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ABSTRACT

The Bay of Bengal (BoB) fosters several monsoon depressions and cyclones, playing a crucial role
in the Asian summer and winter monsoons. The capacity of the bay to remain warm and energize
such weather systems is attributed to its strong vertical stratification sustained by the large freshwater
input into the bay. River runoff and rainfall into the northern bay in contrast to the high salinity water
intrusion in the south creates a strong north-south salinity gradient. Here, we present a visual analysis
tool to trace the path of the high salinity core (HSC) entering into the BoB from the Arabian Sea. We
introduce two feature definitions that represent the movement and shape of the HSC, and algorithms
to track their evolution over time. The two feature representations, namely fronts and skeletons, are
based on geometric and topological analysis of the HSC. The method is validated via comparison with
well established observations on the flow of the HSC in the BoB, including its entry from the Arabian
Sea and its movement near Sri Lanka. Further, the visual analysis and tracking framework enable
new detailed observations on forking behavior near the centre of the BoB and subsequent northward
movement of the HSC. The tools that we have developed offer new perspectives on the propagation
of high salinity water and its mixing with the ambient low salinity waters.

1. Introduction

Analysis of large datasets, originating either from obser-
vations such as satellites or model simulations, is an essen-
tial component of oceanographic research, a task that entails
large memory and computational requirements. The prob-
lem is compounded by the variety amongst different datasets
in terms of the design of the grid over which it is placed,
varying resolutions, and uncertainties in the dataset itself.
These characteristics of the dataset impose formidable chal-
lenges to the target applications. Analyzing the output of
models, in particular, is challenging and time-consuming,
especially in the absence of a suitable interactive analysis
environment. Here we describe a methodology for the anal-
ysis of movement and spreading of the high salinity water
that enters the Bay of Bengal (BoB) from the Arabian Sea.

The oceanography of the BoB, especially its low salinity
waters exert a dominant control over its temperature distribu-
tion and circulation and thus plays a crucial role in breeding
monsoon depressions and tropical cyclones (Shenoi et al.,
2002). Such weather systems are crucial either for supply-
ing the much-needed water to the hinterland or for the dev-
astation that they bring along their path. Runoff from major
river systems such as Ganga, Brahmaputra etc., and heavy
monsoon rainfall cause the salinity of the northern part of
the BoB to be very low (Behara and Vinayachandran, 2016).
In order to maintain the salt balance of the bay, an import
of higher salinity water is required. The source of this high
salinity water is the Summer Monsoon Current (SMC) which

*Corresponding author
5 upkarsingh@iisc.ac.in (U. Singh); dhipuganeshegmail.com (T.M.
Dhipu); vinay@iisc.ac.in (P.N. Vinayachandran); vijayneiisc.ac.in (V.
Natarajan)

flows eastward from the saltier Arabian Sea into the southern
BoB during the summer monsoon (Vinayachandran et al.,
1999). Owing to the difference in their densities, the Ara-
bian Sea water flows into the BoB as a sub-surface (between
depths of 50 to 150m) high salinity core (HSC) (Vinayachan-
dran et al., 2013). These two sources of contrasting charac-
ters create a strong salinity gradient across the BoB, from
the region far south to its head near West Bengal. Accord-
ing to Vinayachandran et al. (Vinayachandran et al., 2013),
there exists a salt pump in the southern BoB, that episodi-
cally draws high salinity water from the HSC and mixes with
the relatively lower salinity BoB that is present in the near-
surface layers. The pathways of the high salinity water into
the rest of the BoB is still not known. Tracking the HSC is
one of the key challenges in monsoon oceanography which
has hitherto not been accomplished.

The HSC is a continuously evolving mass of water that
undergo irregular and unpredictable transformations in its
shape as it moves across the BoB, as a function of time. Ow-
ing to the interaction between the HSC and lower salinity
water that surrounds the HSC, its temperature and salinity
undergoes modifications, making it difficult to track HSC in
the parameter space. Therefore, if a feature which changes
and evolves along with HSC and, at the same time, is ro-
bust enough to be tracked over time can be defined, then it is
possible that the space and time evolution of the HSC in the
BoB can be delineated.

