Volume xx (200y), Number z, pp. 1-6

Supplementary Material for “Time-varying Extremum Graphs”

Somenath Das! @, Raghavendra Sridharamurthy] , and Vijay Natarajanl’2

1Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
27Zuse Institute Berlin, Germany

Abstract

This document presents additional material supporting the paper “Time-varying Extremum Graphs”. It provides pseudo-code
for the algorithm and subroutines used for computing the TVEG, and an explanation of the method used to reduce visual
clutter in the TVEG tracks computed for the viscous finger data. Next, it presents an additional comparison of TVEG tracks
computed using varying weights assigned to the correspondence score components. It also presents detailed runtimes for TVEG
computation. Finally, the major aspects of the visual analysis pipeline used in the case studies are explained.

1. Algorithms and psuedocode

We present the pseudocode for all the algorithms related to the computation of TVEG. TEMPORALARCS (Algorithm 1) computes all the
temporal arcs. UPDATEMERGESPLITEDGES (Algorithm 2) updates the set of merge and split event sets after removing the highest score
edge that participates in both a merge and split event. COMPUTESCORES (Algorithm 3) computes and returns the two best correspondences
for each maximum in a time step and the associated scores. FILTERSCORES (Algorithm 4) refines these correspondences based on a threshold
7. DETECTMERGE, DETECTSPLIT, DETECTDEL, DETECTGEN (Algorithms 5,6,7,8) detect topological events merge, split, deletion, and
creation respectively. EXGRAPH3D (Algorithm 9) computes the extremum graph of the time-varying scalar field at a given time step and
simplifies the graph using a threshold 6. For the case studies that involve 3D data, we use EXGRAPH3D to compute extremum graphs, which
in turn calls MS3D [SN12,DFRS14, BGL* 18] to compute the MS complex. The extremum graph could also be directly computed from the
scalar field [CLB11]. Table 2 contains the list of attributes of a critical point in an extremum graph.

2. Selection of TVEG tracks via cropping

TVEG tracks for the viscous fingers dataset includes a clusters of tracks near the domain boundary. These tracks are shorter in length and
clutter the visualization as shown in Figure 1(a). We observed that the major fingers are formed along the central part of the domain and not
near the boundary. The TVEG tracks consisting of temporal arcs that lie near the central part of the domain, shown in red, may be highlighted

oo ."*'., . ‘”’d
B S
\\Lw | \\
. o
oo |
(a) All TVEG tracks (b) Selected tracks after cropping

Figure 1: (a) Computation of all TVEG tracks from the viscous finger dataset . Orange tracks are located near the domain boundary.
(b) Cropping selects the red tracks, which represent the viscous finger formation.

submitted to COMPUTER GRAPHICS Forum (7/2024).

https://orcid.org/0000-0002-3582-7943
https://orcid.org/0000-0001-8463-0488
https://orcid.org/0000-0002-7956-1470

2 S. Das, R. Sridharamurthy & V. Natarajan / Supp. Material - Time-varying Extremum Graphs

(a)

(b)

(©)

Figure 2: Comparison of TVEG tracks computed using different weight combinations assigned to the score components. (G,L)=
(a) (0.25,0.75), (b) (0.5,0.5), and (c) (0.75,0.25). The gray arcs are reported for all weight combinations. Additional arcs for a specific
weight combination are highlighted in pink, yellow, and green, respectively.

by removing the arcs near the boundary. Such a collection of tracks is shown in Figure 1(b). In the paper, we employ cropping to present
the TVEG tracks that play an important role in explaining the data dynamics. Cropping essentially discards temporal arcs whose endpoint
maxima lie within a certain distance threshold from the domain boundary.

3. Qualitative analysis of score components

In this section, we present the results of an additional study that helps understand the contributions of global and local components. This
study supplements the parameter study described in the paper. In Figure 2, the TVEG tracks computed for three different weight assignments
to the score components are presented. The TVEG tracks presented in Figure 2(a) - 2(c) correspond to a gradual increase in weights assigned
to the global component persistence in comparison to the local components. While the gray TVEG tracks are found in common across all
three settings, the exclusive contributions are highlighted in pink, yellow, and green, respectively. We observe that increasing the weight
of the persistence component results in an increase in the number of abrupt jumps within TVEG tracks. Note that the weight assignment
(G,L) = (0.25,0.75) indicates equal assignment of weights to the four score components. This experiment further substantiates our initial
choice of assigning equal weights to all score components for computing TVEG tracks.

4. Runtime analysis for TVEG computation

The datasets in the case studies contain different number of critical points, which is an indicator of the complexity of dynamic behavior in
the data. The time for computing the TVEG naturally depends on the number of critical points and the size of the extremum graph. Table 1
summarizes the time taken by TEMPORALARCS for computing the TVEG. It lists the minimum / average / maximum per time step and the
cumulative running time for TVEG computation of the three datasets. The number of nodes in the extremum graph (total number of maxima
and 2-saddles) are also reported.

submitted to COMPUTER GRAPHICS Forum (7/2024).

