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ABSTRACT
The Bay of Bengal (BoB) fosters several monsoon depressions and cyclones, playing a crucial role
in the Asian summer and winter monsoons. The capacity of the bay to remain warm and energize
such weather systems is attributed to its strong vertical stratification sustained by the large freshwater
input into the bay. River runoff and rainfall into the northern bay in contrast to the high salinity water
intrusion in the south creates a strong north-south salinity gradient. Here, we present a visual analysis
tool to trace the path of the high salinity core (HSC) entering into the BoB from the Arabian Sea. We
introduce two feature definitions that represent the movement and shape of the HSC, and algorithms
to track their evolution over time. The two feature representations, namely fronts and skeletons, are
based on geometric and topological analysis of the HSC. The method is validated via comparison with
well established observations on the flow of the HSC in the BoB, including its entry from the Arabian
Sea and its movement near Sri Lanka. Further, the visual analysis and tracking framework enable
new detailed observations on forking behavior near the centre of the BoB and subsequent northward
movement of the HSC. The tools that we have developed offer new perspectives on the propagation
of high salinity water and its mixing with the ambient low salinity waters.

1. Introduction1

Analysis of large datasets, originating either from obser-2

vations such as satellites or model simulations, is an essen-3

tial component of oceanographic research, a task that entails4

large memory and computational requirements. The prob-5

lem is compounded by the variety amongst different datasets6

in terms of the design of the grid over which it is placed,7

varying resolutions, and uncertainties in the dataset itself.8

These characteristics of the dataset impose formidable chal-9

lenges to the target applications. Analyzing the output of10

models, in particular, is challenging and time-consuming,11

especially in the absence of a suitable interactive analysis12

environment. Here we describe a methodology for the anal-13

ysis of movement and spreading of the high salinity water14

that enters the Bay of Bengal (BoB) from the Arabian Sea.15

The oceanography of the BoB, especially its low salinity16

waters exert a dominant control over its temperature distribu-17

tion and circulation and thus plays a crucial role in breeding18

monsoon depressions and tropical cyclones (Shenoi et al.,19

2002). Such weather systems are crucial either for supply-20

ing the much-needed water to the hinterland or for the dev-21

astation that they bring along their path. Runoff from major22

river systems such as Ganga, Brahmaputra etc., and heavy23

monsoon rainfall cause the salinity of the northern part of24

the BoB to be very low (Behara and Vinayachandran, 2016).25

In order to maintain the salt balance of the bay, an import26

of higher salinity water is required. The source of this high27

salinitywater is the SummerMonsoonCurrent (SMC)which28
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flows eastward from the saltier Arabian Sea into the southern 29

BoB during the summer monsoon (Vinayachandran et al., 30

1999). Owing to the difference in their densities, the Ara- 31

bian Sea water flows into the BoB as a sub-surface (between 32

depths of 50 to 150m) high salinity core (HSC) (Vinayachan- 33

dran et al., 2013). These two sources of contrasting charac- 34

ters create a strong salinity gradient across the BoB, from 35

the region far south to its head near West Bengal. Accord- 36

ing to Vinayachandran et al. (Vinayachandran et al., 2013), 37

there exists a salt pump in the southern BoB, that episodi- 38

cally draws high salinity water from the HSC and mixes with 39

the relatively lower salinity BoB that is present in the near- 40

surface layers. The pathways of the high salinity water into 41

the rest of the BoB is still not known. Tracking the HSC is 42

one of the key challenges in monsoon oceanography which 43

has hitherto not been accomplished. 44

The HSC is a continuously evolving mass of water that 45

undergo irregular and unpredictable transformations in its 46

shape as it moves across the BoB, as a function of time. Ow- 47

ing to the interaction between the HSC and lower salinity 48

water that surrounds the HSC, its temperature and salinity 49

undergoes modifications, making it difficult to track HSC in 50

the parameter space. Therefore, if a feature which changes 51

and evolves along with HSC and, at the same time, is ro- 52

bust enough to be tracked over time can be defined, then it is 53

possible that the space and time evolution of the HSC in the 54

BoB can be delineated. 55

56

Related work. Automation of water mass tracking using 57

T-S diagrams (Talley et al., 2011) is a popular method in 58

descriptive oceanography. A specific water mass of interest 59

may be identified within the T-S diagram and can be tracked 60

within a TS-space even when multiple water masses mix. 61
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This notion of TS-spacewas used byBerglund et al. (Berglund62

