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Abstract
The extremum graph is a succinct representation of the Morse decomposition of a scalar field. It has increasingly become a
useful data structure that supports topological feature directed visualization of 2D / 3D scalar fields, and enables dimensionality
reduction together with exploratory analysis of high dimensional scalar fields. Current methods that employ the extremum
graph compute it either using a simple sequential algorithm for computing the Morse decomposition or by computing the more
detailed Morse-Smale complex. Both approaches are typically limited to two and three dimensional scalar fields. We describe a
GPU-CPU hybrid parallel algorithm for computing the extremum graph of scalar fields in all dimensions. The proposed shared
memory algorithm utilizes both fine grained parallelism and task parallelism to achieve efficiency. An open source software
library, TACHYON, that implements the algorithm exhibits superior performance and good scaling behavior.

CCS Concepts
• Human-centered computing → Visualization techniques; • Computing methodologies → Parallel algorithms;

1. Introduction

Topological analysis has become a key tool for the analysis
and visualization of data from various branches of scientific re-
search [CFST20, HMST21]. In the context of data represented
as scalar fields, topological descriptors such as contour trees,
Reeb graphs, merge trees, Morse-Smale complexes, and extremum
graphs have been widely studied [HLH∗16]. Each abstraction pro-
vides a different perspective to analyze and interact with the scalar
field. The extremum graph is a useful abstraction in situations
where the extrema and gradient flow behavior that determines
their connectivity are crucial for understanding the scientific phe-
nomenon [CLB11, TN13]. It is a subset of the Morse-Smale com-
plex that is considerably simpler yet intuitive and detailed enough
for various applications. It is a bipartite graph whose nodes are ei-
ther extrema or saddles and arcs determine connectivity via a gra-
dient path between a saddle-extremum pair. The simple structure
of the graph makes it amenable for various applications includ-
ing segmentation in 2D and 3D scalar fields, feature tracking in
time-varying data, and clustering in higher dimensional data. While
there exist efficient algorithms to compute the more general Morse-
Smale complex, there is a need for a lightweight, fast, and scalable
algorithm that can compute the extremum graph in all dimensions.

1.1. Related work

The Morse complex and Morse-Smale complex were introduced
as topological structures to represent the gradient flow behavior of

Morse functions [BHEP04, EHNP03]. While the extremum graph
may be considered as a 1-skeleton of the Morse complex, it was first
described in the currently known form by Correa et al. [CLB11] to-
gether with a new 2D visual representation called the topological
spine. The extremum graph preserves the topological and geomet-
ric structure of a scalar field, while the topological spine provides
a succinct and easily digestible 2D representation to the user. It es-
sentially preserves the relative location of extrema and knowledge
of their neighborhoods with respect to gradient paths connecting
them. Useful applications of extremum graphs include the robust
detection of symmetry in noisy scalar fields [TN13], extrema prox-
imity awareness and a feature-aware comparison of similar scalar
fields using distance measures [NTN15].

The abundance of large-scale scientific data with increasing fea-
ture complexity and precision has directed the attention of the sci-
entific visualization community towards developing parallel algo-
rithms that effectively leverage modern compute power and mas-
sively parallel architectures. Specifically, the parallel computation
of 3D Morse-Smale complexes has been studied extensively to this
effect. Gyulassy et al. [GBHP08] developed a memory efficient al-
gorithm for 3D Morse-Smale complex computation, where they
partitioned large data into chunks called parcels that fit in mem-
ory. By computing the Morse-Smale complexes for each parcel and
performing a cancellation based merging of parcels, they were able
to obtain Morse-Smale complexes for large-scale data which orig-
inally did not fit in memory. This approach was adapted to a dis-
tributed memory setting by Peterka et al. [PRG∗11] and Gyulassy
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et al. [GPPR12] where they leveraged massively parallel clusters
to handle the parcels in parallel. Robins et al. [RWS11] and Shiv-
ashankar and Natarajan [SSN11] introduced novel locally indepen-
dent definitions for gradient pairs which facilitated an embarrass-
ingly parallel gradient pair assignment. Novel traversal algorithms
for the extraction of ascending and descending manifolds of the ex-
trema and saddles further enhanced the runtime performance of the
Morse-Smale complex computation [GRWH12, SN12, DFRS14].

Additionally, there have been advances in obtaining a higher
degree of geometric accuracy during parallel Morse-Smale com-
plex computation by Gyulassy et al. [GBP18, GGL∗14, GBP12]
and Bhatia et al. [BGL∗18]. Several approaches dabbled in CPU
based shared memory parallelization techniques with the excep-
tion of Shivashankar and Natarajan [SN12], who introduced a hy-
brid approach. Their algorithm and the associated software library,
pyms3d [SN17], leveraged GPU parallelism for gradient assign-
ment and extrema traversal and CPU parallelism for saddle-saddle
traversal. Recently, Subhash et al. [SPN20, SPN22] introduced
gMSC, an end-to-end GPU parallel algorithm for 3D Morse-Smale
complex computation, which resulted in substantial speedups over
the CPU and hybrid approaches attempted thus far. gMSC trans-
forms the saddle-saddle computation into a sequence of matrix op-
erations that are amenable to fast parallel computation on the GPU,
leading to significant improvement in runtime. We note that the gra-
dient assignment and saddle-extrema traversal steps in gMSC are
identical to those employed by pyms3d. Both pyms3d and gMSC

are restricted to 3D scalar fields.