S. Das, R. Sridharamurthy & V. Natarajan / Supp. Material - Time-varying Extremum Graphs 3

Table 1: Runtimes for TVEG computation. The min, max, and average entries correspond to running times for processing individual time
steps. Total refers to running time for processing all time steps.

Dataset # Extremum | Running
graph nodes | time (ms)

Gauss8 | Min 14 0.21

Avg 20 0.92

Max 32 3.31

Total 1010 53.69

Viscous fingers | Min 110 7.06
Avg 123 24.62

Max 133 56.17

Total 14798 2963.96

Vortex street | Min 10 0.30
Avg 82 18.67

Max 294 265.85

Total 41883 9595.16

We observe that the Gauss8 data requires significantly less time since it is a small dataset. While the viscous fingers dataset is smaller than
the vortex street dataset, it represents sufficient complexity in terms of temporal dynamics so that the average running time is comparable.
The temporal dynamics of viscous fingers may be inferred from the significant difference between the minimum and maximum running time
for processing one time step. Finally, the vortex street data is most complex, in terms of temporal dynamics, amongst the three datasets.
The difference between the minimum and maximum running time is most significant for this dataset. Though the average running times are
comparable, the vortex street data is significantly larger in size and contains more complex temporal dynamics. There is a long temporal
phase where the size of the extremum graphs are small, followed by a transition to time steps where the extremum graphs are significantly
large. Hence, the cumulative running times is larger for the vortex street dataset.

5. Visual Analysis Pipeline

We illustrate the basic computational, user interaction, and exploration stages involved in a typical visual analysis workflow using Figure 3.
Given an input time-varying scalar field, TVEG computation begins with computation of the MS complex. The computed MS complexes at
each time step are processed to extract the extremum graph. Blocks B and C in Figure 3 show the extremum graphs. Maxima are shown in
red and 2-saddles green. TVEG tracks are computed as a sequence of temporal arcs, which denote correspondences between maxima from
consecutive time steps. Block D shows portion of TVEG tracks within three consecutive time steps. The time direction is chosen as the spatial
direction of growth of the tracks (z-direction in this dataset). The domain is scaled down along the z-axis to distinguish between spatial arcs
of the extremum graph and temporal arcs in the TVEG.

Figure 3 is also used to demonstrate how TVEG can be applied to support simultaneous visualization of data dynamics at both the extremum
graph and global data level. This is possible due to the rich geometric context, in the form of the extremum graph, that is present in the TVEG
and the tracks within. Once computed, a specific portion of TVEG tracks can be chosen to explore the temporal dynamics within the data. For
instance, in Block E, we select a section of TVEG tracks highlighted in brown, where the maxima contribute significantly to finger formation
dynamics. This selection includes a split followed by a merge within three consecutive time steps. This choice lets us focus on the three
corresponding neighborhoods shown in Block F within the extremum graphs where a maximum (in blue) at time step 68 is split into two
maxima (shown in violet and orange) at time 69. The highlighted maxima at time 69 merge again into a maximum (pink) at time 70. From
the extremum graph, we can extract the descending manifolds corresponding to these maxima participating in these topological events to
visualize the resulting effect on the global data dynamics. In Block F, we have highlighted the descending manifolds with the same color
as the corresponding maximum. Thus a TVEG can support visualization of temporal data dynamics influenced by temporal correspondence
between maxima from a chosen TVEG track.

submitted to COMPUTER GRAPHICS Forum (7/2024).

S. Das, R. Sridharamurthy & V. Natarajan / Supp. Material - Time-varying Extremum Graphs

Formation

isosurfaces with
domain boundary

Viscous Finger |

lextremum graph from”’
ms complex

T=71

selection, query and exploration of a few TVEG tracks E

> -

visualizing extremum graphs in the nelghborhood
of the selected TVEG tracks

Figure 3: Workflow of a typical visual analysis task based on the TVEG for the viscous fingers dataset. Individual steps include computation
of the MS complex from the input scalar field (A) and subsequent extraction of extremum graphs (B and C) within each time step. Block
B shows the integral lines representing the skeletal structure of the MS complex. TVEG tracks shown in deep green (D) are computed as a
collection of arcs between a pair of extremum graphs from consecutive time steps. To avoid ambiguity between a spatial and a temporal arc,
the spatial domain is scaled down along the time direction as shown in block D. A typical visualization task involves the selection and display
of a subset of time steps (E) followed by their individual inspection (F). Block E shows time steps that contain TVEG tracks whose constituent
maxima contribute most to the viscous finger formation. The TVEG track of interest and the maxima in the track are highlighted (E). The TVEG
supports visualization of the neighborhood (arcs of extremum graph) of individual nodes of the chosen track. It also supports visualization of

the corresponding dynamic changes (F) in the global data contributed by the maxima. In block F, a maximum and its descending manifold
are highlighted using a common color.

