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Abstract—The Reeb graph of a scalar function represents the evolution of the topology of its level sets. This paper describes a
near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds or non-manifolds
in any dimension. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers
equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical
points of the function in the domain. Critical points correspond to nodes in the Reeb graph. Arcs connecting the nodes are computed
in the second step by a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical
points. The paper also describes a scheme for controlled simplification of the Reeb graph and two different graph layout schemes
that help in the effective presentation of Reeb graphs for visual analysis of scalar fields. Finally, the Reeb graph is employed in four
different applications – surface segmentation, spatially-aware transfer function design, visualization of interval volumes, and interactive
exploration of time-varying data.

Index Terms—Computational topology, scalar functions, Reeb graphs, level set topology, simplification, graph layout.
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1 INTRODUCTION

The Reeb graph of a scalar function is obtained by mapping
each connected component of its level sets to a point. Level
set components that contain critical points of the function map
to nodes of the graph. The abstract representation of level-set
topology within the Reeb graph enables development of simple
and efficient methods for modeling objects and visualizing
scientific data. Reeb graphs and their loop-free version, called
contour trees, have a wide variety of applications including
computer aided geometric design [1], [2], [3], [4], topology-
based shape matching [5], topological simplification and clean-
ing [6], [7], [8], surface segmentation and parametrization [9],
[10], [11], and efficient computation of level sets [12]. They
serve as an effective user interface for selecting meaningful
level sets [13], [14] and for designing transfer functions for
volume rendering [15], [16], [17], [18].

Fast computation of the Reeb graph and its efficient rep-
resentation is key to its successful application to the above-
mentioned problems. In this paper, we focus on the problem
of computing Reeb graphs with the goals of efficiency and
applicability.

1.1 Related work
Several algorithms have been proposed for constructing Reeb
graphs. However, only a few produce provably correct Reeb
graphs. We restrict our discussion to such algorithms. Shina-
gawa and Kunii proposed the first algorithm for constructing
the Reeb graph of a scalar function defined on a triangulated
2-manifold [19]. Their algorithm explicitly tracks connected
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components of the level sets and has a running time of O(n2),
where n is the number of triangles in the input. Efficient stor-
age and manipulation of connected components of level sets
leads to fast construction of Reeb graphs. Cole-Mclaughlin et
al. [20] adopted this approach to obtain an efficient algorithm
for 2-manifolds. They improved the running time to O(n logn)
by maintaining the level sets using dynamically balanced
search trees. Patanè et. al. [21] focused on 2-manifolds and
proposed a contouring approach to compute the Reeb graph in
O(ns) time, where s is the number of saddles in the input. This
algorithm has a good time complexity when s = O(logn), but
this is rarely the case in real-world data due to the presence of
noise. When the number of saddles is large, the running time
degenerates to O(n2).

Doraiswamy and Natarajan [22] stored the connected com-
ponents of level sets using dynamic connectivity data struc-
tures resulting in an algorithm that computes the Reeb graph
of a scalar function defined on a 3-manifold in O(n logn +
n logg(log logg)3) time. Here g is the maximum genus over
all level sets of the input function. They extended this
approach to higher dimensional manifolds and designed a
O(n logn(log logn)3) time algorithm. This algorithm has the
best known theoretical bound on the running time. However, in
practice, the sophisticated data structures used in the algorithm
do not lend themselves to efficient implementations.

For the special case of loop-free Reeb graphs, called contour
trees, Carr et al. [23] described an elegant O(v logv) algorithm
that works in all dimensions, where v is the number of vertices
in the input. The algorithm makes two passes over the data
to compute the join and split tree, whose union is the contour
tree. Chiang et al. [24] proposed an output sensitive approach
that computes join and split trees using monotone paths. The
presence of loops in the Reeb graph implies that such a
decomposition may not exist. Tierny et al. [25] performed a
surgery on the 3-manifold domain that cut open all handles
of the domain’s boundary, thereby reducing the problem to
the computation of contour trees. This led to a very efficient
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algorithm. However, the algorithm is restricted to 3-manifolds.
More specifically, it works only when the 3-manifold has a
single boundary component. Note that 3-manifolds may have
more than one boundary component or no boundary at all.