A discrete Morse theory based approach is employed by several
of the above-mentioned parallel algorithms and has yielded com-
binatorial and numerically robust algorithms [GNP∗06, GRWH12,
DFRS14,SSN11,SN12]. Fugacci et al. [FIDF19] also demonstrated
an extension to higher dimensions by computing the Morse com-
plex from simplicial complexes. This discrete Morse complex can
be leveraged to compute homology [RWS11, HMMN14], perform
shape analysis and study scalar fields [DFFIM15].

As mentioned earlier, the extremum graph is a subgraph of
the combinatorial structure or the 1-skeleton of the Morse-Smale
complex. The succinct yet highly informative abstraction and its
demonstrated role in many applications motivates the need for its
efficient computation. To the best of our knowledge, no previous
work specifically explores the efficient and scalable parallel com-
putation of extremum graphs in all dimensions. We attempt to ad-
dress this gap here and describe an open source implementation.

1.2. Contributions

In this paper, we describe a fast shared memory parallel algorithm
for computing the extremum graph of an n-dimensional scalar
field defined on a grid. The hybrid GPU-CPU parallel computation
leverages the GPU for fine-grained parallel computation of nodes of
the extremum graph and the CPU for effective task parallel compu-
tation of arcs of the graph. Key contributions of the paper include:

• A hybrid GPU-CPU algorithm that efficiently uses both compu-
tational resources while enabling the algorithm to be scalable to
data that does not fit in the GPU memory.

• An efficient implicit representation of the neighborhood of a grid

vertex that supports fast parallel critical point classification of all
vertices.

• TACHYON, a lightweight library that provides a fast implementa-
tion of the hybrid algorithm (bitbucket.org/vgl_iisc/
tachyon).

• Multiple strategies for effective simplification of the extremum
graph that makes it amenable for feature identification and ap-
plications.

• Experimental studies on multiple datasets to demonstrate supe-
rior performance and scalability.

2. Background

In this section, we define and briefly introduce the necessary terms
required to define extremum graphs [EHNP03, CLB11, NTN15].
Given a smooth function f : M→ R over a manifold M of dimen-
sion n, we say that a point x ∈ M is critical iff ∇ f (x) = 0, x is
called regular otherwise. Also, f is a Morse function if all critical
points have pairwise distinct function values and none of them are
degenerate i.e., the Hessian evaluated at the point is non-singular.
For a critical point x of f , its Morse index is defined as the number
of negative eigenvalues of its Hessian matrix evaluated at x. Critical
points of index 0 are named minima, index n are maxima and the
others with index k, 1 < k < n−1, are called k-saddles.

An integral line is a maximal curve in M whose tangent at every
point is equal to the gradient of f at that point. Naturally, f mono-
tonically increases along the integral line and its two end points
(limit points) are critical points of f . The Morse function f deter-
mines a decomposition of M based on the integral lines. The union
of integral lines that terminate at a critical point is called its de-
scending manifold. The descending manifold of a maximum is an
n-dimensional manifold. The collection of descending manifolds of
critical points of f partition M and is called the Morse decomposi-
tion. The ascending manifold of a minimum is similarly defined as
the union of integral lines that originate at a minimum. Again, the
collection of ascending manifolds of critical points of f partition
M. The extremum graph is a representation of the Morse decom-
position. It is called a maximum / minimum graph if it represents
the decomposition into descending / ascending manifolds, respec-
tively. Without loss of generality, we restrict the discussion in this
paper to maximum graphs, and refer to them as extremum graphs.

An (n− 1)-saddle s of f lies on the boundary of the descend-
ing manifold of a maximum m i.e., an integral line originating at s
terminates at m. The extremum graph captures this relationship be-
tween maxima and (n− 1)-saddles of f , and thereby captures the
combinatorial structure of the Morse decomposition. The node set
of the extremum graph consists of the maxima and (n−1)-saddles
of f . An arc (s,m) belongs to the extremum graph if s lies on the
boundary of the descending manifold of m. Figure 1 shows the ex-
tremum graph for a 3D scalar field, the output of a simulation of a
silicium grid.

3. Computation of extremum graphs

There are two popular approaches to compute extremum graphs,
namely flood fill and gradient path tracing. While both methods
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Figure 1: Extremum graph for the silicium grid. Maxima (red) and
2-saddles (green) are connected by arcs. The geometry of an arc is
determined by the integral line (black) that connects the maximum
and the 2-saddle. The scalar field is shown as a volume rendering
using a simple banded color map.

produce equivalent results, each method has its own associated ad-
vantages and disadvantages. We begin with a brief discussion about
the two approaches and justify why we propose gradient path trac-
ing towards the development of an efficient and scalable parallel
algorithm.

3.1. Flood fill vs. gradient path tracing

The flood fill approach computes the extremum graph in one sweep
over the list of grid vertices by incrementally growing the descend-
ing n-dimensional manifolds of all maxima. The vertices are pro-
cessed in decreasing order of scalar value. Processing a vertex v
includes expanding the descending manifolds that have reached v
in the steepest descent direction, namely the vertex with the small-
est value in the lower link. This approach has been employed to
compute the Morse decomposition [EHNP03]. The method implic-
itly recognizes a maximum as a vertex where no descending mani-
fold have reached and an (n−1)-saddle as a vertex where multiple
descending manifolds merge. The adjacency between maxima and
saddles is recorded when the saddle vertex is processed. While this
method computes the connectivity of the extremum graph, it does
not explicitly capture the gradient paths between the maxima and
saddles. A subsequent step needs to be invoked to compute these
gradient paths as necessary, a limitation of this approach. Further,
this method has a high memory footprint because it requires the
collection of all descending manifolds to be stored.

