecks and effect of the parameter α on the runtime. All experiments,
unless stated otherwise, were performed on a Linux system with an nVidia GTX 660 Ti graphics
card running CUDA 8.0 and a 2.0GHz Intel Xeon octa core processor with 16 GB of mainmemory.
The default number of threads per block was set at 512 for all the CUDA kernels.

Mach and Koehl describe two techniques for computing alpha complex of biomolecules called
AlphaVol and UnionBall in their paper [72]. Both approaches construct the weighted Delaunay tri-
angulation of input atoms first followed by a filtering step to obtain the alpha complex. UnionBall is
the state-of-the-art technique for alpha complex computation for biomolecules on multi-core CPU.
It uses heuristics and optimizations specific to biomolecular data to improve upon AlphaVol. For
biomolecules containing 5 million atoms, AlphaVol takes approximately 8600 seconds for comput-
ing the alpha complex, while UnionBall takes approximately 150 seconds. Our method computes
the alpha complex in less than 3 seconds for similar sized data, see Table 7.1.

7.5.1 Comparison with gReg3D
We are not aware of any algorithm that can compute the alpha complex directly without first con-
structing the complete Delaunay triangulation. In order to compare the performance, we chose
the state-of-the-art parallel algorithm for computing the weighted Delaunay triangulation in 3D,
gReg3D [15]. The CUDA implementation of gReg3D is available in the public domain. Table 7.1
compares the running times of our proposed algorithm with that of gReg3D for 12 different bio-
molecules at α = 0 and α = 1. As evident from the table, we consistently observe significant
speedup over gReg3D. The observed speedup is as high as 22× for the biomolecule 1X9P at α = 0,
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Table 7.1: Runtime comparison of the proposed algorithm with gReg3D on an nVidia GTX 660
Ti graphics card. Timings are reported in milliseconds. %Simplex refers to the size of the alpha
complex as a percentage of the size of the weighted Delaunay triangulation. The last column shows
the speedup in runtime of our algorithm over gReg3D. ‘*’ indicates the data was partitioned and
processed in chunks. ‘–’ indicates that the code could not execute due to insufficient memory.

α PDB id #Atoms Kα gReg3D
%Simplex Speed up

#Simplices Time(ms) #Simplices Time(ms)

0.0

1GRM 260 932 13 6295 117 14.8 9.0
1U71 1505 5696 13 40878 115 13.9 11.1
3N0H 1509 5739 14 41244 137 13.9 10.0
4HHB 4384 38796 29 150141 193 25.8 6.6
2J1N 8142 29642 18 227719 229 13.0 12.7
1K4C 16068 62851 27 446383 347 14.1 12.9
2OAU 16647 123175 56 466586 344 26.4 6.2
1AON 58674 262244 65 1650841 879 15.9 13.5
1X9P* 217920 924086 113 6142811 2555 15.0 22.6
1IHM* 677040 2713083 277 – – – –
4CWU* 5905140 23450403 2709 – – – –
3IYN* 5975700 24188892 2874 – – – –

1.0

1GRM 260 1598 15 6295 117 25.4 7.9
1U71 1505 10828 17 40878 115 26.5 8.5
3N0H 1509 10965 30 41244 137 26.6 4.6
4HHB 4384 65987 86 150141 193 44.0 2.2
2J1N 8142 58205 30 227719 229 25.6 7.6
1K4C 16068 118467 52 446383 347 26.5 6.7
2OAU 16647 199101 159 466586 344 42.7 2.2
1AON 58674 495683 160 1650841 879 30.0 5.5
1X9P* 217920 1653778 196 6142811 2555 26.9 13.0
1IHM* 677040 5058507 605 – – – –
4CWU* 5905140 44411353 5118 – – – –
3IYN* 5975700 45790463 5501 – – – –

one of the largest molecules in our dataset. Clearly, the speedup goes down for α = 1 when com-
pared to α = 0 because of the increased number of simplices in the output alpha complex. We also
report the number of simplices in the alpha complex compared to the total number of simplices
in the Delaunay triangulation under the column ‘%Simplex’. This makes it clear why the speedup
goes down as α is increased from 0 to 1. For example, for the protein 1AON, the fraction of alpha
complex simplices increases from 15.9% to 30% as α is increased from 0 to 1. Correspondingly, the
speedup decreases from 13.5× to 5.5×.

