
Interactive Virtual Endoscopy of Upper GI Tract and
Stomach

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Engineering

IN

COMPUTER SCIENCE AND ENGINEERING

by

Rahul Sharma

Computer Science and Automation

Indian Institute of Science

BANGALORE – 560 012

JULY 2013

i

©Rahul Sharma

JULY 2013

All rights reserved

TO

My Parents

Acknowledgements

I thank Prof. Vijay Natarajan for his guidance and inspiration for this work. I also thank the

reader Dr. Uday Kumar Reddy B, for his thorough and careful review of this work and for

valuable suggestions. Apart from them, I was able to get much insight into the problems by

the discussions I had with Chayan Ghosh and Ankit Dixit. My sincere thanks to them. I thank

my lab mates Rakesh Malviya, Talha Bin Masood and Dilip Thomas for their support.

I thank my father Rakesh, mother Geeta and sister Anjali for teaching me how to live life.

I thank my family and friends for all their support.

i

Abstract

We have developed an interactive virtual endoscopy system for the training of doctors to hone

their skills. In this document, we describe the extraction of the model of the upper GI tract and

stomach, and the calculation of automated walk-through for navigating through the GI tract.

We also present the functionality of mapping arbitrary texture to the 3D model as a viewing

upgrade.

ii

Contents

Acknowledgements i

Abstract ii

Keywords vii

Notation and Abbreviations viii

1 Introduction 1
1.1 Virtual Endoscopy . 1
1.2 Problems in Virtual Endoscopy . 2

2 Related Work 3
2.1 Virtual Endoscopy . 3
2.2 Surface parameterization for texture mapping 4

3 BACKGROUND 5
3.1 Visible Human Data . 5
3.2 ITK-SNAP . 6
3.3 B-Spline Curve . 7
3.4 Texture Mapping . 7

4 ALGORITHM 9
4.1 Automated walk-through . 9
4.2 Flattening . 12
4.3 Texture mapping . 13

5 IMPLEMENTATION 17
5.1 Extraction of Model . 17
5.2 Software Design and user Interface . 17

6 EVALUATION AND RESULTS 19

7 Conclusions 22

iii

CONTENTS iv

A Framework 23

B Headers 25
B.1 cmath.h . 25

B.1.1 Class Vector2f . 25
B.1.2 Class Vector3f . 26
B.1.3 Class Vector4f . 27

B.2 curves.h . 28
B.2.1 Type Definitions . 28
B.2.2 Structures . 28
B.2.3 Class BSpline . 28

B.3 trackball.h . 30
B.3.1 Class TrackBall . 30

B.4 3deng.h . 31
B.4.1 Constants . 31
B.4.2 Structures . 31
B.4.3 Hierarchy of 3D Object Classes . 31
B.4.4 Class Camera3d . 32
B.4.5 Class Material3d . 32
B.4.6 Class Light3d . 33
B.4.7 Class Object3d . 34
B.4.8 Class Obj3ds . 35
B.4.9 Class ObjBIN . 36
B.4.10 Class Obj3dGraph . 37
B.4.11 Methods . 38

References 40

List of Tables

6.1 Running time of generateGraphFromMesh and mappingTexture. 20

B.1 Methods of Vector2f . 25
B.2 Methods of Vector3f . 26
B.3 Methods of Vector4f . 27
B.4 Data members of BSpline . 28
B.5 Methods of BSpline . 29
B.6 Methods of TrackBall . 30
B.7 Data members of Camera3d . 32
B.8 Data members of Material3d . 32
B.9 Data members of Light3d . 33
B.10 Data members of Object3d . 34
B.11 Methods of Object3d . 35
B.12 Data members of Obj3ds . 35
B.13 Methods of Obj3ds . 36
B.14 ObjBIN File Format Specifications . 36
B.15 Data members of ObjBIN . 37
B.16 Methods of ObjBIN . 37
B.17 Methods of Obj3dGraph . 38

v

List of Figures

3.1 Visible Human Project - section through the abdomen of a human male . . . 5
3.2 Showing the process of calculating contour 6
3.3 Showing the process of texture mapping . 8

4.1 Showing the process of calculating the path for automated walk-through . . . 11
4.2 Rotation of uncommon vertex of neighbourhood triangle along the shared edge

by an amount of the angle between their normals. 12
4.3 (a) An stochastic texture with random texture patches, (b) texture patches ar-

ranged without orientation and (c) unoriented texture patches without boundaries. 14
4.4 A triangle mesh (solid line) and its dual graph (dotted lines). 15
4.5 Showing the difference between choosing random seeds and breadth-first seeds 16

5.1 Snapshot of the tool showing the extracted model 18

6.1 Snapshot of the tool showing model view 20
6.2 Snapshot of the tool showing interior of the extracted model 21

A.1 Abstraction of the tool . 23
A.2 Internal working of 3D engine . 24

B.1 Derivative classes of Object3d . 31

vi

Keywords

Virtual Endoscopy

vii

Notation and Abbreviations

No notation is used in this document. No abbreviations have been used either.

viii

Chapter 1

Introduction

1.1 Virtual Endoscopy

Endoscopy is used to view inside the body, basically interiors of the hollow organs. In the other

medical imaging device doctors would not probe the device directly into the organ. Besides

viewing, they can also control the position and angle of probe. In some situations, they also

require an additional channel to inject or to take a sample. This process also includes a risk

of infection and over-sedation [22]. Young doctors use a virtual endoscopy system to hone

their skill by practicing. It has been shown that a virtual reality endoscopy simulator can

distinguish between beginners and experts in endoscopy and assess whether training improves

the performance of beginners [8].