The gradient path tracing approach computes the extremum
graph in two steps. The first step locates and classifies the max-
ima and (n−1)-saddles. It analyzes the link of a vertex to classify
the vertex. Importantly, the classification of a vertex is independent
of the classification of other vertices and depends on a local neigh-
borhood. The second step traces gradient paths from each (n− 1)-
saddle towards extrema. This tracing requires gradients to be com-
puted only for a small subset of regular vertices, thereby resulting
in a low computational load. The memory footprint is also low be-
cause the first step requires a simple query within a constant sized
local neighborhood and the second step requires only the end point
of the path to be stored.

There exist multiple parallel algorithms for flood fill. However,

these method do not scale due to the communication required to
handle the merge events and subsequent serialization of the de-
scending manifold growth computation. In contrast, the first step
of the gradient path tracing is amenable to fine grained parallelism,
is simple, and highly scalable. The second step can also be acceler-
ated via task parallelism. These advantages motivate us to develop
a gradient path tracing algorithm for parallel computation of the
extremum graph. In the following, we describe the two steps of the
algorithm with a focus on how the steps are parallelized, followed
by a discussion on effective simplification of the extremum graph
to make it suitable for applications.

3.2. Grid tessellation

We assume that the scalar field is available as a collection of sam-
ples at vertices of an n-dimensional grid. Vertices of the grid that
represent the domain Dn have integral coordinates,

V (Dn) = {v | v ∈ Z×Z×·· ·×Z︸ ︷︷ ︸
n

}.

Edges of the grid are between two vertices that differ in exactly one
coordinate by a value of 1. Methods for topological analysis and
visualization of this scalar field typically assume an input piece-
wise multilinear or piecewise linear scalar function. The samples
at vertices may be extended into a scalar function by either using
a multilinear interpolant (trilinear in 3D) within each grid cell or
by tessellating the grid cells into linear cells (tetrahedra in 3D) fol-
lowed by linear interpolation within each linear cell. In either case,
the local maxima of the scalar field are located at grid vertices.

We tessellate the uniform grid into irregular linear cells (tetra-
hedra in 3D) with the aim of simplifying the extremum graph
computation and to support future extensions of the method to
unstructured grids. We choose a tessellation that decomposes all
grid cells in the same manner and one that is consistent on the
common face between adjacent cells, called the Freudenthal sub-
division [CMS06]. Figure 2 shows the tessellated grid in 2D and
3D (for illustration). The resulting edge set of the tessellated grid
E(Dn) can be stored implicitly and recovered using a simple rou-
tine, see Algorithm 1. The algorithm essentially dictates that two
distinct vertices are connected by an edge if and only if the dif-
ference vector between the two points consists entirely of non-
negative or non-positive values and the magnitude of the non-zero
values is 1.

The edge set of the tessellated grid

E(Dn) = {(u,v) | u,v ∈V (Dn)∧GridAdjacency(u,v)}.

Figure 2 also shows the edges incident on a given vertex of the
tessellated grid. It follows from the symmetry of the edge set that
the number of edges incident on a vertex v is equal to twice the
number of non-zero difference vectors, namely 2× (2n−1) for nD
grids. So, the number of vertices in the neighborhood of v in a 3D
grid equals 14. Critical points are identified and classified based on
a connected component labeling of this neighborhood. We discuss
this classification next.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Tessellating 2D and 3D grids. (a) A 2D cell is decomposed into two triangles. (b) Tessellating a 2D grid. (d) A 3D grid cell is
decomposed into six tetrahedra. (e) Tessellating a 3D grid. The decomposition of the common faces between two adjacent grid cells is
consistent. (c,f) Edges of the neighborhood graph (blue) of the vertex at the centre. The vertex has 6 neighbors in a 2D grid and 14 neighbors
in a 3D grid.

Algorithm 1: GridAdjacency
Input: p,q : Two vertices. Test if they are adjacent in the

tessellated n-dimensional grid.
Result: True if p,q are adjacent and False otherwise

1 n← len(p) ▷ p is a vertex in an n-dimensional grid
2 U ← φ

3 foreach i ∈ 1..n do
4 d← pi−qi ▷ difference between ith coordinates
5 U ←U ∪{d} ▷ collect component wise difference
6 end
7 if U⊆{0,1} or U⊆{0,−1} then
8 return True
9 end

10 else
11 return False
12 end

3.3. Critical point classification

Critical points of the piecewise linear function defined over a tessel-
lated grid can be identified and classified based on a local neighbor-
hood [Ban70,EHNP03]. All critical points are located at vertices of
the grid. The star of a vertex v consists of v together with the col-
lection of edges, triangles, tetrahedra, and higher dimensional cells
incident on it. Figure 2(f) shows the edges (blue) of the star of a
vertex in a cube grid. The collection of end points of these edges,
excluding v, together with the induced edges and triangles form the
link of v. The star and link are two useful notions of neighborhood
of a vertex within the tessellated grid. Assuming that there are no
degeneracies, scalar values at vertices in the link are either lower

or higher than at v. Vertices of the link with scalar value lower than
at v together with the induced edges and triangles form the lower
link of v. Similarly, the upper link of v is defined as the collection
of vertices of the link with scalar values greater than at v together
with the induced edges and triangles.