We repeated the experiment on aMSWindows systemwith an nVidia GTX 980 Ti card running
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CUDA8.0 and observed similar speedups. However, the individual runtimes both for our algorithm
and for gReg3D were higher on the GTX 980 Ti. We believe that the reason for this increased
runtime is that the MS Windows system was utilizing the GPU resources for its various GUI tasks
whereas the Linux system did not require as many GPU cycles.

The starred entries in Table 7.1 are results for execution using the data partitioning approach.
This is necessitated because these four large molecules generate large intermediate simplex lists that
can not fit into the GPUmemory if all the atoms in the molecule are processed at once. We observe
that gReg3D is able to successfully compute the Delaunay complex for only one out of these four
large molecules and runs out of GPU memory for the remaining three molecules.

7.5.2 Runtime profiling
The two stages of our parallel algorithm (potential simplices and pruning) are further divided into 3
steps each, corresponding to the computation of edges, triangles, and tetrahedra respectively. A grid
computation step precedes the two stages. We study the computation effort for each of these seven
steps of the algorithm. We also report the time spent in memory transfers from CPU to GPU and
vice-versa. Thus, we report the split up of the total runtime into eight categories namely, ‘Memory
transfer’, ‘Grid computation’, ‘Potential edges’, ‘Potential triangles’, ‘Potential tetrahedra’, ‘AC2

Table 7.2: Time spent within different steps of the algorithm. Timings are reported in millisec-
onds for memory transfer, grid computation, computing potential simplices, and pruning. The last
column shows the total time taken for all steps.

α PDB id #Atoms #Simplices Memory Grid Potential Simplices Pruning Total

Edges Tris Tets Tets Tris Edges time

0.0

1GRM 260 932 0.8 1.0 2.8 1.1 1.0 1.2 3.1 1.9 13.0
1U71 1505 5696 0.9 0.8 2.3 1.7 1.0 1.8 2.6 1.9 13.0
3N0H 1509 5739 0.7 0.9 2.3 1.4 2.5 1.8 2.5 1.5 13.7
4HHB 4384 38796 1.1 0.8 2.7 2.0 6.0 8.3 4.6 3.7 29.2
2J1N 8142 29642 1.1 1.2 3.7 1.6 1.3 2.0 3.9 3.2 18.1
1K4C 16068 62851 1.7 2.0 4.3 1.5 1.6 3.8 7.6 4.3 26.9
2OAU 16647 123175 2.1 1.3 4.7 4.3 5.8 21.9 9.5 6.0 55.5
1AON 58674 262244 4.6 2.8 11.1 5.6 4.1 16.7 10.9 9.4 65.2

1.0

1GRM 260 1598 1.2 1.4 2.7 1.2 2.0 1.8 2.7 1.8 14.7
1U71 1505 10828 0.9 0.8 2.3 1.5 3.4 2.5 3.2 2.5 17.1
3N0H 1509 10965 0.9 1.4 2.4 1.7 14.6 2.6 3.5 2.9 30.0
4HHB 4384 65987 1.5 1.9 3.4 5.4 23.7 32.8 12.4 4.8 86.0
2J1N 8142 58205 1.4 1.1 3.4 2.5 3.6 9.0 4.6 4.5 30.3
1K4C 16068 118467 2.1 1.8 6.1 3.0 3.4 19.5 8.3 7.9 52.2
2OAU 16647 199101 3.0 1.7 6.0 10.2 28.3 90.0 12.1 7.5 158.9
1AON 58674 495683 6.3 2.0 12.4 9.9 12.5 87.9 17.9 11.0 159.9
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(a) α = 0.0