Some work has been done in the area of virtual colonoscopy [12] to provide the training

software for the virtual endoscopy. Virtual endoscopy can also be used to access special parts

of human body such as blood vessels which are impossible to access with real endoscopy.

Jolesz [13] used MRI and CT scans to extract model of GI tract and other organs along

with a viewer. CT scan and MRI scan are used to get the cross section of the inner organs but

the resolution is only 512 by 512 pixels per slice which is not sufficient to extract good models

of organs. Instead of CT scan and MRI scan we used RGB image version of Visible Human

Data from National Library of Medicine [1], where each slice has a resolution of 2048 by 1216

pixels.

1

Chapter 1. Introduction 2

1.2 Problems in Virtual Endoscopy

We identified that exiting systems does not have a good quality 3D model of GI tract and

stomach as they use MRI scan and CT scan image, which has their limitation. Our goal is

to obtain a good quality 3D model of the GI tract and build an interactive tool that support

good quality output of the 3D model. For interactivity we need a fly-through and an automated

walkthrough mechanism to navigate inside the model.

The general problems we face while building our virtual endoscopy system are as follows:

extraction of good quality model of upper GI tract and stomach, computing automated walk-

through, optimizing the rendering process, mapping textures [25] that highlights the surface of

the model.

Chapter 2

Related Work

2.1 Virtual Endoscopy

A lot of work has been done in the field of virtual endoscopy. Hong [11] designs an endoscopy

system which was used for colonoscopy. It uses a modified region growing algorithm and

marching cubes as segmentation techniques.

Yagel [28] describes a system for the training of surgeons in virtual sinus surgery and for

teaching in virtual endoscopy. It uses volume rendering and 3D texture mapping [20].

Robb [21] presents two different endoscopy systems, one uses direct volume rendering

and the other uses surface rendering. Darabi [4] proposed virtual endoscopy system that uses

volume rendering with ray casting and planned navigation.

Ikuta [12] highlights the significance of virtual endoscopy with force sensation. Jolesz [13]

developed a virtual endoscopy based on the CT and MRI data, with fly-through method to view

and explore the data. The data used by Jolesz [13] has a resolution of .25 Megapixels per slice.

Hong [10] proposed the method for 3D virtual colonoscopy. Lakare [15] proposed a seg-

mentation process for 3D virtual colonoscopy and You [30] proposed a method for interactive

volumetric rendering of 3D virtual colonoscopy.

3

Chapter 2. Related Work 4

2.2 Surface parameterization for texture mapping

Initial work in this field has been carried out by Bennis [2]. They uses a series of user-defined

patches and then optimises them. It proposed a new technique for interactive piecewise flatten-

ing of parametric 3D surfaces. It selects a chord curve on the surface and then unfold (flatten)

the surface around this curve. However, this method compromise between discontinuities and

distortions.

Pedersen [16, 17] proposed an interactive texture mapping of 3D surfaces. He used cut-

and-paste method to map a surface. However his method require inputs form user to fully

map the surface. Praun [19] uses similar method to parameterize the surface but it is fully

automated. It describes the method for creating texture over an arbitrary surface mesh using

an example 2D texture. We implemented this method because it does not requires user input. It

repeatedly paste the texture patches on the surface patches until the whole mesh is completely

covered. A surface patch is small area on the surface of the 3D model suitable to map a single

texture patch. It select surface patches randomly. After covering the mesh it uses an energy

minimising equation to optimise the alignment and local orientation of the mapped texture.

Chapter 3

BACKGROUND

A good model of upper GI tract and Stomach is required for a good visualization. In order

to extract organs we used Visible Human Data. For the automated walkthrough we computed

centreline of tract and fit a spline curve for smooth walkthrough.

3.1 Visible Human Data

Visible Human Data [1] is an effort to provide visualization applications a good and high

resolution data-set of cross sectional images of the human body of a male and a female. To

generate the visible male data, cadaver of the male was cut in the axial plane into slices at 1

millimetre interval. This results in 1,871 images, the size of each image is 2.375 megapixels.

Figure 3.1: Visible Human Project - section through the abdomen of a human male

5

Chapter 3. BACKGROUND 6

3.2 ITK-SNAP

ITK-SNAP [31] is an open-source tool used for level set active contour segmentation. First it

computes the contour of the 3D data using 3D geodesic active contour method (fig-3.2a and

fig-3.2b). After that user has to mark the initial region of the snake also called snake tale (fig-

3.2c). Then it uses a region growing snake method (fig-3.2d) to construct the 3D triangle mesh

from the input data.