Related work. Automation of water mass tracking using
T-S diagrams (Talley et al., 2011) is a popular method in
descriptive oceanography. A specific water mass of interest
may be identified within the T-S diagram and can be tracked
within a TS-space even when multiple water masses mix.
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Front and Skeleton Features Based Methods for Tracking Salinity Propagation in the Ocean

This notion of TS-space was used by Berglund et al. (Berglund
et al., 2017) for tracking water masses using a thermoha-
line stream function. Algorithms for computing these com-
plex thermohaline stream functions do not scale well with
increasing data resolution. Additionally, the T-S diagram
based methods work only when both temperature and salin-
ity are available for a particular geographical area. This re-
quirement may often be restrictive. Automatic and semi-
automatic methods have also been developed for detecting
and tracking other structures in the ocean such as upwelling
filaments (Nascimento et al., 2012; Artal et al., 2019).

We require the salinity core in the BoB to be clearly
defined using suitable geometric and topological structures.
We further require the representative structures to be amenable
to tracking over time. This is different from previous meth-
ods, which do not track the entire HSC. However, similar
problems have been studied by the data visualization com-
munity. Isosurface extraction and display is a popular ap-
proach to visual exploration of a 3D (volumetric) scalar field.
An isosurface is the preimage of a given scalar value. The
isosurface is a collection of points where the scalar field (for
example, temperature, salinity, pressure, or speed) maps to a
given constant value. A collection of such isosurfaces over
a contiguous interval of scalar values constitutes an isovol-
ume.

The HSC in the BoB is enclosed by the 35 psu isoha-
line (Vinayachandran et al., 2013, 2018). Therefore, the rep-
resentation of the HSC as >35 psu isovolume is appropriate
and efficient when compared to alternatives such as point
clouds and explicit mesh representations. This is particu-
larly true in a dynamic setting where the salinity distribu-
tion changes over time. Thus, we focus our study on the ex-
traction and temporal evolution of the >35 psu isovolume.
Tracking problems have been extensively studied within the
field of scalar field visualization (Post et al., 2003; Xie et al.,
2019). Solutions to the problem typically begin by defining
a geometric feature, say in the form of an isosurface, which
is then tracked over time. Bremer et al. (Bremer et al., 2010)
compute a track graph using a topological structure called
the Reeb graph, which captures the isosurface connectivity,
and use it to study temporal evolution of hydrogen flames.
Ye et al. (Ye et al., 2015) discuss in-situ methods for fea-
ture extraction and tracking based on isosurfaces and depth
maps. Widanagamaachchi et al. (Widanagamaachchi et al.,
2012) describe an interactive tool based on dynamic tracking
graphs to explore large-scale time varying data. Lukasczyk
et al. (Lukasczyk et al., 2020) propose dynamic nested track-
ing graphs, a visual representation of the evolution of isosur-
faces and their nested structure. Tzeng et al. (Fan-Yin Tzeng
and Kwan-Liu Ma, 2005) apply machine learning techniques
towards the extraction of features and design of transfer func-
tions or color maps for visualizing time-varying scalar fields.
Doraiswamy et al. (Doraiswamy et al., 2013) introduce a
framework to identify and track the movement of cloud sys-
tems. Agarwal et al. (Agarwal et al., 2019) describe the use
of topological features for identifying interesting events in
time-varying multivariate data, whereas Pandey et al. (Pandey

et al., 2020) demonstrate the benefit of an integrated geo-
metric and topological approach towards the identification
and analysis of Rossby wave packets in the atmosphere. Val-
sangkar et al. (Valsangkar et al., 2019) introduce a visual ex-
ploration framework to identify cyclones, possibly consist-
ing of multiple centres, based on topological features and
to visualize their evolution over time. Afzal et al. (Afzal
et al., 2019) present RedSeaAtlas, a visual analysis tool for
spatio-temporal multivariate data that was created to cater
to the needs of scientists who study the Red Sea. Visual-
ization and tracking techniques have played a crucial role in
the understanding of various phenomena within oceanogra-
phy and atmospheric science (Du et al., 2015; Liet al., 2011;
Liu et al., 2017; Gad et al., 2018).

Contributions. All analysis frameworks and visualization
techniques mentioned above have been designed to cater to
requirements and tasks that are specific to the respective ap-
plication, so they are not directly applicable towards the study
of high salinity water in the BoB. It is also notable that many
of the above-mentioned methods have a significant user in-
teraction component. A few methods have proposed feature
definitions based on well defined structures such as isosur-
faces (Bremer et al., 2010; Ye et al., 2015) in data. This
approach is not directly applicable because the salinity lev-
els within the HSC is not constant, it varies especially in the
outermost layers where it mixes with relatively fresher water.
The key challenge in tracking the HSC is that its boundaries
are not well defined. Due to the various ocean dynamics
processes such as advection by ocean currents, mixing and
diffusion, the HSC can be considered to be a continuously
evolving mass of salinity that undergoes irregular and un-
predictable shape transformations as it moves across BoB.
In this paper, we introduce two approaches to represent the
HSC and its characteristics, and describe methods to track
the movement and evolution of the HSC. The HSC in the
southern Bay of Bengal is located between a depth range
of 50 — 150m (Vinayachandran et al., 2013), mostly below
the intense SMC. The SMC weakens considerably after it
crosses the latitude of about 11° N, shedding several eddies
on its path (Rath et al., 2019). The path of the HSC into the
northern Bay of Bengal largely has not yet been documented
which can be mostly attributed to the lack of an appropriate
tool. Our primary contributions include

e Introduction of feature definitions of the HSC based
on the notion of fronts and skeletons.