Table 2: List of different fields corresponding to the critical points returned from the EXGRAPH3D subroutine (Algorithm 9)

Fields

Description

id
index

X
n

pers
ascmfold
dscmfold
geom

t

A unique id assigned to the critical point

Index
3D coordinates

Neighborhood contribution

Topological persistence
Ascending manifold
Descending manifold

Ascending / Descending manifold geometry

The time stamp of the scalar field

submitted to COMPUTER GRAPHICS Forum (7/2024).

S. Das, R. Sridharamurthy & V. Natarajan / Supp. Material - Time-varying Extremum Graphs

Algorithm 1: TEMPORALARCS

Input : A set of extremum graphs [G”,...,G’]
Output: Temporal arc set A™*
Topological event sets £™*, £ £9* and £%*

1 Initialization: A «— @ A" «+ o: M «— o, M! « o

/% Initialize M" as maxima set of G’ x/
2 MY — mP
/* Initialize all topological event sets */
3 {gm*7gs*’€d*7gg*}<;®
4 fori< p+1tordo
/+ Initialize M' as maxima set of G */
s | MM
6 | S+« CompuTESCORES(M°,M")
7 S < FILTERSCORES(S)
/* Compute the temporal arc set A’ x/
8 foreach (m°,m' s) € S do
9 ‘ Al — AU (m® m")
10 end
/+ Detect topological events x/
11 E™ + DETECTMERGE(S, i)
12 E® < DETECTSPLIT(S, i)
i | &%« DETECTDEL(S,M", i)
1 | &%« DETECTGEN(S,M')i)
/* Remove z-shape configurations. x/
15 W<+ EMNE*
16 repeat
17 w < MAXSCOREEDGE(W)
18 Al AN\ w
19 EM,E* «+ UPDATEMERGESPLITEDGES (£, %, w)
20 W+ EMNE*
21 until W = ()
/* Populate temporal arc set */
n | A™ AT UA
/+ Update topological event sets x/
23 5171* <_ EITL* Ugm
2 EF g uEs
s | Egtrugd
26 E8* - E8FUES
/+ Re-initialize for next iteration */
7 | Ao, M M
28 end
Algorithm 2: UPDATEMERGESPLITEDGES Update the set of edges participating in merge/split events
Input : Edge sets £, £°, maximum score edge w
QOutput: Modified Edge sets
/* Remove edge adjacent to w in &% and &™ */

u <— edge that participates in split with w
E + EN\{wu}
U < set of edges that participate in merge with w
if U == {u/} then
| &M EM\u
EM <+ EM\w
return £, £°

N R W N =

submitted to COMPUTER GRAPHICS Forum (7/2024).

6 S. Das, R. Sridharamurthy & V. Natarajan / Supp. Material - Time-varying Extremum Graphs

Algorithm 3: COMPUTESCORES Compute all correspondences and scores for a given set of maxima

Input : Two maxima sets MO,M !
Output: A set of optimal scores S = {(u,v,5)} s.t.(u,v) € M* x M and s € R

1 Initialization: S + @
2 foreach m® € M° do

3 Q0+ 0o
4 foreach m' € M' do
/+ Compute score for (m®m!) given weights G,L;,Ly,Ls */

5 s+ G|m°.pers — m" .pers| + Ly | F(m° %) — F(m' %)| + Ly |m® % — m' [+ Ls|m® m —m' m|
6 0+ QUs
7 end

/* Insert two lowest scores to S x/
8 51 <—min(Q),S<—SU(mO7m17s1)
9 | 0+ 0\s
10 s2 <+ min(Q), S eSU(mO,ml,sz)
11 end
12 return S

Algorithm 4: FILTERSCORES Filter the input set of scores based on a threshold

Input : A list of scores S from Algorithm 3
Output: A filtered version of S

—

Initialization:) <+ @
2 foreach (m°,m',s) € S do

3| Y« YuUs
4 end
/+ Compute the mean and standard deviation of all scores x/
5 U< MEAN()), 6 < STD()))
/+* Refine § using the threshold 1 x/
6 T+ U+C
7 foreach (m°,m',s) € S do
8 if s > 1 then
9 ‘ S+ 8\ (m°,m',s)
10 end
u return S
References

[BGL*18] BHATIA H., GYULASSY A. G., LORDI V., PASK J. E., PAscuccI V., BREMER P.-T.: TopoMS: Comprehensive topological exploration for
molecular and condensed-matter systems. Journal of Computational Chemistry 39, 16 (2018), 936-952. doi:10.1002/jcc.25181. 1