Critical points are classified based on the number of connected
components of the upper and lower link, denoted β

+
0 , β

−
0 and called

the zeroth Betti number [EHNP03]. Figure 3 illustrates the upper
(red) and lower (green) link for various types of critical points and
for a regular point. Since our objective is to compute the extremum
graph, we are specifically interested in identifying the maxima and
2-saddles. The first step of the algorithm visits each grid vertex and
classifies it as critical or regular as shown in Table 1.

β
+
0 β

−
0

maximum 0 1
(n−1)-saddle ≥2 •

1-saddle • ≥2
minimum 1 0

regular 1 1

Table 1: Classifying a vertex based on the topology of the upper and
lower link. β

+
0 and β

−
0 count the number of connected components

of the upper and lower link, respectively. • indicates that the value
does not affect the classification.

Both β
+
0 and β

−
0 are typically computed by performing a BFS

graph traversal on the upper and lower link of the vertex v. The
BFS traversal of the upper and lower link is an embarrassingly par-
allel task across all vertices. We utilize GPU parallelism to perform
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(a) Maximum (b) 2-Saddle (c) Regular point

(d) Minimum (e) 1-Saddle (f) Multi-saddle

Figure 3: Critical points can be identified and classified based on the upper (red) and lower (green) link connectivity. The upper link of a
maximum (a) is empty and the lower link is equivalent to a sphere, whereas the upper link of a minimum (d) is equivalent to a sphere and
the lower link is empty. The upper link of a simple 2-saddle (b) consists of two connected components and its lower link consists of a single
component, whereas the upper link of a 1-saddle (e) consists of a single component and the lower link consists of two connected components.
Both the upper and lower links of a regular point (c) consist of a single component. The multi-saddle (f) is a degenerate structure that does
exist in piecewise linear functions.

this traversal in a massively parallel fashion by launching a CUDA
thread for each vertex. Our implementation moves this task auto-
matically to a multicore CPU in the absence of a CUDA enabled
GPU.

In order to make the computation GPU friendly, we utilize a
union-find based connected component tracking instead of the BFS
traversal, similar to previous approaches [CWS∗19]. The union-
find data structure is initialized with a collection of singleton sets,
each containing a vertex of the link of v. Next, we test for the exis-
tence of an edge between a pair of vertices in the link using Algo-
rithm 1. If the edge exists and both end points of the edge belong
to the upper link (lower link), we perform a union operation on
the corresponding sets. Degeneracies are handled using a simulated
perturbation [EH09, Section 1.4], which consistently determines if
the scalar value at a link vertex is lower or higher than the value at
v.

After identifying the connected components in the link, we la-
bel each component as upper or lower link by testing one vertex
within the component and hence compute β

+
0 and β

−
0 . This method

is GPU friendly as all working threads test the same number of
edges and require almost the same time, thereby causing a very
low thread divergence. If a vertex is identified as regular, we addi-
tionally compute the gradient of the scalar field at the vertex. The
gradient is approximated as the vector towards the vertex with the
highest scalar value in the upper link.

3.4. Path tracing

We opt to use a direct path tracing algorithm to trace the saddle-
maximum arcs that constitute the extremum graph over the flood-
fill approach. The primary reason for this choice is the benefit in
terms of scalability of the computation. In addition, path tracing
does not require each vertex of the grid be visited. Further, a flood-
fill based algorithm requires an ordered list of vertices, sorted on
the scalar values.

Algorithm 2: TraceGradientPaths
Input: s,M: Source (n−1) saddle and the set of all

maxima
Result: Set of gradient paths originating from s

1 P← φ

2 foreach u ∈ UpperLinkRep(s) do
3 p← s ▷ Initialize path p with s
4 while u ̸∈M do
5 p← p || u ▷ Append u to p
6 u← gradient(u) ▷ Follow gradient at u
7 end
8 P← P ∪ {p}
9 end

10 return P

The path tracing algorithm requires only the gradient at vertices.
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Figure 4: Gradient path tracing for computing arcs of extremum
graph. Ascending 1-dimensional manifolds are computed for each
2-saddle. The gradient paths that constitute these ascending mani-
folds represent the arcs of the extremum graph. Note that they pass
through regular points, entering and exiting its neighborhood via
the lower and upper link, respectively.

The gradient paths in an extremum graph originate from (n− 1)-
saddles, so the algorithm visits only a small fraction of vertices
of the grid. However, this approach is not without challenges. The
operation of tracing a gradient path is inherently serial in nature.
One approach towards parallelism is to trace the gradient paths for
all (n−1)-saddles concurrently.

Algorithm 2 computes the collection of gradient paths that origi-
nate at an (n−1)-saddle. The subroutine UpperLinkRep returns the
highest vertex in each upper link component of the saddle. For each
such vertex, it iteratively follows the gradient vectors until termina-
tion at a maximum. This algorithm is executed in parallel for each
(n−1)-saddle. Unlike the critical point classification, Algorithm 2
is not amenable to efficient GPU parallelism. Varying lengths of
the gradient paths causes unequal division of work among CUDA
threads, and results in significant thread divergence.

Figure 4 illustrates the ascending 1-dimensional manifolds for a
2-saddle. Notice how the gradient paths originate from the 2-saddle
via each upper link component and terminate at maxima. Given
two adjacent regular points (orange) (p,q) on a gradient path, p
lies in the lower link of q and q lies in the upper link of p. The
neighborhood of one regular point is shown in detail. The gradient
path enters through its lower link and exits via its upper link.