e A parallel algorithm for extracting fronts.

e Algorithms to track front-based and skeleton-based fea-
tures.

e An interactive visual analysis tool for analyzing HSC
propagation in the BoB.

e New documentation on salinity propagation in the BoB.
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2. Data

We use reanalysis data from the Nucleus for European
Modelling of the Ocean (NEMO) repository (Madec, 2008),
at daily resolution for the months June 2016-September 2016,
a total of 122 time steps. The data is available in NetCDF
format with a latitude-longitude resolution of 1/12°, faith-
fully representing the variability of the SMC and associated
water masses (Webber et al., 2018). Salinity values are avail-
able at 50 vertical levels, which are unequally spaced rang-
ing from 1m apart near the surface to 450m apart near the sea
floor, and 22 samples lie within the upper 100m. This data
is processed to extract a subset corresponding to the BoB, a
geographical region bounded between longitudes 75° E and
96° E, and latitudes 5°S to 30° N. This region is extracted
using Climate Data Operators (CDO) command line tools
(Schulzweida, 2019), available for manipulating the NetCDF
files. The movement of HSC due to currents is observed only
in relatively shallow depths. The currents in deeper water are
weaker, and the salinity changes within these depths are pri-
marily due to diffusion. Such small scale changes are outside
the scope of our study. In this paper, we focus on the study
of salinity levels at depth up to 200m.

We use Paraview (Ahrens et al., 2005) for visualizing the
salinity field and for interactive exploration of the HSC, its
representations, and tracks computed by the methods pro-
posed in this paper. Paraview uses trilinear interpolation
within each grid cell to compute a continuous salinity field
from the samples on the vertices of a regular grid and uses
this field for generating volume visualizations. As mentioned
above, the salinity field is sampled at unequally spaced depth
levels. We assume linear interpolation along the depth axis
and resample the salinity at regular depth levels 1 m apart up
to 200m, thereby generating the regular grid used for vol-
ume visualization. The regularly sampled data is amenable
to faster processing and results in improved user interaction
and visualization. All computational experiments and visu-
alizations in this paper are based on this data sampled on a
regular grid. The geographical map used in the figures is a
cropped version of a map from the NASA visible earth cat-
alog (NASA).

3. Front-Based Tracking

The HSC is a continuously evolving water mass. Itis dif-
ficult to study its movement directly in the parameter space.
We propose two approaches, namely the identification and
tracking of fronts and skeletons, to study the HSC. These two
feature representations provide the necessary abstraction to
capture movement and shape, respectively, of the evolving
HSC. In this section, we describe the front-based approach
to tracking the HSC.

The front is a subset of the boundary of the HSC volume.
We describe an efficient parallel algorithm for computing the
fronts as connected components of boundary surfaces, an al-
gorithm to track them over time, and a representation of the
track as a spatial curve.

d-1 O =
@
®
Depth d 70 kem
o p
®
2]
d+1 (2}
@ 7L 70 km o

Figure 1: The 2D and 3D neighborhood of a voxel p. The
green points represent voxels that lie within a disk of radius
70 km centered at p’ (top), p (middle), and p” (bottom).

Isovolume and surface front. As discussed in Section 2, we
interpolate and stored the data on aregular 3D grid. First, we
extract the >35 psu isovolume and store it as a binary grid
where the 1s (ones) represent >35 psu and Os (zeros) repre-
sent other values. This isovolume is a coarse representation
of the HSC (Vinayachandran et al., 2013, 2018). We propose
the identification and tracking of specific components of the
boundary surface of the >35 psu isovolume. Specifically,
we compute a boundary surface component with a predispo-
sition to move north, declare it as a front, and track it over
time.

