
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 1

Supplementary Material for “A GPU Parallel
Algorithm for Computing Morse-Smale

Complexes”
Varshini Subhash, Karran Pandey and Vijay Natarajan, Member, IEEE

Abstract

This document presents additional statistics and experimental results supporting the paper “A GPU Parallel Algorithm for
Computing Morse-Smale Complexes”. It includes a table that provides detailed statistics on the number of critical points and
other quantities that help understand the available parallelism for the computation. Experimental results on the performance
of the simplification algorithm for additional datasets, and results of the investigation of different configurations for grid
subdivision and cancellation are presented. Finally, it presents GPU memory usage statistics for large datasets and pseudo
code for different steps of the GPU algorithm.

F

1 MS COMPLEX COMPUTATION : PERFORMANCE ANALYSIS

Table 1 shows the number of junction nodes, 1-saddles, and 2-saddles for all datasets. Figure 1 shows the variation in matrix sparsity
with an increase in dataset size (left to right). All input matrices - A1s− j, B j− j, B*

j−2s, D1s−2s and the final output matrix containing
all 1-saddle–2-saddle connections are shown. Table 1 analyzes the number of sparse matrix multiplication (SpMM) operations between
A1s− j and B j− j, which is the bottleneck in the gradient path counting algorithm.

Dataset Size Number of Junction Nodes 1-Saddles 2-Saddles SpMM Iters
Critical Points

Silicium 98×34×34 1345 6595 527 530 29
Fuel 64×64×64 783 1883 304 266 56

Neghip 64×64×64 6193 17129 2963 1588 79
Tooth 103×94×161 827973 782493 319161 305313 30

Hydrogen 128×128×128 26725 48758 12834 7255 104
Shockwave 64×64×512 2477 5978 1063 898 230

Lobster 301×324×56 1201727 1463191 380903 491555 235
Ventricles 256×256×124 6073455 5032893 2447574 2135388 35

Engine 256×256×128 1541859 2369472 555341 589395 309
Bonsai 256×256×256 567133 1455152 167356 240688 495

Aneurysm 256×256×256 97319 164590 20678 44771 275
Foot 256×256×256 2387205 2716015 872346 913629 419

Turbulence 256×256×256 1474891 3496833 660342 484356 85
Skull 256×256×256 5786993 7275999 2249234 2090146 163

Angio 416×512×112 17811553 14615772 6988385 6470567 21
Isabel-Precip 500×500×100 1705641 1880804 614968 657219 730

Heptane 302×302×302 207431 593989 73659 78871 241

TABLE 1
Statistics for all datasets. Total number of critical points (including saddles and extrema), junction nodes, 1-saddles, and 2-saddles help

understand the available parallelism for the saddle-saddle path computation. The number of A1s− j × B j− j sparse matrix multiplication (SpMM)
iterations is indicative of the time required for the parallel gradient path counting step.

0000–0000/00$00.00 © 2007 IEEE

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 2

Fig. 1. Variation in matrix sparsities for the four input sparse matrices and the output matrix that captures the 1-saddle–2-saddle connections.
Sparsity ratios of A1s− j and B*

j−2s are nearly identical. The matrix B j− j exhibits highest sparsities. Smaller datasets have matrices with lower
sparsity ratios, except Tooth which is noisy. In general, we notice that the matrices are highly sparse, with an overall increase in sparsity ratio with
the size of the dataset. Cleaner datasets such as Aneurysm and Heptane display lower sparsity.

2 MS COMPLEX SIMPLIFICATION : PERFORMANCE ANALYSIS

We present additional details on the quality of simplification obtained by our GPU parallel algorithm for different datasets. We analyze
the number of residual critical points, residual arcs, and strangulations below the chosen 5% threshold. Further, we study the distribution
of critical points by index for all four configurations – the non-conservative and conservative approaches together with the two sequences
of slicing for grid subdivision, XYZ + XYZ and XX + YY + ZZ.