et al., 2017) for tracking water masses using a thermoha-63

line stream function. Algorithms for computing these com-64

plex thermohaline stream functions do not scale well with65

increasing data resolution. Additionally, the T-S diagram66

based methods work only when both temperature and salin-67

ity are available for a particular geographical area. This re-68

quirement may often be restrictive. Automatic and semi-69

automatic methods have also been developed for detecting70

and tracking other structures in the ocean such as upwelling71

filaments (Nascimento et al., 2012; Artal et al., 2019).72

We require the salinity core in the BoB to be clearly73

defined using suitable geometric and topological structures.74

We further require the representative structures to be amenable75

to tracking over time. This is different from previous meth-76

ods, which do not track the entire HSC. However, similar77

problems have been studied by the data visualization com-78

munity. Isosurface extraction and display is a popular ap-79

proach to visual exploration of a 3D (volumetric) scalar field.80

An isosurface is the preimage of a given scalar value. The81

isosurface is a collection of points where the scalar field (for82

example, temperature, salinity, pressure, or speed) maps to a83

given constant value. A collection of such isosurfaces over84

a contiguous interval of scalar values constitutes an isovol-85

ume.86

The HSC in the BoB is enclosed by the 35 psu isoha-87

line (Vinayachandran et al., 2013, 2018). Therefore, the rep-88

resentation of the HSC as ≥35 psu isovolume is appropriate89

and efficient when compared to alternatives such as point90

clouds and explicit mesh representations. This is particu-91

larly true in a dynamic setting where the salinity distribu-92

tion changes over time. Thus, we focus our study on the ex-93

traction and temporal evolution of the ≥35 psu isovolume.94

Tracking problems have been extensively studied within the95

field of scalar field visualization (Post et al., 2003; Xie et al.,96

2019). Solutions to the problem typically begin by defining97

a geometric feature, say in the form of an isosurface, which98

is then tracked over time. Bremer et al. (Bremer et al., 2010)99

compute a track graph using a topological structure called100

the Reeb graph, which captures the isosurface connectivity,101

and use it to study temporal evolution of hydrogen flames.102

Ye et al. (Ye et al., 2015) discuss in-situ methods for fea-103

ture extraction and tracking based on isosurfaces and depth104

maps. Widanagamaachchi et al. (Widanagamaachchi et al.,105

2012) describe an interactive tool based on dynamic tracking106

graphs to explore large-scale time varying data. Lukasczyk107

et al. (Lukasczyk et al., 2020) propose dynamic nested track-108

ing graphs, a visual representation of the evolution of isosur-109

faces and their nested structure. Tzeng et al. (Fan-Yin Tzeng110

andKwan-LiuMa, 2005) applymachine learning techniques111

towards the extraction of features and design of transfer func-112

tions or color maps for visualizing time-varying scalar fields.113

Doraiswamy et al. (Doraiswamy et al., 2013) introduce a114

framework to identify and track the movement of cloud sys-115

tems. Agarwal et al. (Agarwal et al., 2019) describe the use116

of topological features for identifying interesting events in117

time-varyingmultivariate data, whereas Pandey et al. (Pandey118

et al., 2020) demonstrate the benefit of an integrated geo- 119

metric and topological approach towards the identification 120

and analysis of Rossby wave packets in the atmosphere. Val- 121

sangkar et al. (Valsangkar et al., 2019) introduce a visual ex- 122

ploration framework to identify cyclones, possibly consist- 123

ing of multiple centres, based on topological features and 124

to visualize their evolution over time. Afzal et al. (Afzal 125

et al., 2019) present RedSeaAtlas, a visual analysis tool for 126

spatio-temporal multivariate data that was created to cater 127

to the needs of scientists who study the Red Sea. Visual- 128

ization and tracking techniques have played a crucial role in 129

the understanding of various phenomena within oceanogra- 130

phy and atmospheric science (Du et al., 2015; Li et al., 2011; 131

Liu et al., 2017; Gad et al., 2018). 132

133

Contributions. All analysis frameworks and visualization 134

techniques mentioned above have been designed to cater to 135

requirements and tasks that are specific to the respective ap- 136

plication, so they are not directly applicable towards the study 137

of high salinity water in the BoB. It is also notable that many 138

of the above-mentioned methods have a significant user in- 139

teraction component. A few methods have proposed feature 140

definitions based on well defined structures such as isosur- 141

faces (Bremer et al., 2010; Ye et al., 2015) in data. This 142

approach is not directly applicable because the salinity lev- 143

els within the HSC is not constant, it varies especially in the 144

outermost layers where it mixes with relatively fresher water. 145

The key challenge in tracking the HSC is that its boundaries 146

are not well defined. Due to the various ocean dynamics 147

processes such as advection by ocean currents, mixing and 148

diffusion, the HSC can be considered to be a continuously 149

evolving mass of salinity that undergoes irregular and un- 150

predictable shape transformations as it moves across BoB. 151

In this paper, we introduce two approaches to represent the 152

HSC and its characteristics, and describe methods to track 153

the movement and evolution of the HSC. The HSC in the 154

southern Bay of Bengal is located between a depth range 155

of 50 – 150m (Vinayachandran et al., 2013), mostly below 156

the intense SMC. The SMC weakens considerably after it 157

crosses the latitude of about 11◦ N, shedding several eddies 158

on its path (Rath et al., 2019). The path of the HSC into the 159

northern Bay of Bengal largely has not yet been documented 160

which can be mostly attributed to the lack of an appropriate 161

tool. Our primary contributions include 162

• Introduction of feature definitions of the HSC based 163

on the notion of fronts and skeletons. 164

• A parallel algorithm for extracting fronts. 165

• Algorithms to track front-based and skeleton-based fea- 166

tures. 167

• An interactive visual analysis tool for analyzing HSC 168

propagation in the BoB. 169

• Newdocumentation on salinity propagation in the BoB. 170
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2. Data171