Pascucci et al. [26] proposed an online algorithm that
constructs the Reeb graph for streaming data. Their algorithm
takes advantage of the coherency in the input to construct the
Reeb graph efficiently. In a streaming model, where triangles
are processed during a single pass through the triangles in the
input mesh, the algorithm essentially attaches the straight line
Reeb graph corresponding to the current triangle with the Reeb
graph computed so far. Even though the algorithm has a O(n2)
behavior in the worst case, it performs very well in practice
for 2-manifolds. However, the optimizations that result in fast
incremental construction of Reeb graphs for 2-manifolds do
not provide a performance benefit in higher dimensions. We
adopt a simple but different approach to compute Reeb graphs
that traces connected components of interval volumes, the
volume between two level sets. This approach results in an
algorithm that exhibits good worst-case behavior and works
well in practice. While we obtain good running times for
2-manifolds, our algorithm performs better than the online
algorithm for 3-manifolds.

Other algorithms for computing Reeb graphs follow a
sample based approach that produces potentially inaccurate
results [5], [27].

1.2 Results
We present an efficient two-step algorithm† for computing the
Reeb graph of a piecewise-linear (PL) function in O(n + l +
t log t) time, where n is the number of triangles in the input
mesh, t is the number of critical points of the function, and
l is the total size (number of edges) of all critical level sets.
The algorithm has various desirable properties. It is
• output-sensitive: the running time depends on the number

of critical points of the function, which is equal to the
number of nodes in the Reeb graph, and the size of
critical level sets, which is indicative of the importance
of features in the data.

• near-optimal: the size of critical level sets is usually O(n)
in practice. So, the worst-case running time is close to the
lower bound Ω(n+ t log t) [12].

• generic: the algorithm works, without any modifica-
tions, for functions defined on d-manifolds and for non-
manifolds. Our implementation can handle data sampled
on both unstructured and structured grids.

• simple: the algorithm is simple to implement. It consists
of a sorting operation followed by a series of tree search
operations.

We present experimental results that demonstrate the efficiency
of our algorithm. We also address two important issues that are
crucial for the application of Reeb graphs to noisy or feature-
rich data.

†. A preliminary version of this paper appeared in the Proceedings of
the International Symposium on Algorithms and Computation [28]. This
paper additionally presents algorithm optimizations that result in significant
performance improvements, an embedded layout of the Reeb graph, and four
applications of Reeb graphs.

• Simplification: We describe a method to simplify the Reeb
graph based on the notion of extended persistence [29]
that removes short leaves and cycles in the graph.

• Layout: We propose a feature-directed layout of the Reeb
graph that serves as a useful interface for exploring and
understanding three-dimensional scalar fields. We also
describe a method to generate an embedded layout of the
Reeb graph such that the embedding lies in the interior
of the volume.

Finally, we describe four applications of Reeb graphs –
segmentation of a surface mesh into meaningful parts, visu-
alization of interval volumes, spatially-aware flexible transfer
function design, and interactive exploration of time-varying
data.

1.3 Outline
The rest of the paper is organized as follows: Section 2
introduces the necessary definitions and describes the structure
and behavior of level sets. Section 3 describes our algorithm to
construct the Reeb graph of a scalar function defined on a d-
manifold. Section 4 presents experimental results. Section 5
describes techniques for simplification and visualization of
Reeb graphs. Section 6 discusses four applications of Reeb
graphs and Section 7 concludes the paper.

2 BACKGROUND

Let Md denote a d-manifold with or without boundary. A
smooth, real-valued function f : Md → R is called a Morse
function if it satisfies the following conditions [20]:

1) All critical points of f are non-degenerate and lie in the
interior of Md .

2) All critical points of the restriction of f to the boundary
of Md are non-degenerate.

3) All critical values are distinct i.e., f (p) 6= f (q) for all
critical points p 6= q.