We refer to each sample point in the regular grid as a
voxel, analogous to a pixel in 2D image or grid. The neigh-
borhood of a voxel is typically defined as the collection of
adjacent voxels, 26 in total if we consider adjacency along
the grid axes and the diagonals. The neighborhood of the
voxel restricted to the horizontal plane consists of 8 voxels.
We generalize this notion of neighborhood to incorporate the
temporal resolution of the data and the speed of the water
current in the BoB. Specifically, data is available to us at a
daily resolution and water masses (SMC in BoB) move up
to 70 km in a day. We define the 2D neighborhood N, (p, d)
of a voxel p at depth d as the collection of voxels that lie
within a disk of radius 70 km. The neighborhood of p in 3D
is defined as the union of the 2D neighborhoods of p and the
voxels p’ and p'’ that lie directly above and below p,

N3(p) = Ny(p',d = ) U Ny(p,d) U Ny(p"',d + ).

Figure 1 shows the 2D and 3D neighborhood of a voxel at
depth d. We compute the fronts independently within each
depth level and stitch them together into a surface front. As
a first step, we compute the HSC boundary curve within
each depth level and segment each connected component of
boundary curve into a north facing segment and a south fac-
ing segment. Consider the collection of voxels within the
>35 psu isovolume at time ¢ restricted to a given depth d.
This slice of the isovolume is often disconnected, and con-
sists of multiple components. A boundary voxel in an iso-
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Figure 2: Isovolume boundary and surface fronts. (a) Salinity distribution over the BoB. (b,f) The >35 psu isovolume restricted
to depth d and d + 1. (c,g) Multiple components of the boundary of the isovolume restricted to depth d and d + 1. (d,h) Fronts
extracted from the isovolume boundaries. (e) The surface front computed by stitching the fronts across all depths.

volume slice is adjacent to at least one voxel that lies outside
the >35 psu isovolume. The collection of boundary voxels
constitute the HSC boundary curve B, , within depth ¢ and
time z. As we see in Figures 2(c) and 2(g), a boundary curve
may consist of multiple components. The north facing seg-
ments of a boundary B, is defined as the front F, . It is
computed within each connected component of B, , by first
locating the voxels at the western and eastern extremes and
tracing the sequence of boundary voxels between the two
as shown in Figures 2(d) and 2(h). We compute the fronts
within each depth in parallel.

Computing surface fronts. We stitch the fronts computed
within each depth using the notion of voxel neighborhood in
3D. Let p be a voxel lying in component C; of a front F, ,.
If a component C, of fronts Fy ,, F;_,,, or F,;_; , contains a
voxel g from N;(p) then we wish to declare that C; and C,
belong to a common surface front.

We construct a graphs whose nodes represent connected
components of 2D fronts. There exists an edge between two
nodes if the corresponding front components are adjacent
to each other as described above. We construct the surface
fronts as connected components of this graph. Multiple sur-
face fronts may exist within a time step. We assign a global
identifier i to each surface front S F, ; within time step 7. Fig-
ure 2(e) shows surface fronts from one time step. The sur-
face fronts may be computed efficiently using a parallel con-
nected component algorithm (Han and Wagner, 1990).

Tracking surface fronts. The velocity of SMC in BoB im-

plies that each surface front that we compute can move a
maximum of 70 km in one day (one per time step in our data).
If the neighborhood N;(p) of a voxel p in a surface front
SF,; contains a voxel g from SF,, ;, then we declare that
S'F, 4 is either a continuation of S F, ; or is created due to a
split event at SF;; or a merge of S'F,; with another surface
front. Essentially, we use the voxel neighborhood to iden-
tify correspondence between surface fronts and hence track
them over time. We construct a track graph TG f(V, E),
where each surface front is a node in V" and all continua-
tion/split/merge events are represented as directed arcs from
time 7 to ¢ + 1. It is easy to deduce that this track graph is a
directed acyclic graph (DAG).

We create a visual embedding of the track graph by rep-
resenting each surface front as a point in space. The point
is located at the voxel closest to the centroid of all voxels
that belong to the surface front. Arcs of the track graph as
displayed as straight line edges between the end point nodes.
This embedding serves as a useful visual representation of
tracks (paths in the track graph).

Figure 4 shows the track graph computed by our algo-
rithm. Since TG f(V, E) is a DAG, it contains at least one
source and one destination node. The different possible move-
ment of HSC in the BoB is thus captured as the collection
of source to destination paths in this track graph. Figure 3
shows the evolution of a single surface front (red) over time
together with the representative track (cyan). The number of
paths in the track graph is often large in number. We propose
two methods in Section 5 for filtering the collection of paths,
and hence identify interesting tracks.
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Figure 3: (a-j) Evolution of a surface front (red) over time. The sequence of representative voxels (yellow) for the surface front,
as it moves in time, together with edges (cyan) connecting the representative voxels constitute a visual representation of the

track.
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Figure 4: Track graph TG, computed by our algorithm, which
represents movement of the HSC. Paths in the graph repre-
sent tracks of individual fronts. These tracks may be studied
individually or as clusters to understand, respectively, local and
global movement of the HSC. Arcs of the graph are colored
based on their depth (blue to white).