We use reanalysis data from the Nucleus for European172

Modelling of the Ocean (NEMO) repository (Madec, 2008),173

at daily resolution for themonths June 2016-September 2016,174

a total of 122 time steps. The data is available in NetCDF175

format with a latitude-longitude resolution of 1∕12◦, faith-176

fully representing the variability of the SMC and associated177

water masses (Webber et al., 2018). Salinity values are avail-178

able at 50 vertical levels, which are unequally spaced rang-179

ing from 1m apart near the surface to 450m apart near the sea180

floor, and 22 samples lie within the upper 100m. This data181

is processed to extract a subset corresponding to the BoB, a182

geographical region bounded between longitudes 75◦E and183

96◦E, and latitudes 5◦S to 30◦N . This region is extracted184

using Climate Data Operators (CDO) command line tools185

(Schulzweida, 2019), available formanipulating theNetCDF186

files. Themovement of HSC due to currents is observed only187

in relatively shallow depths. The currents in deeper water are188

weaker, and the salinity changes within these depths are pri-189

marily due to diffusion. Such small scale changes are outside190

the scope of our study. In this paper, we focus on the study191

of salinity levels at depth up to 200m.192

We use Paraview (Ahrens et al., 2005) for visualizing the193

salinity field and for interactive exploration of the HSC, its194

representations, and tracks computed by the methods pro-195

posed in this paper. Paraview uses trilinear interpolation196

within each grid cell to compute a continuous salinity field197

from the samples on the vertices of a regular grid and uses198

this field for generating volume visualizations. Asmentioned199

above, the salinity field is sampled at unequally spaced depth200

levels. We assume linear interpolation along the depth axis201

and resample the salinity at regular depth levels 1m apart up202

to 200m, thereby generating the regular grid used for vol-203

ume visualization. The regularly sampled data is amenable204

to faster processing and results in improved user interaction205

and visualization. All computational experiments and visu-206

alizations in this paper are based on this data sampled on a207

regular grid. The geographical map used in the figures is a208

cropped version of a map from the NASA visible earth cat-209

alog (NASA).210

3. Front-Based Tracking211

The HSC is a continuously evolving water mass. It is dif-212

ficult to study its movement directly in the parameter space.213

We propose two approaches, namely the identification and214

tracking of fronts and skeletons, to study the HSC. These two215

feature representations provide the necessary abstraction to216

capture movement and shape, respectively, of the evolving217

HSC. In this section, we describe the front-based approach218

to tracking the HSC.219

The front is a subset of the boundary of the HSC volume.220

Wedescribe an efficient parallel algorithm for computing the221

fronts as connected components of boundary surfaces, an al-222

gorithm to track them over time, and a representation of the223

track as a spatial curve.224

225

Figure 1: The 2D and 3D neighborhood of a voxel p. The
green points represent voxels that lie within a disk of radius
70 km centered at p′ (top), p (middle), and p′′ (bottom).

Isovolume and surface front. As discussed in Section 2, we 226

interpolate and stored the data on a regular 3D grid. First, we 227

extract the ≥35 psu isovolume and store it as a binary grid 228

where the 1s (ones) represent ≥35 psu and 0s (zeros) repre- 229

sent other values. This isovolume is a coarse representation 230

of the HSC (Vinayachandran et al., 2013, 2018). We propose 231

the identification and tracking of specific components of the 232

boundary surface of the ≥35 psu isovolume. Specifically, 233

we compute a boundary surface component with a predispo- 234

sition to move north, declare it as a front, and track it over 235

time. 236

We refer to each sample point in the regular grid as a
voxel, analogous to a pixel in 2D image or grid. The neigh-
borhood of a voxel is typically defined as the collection of
adjacent voxels, 26 in total if we consider adjacency along
the grid axes and the diagonals. The neighborhood of the
voxel restricted to the horizontal plane consists of 8 voxels.
We generalize this notion of neighborhood to incorporate the
temporal resolution of the data and the speed of the water
current in the BoB. Specifically, data is available to us at a
daily resolution and water masses (SMC in BoB) move up
to 70 km in a day. We define the 2D neighborhoodN2(p, d)of a voxel p at depth d as the collection of voxels that lie
within a disk of radius 70 km. The neighborhood of p in 3D
is defined as the union of the 2D neighborhoods of p and the
voxels p′ and p′′ that lie directly above and below p,

N3(p) = N2(p′, d − 1) ∪N2(p, d) ∪N2(p′′, d + 1).