The above conditions typically do not hold in practice for PL
functions. However, simulated perturbation of the function [30,
Section 1.4] ensures that no two critical values are equal. A
total order on the vertices helps in consistently identifying
the vertex with the higher function value between a pair of
vertices. In the remaining discussion, we assume that the above
conditions are satisfied.

2.1 Input
We assume that the input manifold is represented by a
triangulated mesh, the function is sampled at vertices, and
linearly interpolated within each simplex. In the case of higher
dimensional manifolds (d ≥ 3), the algorithm requires only the
2-skeleton (vertices, edges, and triangles) of the mesh.

2.2 Critical points and level sets
Critical points of a smooth function are exactly where the
gradient becomes zero. Banchoff [31] and later Edelsbrunner
et al. [32] describe a combinatorial characterization for critical
points of a PL function, which are always located at vertices of
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Fig. 1. Isosurfaces before ( f−1(c− ε)) and after ( f−1(c +
ε)) passing through a point with function value c and the
structure of the Reeb graph at the corresponding node.
Topology of the isosurface changes when it evolves past a
critical point. Genus modifying saddles and regular points
are optionally included into the Reeb graph as degree two
nodes.

the mesh. The star of a vertex consists of the incident edges,
triangles, and higher-order simplices. All simplices in the star
where the function value is greater than the vertex constitute
the upper star. All simplices in the star where the function
value is lower than the vertex constitute the lower star. The
link of a vertex consists of all vertices adjacent to it and the
induced edges, triangles, and higher-order simplices. Adjacent
vertices with lower function value and their induced simplices
constitute the lower link, whereas the adjacent vertices with
higher function value and their induced simplices constitute
the upper link. For functions defined on 2- and 3-manifolds,
the critical points are classified based on the number of
connected components, the zero-th Betti number, of the lower
and upper link. Classification of all critical points in higher
dimensions requires the computation of higher order Betti
numbers.

The preimage of a real value is called a level set. The level
set of a regular value is a (d− 1)-manifold with or without
boundary, possibly containing multiple connected components.
We are interested in the evolution of level sets against in-
creasing function value. Topological changes occur at critical
points, whereas topology of the level set is preserved across
regular points [33].

In the context of Reeb graphs, we are only interested in
critical points that modify the number of level set components.
So, it is sufficient to count the number of connected compo-
nents of the lower and upper links for identifying these critical
points. Given a critical point ci, call the level set f−1( f (ci))
as a critical level set.

Consider the case when d = 3. A level set of a three-

Fig. 2. Reeb graph of the height function defined on
a solid 2-torus. The Reeb graph tracks the topology of
level sets. Arc a in the Reeb graph maps to cylinder A, a
collection of level set components.

dimensional function is called an isosurface. Figure 1 illus-
trates the topology changes that occur at critical points in a
3-manifold. Specifically, the level set topology changes either
by gaining / losing a component or by increasing / decreasing
its genus. The isosurface gains a component when it evolves
past a minimum and loses a component when it evolves
past a maximum. The local pictures in Figure 1 indicate an
apparent splitting of a component into two at a 2-saddle and
merging of two components at a 1-saddle. Global behavior of
the isosurface component will determine if this is indeed a
split / merge or a reduction / increase in genus.

2.3 Reeb graph
The Reeb graph of f is obtained by contracting each connected
component of a level set to a point [34]. Formally, it is the
quotient space under an equivalence relation that identifies all
points within a connected component of a level set. The Reeb
graph expresses the evolution of connected components of
level sets as a graph whose nodes correspond to critical points
of the function. Figure 2 shows the Reeb graph of the height
function on a solid 2-torus. Nodes of the Reeb graph have
degree one or three. Figure 1 illustrates the local structure
of the Reeb graph at various types of nodes for a three-
dimensional scalar function. Nodes corresponding to minima
and maxima have degree one. A node that corresponds to a
saddle has degree three if the saddle merges or splits level set
components. Genus modifying saddles do not alter the number
of level set components. They are optionally included into the
Reeb graph as degree two nodes as described by Pascucci and
Cole-McLaughlin [35].

