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Abstract

Here we address the problem to detect when two multi-fields are similar or dissimilar topologi-

cally. We propose a similarity measure between two multi-fields in terms of symmetric difference

between their Reeb Spaces. For computation of Reeb Spaces, we use Joint Contour Net (JCN)

which is a quantized approximation of the Reeb Space.

ii



Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures iv

1 Introduction 1

2 Preliminaries 3

3 Related Work 5

4 Methods 7

4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Results 10

5.1 Height and Paraboloid Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Plutonium Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Conclusions and Future Work 21

Bibliography 22

iii



List of Figures

2.1 Showing Level Set and Reeb Graph of the given Manifold . . . . . . . . . . . . . 4

3.1 The method allows pattern matching in multi-fields such as the Hurricane Isabel

data set. The user selects the eye of the hurricane at T=20 using a red box.

This is the input pattern. The algorithm given in [7] uses the 3D SIFT features

of 11 scalar fields simultaneously to find matching patterns in the following time

steps. This amounts to a tracking of the eye of the hurricane. Image adapted

from [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Showing bin count for a particular bin. . . . . . . . . . . . . . . . . . . . . . . . 8

5.1 Histograms (count as no. of nodes) of unperturbed multi-field and height per-

turbed multi-field with perturbation amplitude 1.5 . . . . . . . . . . . . . . . . . 12

5.2 Plot of measure values against different perturbation amplitudes . . . . . . . . . 12

5.3 Histograms (count as size) of unperturbed multi-field and height perturbed multi-

field with perturbation amplitude 1.5 . . . . . . . . . . . . . . . . . . . . . . . . 13

5.4 Plot of size measure values against different perturbation amplitudes . . . . . . 13

5.5 Histograms (count as no. of nodes) of unperturbed multi-field and paraboloid

perturbed multi-field with amplitude 1.5 . . . . . . . . . . . . . . . . . . . . . . 14

5.6 Plot of measure values against different perturbation amplitudes . . . . . . . . . 14

5.7 Histograms of scission data-set for two consecutive time-steps . . . . . . . . . . 15

5.8 Plot of measure values against time-steps for resolution 16 x 2. . . . . . . . . . . 15

5.9 Histograms (count as size) of scission data-set for two consecutive time-steps . . 16

5.10 Plot of size measure values against time-steps for resolution 16 x 2. . . . . . . . 16

5.11 Histograms of scission data-set for two consecutive time-steps . . . . . . . . . . 17

5.12 Plot of measure values against time-steps for resolution 8 x 2. . . . . . . . . . . 17

5.13 Histograms (count as size) of scission data-set for two consecutive time-steps . . 18

iv



LIST OF FIGURES

5.14 Plot of size measure values against time-steps for resolution 8 x 2. . . . . . . . . 18

5.15 Joint Contour Nets for time steps 690 (top left), 692 (top right) and 693 (bottom) 19

5.16 Joint Contour Nets and their slab geometry in domain for time steps 690 (top

left), 692 (top right and bottom left) and 693 (bottom right) for different selected

portions (colored in blue) of corresponding JCN . . . . . . . . . . . . . . . . . . 20

v



Chapter 1

Introduction

Most of the data generated by scientific simulations and experiments include more than one

scalar fields to study. The simulations of combustion, meteorology, molecular physics, fluid dy-

namics and other physical phenomena involve several scalar fields to study such as temperature,

pressure, velocity, vorticity, kinetic energy, etc. One of the important physical phenomena of

nuclear physics in which scientists are very interested is nuclear scission and to find the scission

point at which a nucleus fragments into two parts is a challenging task.

Single field visualization techniques are not sufficient for showing and detecting interaction

and correlations between multi-fields. The study of single scalar field representation, visualiza-

tion and the relationship of one scalar field to another has been done extensively in [9] by V.

Natarajan and M. Thomas and also in [10], [11] using different data structures for scalar fields

and different similarity measures. The similarity between two scalar fields and self-similarity

measure has been shown in [3] and [5] but relationship of one multi-field with another multi-

field or similarity/dissimilarity of one multi-field with another is needed and there has not been

much work done towards this.

So, we study the similarity/dissimilarity of two multi-fields and try to extract relevant

features in the multi-fields and for this we need a measure which can capture the features

between the multi-fields so that we can analyze the underlying phenomena between those multi-

fields.

The study aims to find the similarity between two multi-fields by applying symmetric dif-

ference as a similarity measure on the JCN structure and we propose a method to find the

similarity.