4. Skeleton-based Tracking

While front-based tracking captures the movement of the
boundary of the HSC, it does not necessarily capture differ-
ences between movement of the entire HSC as opposed to
an expansion or change of shape of the HSC. We introduce

a skeleton-based method that aims to capture the change in
shape and track movement of the entire HSC. We describe
this method as a four stage pipeline that processes the salin-
ity field sampled over a 3D regular grid:

1. Extract the >35 psu isovolume within each time step.

2. Compute a skeleton representation for each isovolume.

3. Compute a track graph T'G, that represents the evolu-
tion of the skeletons over time.

4. User-driven selection of skeleton evolution tracks.

Isovolume and skeleton. Topological structures provide ab-
stract representations that are amenable for efficient and ro-
bust tracking. Popular methods follow one of two approaches:
Morse theory-based or skeleton-based. While Morse theory-
based approaches like contour trees and Reeb graphs are pow-
erful and applicable to diverse scenarios, data noise can have
an impact on their applicability (Rieck et al., 2017). Hence,
we focus on the conceptually simpler skeleton-based approach
for tracking the >35 psu isovolume.

Topological skeletons describe the connectivity between
voxels in a volume represented by a 3D grid. Two voxels
that differ in exactly one coordinate by a value of 1 are said
to be 6-connected. They are 18-connected if they differ in
at most two coordinates, and 26-connected if they differ in
one or more of the three coordinates. A volumetric skeleton
is defined as an unrooted tree whose nodes consist of such
6/18/26-connected voxels. Volumetric skeletons are derived
from 3D volumes for measurement of length, to determine
branching and winding structures, and to serve as a feature
descriptor for shape matching. Sato et al. (Sato et al., 2000)
introduce an efficient skeletonization algorithm to study 3D
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CT and MRI scans. Rieck et al. (Rieck et al., 2017) extend
this idea to a collection of 2D images to understand the evo-
lution of so-called viscous fingers in fluids. They implement
an analysis pipeline to study viscous fingers by tracking them
using a sequence of skeletons that change over time. We ex-
tend these ideas to the computationally challenging case of
3D domains for tracking the >35 psu isovolume.

The first step in the pipeline extracts the >35 psu isovol-
ume as described in Section 3.

HSC skeleton. The second step in the pipeline constructs
the skeletal structure of isovolumes computed for each time
step. The TEASAR (Sato et al., 2000) algorithm employs
a conceptually simple approach for skeletonizing the isovol-
ume. We use this algorithm to extract the skeletal structure
as a collection of paths in a graph that represents the isovol-
ume. Hereafter, we use the term HSC skeleton to refer to
skeletons extracted from the HSC.

The algorithm starts by finding a root voxel in a 3D vol-
ume, then launches Dijkstra’s shortest path algorithm through
a penalty field in the isovolume to reach the most distant
unvisited voxel. Voxels in the isovolume are considered as
nodes of the isovolume graph and the edge set is given by
pairs of 26-connected voxels. After each pass through the
isovolume, an iterative thinning procedure marks voxels in
the neighborhood of the path as visited and removes them
from the graph for future passes. The thinning is performed
using a sphere, which determines the size of the neighbor-
hood of voxels in the path that are to be marked visited. Thin-
ning ensures that paths computed in two different passes are
disconnected. The algorithm uses a few parameters:

e ascaling term s, and a constant s.. These parameters
control the radius of the sphere

r(x,y,z) = s, -dg(x,y,2) + s.,

where dg(x,y, z) represents the distance of a voxel
with coordinates (x, y, z) from the boundary of the iso-
volume.

e asize threshold s,. This threshold is used to cull con-
nected components of the skeleton. Components with
fewer than s, nodes are considered as dust pieces and
discarded.

After the skeletonization step, we obtain a sequence of HSC
skeletons .S;, one corresponding to each time step ¢;. Figure 5
shows the HSC skeleton extracted from timesteps 33 and 34.