The above description of the Reeb graph focuses on the
mapping between individual level set components and nodes
or points within arcs of the graph. We propose the use of
an alternate but equivalent mapping, where nodes and arcs of
the Reeb graph are mapped to components of critical level
sets and equivalence classes of regular level set components
respectively. The advantage of our proposed alternate map is
that a simple and efficient algorithm to compute the Reeb
graph follows immediately from the mapping. We illustrate
this idea using an example in Figure 2. The arc a is mapped
to cylinder A, a collection of regular level set components that
are topologically equivalent to each other. The lower boundary
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of A consists of a subset of the critical level set f−1(u), and the
upper boundary of A consists of a subset of the critical level
set f−1(v). The end point v of the arc originating at u can be
computed by tracing A from the lower boundary component to
the upper component. Different colors in the figure depict the
cylinders corresponding to individual arcs of the Reeb graph.

3 THE REEB GRAPH ALGORITHM

We now describe an algorithm that computes the Reeb graph
of a PL function f defined on a 3-manifold. The algorithm
directly extends to d-manifolds (d ≥ 2) and non-manifolds
but in order to simplify the description, we will consider the
case of d = 3 in this section. The algorithm follows from the
alternate mapping described in Section 2.3. It consists of two
steps:

1) Locating critical points in the domain and sorting them
based on function value.

2) Identifying pairs of critical points that define cylinders
and inserting the corresponding arcs in the Reeb graph.

The link of a vertex in a 3-manifold is a triangulation of a
sphere. The vertex is regular if it has exactly one lower link
component and one upper link component. All other vertices
are critical. A critical point is a maximum if the upper link is
empty and a minimum if the lower link is empty. Else, it is
classified as a saddle. We count the number of components in
the upper and lower links by performing a breadth first search
in the graph formed by vertices and edges in the upper and
lower links respectively.

3.1 Level sets and cylinders
The 3-manifold is represented by a tetrahedral mesh. A level
set of the input scalar function is generically a surface that
is represented by a collection of triangles. However, the
algorithm requires only the 1-skeleton representation (vertices
and edges) of the level sets in order to track its connectivity.
The 1-skeleton of the level set can be extracted from the
2-skeleton representation (vertices, edges, and triangles) of
the domain. An edge in a level set lies within a unique
triangle of the input triangulation. So, the level set can be
represented by the collection of corresponding triangles in
the input mesh. Cylinders are also represented as a collection
of mesh triangles. Specifically, the cylinder bounded by two
critical level set components is represented by triangles that
contain the intermediate level set components.

3.2 LS-graph
Tracking level set components requires maintaining and up-
dating edges of the level set with changing function value.
This maintenance becomes costly for three and higher di-
mensional data. To avoid such explicit tracking of level sets,
we introduce a dual graph that stores triangle adjacencies
and helps implicitly track level set components of individual
cylinders. This directed graph GLS (V,E), called the LS-graph,
is a directed graph whose nodes V = {t1, t2, . . . , tn} corresponds
to the n triangles {T1,T2, . . . ,Tn} in the input mesh. Node ti is
assigned a cost equal to the maximum over function values at

Fig. 3. Adjacent triangles in the input can have one of six
possible configurations. The LS-graph contains an edge
from ti to t j in all cases except the forbidden configuration
in (f). Edges in the graph are directed towards the node
with higher cost. The boundary between the blue and
orange regions and the boundary between the orange
and red regions indicate the location of the level set edges
where the function value becomes greater than f (v1) and
f (v2) respectively.

vertices of the triangle Ti, and is a representative of all level
set components that pass through Ti. Traversing an edge from
ti to t j in GLS corresponds to moving to a level set at a higher
function value. If this edge does not cross a critical value, then
the traversal is equivalent to tracing a path within a cylinder.
The graph GLS contains an edge from vertex ti to vertex t j if
triangles Ti and Tj are adjacent, with one exception shown in
Figure 3. When ti and t j have the same cost, GLS contains an
edge from ti to t j, as well as from t j to ti.