(b) α = 1.0

Figure 7.6: Time spent for different steps of the algorithm.

tetrahedra’, ‘AC2 triangles’ and ‘AC2 edges’.
Table 7.2 summarizes the observed split up of runtime for 8 different biomolecules. Figure 7.6

shows the actual time spent for different steps and Figure 7.7 shows relative time spent for each
step. From these figures, it is clear that the pruning stage consumes the maximum amount of time.
The pruning stage involves checking the neighboring balls for violations of the AC2 condition for
each simplex. Specially, the tetrahedra pruning step (red) takes approximately 25% of the total time
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(a) α = 0.0

(b) α = 1.0

Figure 7.7: Proportion of time spent for different steps during the execution of the algorithm. The
pruning stage (AC2 tetrahedra, triangles and edges checks) takes significantly more effort compared
to other steps. Also, the time spent for this step increases with α.

required for alpha complex computation.
We performed additional experiments to determine the average split up over multiple runs. We

computed the relative time spent for each step for different values of α between 0.0 and 2.0. These
observations are reported in Figure 7.8. It is clear that the memory transfers and grid computation
combined do not take more than 10% of the total time. The potential simplices estimation stage
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Figure 7.8: Split up of time spent at different steps. Average proportion of effort spent at different
steps of computation was obtained after executing the algorithm for all the molecules in our dataset
at various values of α varying from 0 to 2.0. As evident from the error bars, there is significant
variability. But, in general the pruning stage of the algorithm, specially the tetrahedra computation
step takes the maximum time.

consumes 30% of the time. However, the pruning stage is most expensive, taking up roughly 60% of
the computation time. Pruning tetrahedra step takes up 35% of the time on average. This suggests
that this step should be the focus of the optimization efforts in future. It should be noted that
proportion of time spent for each step depends on the distribution of atoms in the biomolecule as
well as the value of α. This explains the significant deviation from the averages as shown by the
error bars.
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7.5.3 Effect of the value of α
We also performed experiments to observe the runtime performance as the value of α is varied
between 0.0 and 2.0. Figures 7.9 and 7.10 show the results for the proteins 1K4C and 1AON,
respectively. We also show how the number of simplices in the computed alpha complex increases
as the value of α is increased. The runtime and total number of simplices follow a near-linear trend.
However, increase in time required for pruning, especially for pruning the tetrahedra, is greater
than time required for other steps of the algorithm. Note that although both graphs appear linear,
this is not guaranteed behavior for other input. The scaling behavior depends on the distribution

Figure 7.9: Running time for varying values of α for 1K4C. The number of simplices in the output
alpha complex is also shown (black line). The number of simplices increases almost linearly with α
as expected from the distribution of atoms in typical biomolecules. The running time also increases
almost linearly with α for this molecule. Also, the fraction of time spent for tetrahedra computation
step (red) increases with α.
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Figure 7.10: Running time for varying values of α for 1AON. The number of simplices in the
output alpha complex is also shown (black line). The running time increases almost linearly with
α for this molecule.

of the atoms in the molecule and on the range of α values for which the experiment is conducted.

7.5.4 Numerical issues
The proposed algorithm requires computation of ortho-size for each simplex, which in turn re-
quires solving systems of linear equations. These computations require higher precision than is
available on the GPU. So, the results may contain numerical errors. These numerical errors ulti-
mately manifest as misclassification of a simplex as belonging toKα or not. We performed extensive
experimentation and observed that the alpha complex computed is correct in several cases. In cases
where the results are not correct, the number of false positives and negatives (extra or missing
simplices) is extremely small as compared to the number of simplices in the alpha complex. We ob-
served a worst case error rate of 0.001 in our experiments, see Table 7.3. This error rate is tolerable
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Table 7.3: Incorrectly identified simplices of the alpha complex.