Figure 1 shows the 2D and 3D neighborhood of a voxel at 237

depth d. We compute the fronts independently within each 238

depth level and stitch them together into a surface front. As 239

a first step, we compute the HSC boundary curve within 240

each depth level and segment each connected component of 241

boundary curve into a north facing segment and a south fac- 242

ing segment. Consider the collection of voxels within the 243

≥35 psu isovolume at time t restricted to a given depth d. 244

This slice of the isovolume is often disconnected, and con- 245

sists of multiple components. A boundary voxel in an iso- 246
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(a) Volume rendering of salinity (b) Isovolume in depth d (c) Boundaries at depth d (d) Fronts at depth d

(e) Surface fronts (f) Isovolume in depth d + 1 (g) Boundaries at depth d + 1 (h) Fronts at depth d + 1

Figure 2: Isovolume boundary and surface fronts. (a) Salinity distribution over the BoB. (b,f) The ≥35 psu isovolume restricted
to depth d and d + 1. (c,g) Multiple components of the boundary of the isovolume restricted to depth d and d + 1. (d,h) Fronts
extracted from the isovolume boundaries. (e) The surface front computed by stitching the fronts across all depths.

volume slice is adjacent to at least one voxel that lies outside247

the ≥35 psu isovolume. The collection of boundary voxels248

constitute the HSC boundary curve Bd,t within depth d and249

time t. As we see in Figures 2(c) and 2(g), a boundary curve250

may consist of multiple components. The north facing seg-251

ments of a boundary Bd,t is defined as the front Fd,t. It is252

computed within each connected component of Bd,t by first253

locating the voxels at the western and eastern extremes and254

tracing the sequence of boundary voxels between the two255

as shown in Figures 2(d) and 2(h). We compute the fronts256

within each depth in parallel.257

258

Computing surface fronts. We stitch the fronts computed259

within each depth using the notion of voxel neighborhood in260

3D. Let p be a voxel lying in component C1 of a front Fd,t.261

If a component C2 of fronts Fd,t, Fd−1,t, or Fd−1,t contains a262

voxel q from N3(p) then we wish to declare that C1 and C2263

belong to a common surface front.264

We construct a graphs whose nodes represent connected265

components of 2D fronts. There exists an edge between two266

nodes if the corresponding front components are adjacent267

to each other as described above. We construct the surface268

fronts as connected components of this graph. Multiple sur-269

face fronts may exist within a time step. We assign a global270

identifier i to each surface front SFt,i within time step t. Fig-271

ure 2(e) shows surface fronts from one time step. The sur-272

face fronts may be computed efficiently using a parallel con-273

nected component algorithm (Han and Wagner, 1990).274

275

Tracking surface fronts. The velocity of SMC in BoB im-276

plies that each surface front that we compute can move a 277

maximumof 70 km in one day (one per time step in our data). 278

If the neighborhood N3(p) of a voxel p in a surface front 279

SFt,i contains a voxel q from SFt+1,j , then we declare that 280

SFt+1,i is either a continuation of SFt,i or is created due to a 281

split event at SFt,i or a merge of SFt,i with another surface 282

front. Essentially, we use the voxel neighborhood to iden- 283

tify correspondence between surface fronts and hence track 284

them over time. We construct a track graph TGf (V ,E), 285

where each surface front is a node in V and all continua- 286

tion/split/merge events are represented as directed arcs from 287

time t to t + 1. It is easy to deduce that this track graph is a 288

directed acyclic graph (DAG). 289

We create a visual embedding of the track graph by rep- 290

resenting each surface front as a point in space. The point 291

is located at the voxel closest to the centroid of all voxels 292

that belong to the surface front. Arcs of the track graph as 293

displayed as straight line edges between the end point nodes. 294

This embedding serves as a useful visual representation of 295

tracks (paths in the track graph). 296

Figure 4 shows the track graph computed by our algo- 297

rithm. Since TGf (V ,E) is a DAG, it contains at least one 298

source and one destination node. The different possiblemove- 299

ment of HSC in the BoB is thus captured as the collection 300

of source to destination paths in this track graph. Figure 3 301

shows the evolution of a single surface front (red) over time 302

together with the representative track (cyan). The number of 303

paths in the track graph is often large in number. We propose 304

two methods in Section 5 for filtering the collection of paths, 305

and hence identify interesting tracks. 306
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3: (a-j) Evolution of a surface front (red) over time. The sequence of representative voxels (yellow) for the surface front,
as it moves in time, together with edges (cyan) connecting the representative voxels constitute a visual representation of the
track.