Skeleton tracking. The third step in the pipeline tracks the
skeletons that were constructed in the previous step across
successive time steps and creates a representation of their
evolution. Rieck et al. (Rieck et al., 2017) discuss a tracking
algorithm for tracking skeletons of viscous fingers in 2D. We
extend this algorithm to track HSC skeletons in 3D. This ex-
tension is made non-trivial due to the size of the isovolume
and additional requirement of computing tracks that repre-
sent significant movement of the skeleton. Our algorithm

begins by partitioning the connected components (paths) of

each skeleton into small line segments. We compute segment-
to-segment correspondences instead of voxel-to-voxel corre-

spondences, which ensures a good approximation while en-

suring a good computational speedup.

The HSC skeleton is a collection of directed paths. For
uniformity, we represent each line segment using the start
end point. Given two time steps #; and ¢, ;, we assign every
segment s in a skeleton .S; to the segment s’ in skeleton S, |
that satisfies

s’ = argmin dist(s, r),
reSiy

where dist(, ) is the Euclidean distance. Likewise, we assign
every segment in .S, to its nearest neighbor in .S;. This
assignment results in a set of directed matches between .S;
and S;, ;. Each skeleton segment is guaranteed to occur at
least once in the above set of correspondences. We refer to
matches from S; to S, ; as forward matches, and matches in
the other direction as backward matches. The collection of
forward and backward matches across all time steps is stored
as a track graph T'G,. Figure 6 shows the forward matches
between skeletons S35 and .53, and the track graph that rep-
resents movements of all segments of HSC skeletons.

Query-driven track computation. The final stage in the
skeleton-based tracking pipeline is user-driven identification
and display of skeleton movement. The motivation for in-
cluding this final stage is to generate representative tracks
that describes the overall movement of the HSC with a focus
on regions selected by the oceanographer. The user interac-
tively selects a collection of voxels of interest in the HSC
skeleton after observing the track graph TG, or individual
skeletons. Tracks passing through the selected voxels are
computed via forward and backward path tracing and dis-
played as an indicator of propagation routes of salinity. Fig-
ure 9 shows tracks computed using this method that depict
the movement of the HSC skeleton towards Visakhapatnam.

5. Visual Analysis Tool Design

All algorithms described in this paper are implemented
in Python and we use Paraview (Ahrens et al., 2005) for visu-
alizing the salinity field, HSC, and tracks. Multiple python
scripts execute either independently or within the Paraview
framework to compute the results. In this section, we de-
scribe the functionality and usage of the python scripts and
hence the design of the visual analysis tool. A comprehen-
sive user manual together with a discussion of dependencies
will be made available in the software documentation.

Input parameters. All parameters used by the algorithm
and display routines are specified in a text file. The param-
eters are assigned default values that work for most exper-
iments, but may be tuned by the user. For example, the
latitude-longitude resolution is set to a default value of 1/12°.
By default, the data is resampled on a regular grid as dis-
cussed in Section 2. However, this may be updated to skip
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(®)

Figure 5: (a) The >35 psu isovolume. (b,c) HSC skeletons for timesteps 33 and 34, respectively. (d) The depth in the isovolume

and skeleton figures is mapped to color using a blue-red colormap.
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Figure 6: (left) Forward matches between HSC skeletons S},
and Sy,. (right) All forward and backward matches are col-
lected together into a track graph T'G, that can be queried to
extract interesting tracks or to identify tracks within a specific
region or time period of interest.

the resampling if the input is already available on a regular
grid in netCDF format. Similarly, all display parameters and
options may be stored within a Paraview state file to quickly
load previously generated visualizations.

Front tracking. For visual analysis of the evolution of sur-
face fronts, we extract 50 (a user-defined constant) paths in
the track graph T'G ;. Prior to this, we establish a focus re-
gion, namely the BoB, by filtering TG, to remove surface
fronts that lie west of Sri Lanka (using a longitude thresh-
old). We cluster the paths depending on their source and
destination points. A standalone python script TrackGraph. py
computes the HSC boundary, surface fronts, and TG ,. It
stores them in a VTP file that can be read by Paraview for vi-
sualization. A second script LongPaths.py enumerates paths
inT'G; (typically directed north), selects the longest k paths,
clusters them into bins specified by their end point locations,

and finally applies geometric simplification to generate straight

polylines that represent the tracks. It stores the paths in NPY
files for further analysis as required. The output of these
script depend on user specified parameters such as number

of paths, number of clusters of paths, region of interest spec-
ified as latitude-longitude thresholds.