There has been some work on visualizing individual multi-fields and their abstractions like

Multi-dimensional Reeb Graph [4] and JCN [1], [2] but because of very little work on the

comparison of the multi-fields we are encouraged to work in this area.
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By comparing multi-fields we will be able to find the interaction among several scalar fields

and this will in turn help us visualize and understand the underlying phenomena and its rela-

tionships in a much better way.

Our main contributions in this work are:

1. We propose a similarity metric between two multi-fields in terms of symmetric difference

between two JCNs.

2. We apply our method for automatic detection of nuclear scission point in a time-varying

multi-field data of proton and neutron densities of plutonium atom.

Outline : In the next section we discuss some background needed for further discussion. In

section 3, some of the previously done related work is discussed. Section 4 discusses our method

of implementation and the data-sets used. In section 5, some of the experimental results and

observations are shown and section 6 concludes the work with some future work.
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Chapter 2

Preliminaries

The topological properties of a scalar field refer to the topology of the level sets. Consider

f : R3 −→ R to be a scalar field. For c ∈ R, the set f−1(c) = {x ∈ R3|f(x) = c} is called a

level set. We can track the topological feature of the field by tracking the level sets, see Figure

2.1 (a).

Let f be a scalar field, the graph obtained by contracting each connected component of the

level set to a point is called a Reeb Graph, see Figure 2.1 (b).

The differentiable map f : R3 → Rm for m≥1 where f(x) = (f1(x), f2(x), ..., fm(x)) is called

a multi-field. For c ∈ Rm, the set f−1(c) = {x ∈ R3|f(x) = c} is called a fiber (level set in

case of scalar field). In a multivariate data fibers are the intersection of the level sets of each

component of f .

Similar to Reeb graph of a scalar field, Reeb Space captures the fiber topology of a multi-

field. Each connected component of a fiber is called a joint contour and corresponds to a point

in the Reeb space [8].

Hamish Carr and David Duke in [1] present a quantized abstraction of the multi-field Joint

Contour Net. For computing the JCN it takes multiple scalar fields as input, combines it to

make a joint function, then in phase 1 of the JCN construction, it fragments each fields to form

Joint Contour Fragments. In phase 2, it constructs a Dual Graph called Joint Contour Graph

by keeping a node for each joint fragment called a slab and a node is connected to another node

if they are adjacent to each other in the Joint Contour Fragments. In phase 3 and 4 it creates

the JCN by removing the nodes having same function values in Joint Contour Graph.
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(a) Critical level sets where topological changes occur.

(b) Obtaining Reeb Graph from the given Manifold

Figure 2.1: Showing Level Set and Reeb Graph of the given Manifold
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Chapter 3

Related Work

There has been some extensive work done on finding similarity between scalar fields. Himangshu

Saikia et al. [3], present a method to find repeating topological structures in the scalar data

sets. It provides similarity between two scalar fields and self-similarity. It also introduces a

new data structure Extended Branch Decomposition Graph (EBDG). It compares all the sub-

trees of two merge trees in an efficient manner exploiting the redundancy. The method to

compute and compare EBDGs is based on Dynamic Programming. It compares two EBDGs

by computing the cost level by level using bottom-up memoization. This method is stable to

small perturbations and is fast and memory-efficient.

Another similarity measure provided in [5] is the Interleaving Distance between two merge

trees which shows the measure of similarity between them. Interleaving Distance between two

merge trees is the greatest lower bound on “epsilon” for which there are “epsilon-compatible

maps” from one tree to other. Here Interleaving Distance has been defined and proof of stability

against perturbations is given. Also, Bottleneck Distance is defined in [5] and its comparison

to Interleaving Distance against noise is also shown. It is also shown that Interleaving Distance

is never smaller than Bottleneck Distance between persistence diagrams. Bottleneck distance

between two multi-sets of points X and Y is defined as:

dB(X, Y ) = inf sup ||x− γ(x)||∞
γ x

which is the length of the longest edge in the best matching, where γ goes over all possible

bijections between X and Y and ||x − γ(x)||∞ = max{|bx − by|, |dx − dy|}, if x = (bx, by)

and y = (dx, dy). A significant property of bottleneck distance is that it is stable against the

perturbations.

5



Figure 3.1: The method allows pattern matching in multi-fields such as the Hurricane Isabel
data set. The user selects the eye of the hurricane at T=20 using a red box. This is the input
pattern. The algorithm given in [7] uses the 3D SIFT features of 11 scalar fields simultaneously
to find matching patterns in the following time steps. This amounts to a tracking of the eye of
the hurricane. Image adapted from [7].