Fig. 2. Comparing the residual number of critical points, arcs, and strangulations (whose persistence is below the threshold) in the simplified MS
complex between serial and parallel simplification (5% threshold). PS denotes the execution of six iterations of parallel simplification followed by
serial simplification. (top to bottom) In small datasets, we notice close matches for the residual number of critical points with the exception of
Hydrogen, Lobster and Turbulence due to excessive creation of strangulations. Parallel cancellation leads to a larger residual number, neutralized
by the subsequent serial cancellation. Number of residual arcs is a close match in small datasets and is smaller in Aneurysm. An increase in
Hydrogen, Lobster and Turbulence is again attributed to excessive strangulations. The number of strangulations are similar in almost all small
datasets, and we observe a sharp reduction from the baseline count (pre-simplification).

Figure 2 depicts the residual critical points, residual arcs, and number of strangulations below a 5% threshold for our chosen
configuration – non-conservative with XX+YY+ZZ grid subdivision. Figure 3 shows the number of strangulations below a 5% threshold
for all four configurations, thus informing our final recommendation. Figure 4 depicts the distribution of residual critical points by index,
i.e. minima, 1-saddles, 2-saddles, and maxima for all configurations. Table 4 shows GPU memory usage estimates for large data sizes.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 3

Fig. 3. Comparative plot of the number of strangulations after serial simplification and parallel simplification, for all four configurations – non-
conservative (NC) and conservative (C) approaches with the two slicing orders, XYZ + XYZ and XX + YY + ZZ. We observe that NC XYZ and
NC XXYYZZ perform better than their conservative counterparts for Tooth, Lobster, Engine, Turbulence, Skull and Ventricles. Small datasets such
as Silicium, Fuel, Shockwave, Neghip, Heptane and larger ones like Aneurysm and Bonsai show similar results for all. Hydrogen, Foot and Isabel
perform better with the NC XXYYZZ and both conservative approaches. In case of Aneurysm, Isabel, and Bonsai, parallel simplification creates
fewer strangulations when compared to the serial algorithm. Overall, we see consistently good performance with the NC XXYYZZ configuration,
which informs our final recommendation. We omit Angio due to the exponential increase in strangulations and long runtimes for the conservative
cases. Raw results for Angio are reported in separate tables.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 4

Fig. 4. Plot of the distribution of residual critical points after serial and parallel simplification. We observe nearly identical results for small datasets like
Silicium, Fuel, Neghip, Shockwave and larger ones like Heptane, Bonsai, Aneurysm, Ventricles, Foot and Isabel. In Hydrogen, Tooth, Turbulence,
Lobster, Engine and Skull, we note that the number of minima and maxima match well but the saddles show an increase with a corresponding
increase in strangulations. We omit Angio in this figure due to the exponential increase in strangulations and large runtimes for the conservative
cases. We include raw results for Angio in separate tables.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 5

Simplification # Minima # 1-Saddles # 2-Saddles # Maxima # Residual # Residual Arcs # Strangulations
Method Critical Points

Serial 6619 120884 122019 7753 257275 85879985 56373884
NC XYZ 6264 129514 130727 7476 273981 158197240 73886320

NC XXYYZZ 6237 129622 130835 7449 274143 144489284 70355751

TABLE 2
Residual number of minima, 1-saddles, 2-saddles, maxima, total critical points, total arcs and strangulations below the chosen 5% threshold for

Angio, after simplification. The non-conservative cases show a good match with the serial counterpart on all counts except for residual arcs which
increases by an order of magnitude. The number of strangulations also shows an increase. We do not report the conservative cases, each of

which take over 1 week (7 days) to run and are not practically usable. However, we do notice a sharp increase in strangulations below the
threshold after subgrid simplification (Table 3) and the bulk of the runtime is spent on the serial simplification that follows.

