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Abstract. Granular materials exhibit intricate force networks, often concentrated in chains rather than being
uniformly distributed. These meso-scale structures are complex to characterize, owing to their heterogeneous
and anisotropic nature. We present a topological analysis in which we characterize force networks by studying
the connectivity of contact forces in granular materials. We obtain the force network data during the isotropic
compression of a 2D granular ensemble, which comprises of bidisperse photoelastic disks. The force chains
are visualized using a bright-field polariscope, which are then analyzed using photoelasticity techniques to get
contact force information across all the particles in the granular ensemble. The forces and contact network are
studied using topological descriptors. We analyze the evolution of these descriptors using methods developed in
the areas of computational topology and persistent homology. Specifically, we evaluate the number of homol-
ogy class generators to capture critical changes in network connectivity with the evolution of packing fraction.
Building on previous applications of persistent homology, our topological analysis of the force network pro-
vides valuable insights by distinguishing different phases of particle interactions and revealing unique structural
transitions around jamming and thus help enhance our understanding of the stability and jamming dynamics in
granular systems.

1 Introduction

Granular materials exhibit complex spatial organization in
the way they transmit forces, often through highly local-
ized structures known as “force chains” These structures
play a critical role in determining mechanical response,
stability and transitions such as jamming. However, cap-
turing the evolving organization of this network of force
chains - i.e. the force network, particularly at and around
the jamming transition, remains a fundamental challenge.

One of the earliest experimental approaches to directly
visualize vector contact forces was introduced by Majmu-
dar and Behringer [1], who used photoelastic particles to
infer vector contact forces in 2D granular packings. This
technique was further refined and reviewed comprehen-
sively by Daniels et al. [2], who detailed the methodol-
ogy of force reconstruction using birefringent materials
and polarized light imaging. These advances laid the foun-
dation for experimental quantification of force networks.

On the computational side, topological techniques
have emerged as powerful tools to analyze force networks.
Arévalo et al. [3] used polygonal analysis of force-chain
structures to study transitions in network connectivity near
jamming. Building on this approach, Kondic et al. [4] in-
troduced the use of Betti numbers to quantify the number
of connected components (β0) and loops (β1) in force net-
works, demonstrating how topological invariants evolve
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under compression. Kramár et al. [5] described an exten-
sion to persistent homology and applied it on three differ-
ent simplicial complexes defined on the granular force net-
work. A significant milestone in this domain was the com-
prehensive review by Papadopoulos et al. [6], which sur-
veyed network-based approaches to studying particulate
systems. This work synthesized developments across ex-
perimental, simulation, and theoretical fronts, highlighting
the growing relevance of topological data analysis (TDA)
in understanding multiscale features in granular media up
to 2017.

Basak et al. [7] compared force networks constructed
from different photoelastic reconstruction methods, con-
cluding that persistent homology provides robust compar-
ative metrics across different reconstruction approaches.
In subsequent work, Basak et al. [8] analyzed the tempo-
ral evolution of force networks during stick-slip motion of
an intruder in a granular medium, revealing how the birth
and death of topological features can signal impending slip
events.

The present study advances prior work by applying
persistent homology to force networks reconstructed from
photoelastic data during isotropic compression. Rather
than solely classifying persistent homology features to
characterize the particle systems, we examine how these
features evolve in relation to internal changes within the
network. This enables us to trace the rise and spread of
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Figure 1: A pipeline for network construction and analysis of the photoelastic experimental data. (a) Input photoelastic
image in green channel at ϕ = 0.77897. (b) Interparticle force lines having force magnitudes below 10 times the average
force, extracted from the experimental data. (c) Simplicial complex constructed from all the contact forces under the
aforementioned threshold (red dots, lines and triangles are used to show the 0, 1 and 2 dimensional simplices). A close-
up view of the locations of some 0-th homology class generators (light blue dots) inside a particular square region.
(d,e) Persistence diagrams of 0- and 1-dimension, respectively.

localized high-force regions, leading to clear early signa-
tures of the jamming transition.