The exception, shown in Figure 3(f), is a configuration
where the level set components represented by triangles Ti and
Tj possibly belong to different cylinders. Let 〈v0,v1,v2〉 with
f (v0) < f (v1) < f (v2) be vertices of triangle Ti and 〈v0,v1,v3〉
with f (v0) < f (v1) < f (v3) be vertices of triangle Tj. Triangles
Ti and Tj share the edge (v0,v1) and the cost of t j (= f (v3)) is
greater than f (v1). Figure 3(f) shows this configuration where
the level set component possibly splits into two at f (v1) during
an upward sweep. Inserting an edge from ti to t j could allow
a graph traversal to jump from one cylinder to another. We do
not insert this edge into the LS-graph because we are interested
in tracking individual cylinders.

3.3 Connecting the critical points

We compute arcs in the Reeb graph by tracing paths in the LS-
graph. Let 〈c1,c2, . . . ,ct〉 be the ordered list of critical points
with function values 〈 f1, f2, . . . , ft〉 and fx < fy whenever x < y.
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Fig. 4. Illustration of the two-step algorithm computing the Reeb graph of the height function defined on a solid 2-torus.
This model has ten critical points, including two minima, two maxima, and six saddle points. The critical points are
first sorted in increasing order of function value. Let c1,c2, ...,c10 be the ten critical points in sorted order. (a) Beginning
with a triangle in the upper star of c1, the algorithm traces the green cylinder to reach L3 and inserts (c1,c3) into the
Reeb graph. (b) The search from c2 also reaches L3, but a different component as compared to the previous trace. So
(c2,c3) is inserted into the Reeb graph. (d) The upper star of c4 has two components. A search is initiated from each
component to obtain the two parallel arcs (c4,c5) of the Reeb graph. (f) While tracing the cylinder from c6, the search
procedure reaches a triangle with cost greater than f7 that does not belong to L7. The search procedure next reaches
L8 and the arc (c6,c8) is inserted into the Reeb graph. (i) The Reeb graph of the input function is computed after all
critical points are processed.



6

Fig. 5. Connecting critical points. The set of green trian-
gles shows the path traced in the LS-graph by the search
procedure initiated at ci. The search terminates when it
reaches a triangle in Lp. Similarly the search initiated at cl
also terminates at Lp.

Let Li denote the set of triangles containing the components
of the level set f−1( fi− ε) that pass through the lower star
of ci. The ith iteration of the algorithm connects ci with a
set of critical points cp, where fp > fi. Figure 4 illustrates
the different iterations of the algorithm applied on the height
function defined on a solid 2-torus.

The upper star of ci can possibly contain multiple connected
components. Each component of the upper star corresponds
to a potential new arc in the Reeb graph that connects ci
with a higher critical point. Figure 4(d) illustrates the case
when the upper star of c4 has two components. We trace the
cylinders bounded below by a level set component of ci in the
ith iteration of the algorithm. We initiate a tree search in GLS
from a node t that is dual to a triangle T in the jth component
of the upper star of ci. Nodes in the LS-graph that belong
to this cylinder are labeled [i, j]. In each step of the search,
we traverse to a higher cost node in GLS and terminate the
search when we reach a node t ′ whose cost is greater than or
equal to fi+1. We insert an arc into the Reeb graph between
nodes corresponding to ci and ci+1 iff the triangle T ′ dual to
t ′ belongs to Li+1.

If T ′ does not belong to Li+1, we continue the search
procedure until we reach a node whose cost is greater than
or equal to fi+2 and test if the dual triangle belongs to Li+2.
We repeat the search until we find the set Lp that bounds
the cylinder. This operation is shown in Figure 4(f). Figure 5
illustrates the search initiated at two critical points ci and cl
that terminate in Lp. Triangles in Lp are shaded green and
yellow indicating the disjoint components of the level set
f−1( fp− ε).