α PDB id #Atoms #Simplices #Misclassified Simplices Error rate

Edges Triangles Tetrahedra Total

0.0

1GRM 260 932 0 0 0 0 0.0000
1U71 1505 5696 0 0 0 0 0.0000
3N0H 1509 5739 0 0 0 0 0.0000
4HHB 4384 38796 0 0 0 0 0.0000
2J1N 8142 29642 0 0 0 0 0.0000
1K4C 16068 62851 15 33 16 64 0.0010
2OAU 16647 123175 12 21 5 38 0.0003
1AON 58674 262244 22 39 21 82 0.0003

1.0

1GRM 260 1598 0 0 0 0 0.0000
1U71 1505 10828 0 0 0 0 0.0000
3N0H 1509 10965 0 0 0 0 0.0000
4HHB 4384 65987 0 0 0 0 0.0000
2J1N 8142 58205 0 0 0 0 0.0000
1K4C 16068 118467 20 34 14 68 0.0006
2OAU 16647 199101 10 22 10 42 0.0002
1AON 58674 495683 10 26 21 57 0.0001

for several applications. If exact computation is required, we could use a tolerance threshold to tag
some simplices as requiring further checks, which can in turn be performed on the CPU using a
multi-precision library. Our implementation can be easily extended to use such a hybrid strategy.
We plan to implement this in future.

7.6 Conclusions
We proposed a novel parallel algorithm to compute the alpha complex for biomolecular data that
does not require prior computation of the complete Delaunay triangulation. The novel characteri-
zation of simplices that belong to the alpha complex may be of independent interest. The algorithm
was implemented using CUDA, which exploits the characteristics of the atom distribution in bio-
molecules to achieve speedups of upto 22× compared to the the state-of-the-art parallel algorithm
for computing the weighted Delaunay triangulation and upto 50× speedup over the state-of-the-art
implementation that is optimized for biomolecules. In future work, we plan to further improve
the runtime efficiency of the parallel implementation and to resolve the numerical issues using real
arithmetic.



Chapter 8

Conclusions

In recent years, techniques from the field of scientific visualization and computational geometry
have increasingly found application in the study of biomolecules, specially in understanding their
structure and their interaction with other molecules. This thesis is a contribution to this area of
application of visualization. In this thesis, we addressed some of the challenges from the end-user
perspective and some problems from a purely computational perspective. We described two new
tools for the extraction and visualization of channel and cavity structures in a biomolecule aimed
at the end-users, the biologists. In addition, we proposed GPU based efficient algorithms for the
computation of alpha complex and discrete Voronoi diagrams. Both of these geometric structures
are widely used in the study of bimolecular structure.

We described a new method for the extraction, visualization, and visual exploration of chan-
nels in biomolecules through a software tool called ChExVis. For extraction of robust cavities
in uncertain data, we described a novel method of connecting molecular cavities under different
optimization criteria. A web server tool called RobustCavities was designed to facilitate reliable
extraction of cavities in proteins. In addition to these tools aimed at biologists, we looked at com-
putational problems of fast computation of discrete Voronoi diagrams and alpha complex, both of
which find application in the computation of biomolecular channels and cavities. Using CUDA
based parallel implementation we were able to achieve significant speed-ups over the state-of-the-art
methods.

Although the focus of the thesis was biomolecules, we believe the proposed techniques could be
useful in other application areas as well. For instance, channel extraction technique can be used for
study of porous structures in solids. Similarly, alpha complex will be useful in study of any point
cloud dataset.

In future, one of the major challenges is to develop better visualization techniques for molec-
ular dynamics simulation data, which is increasingly becoming more popular than study of static
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biomolecular structure. Another major challenge is handling large protein complexes which re-
quires time and memory efficient algorithms. Thirdly, it is important to address the problem of
channel and cavity extraction in uncertain data based on sound theoretical foundations. Although
we proposed solutions via connecting cavities for this problem, we believe this problem needs fur-
ther exploration. We hope that this thesis will prove to be helpful in addressing these open prob-
lems.
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