3.5. Extremum graph simplification

Scientific data is often noisy, which manifests as an increased num-
ber of critical points and hence a larger sized extremum graph.

Topological simplification identifies noisy topological features and
removes them in a controlled manner, often as a sequence of crit-
ical point pair cancellation operations. The simplification is typ-
ically directed by the notion of persistence [ELZ02]. Indeed, the
extremum graph computed using the algorithm that we describe
in the previous sections contains a large number of saddles and
extrema for all datasets. Several critical points and their incident
gradient paths correspond to noisy topological features. The pres-
ence of these noisy elements cause occlusion, thereby adversely
affecting data visualization tasks, and hinder feature selection. We
propose three simplification operations to aid the proper identifi-
cation of key features from the extremum graph. The persistence
directed cancellation and saturated persistence directed simplifi-
cation algorithms are implemented in TACHYON as they are use-
ful in removing noise and potentially uninteresting features from
the extremum graph [CLB11]. We introduce the arc-bundling algo-
rithm as a method to remove multiple connections between a pair
of extrema. Any sequence of these operations may be applied on an
extremum graph. We describe the simplification operations below.
Their implementations in TACHYON are serial in nature.

Arc bundling. The gradient path tracing algorithm computes indi-
vidual arcs between an (n− 1)-saddle-maximum pair independent
of each other. So, it is likely that a pair of maxima contain more
than one common (n− 1)-saddle in their neighborhood. We select
a single representative saddle based on a specified criterion and
discard the remaining saddles that are shared by the two maxima
within their neighborhood. We term this pruning operation as arc
bundling, as this reduces the number of arcs between an extrema
pair. Note that this operation does not disturb the connectivity be-
tween extrema and the resulting graph continues to represent the
Morse decomposition. In our current implementation, we select the
saddle with the highest scalar value as the representative.

Persistence directed cancellation. This operation cancels an (n−
1)-saddle-maximum pair that is connected by an arc in the ex-
tremum graph and reconnects the neighborhood of both nodes.
The critical point pairs are ordered based on their difference in
scalar value, motivated by the notion of topological persistence,
and scheduled for cancellation. The simplification begins by ini-
tializing a priority queue with all (n− 1)-saddles, where the pri-
ority is inversely related to the persistence of the saddle. Comput-
ing the topological persistence of all saddles upfront is unnecessary
and computationally expensive. We use lazy updates where the true
persistence of a saddle is computed when it reaches the top of the
queue and is ready for cancellation. We initialize the cost of can-
celing a simple (n− 1)-saddle as the smallest difference in scalar
value between the saddle and its two adjacent maxima in the ex-
trema graph. This cost is recomputed whenever a saddle is removed
from the top of the queue.

The next step of the simplification iteratively removes the sad-
dle s from the top of the queue, recomputes its cost, and decides
whether to discard, reinsert, or cancel the saddle. If the updated cost
is above a user-specified persistence threshold, the saddle should
not be cancelled. Note that subsequent cancellations will not de-
crease the cost of this saddle and so, it is safely discarded. If the
updated cost is greater than the cost of the top of the queue (but
smaller than the persistence threshold) then the saddle is reinserted
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(a) Fuel (b) Lobster (c) Foot

(d) Boston Teapot (e) Nucleon (f) Neghip

(g) Hydrogen (h) Engine (i) Heptane Gas

Figure 5: Simplified extremum graphs for various datasets. Nodes (extrema and saddles) are not displayed to reduce clutter. The scalar field
is mapped to color as indicated by the legend.

into the queue because the queue contains other saddles with lower
costs that need to be canceled. Else, the saddle should be canceled.
The gradient path from s towards its persistence pair m is reversed
to cancel the critical point pair. The above step is repeated until
the queue is empty. This simplification removes all low persistence
critical point pairs (arcs) from the extremum graph, while retaining
features of potential interest.

Multi-saddles have greater than two arcs incident on them. The
cost of a multi-saddle is computed as the difference in scalar value
with the second highest maximum adjacent to it. The multi-saddle
is canceled by reversing gradient paths that originate from it to-
wards all maxima, except for the highest maximum, also called the
surviving maximum.

Saturated persistence directed simplification. While persistence

directed cancellation removes saddles whose persistence falls be-
low a given threshold, it does not remove long and potentially un-
intuitive arcs that connect spatially distant maxima via a saddle.
These additional arcs often do not represent structural features.
In addition, they cause clutter and occlude potentially interesting
features. We propose the use of saturated persistence directed ex-
tremum graph simplification [CLB11], which prunes such arcs.

We apply all three operations described above to obtain simpli-
fied extremum graphs for various scientific datasets as shown in
Figure 5.

4. Hybrid GPU-CPU parallel computation

The parallel algorithm described in the previous section works
when the dataset together with the associated data structures fit
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within the GPU and main memory. The GPU memory is often
much smaller and determines the size of the data that can be pro-
cessed. We now describe an extension of both steps of the gradient
path tracing algorithm to handle datasets that are too large to fit
within the GPU memory. We do assume, however, that the data fits
within the main memory. In order to classify critical points in large
datasets, we view the dataset as an array of scalar field values in
row major order. Thus, each vertex of the grid is mapped to an in-
dex of this array. We partition the array into contiguous subarrays
called blocks. These contiguous blocks partition the n-dimensional
dataset along one of its dimensions, for example along the y-axis
for 2D data and along the z-axis for 3D data. A block is typically
adjacent to two blocks, except for the first and last block which
are adjacent to exactly one block. The domain is partitioned such
that each block fits in the available GPU memory during runtime.
The size of a block is computed based on a linear regression model
that predicts the number of vertices that can be accommodated in
the GPU. The linear regression model is constructed from a series
of experiments on datasets of different sizes executed on different
GPUs.