If a search initiated from the jth component of the upper
star of ci reaches a node with label [i, j′], j 6= j′ or if it reaches
a node whose dual triangle belongs to a level set component
visited during a previous search, then ci is declared a genus
modifying saddle. In either case, the Reeb graph remains
unaffected. The search initiated from ci can never reach a node
with label [i′, j], i 6= i′, for any j because this would imply that
two level set components merged at a regular vertex.

We use the triangle-edge data structure [36] to store the

input triangulation. The LS-graph is implicitly stored in this
data structure because each triangle-edge pair stores a refer-
ence to neighboring triangle-edge pairs. We traverse from a
dual triangle by comparing the function value at vertices of
the adjacent triangle. The Reeb graph is stored as an adjacency
list whose nodes correspond to critical points of the function.
An arc from ci to cp is inserted if the search initiated at ci
finds a triangle in Lp. After all critical points are processed,
the adjacency list represents the Reeb graph of f .

3.4 Analysis

We first prove that our algorithm indeed computes the Reeb
graph of the input scalar function f and then analyze its worst
case running time.

Correctness. Let ci,cp with fi < fp be critical points such
that there is an arc from ci to cp in the Reeb graph. When
we track a level set component beginning at a function
value infinitesimally above fi, the topology of that level set
component remains unchanged until the function value reaches
fp. This collection of level set components is exactly a cylinder
between ci and cp. Consider a triangle T that contains the
level set component when the tracking begins. As we increase
the function value past the cost of the dual node t, the level
set component passes through a triangle adjacent to T whose
dual node has a cost greater than that of t. This is equivalent
to the search in the LS-graph as performed by our algorithm.
The algorithm proceeds until we reach a node t ′ with cost
greater than or equal to fp. Since the cost of the preceding
node is less than fp, a level set component at a function value
infinitesimally below fp will pass through the triangle T ′ dual
to t ′. This level set component is a subset of Lp because
we have essentially traced the cylinder between ci and cp.
Our algorithm observes that the triangle T ′ belongs to Lp and
correctly declares (ci,cp) to be an arc in the Reeb graph.

Running time. Let n be the number of triangles in the input
and t be the number of critical points of the input PL function.
Triangles adjacent to a given triangle, that is required for
the LS-graph traversal, can be found in O(1) time using the
triangle-edge data structure. Critical points are located by
computing the number of connected components of the lower
and upper links, which also takes O(n) time using the triangle-
edge data structure. Sorting the critical points takes O(t log t)
time.

The set Li is extracted by marching through the triangles
that contain f−1( fi−ε). This task takes O(l +n) time, where
l is the total size of all critical level sets. This is because
the size of the set Li is equal to the size of the critical level
set f−1( fi), plus the number of triangles in the lower star of
ci which when summed over all critical points is bounded by
O(n). Though it is possible in theory that l = O(n2), we notice
that l is usually O(n) in our experiments.

Each node ti in the LS-graph has at most six neighbors
because each triangle is incident to at most two tetrahedra. So,
the number of edges in the LS-graph is O(n). During the search
procedure, each node is labeled exactly once and visited at
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Fig. 6. Replace edge v1v2 that is not incident on any
triangle with triangle Ti j. Our algorithm works on this
modified input to compute the Reeb graph. The function
value at the new vertex of Ti j is set equal to the average
of f (v1) and f (v2).

most six times, once from each of its labeled neighbors. Thus
the traversal of the graph is accomplished in O(n) time. Each
update of the adjacency list representation takes constant time.
The total number of such updates is equal to the number of
arcs in the Reeb graph. A conservative bound for the number
of arcs in the Reeb graph is given by the number of triangles
in the input. Hence, maintaining the Reeb graph takes O(n)
time. Combining the above steps, we obtain an O(n+ l+t log t)
bound on the running time of our algorithm.