(a) Original image (b) Contour of fig-3.2a

(c) Initial snake tale (d) Final snake region

Figure 3.2: Showing the process of calculating contour

Chapter 3. BACKGROUND 7

3.3 B-Spline Curve

A spline curve is a single continuous curve which is formed by connecting sequence of curve

segments. A B-Spline [29] is a generalisation of Bézier curve [29]. We used B-Spline curve

to compute the path for automated walkthrough for the GI tract. We used B-Spline curve

because most shapes are too complicated to use a single Bézier curve as it can avoid the Runge

phenomenon [5] without increasing the degree of B-spline [7].

Given h + 1 control points P0, P1, ..., Ph and a knot vector U = u0, u1, ..., um, B-spline

curve [23] of degree p and knot vector U is defined as

C(u) =
∑h

i=0Ni,p(u)Pi

,where Ni,p(u) is the basis function of degree p defined as:

Ni,0(u) =

 1 if ui ≤ u ≤ ui+1

0 if u < ui or ui+1 < u

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)

3.4 Texture Mapping

In Computer Graphics, texture mapping is used to enhance the richness of computer generated

images [3, 9]. A 2D texture is a 2D image which is mapped to the surface of a 3D object. In

OpenGL [26], texture mapping is done by assigning a location within the given texture to each

vertex of the 3D object. Fig-3.3 shows the process of texture mapping.

Chapter 3. BACKGROUND 8

(a) A 2D texture (b) A quadrilateral

(c) Mapped quadrilateral showing mapped parameters

Figure 3.3: Showing the process of texture mapping

Chapter 4

ALGORITHM

4.1 Automated walk-through

We also provide automated walk-through of the interior of upper GI tract from the extracted

model. This path is in the form of B-spline curve. The path extraction process contains three

steps:

In the first step, we intersect planes L1, L2, ..., Lr with the triangle representation of the

mesh by aligning the mesh normal to the planes. For each plane Li we calculate the set points

Li = s1, s2, ..., st of intersection of the plane with respect to the mesh (shown in fig-4.1b).

In the second step, we calculate the centroid of each group of points i.e. Li. This is done

by taking the average of all the points in the set Li (shown in fig-4.1c).

In the final step, we fit a B-spline curve using centroids as the data points for the curve

(shown in fig-4.1d).

Let D0, D1, ..., Dh be n + 1 data points given and we wish to approximately fit a B-spline

curve of h+ 1 control points and degree p, as

C(u) =
∑h

i=0Ni,p(u)Pi

We want the curve to pass through the first and the last data points i.e. D0 = C(0) and

Dn = C(n). Now the equation becomes

C(u) = N0,p(u)D0 +
∑h−1

i=1 Ni,p(u)Pi +Nh,p(u)Dn

9

Chapter 4. ALGORITHM 10

Let parameter ti correspond to data point Di in the approximation of the curve. For a least

square approximation, the error function f() has to be minimized, where

f(P0, P1, ..., Ph) =
∑n−1

i=0 |Di − C(ti)|

This can be solved as a system of linear equations [23].

(NTN)P = Q

Where, P = [P0 P1 ... Ph]
T and

Q =



∑n−1
i=1 N1,p(ti)Qi∑n−1
i=1 N2,p(ti)Qi

...∑n−1
i=1 Nh−1,p(ti)Qi


Qi = Di −N0,p(ti)D0 −Nh,p(ti)Dn and

Nn−1,h−1 =


N1,p(t1) N2,p(t1) · · · Nh−1,p(t1)

N1,p(t2) N2,p(t2) · · · Nh−1,p(t2)
...

...

N1,p(tn−1) N2,p(tn−1) · · · Nh−1,p(tn−1)



Chapter 4. ALGORITHM 11

(a) Snapshot of the tool showing extracted

model

(b) Lines showing the intersection of the

planes with the extracted model

(c) Points showing the centroid of the points in

the intersection of the planes with the extracted

model

(d) Approximated curve along with the ex-

tracted model of upper GI tract

Figure 4.1: Showing the process of calculating the path for automated walk-through

Chapter 4. ALGORITHM 12

4.2 Flattening

In the process of texture mapping we need to assign a 2D texture coordinate to each of the

vertices. It is an easy task if all the vertices of the triangle mesh lies in the same plane. But

in general, a 3D triangle mesh can have vetices in different planes. For that purpose we took a

small neighbourhood of triangles around a selected triangle called seed. After that, we apply

tranformation to all vertices in the neighbourhood of triangles, except for the vertices of seed

triangle, such that they all lies in the same plane. This process is called flattening. Figure-4.2

shows the flattening of a single triangle. We can easily repeat this process in bredth-first order

to flatten a region containig many triagles.

Figure 4.2: Rotation of uncommon vertex of neighbourhood triangle along the shared edge by

an amount of the angle between their normals.