Critical point classification of vertices that lie on the boundary of
a block requires access to their neighboring vertices. So, we append
each block with a set of ghost vertices constituted by vertices from
the link of the boundary. These ghost vertices are not classified into
regular or critical while processing the block. Critical point classi-
fication of all vertices in a block is computed on the GPU and the
results are transferred to main memory. This process is repeated for
all blocks in sequence. If multiple GPUs are available, then mul-
tiple blocks could be processed concurrently. TACHYON currently
does not utilize multiple GPUs.

We could employ a simple approach for parallel gradient path
tracing after all vertices are processed in the first step. However,
this leads to a waste of CPU resources while the GPU is executing
the first step. An optimal approach utilizes the CPU simultaneously
for gradient path tracing within blocks that are already processed
in the GPU. However, this path tracing is non-trivial. The gradient
path tracing is indeed executed within each block but the task needs
to be temporarily paused when the path reaches the block boundary
and attempts to exit the block. Figure 6 illustrates how such an
approach reduces the idle CPU time.

Gradients paths that need to exit a block are recorded and their
tracing is resumed once the adjacent block is processed by the
GPU. Path tracing in this hybrid mode is performed by maintaining
a list of partially traced paths, whose tracing could not be com-
pleted because it entered a block that is not yet processed by the
GPU to classify the critical points. A partial path is stored as a triple
– the origin saddle, the first vertex on the path, and the last visited
vertex. The first vertex is required to distinguish between all paths
that originate from the saddle. For each partial path, the last visited
vertex is updated when path tracing is paused at a block bound-
ary. Path tracing is resumed when the adjacent block containing the
vertex is processed by the GPU. The tracing of a specific path con-
tinues until a maximum is reached and the overall tracing process
terminates when the list of partial paths is exhausted. Thus, each
vertex on a saddle-maximum path is visited once, which implies
that the worst case running time is determined by the total num-

(a) Sequential, GPU followed by CPU execution.

(b) Hybrid GPU-CPU mode.

Figure 6: Hybrid GPU-CPU parallel computation for a dataset par-
titioned into 4 blocks. In the sequential execution model (a), point
classification step (green) processes the blocks one by one on the
GPU. Gradient path tracing (red) for the blocks executes on the
CPU after point classification is complete for all blocks. The CPU
cores lie idle, waiting for the completion of critical point classifica-
tion for all blocks on the GPU. In the hybrid GPU-CPU mode (b),
gradient path tracing within the first block begins soon after it is
processed by the GPU. The transfer of control from GPU to CPU
for a block is indicated by arrows. The base of the arrow lies at the
finishing time for a block on GPU and the tip lies at the time when
that block is taken up for processing on the CPU.

ber of vertices across all traced paths. The space required for path
tracing is equal to the maximum size of the partial paths list.

The above method can be further optimized by noticing that at
any instant the collection of blocks processed by the GPU thus far
can be viewed as a single but larger contiguous block. This is true if
the blocks are processed in sequence. We fuse the blocks, iteratively
including the next block after point classification is complete. This
fuse step reduces the number of boundary crossings that may occur
during gradient path tracing by simply reducing the number of pos-
sible boundaries to one, thus allowing for a majority of threads to
complete tracing. By nature of this scheme, the extremum graph is
computed without the need of any further processing, once gradient
path tracing is completed for the last block.

5. The TACHYON library

TACHYON (bitbucket.org/vgl_iisc/tachyon) is a C++
software library that enables efficient computation of the extremum
graph by offloading major portions of the computation onto an
Nvidia GPU that supports CUDA. We list below a few salient fea-
tures of the software library:

• Leverages GPU computation power via CUDA kernels to per-
form point classification, an embarrassingly parallel task.

• Written in C++14. Utilizes standard threading libraries and syn-
chronization utilities to implement parallelism for most tasks
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that cannot be performed on GPUs, thereby ensuring ease-of-
installation and portability.

• Generalized to work for n-dimensional scalar fields. Computes
both maximum and minimum graph, as required.

• Automatically switches to a hybrid GPU-CPU mode, on the fly,
for datasets that do not fit in GPU memory.

• Provides graph simplification and cancellation algorithms for
downstream applications of the extremum graph.

• Utilizes code and memory optimization tricks, such as bit ma-
nipulation operations and caching, for effective use of memory.

• Provides a user friendly command line utility to specify input
data format, choice of graph simplification, cancellation algo-
rithms, etc.

The library is designed in a modular fashion. For example, it is
possible to configure TACHYON to perform point classification on
the CPU if NVidia GPUs are not available. On a multi-GPU setup,
it allows a user to select which GPU to utilize for computations.
Further, it can be extended to support multi-GPU computation. The
library has only a small set of dependencies, making it a versatile
tool that can be built and used on a wide variety of workstations.