3.5 d-manifolds and non-manifolds

The level set of a regular value for a Morse function defined on
a d-manifold is a (d−1)-manifold. The connectivity of a level
set is represented by its 1-skeleton. Therefore, tracking the
connected components of the level set requires only the edges
of the level set, which, as mentioned earlier in Section 3.1, can
be extracted from the 2-skeleton of the input mesh. Also, the
vertices and edges of the upper links and lower links can be
obtained from the triangles of the input. Tracking the cylinders
corresponding to each arc of the Reeb graph is accomplished
as before using the LS-graph, which also requires only the
triangles of the input. So, the algorithm works directly on the
2-skeleton representation of d-manifolds.

In the case of non-manifolds, the algorithm again works
on the 2-skeleton representation without any modification.
Since the algorithm expects the input to be a collection of
triangles, edges that are not incident on any triangle in the
input are replaced by a triangle as shown in Figure 6. The
function value at the additional vertex is equal to the average
of the function values of the two end points of the edge. This
operation does not affect the Reeb graph of the input because
the newly introduced vertex is a regular point. Candidate
critical points are again located by counting the number of
connected components of the lower and upper link. In case
a regular vertex has two link components, we extend the LS-
graph by appropriately adding edges between triangles present
in the two components. When the function value is equal to
that of such a vertex, then the level set component will be just
a point. Figure 6 shows two such vertices v1 and v2, where
the level set component becomes a point. The LS-graph as
defined for a manifold input will not have an edge connecting
triangles Ti and Ti j, and the LS-graph traversal will terminate
at ti. Inserting the new edge overcomes this difficulty.

4 EXPERIMENTS

The Reeb graph construction algorithm was implemented in
Java§ and tested on a machine with a 64-bit 2.0 GHz Intel
Xeon E5405 quad-core processor and 16 GB main memory.
Our implementation accepts a function sampled at vertices of a
simplicial mesh as input, computes the Reeb graph, and stores
it as an edge list. Since our implementation requires the data
to be in RAM, for large datasets it may not be possible to
store the sets Li of all critical points found in Step 1 of the
algorithm. We develop two optimization strategies that allow
us to handle large datasets.

4.1 Optimizations
We noticed in our experiments that level set components do
not merge or split at several saddle points. We discard these
vertices and compute the sets Li only for the potential critical
vertices and hence reduce the memory footprint considerably.
We march through triangles containing the level set f−1( fi±ε)
in a breadth first manner beginning from a triangle in an upper
or lower star component of ci. If this traversal reaches triangles
labeled by a traversal from a different upper or lower star
component, then we recognize that the level set consists of a
single component and stop processing the vertex. This filtering
step, in the worst case, requires the additional computation
of the level set f−1( fi + ε) for all potential critical vertices
ci whose upper link has two components. This overhead is
small in practice and many of the false positives are quickly
eliminated, and thus the overall time taken to compute all sets
Li is significantly reduced.

As a second memory optimization, instead of processing
all critical vertices in a single step, we process critical points
in batches of a predetermined granularity. Let g denote this
granularity. After sorting the critical points in increasing order
of function value, we begin by computing the sets Li for the
first g critical points. Next, we find the arcs, one of whose
end points belongs to this set. The second end point of the arc
may not lie within the current set of g critical points. In this
case, we store the partially traced paths in a queue after the gth

critical point is processed. Paths in the queue are traced first
when we process the next set of g critical points. By splitting
Step 2 of the algorithm into batches, we only need to store the
sets Li for g critical points at any instant of time. The memory
required can thus be limited by varying the value of g.

4.2 Results
Table 1 shows the time taken by our implementation to
compute the Reeb graph for various models. We compare the
performance of our algorithm with the online algorithm of
Pascucci et al. [26]. While the online algorithm performs well
for 2D data, our algorithm performs substantially better for
3D data. We expect that the algorithm will also be efficient
in practice for higher dimensional input. The running time
depends on the number of critical points, clearly indicating
the output sensitivity of our algorithm. Specifically, for the

§. The source code together with test data is available at
http://vgl.serc.iisc.ernet.in/software/software.php?pid=001
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Time taken (sec)
Model #Triangles #Critical points Our algorithm Online algorithm [26]