The rotation matrix, for rotation by an angle θ about an axis in the direction of a 3D unit

vector u = (ux, uy, uz) is given as

R =


cos θ + u2x(1− cos θ) uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ)− uy sin θ

uyux(1− cos θ)− uz sin θ cos θ + u2y(1− cos θ) uyuz(1− cos θ)− ux sin θ

uzux(1− cos θ)− uy sin θ uzuy(1− cos θ)− ux sin θ cos θ + u2z(1− cos θ)



Chapter 4. ALGORITHM 13

4.3 Texture mapping

We implemented Praun’s [19] method for texture mapping. This method works on repeat-

edly pasting texture patches on to the surface until the whole mesh is covered. The algorithm

mappingTexture [Algorithm 2] is used to assign texture co-ordinates to a given 3D triangle

mesh. It uses random seeds in each iteration. After the mapping it uses an energy minimization

equation to align the texture and to find the local orientation of texture, and decide the bound-

aries of patches for good output. Since we are using a stochastic texture [6, 18] for the model

we don’t need to align the texture. It is clear from (fig-4.3) that orientation does not matter

when we use stochastic texture. But if we do not use energy minimization function then the

output is not aligned. Figure 4.5b shows the texture we used in mapping of the dummy model

(fig-4.5a) and the output of random mapping is shown in fig-4.5c. So, we used breadth-first

search around the initial seed to find the nearby patches and do the process of mapping in a

non-random fashion (fig-4.5d). To use breadth-first search we need to calculate the dual of the

mesh (fig-4.4) which is given as generateGraphFromMesh [Algorithm 1].

Algorithm 1 generateGraphFromMesh
Input 3D triangle Mesh M

Output Graph G

1: For each edge (u, v) that belong to triangle t in M make triplet < u, v, t >

2: Sort triplets in increasing order of u, v and t

3: Make an empty graph G in which number of vertices is equal to number of triangles in M

4: For each pair of triplet < u, v, t1 > and < u, v, t2 > make an edge between t1 and t2 in G

5: return G

Chapter 4. ALGORITHM 14

Figure 4.3: (a) An stochastic texture with random texture patches, (b) texture patches arranged

without orientation and (c) unoriented texture patches without boundaries.

Chapter 4. ALGORITHM 15

Figure 4.4: A triangle mesh (solid line) and its dual graph (dotted lines).

Algorithm 2 mappingTexture
Input 3D triangle Mesh M , texture T

Output 3D triangle mesh with mapping co-ordinates

1: Graph G = generateGraphFromMesh(3D Triangle Mesh)

2: Pick a random triangle t as seed

3: repeat

4: Use graph G to select a patch S around seed

5: Flatten S over T

6: Assign mapping parameter in the triangle mesh

7: Get new seed around the previous seed

8: until 3D Mesh is covered

Chapter 4. ALGORITHM 16

(a) Original 3D triangle mesh before mapping (b) Texture used to map the 3D triangle mesh

(c) Mapping of texture with random seeds (d) Mapping of texture with breadth-first seeds

Figure 4.5: Showing the difference between choosing random seeds and breadth-first seeds

Chapter 5

IMPLEMENTATION

5.1 Extraction of Model

We used ITK-SNAP [31] tool to extract the surface of upper GI tract and stomach. It uses a

region growing snake method. The parameters are: balloon force 1.0, curvature force 0.20,

advection force 5.0. Extracted surface is retrieved as triangle mesh (shown in fig-5.1).

5.2 Software Design and user Interface

We develop the tool in C++ using OpenGL [26] for graphical visualization of the mesh. We

are using the QT [27] framework for the GUI.

17

Chapter 5. IMPLEMENTATION 18

Figure 5.1: Snapshot of the tool showing the extracted model

Chapter 6

EVALUATION AND RESULTS

We develop two different interfaces to interact with the model. First one is used to interact with

the outer surface of the extracted model. We used quaternion [24] to achieve a good interaction

with user. Second interface is used for viewing the surface of the extracted model from inside,

which is similar to endoscopy. User can use a fly-through to view the inner surface of the

extracted model. Our tool currently supports model view (fig-6.1), external view (fig-5.1),

fly-through (fig-6.2) and automated walk-through of upper GI tract. It is also able to map any

texture patch to the obtained model. In external view, a dummy model of GI tract and stomach

is used with human skeleton to show the position of used organs.

We compute the running time of algorithms, which are described in section 4.3, on a 2.0

GHz 2 CPU Intel Xeon machine with 8 GB of RAM. It has an nVidia GeForce 8800 GTX

with 4 GB of video memory. Results are given in Table-6.1. Performance of the tool varies

with the view modes. We got an average of 912 frames per second in the model view. Which

is expected as the triangle count in model view is 28547. However, we got an average of 21

frames per second in external and internal view because the triangle count is 667900. Frame

rate is calculated at a resolution of 1280 by 1024 pixels.

Currently our tool does not detect collisions while using fly-through mode. It can be really

helpful if the tool responds with a force feedback on collision. However that will require

interactive devices with force feedback such as Haptic device [14].

19

Chapter 6. EVALUATION AND RESULTS 20

Figure 6.1: Snapshot of the tool showing model view

Table 6.1: Running time of generateGraphFromMesh and mappingTexture.

Size of 3D mesh Running Time (in seconds)

(in number of triangles) Algorithm-1 Algorithm-2

2560 0.016 0.001

667900 1.919 0.328

4007400 12.015 1.950

Chapter 6. EVALUATION AND RESULTS 21

Figure 6.2: Snapshot of the tool showing interior of the extracted model

Chapter 7

Conclusions

We have proposed an interactive virtual endoscopy system. We extracted a good quality model

of upper GI tract and stomach from a high resolution data and we developed an algorithm to

calculate the automated walk-through of upper GI tract from this model. We also developed

the tool with basic functionalities.