We use Paraview to display the track graph and the paths
using meaningful colormaps, see Figures 4 and 7. The sys-
tem supports queries, where the user may select an area us-
ing Paraview which translates to a collection of nodes from
the track graph. A script SelectPaths.py works as a pro-
grammable filter within Paraview to support the query. It
computes all paths in T'G ; passing through the selected nodes
and displays the corresponding tracks. Optionally, the user
can load a predefined state file to interact with a default vi-
sualization within Paraview consisting of the isovolume and
a collection of tracks.

Skeleton tracking. Similar to front tracking, the visual anal-
ysis pipeline for skeleton tracking is designed such that it
begins with an automatic mode that constructs the skeletons
and the track graph T'G, followed by an interactive mode
where the user selects points of interest to display select tracks
and hence explore the movement of the HSC. The automatic
mode involves utilizing two major capabilities of Parview —
to programmatically invoke filter functions using the pvpython
utility and to run external scripts along with pvpython. A

472

473

482

483

484

485

486

script skeletonize.py implements the TEASAR algorithm (Satoer

et al., 2000) to construct the skeleton of isovolumes at all
time steps. Each skeleton is stored as a NetworkX graph. A
second script tracking.py traverses the NetworkX graph to
compute TG, and stores it in VTP format that can be readily
processed by Paraview for visualization and exploration.

The oceanographer interacts with the set of temporal tracks
stored in T'G, using a collection of built-in and programmable
filters that help select points of interest. Beginning with the
user selected points and tracking backwards and forwards in
time, the system identifies tracks that represent likely prop-
agation routes of the salinity core.

6. Results

We now discuss our observations on salinity movement
and the evolution of the HSC in the BoB using the methods
described in the previous sections.
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Figure 7: Different tracks extracted from the track graph TG/, grouped together based on their source and destination node in
the graph. (a,b,c,d,e) top view. (f,g,h,i,j) corresponding side view from east.

HSC Movement. The HSC, after entering the BoB, un-
dergoes considerable transformation in its course. The en-
ergetic fluctuations of the SMC, its meandering and eddy
shedding behaviors (Rath et al., 2019) induce space time
variations on depth of penetration, intensity, and advance-
ment of HSC into the northern BoB. The main branch of
the SMC splits into multiple branches (Webber et al., 2018;
George et al., 2019) and consequently, a smooth northward
or northeastward flow of the HSC is not apparent. The video
hsc-isovolume accompanying this paper shows the movement
of the HSC during June-September, 2016. The HSC is rep-
resented as an isovolume and visualized using volume ren-
dering, which maps depth to color and transparency. Among
the distinct patterns, the following appears to be prominent:
(1) Towards the peak of the summer monsoon season, an an-
ticyclonic (clockwise) eddy forms which recirculate the HSC
back to its core as the core itself propagates westwards. The
core eventually collapses by the end of the season after it en-
counters the coast of Sri Lanka. (2) One branch of the HSC
travels eastward initially but, later in the season, this patch
moves westward to merge with the main axis of the SMC
owing to the influence of the westward propagating Rossby
waves that dominate the dynamics in this regions (Vinay-
achandran and Yamagata, 1998; Webber et al., 2018; Rath
et al., 2019). (3) Isolated patches of high salinity water can
be seen around Sri Lanka at deeper depths (150 — 200m)
throughout the season. (4) The leading edge of the HSC
bends anticlockwise, meanders, detaches from the main axis
as an eddy, and then moves northwestward towards Visakha-
patnam retaining its high salinity character for a long dis-
tance, see also Figures 7 and 9.

Validation. The accompanying video hsc-front-track shows
how the surface front of the isovolume is correctly tracked
and represented as a path in 3D. The isovolumes tracked by
the method presented in this study are consistent with pre-

viously published data. Vinayachandran et al. (Vinayachan-
dran et al., 2013) clearly identify the region in the south-
ern BoB where the HSC enters from the Arabian Sea, af-
ter surrounding the Sri Lanka Dome(SLD) (Sanchez-Franks
etal., 2019). The westward propagation of SMC and its sep-
aration from the east coast of Sri Lanka is consistent with
the BOBBLE observations presented by Vinayachandran et
al. (Vinayachandran et al., 2018) and Webber et al. (Webber
et al., 2018). George et al. (George et al., 2019) have delin-
eated the forking of the HSC into three directions after enter-
ing the BoB and turning around the SLD. Our methods re-
produce visualizations of these observations (Figure 9). The
eastward tracks of HSC and its re-circulation are consistent
with the analysis presented by George et al. (George et al.,
2019). Detailed documentation of the flow of the HSC into
the northern BoB is not yet available and we hope that the
snapshots presented here (Figures 7(e,j) and 8) will provide
useful guidelines for future efforts in this direction.