In Kenes Beketayev et al.[6], to find the topological similarity between two merge trees,

they consider all branch decompositions of both trees and try to find a pair that minimizes

the matching cost between them, where matching cost between two vertices is the maximum of

absolute difference of their corresponding coordinates of the vertices. The branch decomposition

B of a reduced merge tree (a merge tree with purged regular vertices) T is a pairing of all

minima and saddles such that for each pair there exist at least one descending path from

the saddle to the minimum. If Tf and Tg are two merge trees and BTf
= {R1

f , ..., Rk
f} and

BTg = {R1
g, ..., Rk

g} are all possible branch decompositions. Then the distance between merge

trees Tf and Tg is defined as:

dM(Tf , Tg) = min(εmin(Ri
f , ..., Rj

g))

where, Ri
f ∈ BTf

, Rj
g ∈ BTg and εmin(Ri

f , ..., Rj
g) is the smallest ε for which the overall

cost does not exceed the value ε.

A closely related work as ours has been presented by Zhongjie Wang et al. in [7]. This is

an approach to pattern matching in 3D multi-field data. This method does the joint analysis

by bundling information from multiple fields into the “description” of a pattern. It extracts a

sparse set of features for each 3D scalar fields using 3D-SIFT (Scale Invariant Feature transform)

algorithm. Then the user defines a pattern as a set of SIFT features in multiple fields by

“brushing a region of interest”. It locates and rank the matching patterns in the entire

data set (see Figure 3.1).
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Chapter 4

Methods

We define our measure in such a way that takes the symmetric difference of two JCNs and

which can capture the changes or differences between two multi-fields. We take the JCN field

values and combine those field values which have same range to form a histogram, where each

bin in the histogram has a count of the no. of nodes in the JCN having field values in range

same as a bin range (see Figure 4.1).

Consider multi-fields f = (f1, f2) and g = (g1, g2) and JCN corresponding to the multi-field

f , which we name as JCN1.

The field f1 ranges from (fmin1 to fmax1) and field f2 ranges from (fmin2 to fmax2). We

construct a 2D histogram with these 4 boundary points.

Each bin in the histogram has a count which is no. of nodes in the JCN1 falling in that

range of the bin. Similarly, we have another multi-field and its JCN, call it JCN2. We compute

its 2D histogram as well. For example, in figure 4.1, we can see the histogram created with

Paraboloid and Height fields, where Paraboloid and Height field values in the JCN ranges from

-4.8615 to 54.1385 and from -6.49508 to 5.50492 respectively and the count range is shown in

the colorbar.

In figure 4.1, we can see count value for the bin in the range 23 to 27 (x-axis) and -1 to 0

(y-axis) is 82.

We apply our similarity measure for each bin of two histograms which represents the no. of

fiber components and we take difference of count values of all bins of a histogram with another

histogram count values, those differ in no. of fiber components will survive and those which are

equal in number will not contribute to the difference and then we sum up the overall difference

to find how similar/dissimilar they are. The overall measure will be the sum of the absolute

difference between the count values of two histograms divided by the total number of bins.
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Figure 4.1: Showing bin count for a particular bin.

Mathematically, our measure can be defined as:

Measure =

∑B
i=1 |BinCount1i −BinCount2i |

B

where, BinCount1 and BinCount2 are number of points falling in a bin of JCN1 and JCN2

respectively and B is the total number of bins in the histograms.

4.1 Implementation

1. First we take two multi-field data-sets and compute JCN for both multi-fields using the

code given in [12].

2. We plot histograms for both JCNs by choosing the bin width by subdividing the range

of the field values appropriately by experiment.

3. Then we take the BinCounts of each histograms and compute our measure as defined

earlier.

4. We plot a graph of measures computed against different multi-fields to analyze the changes

or relationship between them.
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4.2 Dataset Description

We have used two multi-field data-sets to perform our experiments :

• First multi-field is a simulation data-set consists of Height and Paraboloid fields with

domain 20 x 20 x 20.

• Second multi-field is a real time-varying scission data-set consists of proton density and

neutron density of plutonium atom as two fields having domain 40 x 40 x 66. Scission

data-set is available at 15 different time-steps i.e; [ 665, 670, 675, 680, 685, 686, 687, 688,

689, 690, 692, 693, 694, 695, 699 ].

9



Chapter 5

Results

5.1 Height and Paraboloid Dataset

First we take Height and Paraboloid data-set and perturb Height field at six different ampli-

tudes i.e; at 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5. For perturbing the Height field at amplitude

a we add a uniform random value between −a to +a in the Height field values while keeping

Paraboloid field unperturbed to generate another multi-field, then we compute JCN for this,

plot histograms (Figure 5.1) and compute measure between both multi-fields. Colormap fre-

quency in the histograms are set to be the maximum count among two histograms for the ease

of comparing both visually. Similarly we compute the measure for several other perturbation

amplitudes as well. We also plot a graph of measures against different perturbations (Figure

5.2).