We proposed an interactive endoscopy viewer that highlights the internal organ. Currently

our tool does not have a hardware support for force-feedback. Viewing part can be improved

by applying custom shaders.

22

Appendix A

Framework

The tool GiTract Viewer can be viewed as two major layers of abstraction as shown in figure-

A.1.

Figure A.1: Abstraction of the tool

The first layer is QGLWidget, which

is responsible for handling user operations

and displaying the rendered output on the

screen. It handles all the GUI tools, mouse

and keyboard interactions. It basically in-

cludes glwidget.h.

Second layer is 3D engine, which is re-

sponsible for rendering the objects. It han-

dles all the objects related to the OpenGL

rendering, B-Spline curve and required

mathematical classes. It include gmath.h

,curves.h, trackball.h and 3deng.h. This

layer act as an abstraction of OpenGL. It

appropriatly calculates the OpenGL function

calls along with their parameters and auto-

matically handles their sequence.

23

Appendix A. Framework 24

Figure A.2: Internal working of 3D engine

Appendix B

Headers

B.1 cmath.h

B.1.1 Class Vector2f

Stores a 2D vector and perform operations related to 2D vector.

Data members of Vector2f

• float x , y

Table B.1: Methods of Vector2f

Method/Operator Comment

Vector2f() constructor x = y = 0

Vector2f(a) constructor x = y = a

Vector2f(a,b) constructor x = a, y = b

set(a,b) assign x = a and y = b

operator = overloading assignment operator

operator + does vector addition

operator - does vector subtraction

operator * does element by element multiplication

operator / does element by element division

25

Appendix B. Headers 26

B.1.2 Class Vector3f

Stores a 3D vector and perform operations related to 3D vector.

Data members of Vector3f

• float x, y, z

Table B.2: Methods of Vector3f

Method/Operator Comment

Vector3f() Constructor x = y = z = 0

Vector3f(a) Constructor x = y = z = a

Vector3f(a,b,c) Constructor x = a, y = b, z = c

Vector3f(Vector4f) Constructor from first three dimensions of Vector4f

set(a,b,c) Assign x = a, y = b and z = c

operator = Overloading assignment operator

operator +
Does vector addition

operator +=

operator -
Does vector subtraction

operator -=

operator *
Does element by element multiplication

operator *=

operator /
Does element by element division

operator /=

operator & Returns dot product of two vectors

operator ˆ Returns cross product of two vectors

distance(Vector3f a) Returns distance between this vector and vector a

magnitude() Returns the magnitude of this vector

normalize() Returns the normalized vector of this vector

rotate(xy,yz,zx) Returns rotated vector along xy, yz and zx planes in that order

Appendix B. Headers 27

B.1.3 Class Vector4f

Stores a 4D vector and perform operations related to 4D vector.

Data members of Vector4f

• float x, y, z, u

Table B.3: Methods of Vector4f

Method/Operator Comment

Vector4f() constructor x = y = z = 0

Vector4f(a) constructor x = y = z = a

Vector4f(a,b,c,d) constructor x = a, y = b, z = c, u = d

Vector4f(Vector3f a) constructor x = a.x, y = x.y, z = a.z, u = 0

set(a,b,c,d) assign x = a, y = b, z = c and u = d

operator = overloading assignment operator

operator + does vector addition

operator - does vector subtraction

operator * does element by element multiplication

operator / does element by element division

Appendix B. Headers 28

B.2 curves.h

B.2.1 Type Definitions

• typedef double POINTTYPE

B.2.2 Structures

struct Point

• POINTTYPE x, y, z

• method set(X, Y, Z) sets x = X , y = Y and z = Z

B.2.3 Class BSpline

Represents a B-Spline curve. Contain data members and methods to approximate a B-Spline

curve from external data points. For more information on B-Spline curve see section-3.3 and

section-4.1.

Table B.4: Data members of BSpline

int n Number of control points are n+ 1

Point* cp Array of control points

int m Number of knots are m+ 1

double* kv Array of knots

int d Degree of the curve

Appendix B. Headers 29

Table B.5: Methods of BSpline

Method/Operator Comment

BSpline() Constructor m = n = d = 0, cp = kv = NULL

˜BSpline() Destructor

initCurve(controlPoints,

degree)

Initializes the curve

getD() Returns the degree of the curve

getN() Returns the number of control points

getM() Returns the number of knots

N(i,p,u) Returns the result of basis function Ni,p(u)

C(u) Returns the coordinate of a point on curve at position u,

where 0 ≤ u ≤ 1

derivative(u) Returns the derivative of curve at position u, where 0 ≤

u ≤ 1

lsApprox(h, Point*) Constructs the B-spline curve, given h+1 data points

Appendix B. Headers 30

B.3 trackball.h

B.3.1 Class TrackBall

Data members of TrackBall

• QQuaternion m rotation = QQuaternion() (constructor default)

• QVector3D m axis

• float m angularV elocity

• QPointF m lastPos

• QTime m lastT ime = QTime::currentTime() (constructor default)

• bool m paused = false (constructor default)

• bool m pressed = false (constructor default)

• TrackMode m mode

Table B.6: Methods of TrackBall

Method/Operator Comment

TrackBall(mode) constructor m angularVelocity = 0, m mode = mode,

m axis = QVector3D(0, 1, 0)