[CLB11] CORREA C., LINDSTROM P., BREMER P.-T.: Topological spines: A structure-preserving visual representation of scalar fields. IEEE Transactions
on Visualization and Computer Graphics 17,12 (2011), 1842-1851. doi:10.1109/TVCG.2011.244. 1

[DFRS14] DELGADO-FRIEDRICHS O., ROBINS V., SHEPPARD A.: Skeletonization and partitioning of digital images using discrete Morse theory. /IEEE
Transactions on Pattern Analysis and Machine Intelligence 37, 3 (2014), 654-666. doi:10.1109/TPAMI.2014.2346172. 1

[SN12] SHIVASHANKAR N., NATARAJAN V.: Parallel computation of 3D Morse-Smale complexes. Computer Graphics Forum 31, 3 (2012), 965-974.
doi:10.1111/3.1467-8659.2012.03089.x. 1

submitted to COMPUTER GRAPHICS Forum (7/2024).

https://doi.org/10.1002/jcc.25181
https://doi.org/10.1109/TVCG.2011.244
https://doi.org/10.1109/TPAMI.2014.2346172
https://doi.org/10.1111/j.1467-8659.2012.03089.x

S. Das, R. Sridharamurthy & V. Natarajan / Supp. Material - Time-varying Extremum Graphs

Algorithm 5: DETECTMERGE Detect merge events between two consecutive time steps

Input : A list of scores S from Algorithm 3;
Time step ¢
Output: Set of merges £ in S between time ¢ and 7 + 1
1 Initialization: £ < @
2 foreach (mo,m1 ,5) €S do

3 e« m!
/* Count correspondences mapped to e x/
4 c+ 0, Ko
5 foreach (m°,m' s) € S do
6 ifm' == ¢ then
7 ‘ K Kum®t);cec+1
8 end
/* Merge detected. Update &™ */
9 if ¢ > 1 then
10 | &M EMU(et+1)UK
1 c+— 0 K+ o
12 end
13 return £

Algorithm 6: DETECTSPLIT Detect split events between two consecutive time steps

Input : A list of scores S from Algorithm 3;
Time step ¢
Output: Set of splits £* in S between time and 7 + 1
1 Initialization: £° < @
2 foreach (m°,m',s) € S do

3 e+ m°
/* Count correspondences mapped from e x/
4 c+— 0K+~
5 foreach (m°,m' s) € S do
6 if m* == ¢ then
7 ‘ K+ KU@m' t+1);cc+1
8 end
/+ Split detected. Update &° x/
9 if ¢ > 1 then
10 | &5« & U(e,r)UK
1 c+— 0 K+—o
12 end
13 return &°

submitted to COMPUTER GRAPHICS Forum (7/2024).

S. Das, R. Sridharamurthy & V. Natarajan / Supp. Material - Time-varying Extremum Graphs

Algorithm 7: DETECTDEL Detect deletion events between two consecutive time steps

—

B W N

wn

AN

®

Input : A list of scores S from Algorithm 3;
A list of maxima M’ for time step ¢;
Time step ¢

QOutput: Set &4 with all the deletion events detected from S between time 7 and 7 + 1

Initialization: £¢ « @; K «+ M’
/* Record maxima with no edges to r+1
foreach (mo,m1 ,5) €S do
| K K\m°
end
/+* Add time step information
foreach ¢ € IC do
| & &lU(e,)
end
return &4

*/

*/

Algorithm 8: DETECTGEN Detect generation events between two consecutive time steps

—

w N

® N o wn

Input : A list of scores S from Algorithm 3;
A list of maxima M'*! for time stept+1;
Time step ¢

Output: Set £4 with all the generation events detected from S between time 7 and 7 + 1

Initialization: £% « o; K + M'™!
/* Record maxima with no edges from ¢
foreach (m°,m',s) € S do
‘ K« K\ m!
end
/* Add time step information
foreach ¢ € IC do
| E8 < E8U (et +1)
end
return &%

«/

*/

Algorithm 9: EXGRAPH3D Compute extremum graph

1
2

3

4
5
6
7
8
9

10
11
12
13

Input : A scalar field F(¢) at time step ¢
A persistence threshold 6
Output: Extremum Graph G’ = (V! E')
Initialization: V' «+ &.E!' + &
Compute MS complex: C <~ MS3D(F(¢), 6)
/* Store neighborhood maxima and saddles
foreach ¢ € C do
if c.index == 2 then
M < c.ascmfold
foreach m € M do
m —m, V «Vium'
E' + E'"U(c.id,m.id)
end
e, Vi Viud

end
Vi set(V7)
return G' = (V' E")

*/

submitted to COMPUTER GRAPHICS Forum (7/2024).