We also plot histograms for the size of the JCN nodes which represents number of fragments

(no. of triangles/tetrahedra) of a node (Figure 5.3). Here each bin count of a histogram contains

the sum of sizes of all the points falling in that range. We plot the graph of measures against

several perturbations and we found a somewhat similar behaviour compared to the previous

plot (Figure 5.4).

Now we perturbed the other field i.e; Paraboloid field and keeping the Height field un-

perturbed and draw histograms (Figure 5.5) then plot the distance measures against different

perturbations (Figure 5.6) and we found similar behaviour in this case as well.
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5.2 Plutonium Dataset

Now we take the scission data-set for 15 time-steps and compute the distance measures between

two histograms corresponding to two consecutive time steps (Figure 5.7). The measure is

computed for (665, 670), (670, 675),(675, 680)...(695, 699) and plotted against the time steps

(Figure 5.8). The plot is a line graph; for example, for the measure between time-steps 665 and

670 we have a horizontal line from time steps 665 to 670 (x-axis) at its corresponding measure

value (y-axis). The highest measure value is marked as red horizontal line.

We have also computed the weighted (count as size) measure for consecutive time steps and

similarly plotted histograms (Figure 5.9) and graph of size distance measures against time-steps

(Figure 5.10). The measures are computed for slab width 16 for proton density and slab width

2 for neutron density with histogram’s bin widths 16 and 2 for proton and neutron respectively.

We have computed the measure for different resolutions as well. When we computed the

measures by taking slab width 8 and 2 for proton and neutron respectively, we found similar

behaviour in the plot of measures vs time-steps (see Figures 5.11, 5.12, 5.13 and 5.14).

In our experiments, we notice several interesting points which was expected from our mea-

sure. First of all, we expect our measure to increase as we increase the perturbation value

and we got the similar behaviour when we computed the measure for Paraboloid and Height

multi-field. We can see in figures 5.2,5.4 and 5.6 that the measure also gradually increases as

we increase the perturbation amplitudes.

Secondly, we wanted our measure to capture an important topological phenomena happening

in multi-field comparison. In figures 5.8 and 5.10, we notice that there is a huge jump (shown

in red) in the measure value between time-step 690 and 692 and actually scission occurs at

time-step 692. So, our measure is able to capture this important phenomena i,e; scission point

in the given data-set.

We can also see the JCNs at time steps 690, 692 and 693 in the figure 5.15. We can easily

observe the split (at tail) in the nodes of the JCN at time step 692 in comparison to JCN at

time step 690.

The slab geometries in their domain corresponding to a selected portion (colored in blue)

of a JCN is also shown in figures 5.16.
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Figure 5.1: Histograms (count as no. of nodes) of unperturbed multi-field and height perturbed
multi-field with perturbation amplitude 1.5

Figure 5.2: Plot of measure values against different perturbation amplitudes
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Figure 5.3: Histograms (count as size) of unperturbed multi-field and height perturbed multi-
field with perturbation amplitude 1.5

Figure 5.4: Plot of size measure values against different perturbation amplitudes
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Figure 5.5: Histograms (count as no. of nodes) of unperturbed multi-field and paraboloid
perturbed multi-field with amplitude 1.5

Figure 5.6: Plot of measure values against different perturbation amplitudes
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Figure 5.7: Histograms of scission data-set for two consecutive time-steps

Figure 5.8: Plot of measure values against time-steps for resolution 16 x 2.
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Figure 5.9: Histograms (count as size) of scission data-set for two consecutive time-steps

Figure 5.10: Plot of size measure values against time-steps for resolution 16 x 2.
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Figure 5.11: Histograms of scission data-set for two consecutive time-steps

Figure 5.12: Plot of measure values against time-steps for resolution 8 x 2.
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Figure 5.13: Histograms (count as size) of scission data-set for two consecutive time-steps

Figure 5.14: Plot of size measure values against time-steps for resolution 8 x 2.
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Figure 5.15: Joint Contour Nets for time steps 690 (top left), 692 (top right) and 693 (bottom)
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Figure 5.16: Joint Contour Nets and their slab geometry in domain for time steps 690 (top left),
692 (top right and bottom left) and 693 (bottom right) for different selected portions (colored
in blue) of corresponding JCN
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Chapter 6

Conclusions and Future Work

We proposed a measure to find the similarity and dissimilarity between two multi-fields which

captures some interesting features of a multi-field. For further analysis one can try this measure

on some other data-sets as well to see the behaviour of the measure. To know some of the

properties of our measure further analysis is needed. The work can be extended to find a

measure for more than two multi-fields and compare them.
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