TrackBall(angularVelocity,

QVector3D axis, mode)

constructor m angularVelocity = angularVelocity, m mode

= mode, m axis = axis

push(p,transformation) reset m lastPos to ’p’

move(p,transformation) move according to current position ’p’ and given transfor-

mation

release(p,transformation) move and set m pressed to false

start() records the m lastTime as current time

stop() rotate according to the time and pause

QQuaternion rotation() apply rotation according to the time difference between cur-

rent time and m lastTime

Appendix B. Headers 31

B.4 3deng.h

B.4.1 Constants

• HALF PI = 1.57079632679

• PI = 3.14159265358

• OBJINFINITY = 99999.9

B.4.2 Structures

struct Texture2d

• GLuint id

• long w, h

• unsigned char* buf

struct TriMesh

• unsigned long a, b, c

B.4.3 Hierarchy of 3D Object Classes

Figure B.1: Derivative classes of Object3d

Appendix B. Headers 32

B.4.4 Class Camera3d

Table B.7: Data members of Camera3d

Vector3f pos position of the camera

Vector3f eye where they are pointing

Vector3f ori orientation of the camera

float ang viewing angle of camera

float cnear camera’s near cut-off distance

float cfar camera’s far cut-off distance

float ar aspect ratio

bool isOrtho project orthogonal or not

Vector3f orthoMin left, bottom and near cut-offs

Vector3f orthoMax right, top and far cut-offs

B.4.5 Class Material3d

Table B.8: Data members of Material3d

Vector4f ambi Ambient illumination

Vector4f diff Diffuse illumination

Vector4f spec Specular light

Vector4f emis Emission color of material

GLfloat shin Specular exponent

void setColor(const Vector4f& color)

Set ’ambi’ and ’diff’ properties of this Material3d object based on given color.

Appendix B. Headers 33

B.4.6 Class Light3d

Table B.9: Data members of Light3d

bool castShadow Toggle shadow

bool isOn Toggle light

Material3d mat Material properties of light

Vector4f pos Position or direction (in case of directional light)

Vector3f att Attenuation x+ y ∗ dist+ z ∗ dist ∗ dist

bool isSpot True for Spot-light

Vector3f sdir Direction of Spot-light

GLfloat cutoff Spot-light cutoff, default:45

GLfloat exp Spot-light exponent, default:2.0

GLfloat cone Spot-light cone alpha, default:0.0

void runGLcmd(int light)

Call OpenGL fuctions for current this Light3d object

Appendix B. Headers 34

B.4.7 Class Object3d

Contains data member and methods to represent a 3D model. Only Object3d instances are

rendered by the function ’void render3dObjects()’.

Table B.10: Data members of Object3d

bool objType Default: 0 (none)

bool isCollidable Make object collidable; Default: false

bool isExtreamObj True(Default) if it’s an immovable object or has unstoppable force

bool isHidden True value does not render the object; Default: false

bool queryCollision True: if it’s a hit

bool castShadow Toggle shadow

Vector3f cubeBoundMin Bounding Box Minimum

Vector3f cubeBoundMax Bounding Box Maximum

Vector3f col color, Default: 0.7, 0.7, 0.7

Vector3f texCol texture color, Default: 1,1,1

Texture2d* tex Pointer to the texture of this object

GLfloat texEnvParam Texture environment parameter; Default: GL MODULATE

Material3d* mat Material properties of this object

GLuint dispList Display list id

Vector3f factorTra 3d offset from it’s position

Vector3f factorRot Orietation relative to it’s original orientation

Vector3f factorMul Scaling of object relative to it’s original size

Appendix B. Headers 35

Table B.11: Methods of Object3d

Method/Operator Comment

Object3d() Constructor

˜Object3d() Destructor

void operatorAssign(Object3d) Copy properties from another object

void bindTexture(Texture2d *t) Bind the texture to this object

void drawBounds() Draws cuboid bounds around this object

void makeBoundsEql() Make bounds a cube

virtual void updateDisplayList() Recreate display list for this object

virtual void draw() Handles draw method for this object

virtual void calcBoundingCube() Calculate cuboid bounds for this object

B.4.8 Class Obj3ds

Extends the class Object3d to load triangle mesh from a 3DS (©Autodesk, Inc.) file. To read

specification visit http://www.martinreddy.net/gfx/3d/3DS.spec.

Table B.12: Data members of Obj3ds

char name[24] Object name

unsigned long numV ert Number of vertices

Vector3f* vertex Array of vertices

Vector3f* normal Array of normals

unsigned long numPoly Number of Polygons (in 3ds it’s triangles)

TriMesh* triangle Array of triangles, containing indices of vertices

Vector2f* mapcoord Texture mapping coordinates

bool smooth Use precalculated normals

Appendix B. Headers 36

Table B.13: Methods of Obj3ds

Method/Operator Comment

Obj3ds() Constructor

bool Load3ds(char *filename) Load the 3d object from the given file

calcNormals() Calculate normal per vertex for smooth mesh

operator = Overloading assignment operator

operator += (Vector3f) Translate object by given amount

scale(Vector3f) Scale object by given amount

rotate(xy,yz,zx) Rotat object along xy, yz and zx planes in that order

draw() Render the object with current user setting

calcBoundingCube() Calculate cuboid bounds for the object

B.4.9 Class ObjBIN

Extends the class Object3d to load binary dump of 3D object. Used for fast loading of huge

3D triangle mesh.