Figure 4: Track graph TGf computed by our algorithm, which
represents movement of the HSC. Paths in the graph repre-
sent tracks of individual fronts. These tracks may be studied
individually or as clusters to understand, respectively, local and
global movement of the HSC. Arcs of the graph are colored
based on their depth (blue to white).

4. Skeleton-based Tracking307

While front-based tracking captures the movement of the308

boundary of the HSC, it does not necessarily capture differ-309

ences between movement of the entire HSC as opposed to310

an expansion or change of shape of the HSC. We introduce311

a skeleton-based method that aims to capture the change in 312

shape and track movement of the entire HSC. We describe 313

this method as a four stage pipeline that processes the salin- 314

ity field sampled over a 3D regular grid: 315

1. Extract the ≥35 psu isovolume within each time step. 316

2. Compute a skeleton representation for each isovolume. 317

3. Compute a track graph TGs that represents the evolu- 318

tion of the skeletons over time. 319

4. User-driven selection of skeleton evolution tracks. 320

321

Isovolume and skeleton. Topological structures provide ab- 322

stract representations that are amenable for efficient and ro- 323

bust tracking. Popularmethods follow one of two approaches: 324

Morse theory-based or skeleton-based. WhileMorse theory- 325

based approaches like contour trees andReeb graphs are pow- 326

erful and applicable to diverse scenarios, data noise can have 327

an impact on their applicability (Rieck et al., 2017). Hence, 328

we focus on the conceptually simpler skeleton-based approach 329

for tracking the ≥35 psu isovolume. 330

Topological skeletons describe the connectivity between 331

voxels in a volume represented by a 3D grid. Two voxels 332

that differ in exactly one coordinate by a value of 1 are said 333

to be 6-connected. They are 18-connected if they differ in 334

at most two coordinates, and 26-connected if they differ in 335

one or more of the three coordinates. A volumetric skeleton 336

is defined as an unrooted tree whose nodes consist of such 337

6/18/26-connected voxels. Volumetric skeletons are derived 338

from 3D volumes for measurement of length, to determine 339

branching and winding structures, and to serve as a feature 340

descriptor for shape matching. Sato et al. (Sato et al., 2000) 341

introduce an efficient skeletonization algorithm to study 3D 342
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CT and MRI scans. Rieck et al. (Rieck et al., 2017) extend343

this idea to a collection of 2D images to understand the evo-344

lution of so-called viscous fingers in fluids. They implement345

an analysis pipeline to study viscous fingers by tracking them346

using a sequence of skeletons that change over time. We ex-347

tend these ideas to the computationally challenging case of348

3D domains for tracking the ≥35 psu isovolume.349

The first step in the pipeline extracts the ≥35 psu isovol-350

ume as described in Section 3.351

352

HSC skeleton. The second step in the pipeline constructs353

the skeletal structure of isovolumes computed for each time354

step. The TEASAR (Sato et al., 2000) algorithm employs355

a conceptually simple approach for skeletonizing the isovol-356

ume. We use this algorithm to extract the skeletal structure357

as a collection of paths in a graph that represents the isovol-358

ume. Hereafter, we use the term HSC skeleton to refer to359

skeletons extracted from the HSC.360

The algorithm starts by finding a root voxel in a 3D vol-361

ume, then launchesDijkstra’s shortest path algorithm through362

a penalty field in the isovolume to reach the most distant363

unvisited voxel. Voxels in the isovolume are considered as364

nodes of the isovolume graph and the edge set is given by365

pairs of 26-connected voxels. After each pass through the366

isovolume, an iterative thinning procedure marks voxels in367

the neighborhood of the path as visited and removes them368

from the graph for future passes. The thinning is performed369

using a sphere, which determines the size of the neighbor-370

hood of voxels in the path that are to bemarked visited. Thin-371

ning ensures that paths computed in two different passes are372

disconnected. The algorithm uses a few parameters:373

• a scaling term s� and a constant sc . These parameters
control the radius of the sphere

r(x, y, z) = s� ⋅ dB(x, y, z) + sc ,

where dB(x, y, z) represents the distance of a voxel374

with coordinates (x, y, z) from the boundary of the iso-375

volume.376

• a size threshold sn. This threshold is used to cull con-377

nected components of the skeleton. Components with378

fewer than sn nodes are considered as dust pieces and379

discarded.380

After the skeletonization step, we obtain a sequence of HSC381

skeletonsSi, one corresponding to each time step ti. Figure 5382

shows the HSC skeleton extracted from timesteps 33 and 34.383

384

385

Skeleton tracking. The third step in the pipeline tracks the386

skeletons that were constructed in the previous step across387

successive time steps and creates a representation of their388

evolution. Rieck et al. (Rieck et al., 2017) discuss a tracking389

algorithm for tracking skeletons of viscous fingers in 2D.We390

extend this algorithm to track HSC skeletons in 3D. This ex-391

tension is made non-trivial due to the size of the isovolume392

and additional requirement of computing tracks that repre-393

sent significant movement of the skeleton. Our algorithm394

begins by partitioning the connected components (paths) of 395

each skeleton into small line segments. We compute segment- 396

to-segment correspondences instead of voxel-to-voxel corre- 397

spondences, which ensures a good approximation while en- 398

suring a good computational speedup. 399

The HSC skeleton is a collection of directed paths. For
uniformity, we represent each line segment using the start
end point. Given two time steps ti and ti+1, we assign everysegment s in a skeleton Si to the segment s′ in skeleton Si+1that satisfies