TACHYON is bundled with a user friendly interface that enables
a non-expert to use the library for computing the extremum graph.
The user interface supports various desired functionalities such as
computation of maximum and/or minimum graphs based on user
requirement, graph cancellation and simplification operations, sup-
port for various data types for storing the scalar field (8/16/32/64-
bit signed/unsigned integers and single/double precision floating
point values).

6. Experimental Results

Experiments were conducted on datasets of sizes varying from
64× 64× 64 to 2048× 2048× 2612. These datasets were ob-
tained from the Open Scientific Visualization Dataset Reposi-
tory [Ope22]. All experiments, unless stated otherwise, were run
on a workstation with an Intel(R) Xeon(R) Gold 6258R CPU
@ 2.70GHz 28 Cores/56 Threads, 640GB RAM, and an Nvidia
GeForce RTX 3080 GPU with 10GB GDDR6X RAM. Runtimes
were computed as an average over five samples after dropping the
best and worst timings out of seven runs. GPU temperatures were
also kept within optimal operating ranges of < 85o C. We have per-
formed experiments to highlight different properties of TACHYON

and to evaluate its performance. Table 2 lists the various datasets
used in the following experiments.

6.1. Internal memory computation

We first evaluate the runtime performance of the algorithm for
datasets that fit within the GPU memory. In this experiment, we
compute the wall clock time for computing the extremum graphs
on a large collection of datasets, see Table 2. These computations
did not require the hybrid GPU-CPU execution. Figure 7 shows the
total runtime and the split up between the two major steps and the
time for data structure updates following the computation. Datasets
that are smaller in size compared to Magnetic Reconnection require
under 2.3s. The figure shows runtimes only for larger datasets that
fit in memory. Our key observations are:

Dataset Size #Critical Pts
Nucleon 41×41×41 421
Silicium 98×34×34 548
Neghip 64×64×64 1646

Fuel 64×64×64 296
Hydrogen 128×128×128 11370

Shockwave 64×64×512 991
Lobster 301×324×56 347207

Head Mri Ventricles 256×256×124 1719145
Engine 256×256×128 501799

Statue Leg 341×341×93 454011
Boston Teapot 256×256×178 101967

Skull 256×256×256 1877366
Foot 256×256×256 788482

Aneurism 256×256×256 60767
Bonsai 256×256×256 210570

Mrt Angio 416×512×112 5146370
Heptane Gas 302×302×302 61212

Stent 512×512×174 3083028
Pancreas 240×512×512 7215261

Backpack 512×512×373 7066081
Magnetic Reconnection 512×512×512 31147751

Zeiss 680×680×680 3209058
Marmoset Neurons 1024×1024×314 56384791

Stag Beetle 832×832×494 852383
Pawpawsaurus 958×646×1088 83014508

Spathorhynchus 1024×1024×750 47569170
Kingsnake 1024×1024×795 32483997

Chameleon 1024×1024×1080 49325513
Beechnut 1024×1024×1546 159472969

Richtmyer Meshkov 2048×2048×1920 31585707
Woodbranch 2048×2048×2048 1520839571
3D Neurons 2048×2048×2384 1913765935

Pig Heart 2048×2048×2612 906730898

Schwefel 3D
128×128×128 to

1688
1024×1024×1024

Table 2: Datasets used in the computational experiments [Ope22],
their size, and the number of critical points. The Schwefel
dataset [Sch81] is resampled on domains of different sizes.

• Time required for critical point classification on the GPU scales
linearly with the domain size.

• Time required for gradient path tracing on the CPU scales
roughly linear with the number of identified saddles.

We also perform this experiment for higher dimensional data by
sampling the Schwefel function [Sch81] on 3-to-6 dimensional do-
mains of varying sizes. Results are shown in Table 3. We again
observe an increase with size of data, particularly the time taken
for critical point classification.

6.2. Hybrid GPU-CPU hybrid computation

In this experiment, we choose the large datasets that do not fit in
GPU memory and required partitioning into multiple blocks. Fig-
ure 8 shows the runtime results for these datasets. We make the
following observations:
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Figure 7: Extremum graph computation for datasets that fit in GPU
memory. The time taken increases with size of dataset and naturally
depends on the number of critical points.

Dataset Size #Critical Pts Computation
time (in secs)

Schwefel 4D
324 8449 0.20
644 15072 0.71

1284 15072 7.84

Schwefel 5D
165 9525 0.33
325 62167 3.87
645 128808 110.01

Schwefel 6D
166 46345 9.13
246 444241 104.46
326 444241 432.54

Table 3: Extremum graph computation for higher dimensional
scalar fields. A significant fraction of time was taken for the critical
point classification step due to the increased neighborhood size.

• Critical point classification time is nearly identical for all
datasets because they have similar size.

• The gradient path tracing step consumes a large fraction of total
runtime.

• An additional factor that influences gradient path tracing time
is the number of paths that cross block boundaries. Such paths
carry a computational overhead.

Figure 8: Performance for large datasets that do not fit in GPU
memory. Runtime broadly depends on data size. Pig Heart has a
small number of critical points, which explains the smaller run-
time. Gradient path tracing constitutes a significant fraction of total
runtime in all cases.

6.3. GPU scaling - varying number of cores

We evaluate the performance of the critical point classification step
across different GPUs. These experiments are performed on the
dataset Zeiss. The aim is to understand whether the computation
scales to the number of available compute units on the GPU. To-
tal computation time is not compared in this experiment because it
is strongly influenced by the number of CPU cores and additional
hardware features. The results are shown in Figure 9. We observe a
monotonically decreasing trend with a good slope, indicating effi-
cient usage of the GPU cores.