Table B.14: ObjBIN File Format Specifications

Offset (in bytes) Type/Size Comment

0 32bit uint Contains number of vertices (numVert)

4 32bit uint Contains number of polygons (numPoly)

8 12× numV ert Array of vertices in Vector3f data type

8 + 12× numV ert 12× numPoly Array of triangles in TriMesh data type

8 + 12 × numV ert +

12× numPoly

8× numV ert Array of mapping coordinates in Vector2f data

type

Appendix B. Headers 37

Table B.15: Data members of ObjBIN

unsigned long numV ert Number of vertices

Vector3f* vertex Array of vertices

Vector3f* normal Array of normals

unsigned long numPoly Number of Polygons (in binary dump it’s triangles)

TriMesh* triangle Array of triangles, containing indices of vertices

Vector2f* mapcoord Texture mapping coordinates

bool smooth Use precalculated normals

Table B.16: Methods of ObjBIN

Method/Operator Comment

ObjBIN() Constructor

bool LoadBIN(char *filename) Load the 3d object from the given file

bool saveBIN(char *filename) Dump the 3d object from the given file

calcNormals() Calculate normal per vertex for smooth mesh

operator = Overloading assignment operator

operator += (Vector3f) Translate object by given amount

scale(Vector3f) Scale object by given amount

rotate(xy,yz,zx) Rotat object along xy, yz and zx planes in that order

draw() Render the object with current user setting

calcBoundingCube() Calculate cuboid bounds for the object

B.4.10 Class Obj3dGraph

Extends ObjBIN to implement the lapping of texture in binary dump.

Data members of Obj3dGraph

• TriMesh* elist

Appendix B. Headers 38

Table B.17: Methods of Obj3dGraph

Method/Operator Comment

Obj3dGraph() Constructor elist = NULL

˜Obj3dGraph() Destructor

calcGraph() Calculate the dual graph of the triangle mesh

lap() Implementation of lapping texture, see section-4.3

B.4.11 Methods

Texture2d* loadBMP(char *filename)

Loads the Bitmap file (*.bmp) into the texture structure.

On success a pointer to the Texture2d structure is returned. On failure a null pointer is

returned.

bool appendBMP(Texture2d *tex, char *filename)

Loads the alpha component from the given Bitmap file (*.bmp) in the given texture.

Bitmap file must be a grayscale image.

On success a returns true otherwise false is returned.

int getTotalTextures()

Returns the total number of textures read.

void setRenderTexture(bool)

Sets whether to render the textures or not.

bool isRenderTexture()

Returns the status that textures are currently rendering or not.

void setDrawBounds(bool)

Sets whether to draw cuboid boundary around objects or not.

bool isDrawBounds()

Returns the status to draw bounds or not.

void setLighting(bool v)

Sets the lighting for the OpenGL.

Appendix B. Headers 39

bool getLighting()

Returns the status of OpenGL lighting.

void updateDisplayList()

Calls the method ’updateDisplayList()’ for all ’Object3d’ instances.

void runForAllObject3d(void(*func)(Object3d*))

Calls the function ’void func(Object3d*)’ for all ’Object3d’ instances.

void setActiveCamera(Camera3d)

Sets the given Camera3d object as the default camera for ’render3dObjects’.

void setQuaternion(bool v)

Sets the default camera to behave like trackball view using quaternion.

bool getQuaternion()

Returns the status of quaternion.

void setActiveViewTrackBall(TrackBall)

Sets the given TrackBall object as the current trackball for ’render3dObjects’.

void render3dObjects()

Renders all the Object3d instances under the default Camera3d and other user setting.

unsigned int getNumRenderedPolygons()

Returns the number of rendered polygons in the last call of ’render3dObjects’.

References

[1] M.J. Ackerman. The visible human project. Proceedings of the IEEE, 86(3):504–511,

1998.

[2] Chakib Bennis, Jean-Marc Vézien, and Gérard Iglésias. Piecewise surface flattening

for non-distorted texture mapping. In ACM SIGGRAPH computer graphics, volume 25,

pages 237–246. ACM, 1991.

[3] James F Blinn and Martin E Newell. Texture and reflection in computer generated im-

ages. Communications of the ACM, 19(10):542–547, 1976.

[4] Kambiz Darabi, KDM Resch, J Weinert, Udo Jendrysiak, and A Perneczky. Real and

simulated endoscopy of neurosurgical approaches in an anatomical model. In CVRMed-

MRCAS’97, pages 323–326. Springer, 1997.

[5] Carl De Boor, Christian Gout, Angela Kunoth, and Christophe Rabut. Multivariate ap-

proximation: theory and applications. an overview. Numerical Algorithms, 48(1-3):1–9,

2008.

[6] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric sampling. In

Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference

on, volume 2, pages 1033–1038. IEEE, 1999.

[7] Gerald Farin and Phillip J Barry. Link between bézier and lagrange curve and surface

schemes. Computer-Aided Design, 18(10):525–528, 1986.