2 Experimental Setup

We construct a birefringent 2D granular ensemble by
cutting disk-shaped particles from a photoelastic sheet
(Vishay PSM-4). The ensemble consists of a bidisperse
system made up of 832 particles (See figure 1a), with di-
ameters D1 = 15.4 mm and D2 = 11 mm, in a ≈1:1 con-
centration ratio in terms of particle number. The ensem-
ble is confined by rails within an area ≈ 0.4 m ×0.4 m,
where two movable rails are operated by a linear actua-
tor (12v, 2 Amps) to apply biaxial compression at a speed
of 0.38 mm/s. The particles rest on a porous sheet that
provides air cushioning, minimizing base friction between
the particles and the sheet, which ensures that interactions
are solely particle-particle. To implement photoelasticity,
we construct a brightfield polariscope to leverage the bire-
fringent property of the particles to extract vector contact
force information. The camera used for imaging has a res-
olution of 134.5 microns and captures images at 1 frame
per second (fps). This vector contact force data is used to
analyze the topological features of the granular ensemble.
We make use of PeGS (Photoelastic Grain Solver - an open
source software) [9], which follows a systematic approach
to convert the experimental images into force networks as
summarized below:
Force calculation: We process each experimental image
to detect particles and force-bearing contacts. Each force-
bearing particle is analyzed to evaluate the vector contact
forces by solving the inverse problem [1, 2]. The outcome
is a weighted adjacency matrix that encodes the contact
forces between all pairs of particles in contact at a given
compression step.
Thresholding: A force threshold ( f ∗) applied to this ma-
trix filters out contacts with force magnitudes above 10
times the mean force, to eliminate noisy contacts. All
forces below this threshold, however small, are considered
for all analysis in the following sections (See figure 1b).

3 Methodology
Topological descriptors. Topological data analysis
(TDA) provides a set of tools for extracting the global
structure from complex datasets. A key concept is ho-
mology, which characterizes a network represented as a
simplicial complex [10] by measuring its holes (features)
in different dimensions. Persistent homology extends this
by considering the lifetime of an individual feature as one
varies a filtration parameter. This analysis results in the
construction of a persistence diagram (Figures 1d and 1e)
that enables the tracking of birth and death of significant
topological features within the network while varying the
filtration parameter. Sharp transitions in the diagram may
signal a critical rearrangement or a new structural phase in
the granular packing. A point in the persistence diagram is
called a persistence pair and the associated birth is located
at a generator.
Computation. A simplicial complex is constructed from
the force network by adopting the interaction network
model [5], where each particle is represented as a ver-
tex and the inter-particle contact force is represented by
an edge. Higher dimensional simplices (triangles, tetrahe-
dra) are included when all lower-dimensional faces belong
to the network (Figure 1c). The filtration parameter at an
edge is assigned equal to the contact force, at a vertex is set
to the maximum over all incident edges, and at a triangle
to be equal to the minimum over all bounding edges [5].
We compute the following using the GUDHI library [11]:

• β0 - zeroth Betti number, captures the number of con-
nected components, indicating groups of particles in
force-carrying clusters.

• β1 - first Betti number, captures the number of loops or
holes, highlighting the presence of circuits in the force
network.

• γ0 - the number of homology generators in the persis-
tence diagram of dimension-0 (connected components).

• γ1 - the number of homology generators in the persis-
tence diagram of dimension-1 (loops).

When tracked over the compression sequence, the above
quantities reveal the evolution of the network near the jam-



ming transition.The analysis focuses on β0, β1, γ0 and γ1
since the input is represented as a 2D simplicial complex.

4 Results and Discussions
We observe that during the early stages of compression,
the force network exhibits numerous short-lived loops that
emerge and quickly disappear. As the system approaches
jamming, certain loops and clusters become more robust,
indicating the formation of stable pathways for force trans-
mission. The persistence diagrams highlight these ob-
servations, with long-lived loops signifying crucial struc-
tural features within the force network. Additionally, as
we approach jamming, particles group into force-carrying
clusters, highlighting the buildup of a single network-
spanning force backbone, often regarded as the signature
of a jammed state. Figure 2 shows that β0 undergoes a
sharp drop while β1 exhibits a pronounced spike around
packing fraction ϕ ≈ 0.7755. The transition points of
change in the trend of the descriptors are identified through
clustering by fitting two piecewise linear segments, with
the first segment constrained to be horizontal, to highlight
the onset of structural change. This behavior is indicative
of a structural transition occurring due to the emergence
of loop-rich connectivity patterns—signatures of mechan-
ically stable, load-bearing configurations. The transition
seen in β0 and β1 seem to be in agreement with the physical
definition as well as the previous studies of jamming [4, 5].

Figure 2: Variation of β0 and β1 with packing fraction ϕ.