Figure 9: GPU scaling results.

6.4. GPU scaling - varying domain size

This experiment aims to establish how well TACHYON utilizes
the available GPU compute resources. We study how performance
varies upon increasing the domain size while fixing the number of
critical points. The Schwefel function [Sch81] is sampled on a 3D
domain. The data, originally available over a 500× 500× 500, is
sampled to obtain datasets over domains whose sizes range from
128×128×128 to 1024×1024×1024. Across all these sampled
functions, the number of critical points and gradient paths do not
change thereby allowing a study of the variation of GPU computa-
tion time with domain size. All GPU cores are used to compute the
extremum graph for this dataset available at different resolutions.
The results are shown in Figure 10. We observe a strong linear de-
pendency on domain size.

Figure 10: GPU scaling study for varying domain size. Experiments
on datasets obtained by sampling the 3D Schwefel function [Sch81]
over different domain sizes reveal a linear relationship between
computation time and domain size.
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6.5. CPU scaling - varying CPU threads

Next, we study scaling behavior by varying the number of CPU
threads. The aim is to study how well TACHYON utilizes the avail-
able parallelism provided by the CPU. In the ideal case, we expect
the computation time to reduce by a factor of two on doubling the
number of threads. The results of the experiment are shown in Fig-
ure 11. We observe that the performance improvements continue
up to 8 threads and taper off afterwards.

Figure 11: CPU scaling study for varying number of CPU threads.
Experiments on the dataset Zeiss show good scaling up to 8 threads.

6.6. Performance comparisons

We now describe results of runtime comparisons against TTK and
pyms3d. Both TTK [TFL∗17] and pyms3d [SN17] support compu-
tation of the complete Morse-Smale complex. The key difference
from TACHYON is that they employ a discrete Morse theory based
approach. As a first step, they compute a discrete gradient field on
the GPU to locate all critical cells. In contrast, TACHYON uses a
lower link based critical point classification to locate nodes of the
extremum graph. They employ a parallel root finding algorithm to
compute the entire descending 3-manifold of all extrema and hence
compute saddle-maxima arcs. In contrast, TACHYON employs gra-
dient path tracing from each saddle to compute the arcs. The gra-
dient field and saddle-extrema arc computation in gMSC [SPN22]
and pyms3d are identical. The only difference between the two
implementations is that gMSC uses CUDA whereas pyms3d uses
OpenCL.

In order to ensure a fair comparison, we configure pyms3d and
TTK to selectively compute the ascending 1-manifolds of 2-saddles
and hence output the extremum graph. The results show that our
implementation is able to compute extremum graphs faster. In some
instances, both TTK and pyms3d fail due to system (GPU/main
memory) resource limitations. We find that TACHYON performs
better, both in terms of running time and utilization of system
resources. Figures 12 and 13 plot the runtimes for increasing
dataset sizes. The running time for TACHYON rises slower com-
pared to TTK and pyms3d. Further, pyms3d ran out of memory
and could not complete execution for larger data sizes. The com-
parison with pyms3d was performed on a workstation with an In-
tel(R) Core(TM) i5-4590 CPU @ 3.30GHz 2 Cores/4 Threads,
16GB RAM, and an Nvidia GeForce GTX 1060 GPU with 6GB
GDDR5 RAM.

Figure 12: Runtime comparison between TACHYON and TTK
[TFL∗17]. TACHYON performs consistently better, often several or-
ders of magnitude faster.

Figure 13: Runtime comparison between TACHYON and
pyms3d [SN17]. TACHYON performs consistently better, of-
ten several orders of magnitude faster.

6.7. Simplification

Finally, we study the ability of the simplification operations to re-
move noise and clutter. We perform three operations on various
datasets with a fixed parameter set: edge bundling, persistence di-
rected cancellation with 5% threshold and saturated persistence
directed simplification with high and low thresholds plo = 5%
and phi = 95%. Figure 5 shows the simplified extremum graphs.
We also study statistics of the size of extremum graph before
and after simplification, see Figure 14. In some noisy datasets, a
small threshold already removes a large fraction of nodes and arcs
whereas in other datasets that contain a smaller number of features,
the reduction is not significant.

Across all results shown in Figure 14, we observe that the num-
ber of arcs is a little over twice the number of saddles, although
these absolute numbers are not depicted in the graph plot. This is
expected, because all saddles have at least two outgoing arcs.

7. Conclusions and Future Work

We have developed TACHYON, a dimension independent, scalable
extremum graph computation library that also supports a hybrid
GPU-CPU mode to process large datasets. This software library
will be released in the public domain for use by the community.
We also describe three methods for simplifying the extremum graph
with the aim of identifying and removing noise, resulting in a clut-
ter free graph that is more amenable for further analysis. Compu-
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Figure 14: Statistics on the fraction of extremum graph nodes and
arcs that survive post simplification. The number of surviving ex-
trema, saddles, and arcs after applying the three simplification op-
erations in sequence are shown as a fraction of the corresponding
numbers in the unsimplified extremum graph.

tational experiments demonstrate good running times and scaling
properties.

Future work includes incorporating support for generic non-
uniform grids and an extension to a distributed setting where the
dataset does not fit in system memory. For the latter problem, an
approach similar to the hybrid GPU-CPU mode where different
processors work on different blocks of the same dataset may work
but the challenge is to reduce the communication necessary to con-
solidate the output.
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