40

REFERENCES 41

[8] A. Ferlitsch, P. Glauninger, A. Gupper, M. Schillinger, M. Haefner, A. Gangl, R. Schoefl,

et al. Evaluation of a virtual endoscopy simulator for training in gastrointestinal en-

doscopy. Endoscopy, 34(9):698–702, 2002.

[9] Paul S Heckbert. Survey of texture mapping. Computer Graphics and Applications,

IEEE, 6(11):56–67, 1986.

[10] L. Hong, A. Kaufman, Y.C. Wei, A. Viswambharan, M. Wax, and Z. Liang. 3d virtual

colonoscopy. In Biomedical Visualization, 1995. Proceedings., pages 26–32, 1995.

[11] Lichan Hong, Shigeru Muraki, Arie Kaufman, Dirk Bartz, and Taosong He. Virtual

voyage: Interactive navigation in the human colon. In Proceedings of the 24th an-

nual conference on Computer graphics and interactive techniques, pages 27–34. ACM

Press/Addison-Wesley Publishing Co., 1997.

[12] K. Ikuta, M. Takeichi, and T. Namiki. Virtual endoscope system with force sensation.

Medical Image Computing and Computer-Assisted Interventation—MICCAI’98, pages

293–304, 1998.

[13] F.A. Jolesz, W.E. Lorensen, H. Shinmoto, H. Atsumi, S. Nakajima, P. Kavanaugh,

P. Saiviroonporn, S.E. Seltzer, S.G. Silverman, M. Phillips, et al. Interactive virtual

endoscopy. American Journal of Roentgenology, 169(5):1229–1235, 1997.

[14] H Kazerooni and Ming-Guo Her. The dynamics and control of a haptic interface device.

Robotics and Automation, IEEE Transactions on, 10(4):453–464, 1994.

[15] S. LAKARE, WAN Ming, A. KAUFMAN, Z. LIANG, and WAX Mark. An automatic

colon segmentation for 3d virtual colonoscopy. IEICE TRANSACTIONS on Information

and Systems, 84(1):201–208, 2001.

[16] Hans Køhling Pedersen. Decorating implicit surfaces. In Proceedings of the 22nd an-

nual conference on Computer graphics and interactive techniques, pages 291–300. ACM,

1995.

REFERENCES 42

[17] Hans Køhling Pedersen. A framework for interactive texturing on curved surfaces. In

Proceedings of the 23rd annual conference on Computer graphics and interactive tech-

niques, pages 295–302. ACM, 1996.

[18] WK Pratt, OD Faugeras, and A Gagalowicz. Applications of stochastic texture field

models to image processing. Proceedings of the IEEE, 69(5):542–551, 1981.

[19] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In Proceedings

of the 27th annual conference on Computer graphics and interactive techniques, pages

465–470. ACM Press/Addison-Wesley Publishing Co., 2000.

[20] Christof Rezk-Salama, Peter Hastreiter, Christian Teitzel, and Thomas Ertl. Interactive

exploration of volume line integral convolution based on 3d-texture mapping. In Pro-

ceedings of the conference on Visualization’99: celebrating ten years, pages 233–240.

IEEE Computer Society Press, 1999.

[21] RA Robb. Virtual endoscopy: development and evaluation using the visible human

datasets. Computerized Medical Imaging and Graphics, 24(3):133–151, 2000.

[22] S.P. Schrag, R. Sharma, N.P. Jaik, M.J. Seamon, J.J. Lukaszczyk, N.D. Martin, B.A.

Hoey, S.P. Stawicki, et al. Complications related to percutaneous endoscopic gastros-

tomy (peg) tubes. a comprehensive clinical review. Journal of Gastrointestinal and Liver

Diseases, 16(4):407, 2007.

[23] CK Shene. Introduction to computing with geometry. Lecture Notes, Michigan Techno-

logical University, http://www. cs. mtu. edu/˜ shene/COURSES/cs3621/NOTES, 2010.

[24] K. Shoemake. Animating rotation with quaternion curves. ACM SIGGRAPH computer

graphics, 19(3):245–254, 1985.

[25] OpenGL texture mapping. http://www.opengl.org/.

[26] OpenGL Webseite. http://www.opengl.org/.

[27] QT Webseite. http://qt-project.org/.

REFERENCES 43

[28] Roni Yagel, Don Stredney, Gregory J Wiet, Petra Schmalbrock, Louis Rosenberg, Den-

nis J Sessanna, and Yair Kurzion. Building a virtual environment for endoscopic sinus

surgery simulation. Computers & Graphics, 20(6):813–823, 1996.

[29] Fujio Yamaguchi and Fujio Yamaguchi. Curves and surfaces in computer aided geomet-

ric design. Springer-Verlag Berlin, 1988.

[30] S. You, L. Hong, M. Wan, K. Junyaprasert, A. Kaufman, S. Muraki, Y. Zhou, M. Wax,

and Z. Liang. Interactive volume rendering for virtual colonoscopy. In Visualization’97.,

Proceedings, pages 433–436, 1997.

[31] P.A. Yushkevich, J. Piven, H.C. Hazlett, R.G. Smith, S. Ho, J.C. Gee, and G. Gerig. User-

guided 3d active contour segmentation of anatomical structures: significantly improved

efficiency and reliability. Neuroimage, 31(3):1116–1128, 2006.