After Subgrid Simplification
Simplification # Critical Points # Arcs # Strangulations

Method
NC XYZ 301729 164307232 77600012

NC XXYYZZ 294721 103771811 66012796
C XYZ 345103 567206178 289709513

C XXYYZZ 330883 511078497 262222528

TABLE 3
Number of critical points, arcs and strangulations below the chosen 5% threshold for Angio after subgrid simplification. For comparative purposes,
we observe the following numbers before any simplification in Angio: critical points = 17,811,553, arcs = 63,681,723, strangulations = 3,561,462.

The number of critical points and arcs behave similarly across both non-conservative and conservative cases. We observe an increase in
strangulations in the conservative cases by an order of magnitude when compared to non-conservative cases, after subgrid simplification. We note

that this could be a major contributing factor to the blow up in runtimes observed in the serial simplification that follows.

Dataset Size Utilized GPU
Memory (GB)

Pancreas 240×512×512 9.9
Bunny 512×512×361 14.5
Present 492×492×442 16.6

Christmas Tree 512×499×512 20.5
Magnetic Reconnection 512×512×512 8.3

Zeiss 680×680×680 13.8

TABLE 4
GPU memory consumption estimates for 6 datasets that do not fit in memory and terminate prematurely when using gMSC. The GPU used in all

experiments has a memory limit of 11 GB and usable memory between 8-11 GB. We present the GPU memory allocated up to the point of
termination and note that each dataset has a different termination point depending on its size. In some cases, we also note a memory allocation
larger than 11 GB because this includes all memory allocated until the point of termination, including memory that has been freed intermediately.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 6

3 ALGORITHMS

This section provides the pseudocode for the saddle reachability, DAG minor construction, and path counting algorithms for readers
interested in the implementation details.

Algorithm 1: Saddle Reachability
Procedure: PARALLEL BFS
Input: 1-saddles
Output: Visited pairs

1 Init: currsize, nextsize, current, next
2 currsize ← num1s
3 nextsize ← 4× currsize
4 current ← 1s
5 while true do
6 for (i = 0; i < currsize; i = i+1) do
7 p← pair o f co f acet o f current [i]
8 for all valid pairs p do
9 next ← p

10 mark p as visited

11 current.clear()
12 current ← compaction o f next
13 currsize = current.size()
14 if currsize == 0 then
15 break
16 nextsize ← 4× currsize
17 next.resize (nextsize)

Algorithm 2: DAG Minor Construction
Procedure: TRAVERSE MS GRAPH
Input: input ← 1s, j
Output: dest j, dest2s

1 Init: srcs, dest j, dest2s, paths
2 srcs← input
3 dest j.size(), dest2s.size(), paths.size()← 4× srcssize
4 while true do
5 for (i = 0; i < srcs.size(); i = i+1) do
6 c f ct ← co f acet o f srcs[i]
7 if c f ct is a 2-saddle then
8 dest2s ← c f ct
9 return

10 else
11 p← pair o f c f ct
12 if visited[p] && junc[p] then
13 dest j ← p
14 else if visited[p] && ! junc[p] then
15 paths← p

16 srcs.clear()
17 srcs← compaction o f paths
18 if srcs.size() == 0 then
19 break

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 7

Algorithm 3: Path Counting
Procedure: MATRIX MULTIPLY
Input: A1s× j, B j× j, B*

j×2s, D1s×2s
Output: Graph G1s×2s

1 Init: storage1s× j, C1s× j, C*
1s×2s

2 storage1s× j ← A1s× j
3 while true do
4 C1s× j ← A1s× j×B j× j
5 if iter != 1 then
6 storage1s× j ← A1s× j + storage1s× j
7 if C.size() == 0 then
8 break
9 A1s× j ← C1s× j

10 C.clear()
11 iter++

12 C*
1s×2s ← storage1s× j×B*

j×2s
13 G1s×2s ← D1s×2s + C*

1s×2s

	MS complex computation : performance analysis
	MS complex simplification : performance analysis
	Algorithms