s′ = argmin
r∈Si+1

dist(s, r),

where dist(, ) is the Euclidean distance. Likewise, we assign 400

every segment in Si+1 to its nearest neighbor in Si. This 401

assignment results in a set of directed matches between Si 402

and Si+1. Each skeleton segment is guaranteed to occur at 403

least once in the above set of correspondences. We refer to 404

matches from Si to Si+1 as forward matches, and matches in 405

the other direction as backward matches. The collection of 406

forward and backward matches across all time steps is stored 407

as a track graph TGs. Figure 6 shows the forward matches 408

between skeletons S33 and S34 and the track graph that rep- 409

resents movements of all segments of HSC skeletons. 410

411

Query-driven track computation. The final stage in the 412

skeleton-based tracking pipeline is user-driven identification 413

and display of skeleton movement. The motivation for in- 414

cluding this final stage is to generate representative tracks 415

that describes the overall movement of the HSC with a focus 416

on regions selected by the oceanographer. The user interac- 417

tively selects a collection of voxels of interest in the HSC 418

skeleton after observing the track graph TGs or individual 419

skeletons. Tracks passing through the selected voxels are 420

computed via forward and backward path tracing and dis- 421

played as an indicator of propagation routes of salinity. Fig- 422

ure 9 shows tracks computed using this method that depict 423

the movement of the HSC skeleton towards Visakhapatnam. 424

5. Visual Analysis Tool Design 425

All algorithms described in this paper are implemented 426

in Python andwe use Paraview (Ahrens et al., 2005) for visu- 427

alizing the salinity field, HSC, and tracks. Multiple python 428

scripts execute either independently or within the Paraview 429

framework to compute the results. In this section, we de- 430

scribe the functionality and usage of the python scripts and 431

hence the design of the visual analysis tool. A comprehen- 432

sive user manual together with a discussion of dependencies 433

will be made available in the software documentation. 434

435

Input parameters. All parameters used by the algorithm 436

and display routines are specified in a text file. The param- 437

eters are assigned default values that work for most exper- 438

iments, but may be tuned by the user. For example, the 439

latitude-longitude resolution is set to a default value of 1∕12◦. 440

By default, the data is resampled on a regular grid as dis- 441

cussed in Section 2. However, this may be updated to skip 442
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(a) (b) (c) (d)

Figure 5: (a) The ≥35 psu isovolume. (b,c) HSC skeletons for timesteps 33 and 34, respectively. (d) The depth in the isovolume
and skeleton figures is mapped to color using a blue-red colormap.

Figure 6: (left) Forward matches between HSC skeletons S33
and S34. (right) All forward and backward matches are col-
lected together into a track graph TGs that can be queried to
extract interesting tracks or to identify tracks within a specific
region or time period of interest.