Figure 3 shows the evolution of β1/#edges with in-
creasing packing fraction. We observe that beyond the

transition point (ϕ ≈ 0.7755), the number of loops grows
more rapidly than the total number of force-bearing con-
tacts (edges). Rather than forming isolated branches, con-
tacts begin to reinforce local rigidity by building nested
or overlapping cycles, a hallmark of robust jammed pack-
ing, thereby increasing the count of independent cycles in
the network. From a topological standpoint, this behav-
ior indicates a denser and more interconnected force net-
work, where loop proliferation is a dominant mechanism
of structural evolution. Notice that this transition starts
well before ϕ ≈ 0.7755 and around ϕ ≈ 0.774.

Figure 3: β1 normalized by the total number of edges in
the force network, plotted against packing fraction ϕ.

Figure 4: Variation of γ0 with packing fraction ϕ. After
ϕ = 0.7773 (dotted magenta line), the γ0 value stays satu-
rated within a band of 160±10.

While β0 and β1 provide useful markers of this tran-
sition, they are not uniquely descriptive of the force net-
work itself. These values are invariant to both the filtration
method employed and the size of the network. For exam-
ple, a fully connected network that contains a single loop
of 10 (smaller loop) or 100 particles (larger loop) would
yield the same β1 value, despite having vastly different in-
ternal structures.

Thus, the Betti numbers alone—though informative of
the transition—do not capture the complete structural rich-
ness of the force network. Additional descriptors, such as
the number and persistence of homology generators, are
required to quantify the topological complexity in a size-



and scale-sensitive manner. We observed that γ1 and β1
are similar and differ only by the number of triangles in the
simplicial complex, and hence focus on γ0. Figure 4 shows
the evolution of γ0 as a function of packing fraction. γ0
provides a more sensitive measure of the internal structure
of the force network than β0, particularly in the context of
jamming. Initially, as the system approaches the jamming
threshold, the rise in γ0 closely tracks that of β0, suggest-
ing that each generator corresponds to a distinct connected
component of force-bearing particles. However, beyond
the packing fraction ϕ ≈ 0.7732, we observe a rapid in-
crease in γ0 despite the continuing decrease in β0. This
divergence indicates that although the number of macro-
scopic components decreases (as clusters merge), the in-
ternal structure of those clusters becomes increasingly in-
tricate. In particular, between ϕ ≈ 0.7732 and ϕ ≈ 0.7773,
γ0 rises significantly before saturating, revealing that the
network begins to exhibit a high density of short-lived,
low-persistence generators (birth - death force value less
than 0.1 N), contributing to increase and saturation in the
roughness [5] of the network.

At low packing fractions, these force-bearing parti-
cles are sparsely distributed, and the force chains they
form tend to be isolated, resulting in a sparser network
with fewer generators. As the system transitions into
the jammed regime, these previously disconnected force
chains begin to merge. This leads to the formation of
new topological features (births), followed by rapid merg-
ing (deaths), particularly of components with lower per-
sistence. The saturation in γ0 post ϕ ≈ 0.7773 suggests
that the force network reaches a structurally stable regime,
where most topologically significant components have al-
ready formed and merged. This transition observed in γ0
is consistent with the critical packing fraction ϕc ≈ 0.7730
reported in [12] on this very same experimental data,
where the onset of jamming was identified based on av-
erage force per particle.

This close agreement further supports the interpreta-
tion that the increase and saturation of γ0 reflect the devel-
opment of a mechanically stable, system-spanning force
network. Its sensitivity to both the number and lifespan of
features makes it a more informative descriptor for iden-
tifying the onset of jamming and analyzing the evolving
structural complexity of the force network.

5 Conclusions
In this work, we have demonstrated the utility of topo-
logical descriptors in capturing the structural evolution
of force networks in a granular ensemble undergoing
isotropic compression.

Betti numbers provided useful global markers: a sharp
drop in β0 and a concurrent spike in β1 near ϕ ≈ 0.7755
signaling a topological transition around the jamming
phase. However, these descriptors could not fully capture
the complexity of the network because they are invariant
to system size and the filtration.

In contrast, γ0 – particularly those with low persis-
tence – offered a higher sensitivity to internal structural

transitions. We observed that γ0 rises sharply beginning
at ϕ ≈ 0.7732 and saturates near ϕ ≈ 0.7773, reflecting
a phase where isolated force network merge and gener-
ate transient topological features. This behavior suggests
that γ0 is not only sensitive to network reorganization but
also predictive of mechanical stability and acts as an early
marker to loop proliferation and jamming transition. Its
evolution captures both the formation and dissolution of
force-carrying clusters—making it a finer and more dy-
namic measure of structural complexity. The methods
used here naturally extend to three-dimensional granular
systems by incorporating 3D simplices into the interac-
tion network. This approach can also aid in analyzing pore
structures within 3D packings, offering insights into con-
nectivity and void space geometry.
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