Visual analysis of tracks. Several new features of the paths
of the HSC in the northern Bay of Bengal have emerged
from this study. The model outputs used here analyzed prod-
ucts that ingest available observations into it, which improve
the reliability of the results. The longest track of HSC, af-
ter entering BoB, passes through the centre and then turns
west towards the coast at Visakhapatnam. Such paths can be
seen in Figure 7(d) which was generated using front-based
tracking method and Figure 9 which was generated using the
skeleton-based tracking method. Both figures show similar
trends in the temporal evolution of the HSC. There have been
observations of high salinity patches in the depth range of
100 — 200 m (Sasamal, 1990), which are in support of the
results obtained from our analysis.

Some tracks start near Sri Lanka and terminate near the
Visakhapatnam coast (Figure 7(a,f,d,i)) while passing through
the BoB, others stop near the centre of BoB (Figure 7(b,g),
and a few turn toward the coast of Andaman and Nicobar
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Figure 8: Interactive queries to study local movement of HSC. (left) The track graph TG, colored (blue to white) based on depth
and a collection of graph nodes (pink) selected by the user. The selected nodes correspond to representative voxels of different
surface fronts. (right) Tracks that contain the selected nodes are extracted from the graph and displayed on demand.
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Figure 9: Representative tracks that depict movement of the
HSC skeleton. Tracks are computed against a user specified
query consisting of points near south of BoB, Visakhapatnam
coast, and Andaman coast.

islands (Figure 7(c,h). We observe a similar behavior even
when we increase the number of extracted tracks from 50 to
100. This offers an alternate method to delineate the path of
the SMC and the HSC. After reaching almost the centre of
BoB it forks and moves in two directions. Tracks computed
using the skeleton-based approach corroborates this finding,
see Figure 9. Vinayachandran et al. (Vinayachandran et al.,
2013) report about the SLD, which is a cyclonic (anticlock-
wise) eddy caused by cyclonic curl in the local wind field.
The SLD is evident in our results (Figure 9). We observed
a considerable reduction in the number of matches (arcs) in
T G, while passing through this region.

We also observed a movement of high salinity water from
Visakhapatnam coast towards north, along the coast of India.

From the track graph, it is clear that this track is not a contin-
uation of the HSC component that reached Visakhapatnam
coast because this path originates at a time when the HSC
is still entering the BoB near Sri Lanka. Using the query
system, we can extract the required tracks (Figures 8 and 9).
This movement, most probably, is a result of high salinity
water pockets near Visakhapatnam coast persisting from the
previous year.

Computational performance. All steps in the track graph
computation require a linear running time because we iter-
ate over the regular grid, boundary voxels, and surface fronts
only a constant number of times. Hence, the worst case run-
time complexity of the track graph computation is linear in
the input grid size. Computing one path in the track graph
takes O(|E|log|V'|) time using Dijkstra’s algorithm (Cor-
men et al., 2009, Chapter 24). But, the time required for
computing multiple paths is a function of both the number
of paths and the size of the track graph. The worst case run-
ning time for computing the skeletons also requires repeated
application of Dijkstra’s algorithm and takes O(| E| log |V'|)
time.

7. Conclusions

The skeleton-based tracking method provides an over-
all picture of how the shape of HSC evolves over time in
the BoB because the skeleton represents the global shape of
the isovolume. The front-based tracking method provides
concrete tracks describing the movement of the HSC. These
complementary methods produce results that corroborate each
other. We validate the results by comparing it with prior ob-
servations and via visual comparison of the tracks and vol-
ume rendering of the HSC, see videos in supplementary ma-
terial. In future, we wish to incorporate a model of salt dif-
fusion across the fronts to further understand the tracks and
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salinity distribution within the BoB. We will also incorpo-
rate other physical quantities measured over the region to-
wards an improved understanding of the interplay between
monsoons and oceanography of the region.

The tracking methods discussed in this paper is suitable
for application to other regions as well for tracking water
masses. For example, these methods can be used for tracking
the flow of Mediterranean Sea Water in the Atlantic Ocean
(Richardson et al., 2000) or to study the movement of North
Atlantic Deep Water (Dickson and Brown, 1994) on a global
scale. The method is, in principle, applicable to the study
of propagation of salinity or other physical quantities irre-
spective of the region. However, the parameters may have to
be tuned appropriately. The track graph is computed within
each depth slice independently. This allows the method to
be applicable to larger regions. Subsequent track search and
queries do require the entire track graph to be resident in
memory, and hence require improvements in order to scale
to large data sizes. Parallelizing different steps of the method
will lead to better run-time performance.
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