the resampling if the input is already available on a regular443

grid in netCDF format. Similarly, all display parameters and444

options may be stored within a Paraview state file to quickly445

load previously generated visualizations.446

447

Front tracking. For visual analysis of the evolution of sur-448

face fronts, we extract 50 (a user-defined constant) paths in449

the track graph TGf . Prior to this, we establish a focus re-450

gion, namely the BoB, by filtering TGf to remove surface451

fronts that lie west of Sri Lanka (using a longitude thresh-452

old). We cluster the paths depending on their source and453

destination points. A standalone python script TrackGraph.py454

computes the HSC boundary, surface fronts, and TGf . It455

stores them in a VTP file that can be read by Paraview for vi-456

sualization. A second script LongPaths.py enumerates paths457

in TGf (typically directed north), selects the longest k paths,458

clusters them into bins specified by their end point locations,459

and finally applies geometric simplification to generate straight460

polylines that represent the tracks. It stores the paths in NPY461

files for further analysis as required. The output of these462

script depend on user specified parameters such as number463

of paths, number of clusters of paths, region of interest spec- 464

ified as latitude-longitude thresholds. 465

We use Paraview to display the track graph and the paths 466

using meaningful colormaps, see Figures 4 and 7. The sys- 467

tem supports queries, where the user may select an area us- 468

ing Paraview which translates to a collection of nodes from 469

the track graph. A script SelectPaths.py works as a pro- 470

grammable filter within Paraview to support the query. It 471

computes all paths in TGf passing through the selected nodes 472

and displays the corresponding tracks. Optionally, the user 473

can load a predefined state file to interact with a default vi- 474

sualization within Paraview consisting of the isovolume and 475

a collection of tracks. 476

477

Skeleton tracking. Similar to front tracking, the visual anal- 478

ysis pipeline for skeleton tracking is designed such that it 479

begins with an automatic mode that constructs the skeletons 480

and the track graph TGs followed by an interactive mode 481

where the user selects points of interest to display select tracks 482

and hence explore the movement of the HSC. The automatic 483

mode involves utilizing two major capabilities of Parview – 484

to programmatically invoke filter functions using the pvpython 485

utility and to run external scripts along with pvpython. A 486

script skeletonize.py implements the TEASAR algorithm (Sato487

et al., 2000) to construct the skeleton of isovolumes at all 488

time steps. Each skeleton is stored as a NetworkX graph. A 489

second script tracking.py traverses the NetworkX graph to 490

compute TGs and stores it in VTP format that can be readily 491

processed by Paraview for visualization and exploration. 492

The oceanographer interacts with the set of temporal tracks 493

stored in TGs using a collection of built-in and programmable 494

filters that help select points of interest. Beginning with the 495

user selected points and tracking backwards and forwards in 496

time, the system identifies tracks that represent likely prop- 497

agation routes of the salinity core. 498

6. Results 499

We now discuss our observations on salinity movement 500

and the evolution of the HSC in the BoB using the methods 501

described in the previous sections. 502
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7: Different tracks extracted from the track graph TGf , grouped together based on their source and destination node in
the graph. (a,b,c,d,e) top view. (f,g,h,i,j) corresponding side view from east.

503

HSC Movement. The HSC, after entering the BoB, un-504

dergoes considerable transformation in its course. The en-505

ergetic fluctuations of the SMC, its meandering and eddy506

shedding behaviors (Rath et al., 2019) induce space time507

variations on depth of penetration, intensity, and advance-508

ment of HSC into the northern BoB. The main branch of509

the SMC splits into multiple branches (Webber et al., 2018;510

George et al., 2019) and consequently, a smooth northward511

or northeastward flow of the HSC is not apparent. The video512

hsc-isovolume accompanying this paper shows themovement513

of the HSC during June-September, 2016. The HSC is rep-514

resented as an isovolume and visualized using volume ren-515

dering, which maps depth to color and transparency. Among516

the distinct patterns, the following appears to be prominent:517

(1) Towards the peak of the summer monsoon season, an an-518

ticyclonic (clockwise) eddy formswhich recirculate theHSC519

back to its core as the core itself propagates westwards. The520

core eventually collapses by the end of the season after it en-521

counters the coast of Sri Lanka. (2) One branch of the HSC522

travels eastward initially but, later in the season, this patch523

moves westward to merge with the main axis of the SMC524

owing to the influence of the westward propagating Rossby525

waves that dominate the dynamics in this regions (Vinay-526

achandran and Yamagata, 1998; Webber et al., 2018; Rath527

et al., 2019). (3) Isolated patches of high salinity water can528

be seen around Sri Lanka at deeper depths (150 – 200m)529

throughout the season. (4) The leading edge of the HSC530

bends anticlockwise, meanders, detaches from the main axis531

as an eddy, and then moves northwestward towards Visakha-532

patnam retaining its high salinity character for a long dis-533

tance, see also Figures 7 and 9.534

535

Validation. The accompanying video hsc-front-track shows536

how the surface front of the isovolume is correctly tracked537

and represented as a path in 3D. The isovolumes tracked by538

the method presented in this study are consistent with pre-539

viously published data. Vinayachandran et al. (Vinayachan- 540

dran et al., 2013) clearly identify the region in the south- 541

ern BoB where the HSC enters from the Arabian Sea, af- 542

ter surrounding the Sri Lanka Dome(SLD) (Sanchez-Franks 543

et al., 2019). The westward propagation of SMC and its sep- 544

aration from the east coast of Sri Lanka is consistent with 545

the BoBBLE observations presented by Vinayachandran et 546

al. (Vinayachandran et al., 2018) and Webber et al. (Webber 547

et al., 2018). George et al. (George et al., 2019) have delin- 548

eated the forking of the HSC into three directions after enter- 549

ing the BoB and turning around the SLD. Our methods re- 550

produce visualizations of these observations (Figure 9). The 551

eastward tracks of HSC and its re-circulation are consistent 552

with the analysis presented by George et al. (George et al., 553

2019). Detailed documentation of the flow of the HSC into 554

the northern BoB is not yet available and we hope that the 555

snapshots presented here (Figures 7(e,j) and 8) will provide 556

useful guidelines for future efforts in this direction. 557

558

Visual analysis of tracks. Several new features of the paths 559

of the HSC in the northern Bay of Bengal have emerged 560

from this study. The model outputs used here analyzed prod- 561

ucts that ingest available observations into it, which improve 562

the reliability of the results. The longest track of HSC, af- 563

ter entering BoB, passes through the centre and then turns 564

west towards the coast at Visakhapatnam. Such paths can be 565

seen in Figure 7(d) which was generated using front-based 566

tracking method and Figure 9 which was generated using the 567

skeleton-based tracking method. Both figures show similar 568

trends in the temporal evolution of the HSC. There have been 569

observations of high salinity patches in the depth range of 570

100 – 200 m (Sasamal, 1990), which are in support of the 571

results obtained from our analysis. 572

Some tracks start near Sri Lanka and terminate near the 573

Visakhapatnam coast (Figure 7(a,f,d,i)) while passing through 574

the BoB, others stop near the centre of BoB (Figure 7(b,g), 575

and a few turn toward the coast of Andaman and Nicobar 576
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Figure 8: Interactive queries to study local movement of HSC. (left) The track graph TGf colored (blue to white) based on depth
and a collection of graph nodes (pink) selected by the user. The selected nodes correspond to representative voxels of different
surface fronts. (right) Tracks that contain the selected nodes are extracted from the graph and displayed on demand.

Figure 9: Representative tracks that depict movement of the
HSC skeleton. Tracks are computed against a user specified
query consisting of points near south of BoB, Visakhapatnam
coast, and Andaman coast.

islands (Figure 7(c,h). We observe a similar behavior even577

when we increase the number of extracted tracks from 50 to578

100. This offers an alternate method to delineate the path of579

the SMC and the HSC. After reaching almost the centre of580

BoB it forks and moves in two directions. Tracks computed581

using the skeleton-based approach corroborates this finding,582

see Figure 9. Vinayachandran et al. (Vinayachandran et al.,583

2013) report about the SLD, which is a cyclonic (anticlock-584

wise) eddy caused by cyclonic curl in the local wind field.585

The SLD is evident in our results (Figure 9). We observed586

a considerable reduction in the number of matches (arcs) in587

TGs while passing through this region.588

Wealso observed amovement of high salinitywater from589

Visakhapatnam coast towards north, along the coast of India.590

From the track graph, it is clear that this track is not a contin- 591

uation of the HSC component that reached Visakhapatnam 592

coast because this path originates at a time when the HSC 593

is still entering the BoB near Sri Lanka. Using the query 594

system, we can extract the required tracks (Figures 8 and 9). 595

This movement, most probably, is a result of high salinity 596

water pockets near Visakhapatnam coast persisting from the 597

previous year. 598

599

Computational performance. All steps in the track graph 600

computation require a linear running time because we iter- 601

ate over the regular grid, boundary voxels, and surface fronts 602

only a constant number of times. Hence, the worst case run- 603

time complexity of the track graph computation is linear in 604

the input grid size. Computing one path in the track graph 605

takes O(|E| log |V |) time using Dijkstra’s algorithm (Cor- 606

men et al., 2009, Chapter 24). But, the time required for 607

computing multiple paths is a function of both the number 608

of paths and the size of the track graph. The worst case run- 609

ning time for computing the skeletons also requires repeated 610

application of Dijkstra’s algorithm and takes O(|E| log |V |) 611

time. 612

7. Conclusions 613

The skeleton-based tracking method provides an over- 614

all picture of how the shape of HSC evolves over time in 615

the BoB because the skeleton represents the global shape of 616

the isovolume. The front-based tracking method provides 617

concrete tracks describing the movement of the HSC. These 618

complementarymethods produce results that corroborate each 619

other. We validate the results by comparing it with prior ob- 620

servations and via visual comparison of the tracks and vol- 621

ume rendering of the HSC, see videos in supplementary ma- 622

terial. In future, we wish to incorporate a model of salt dif- 623

fusion across the fronts to further understand the tracks and 624
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salinity distribution within the BoB. We will also incorpo-625

rate other physical quantities measured over the region to-626

wards an improved understanding of the interplay between627

monsoons and oceanography of the region.628

The tracking methods discussed in this paper is suitable629

for application to other regions as well for tracking water630

masses. For example, thesemethods can be used for tracking631

the flow of Mediterranean Sea Water in the Atlantic Ocean632

(Richardson et al., 2000) or to study the movement of North633

Atlantic DeepWater (Dickson and Brown, 1994) on a global634

scale. The method is, in principle, applicable to the study635

of propagation of salinity or other physical quantities irre-636

spective of the region. However, the parameters may have to637

be tuned appropriately. The track graph is computed within638

each depth slice independently. This allows the method to639

be applicable to larger regions. Subsequent track search and640

queries do require the entire track graph to be resident in641

memory, and hence require improvements in order to scale642

to large data sizes. Parallelizing different steps of themethod643

will lead to better run-time performance.644
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