2D bunny 40000 217 0.7 0.06
Laurent Hand 99999 92 1.0 0.24

Neptune 998840 1757 9.0 1.76

3D

Engine 27252 160 1.2 0.26
Solid 8-torus 34832 18 0.52 0.1

PMDC 237291 902 2.7 4.9
Blunt fin 451601 827 23.3 118.8

Liquid Oxygen Post 1243200 132 13.0 481.1
Bucky Ball 2524284 4378 197.9 9887.0 ‡

Plasma 2646016 2852 396.3 11983.2 ‡

SF Earthquake 4198057 11888 598.1 15949.1 ‡

Non-manifold Crank (2D) 100056 253 1.5 0.56
Armadillo-nonmanifold (2D) 331904 462 3.3 2.2

Fighter (3D) 143881 3618 123.8 44.7

TABLE 1
Reeb graph computation time for various 2D and 3D input. For all 2D models and solid 8-torus, the Reeb graph was

computed for the height function. In all other cases, the function is available with the data set.

fighter data, the Reeb graph computation time is high due to
the presence of a large number of critical points.

To test the scalability of our algorithm in higher dimensions,
we generated Sierpinski simplexes in four, five, and six dimen-
sions and computed the Reeb graph for the height function.
In all three cases, the Sierpinski simplexes were generated
by repeated subdivision until the number of triangles became
greater than 10 million. Figure 7 shows the running times
for various cases. Note that the running time scales almost
linearly with the number of input triangles, independent of
the dimension of the input mesh.

For datasets that do not fit in memory, our implementation
can be extended similar to the contour tree algorithm proposed
by Chiang et al. [24] by storing the input data using a stream-
ing layout. The layout ensures that triangles adjacent to a given
triangle are stored close to each other. Therefore, traversing
triangles can be efficiently accomplished in a spatially coherent
fashion thus reducing the number of disk accesses.

5 VISUALIZATION OF REEB GRAPHS

Effective presentation of Reeb graphs is crucial for its ap-
plication to interactive exploration of scalar fields. Prior to
its visualization, simplification of Reeb graphs is necessary
for effective visualization of large and feature rich data.
Simplification aids in noise removal and creation of feature-
preserving multiresolution representations. In this section we
first describe a method to simply the Reeb graph, and then
provide two layout schemes for visualizing them.

5.1 Simplification of Reeb graphs
A topological feature in the input is represented by a pair of
critical points, typically an arc in the Reeb graph. Unimportant
features in the data can be removed by repeated cancellation
of low persistence critical point pairs [37], which also leads

‡. These timings were reported for the online algorithm of Pascucci et
al. [26] by Tierny et al. [25]. The experiments were run on a machine with a
similar configuration.

Fig. 7. A log− log plot of time taken to compute the
Reeb graph of Sierpinski simplexes of various sizes in
different dimensions. Note the near-linear behavior of the
algorithm.

to a multiresolution representation of the input scalar field.
Features can also be ordered and removed based on geometric
measures like hypervolume [14]. Existing algorithms for con-
tour tree simplification remove critical point pairs that create
and destroy a level set component. We simplify the Reeb
graph using a notion of extended persistence [29] that pairs
all critical points. In particular, it finds pairs for critical points
that are creators without a corresponding destroyer.

Our approach to Reeb graph simplification is similar to
the one used to simplify contour trees [14]. In addition to
the leaf pruning and node reduction simplification operations,
we perform an additional loop pruning operation on the Reeb
graph. Leaf pruning removes a leaf and the incident arc from
the Reeb graph. A leaf connecting to a split or merge saddle
is not pruned. Node reduction removes a degree-2 node by
merging the two adjacent arcs. The loop pruning operation
removes a loop defined by adjacent nodes connected by two
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(a)

(b)

(c)

Fig. 8. Reeb graph of the height function on a 4-torus.
(a) A volume rendering of the solid 4-torus with the
embedded Reeb graph. (b) Side view of the radial layout
of the Reeb graph. (c) Top view of the radial layout of the
Reeb graph.

parallel arcs. This operation is equivalent to removing one of
the parallel arcs and performing node reduction on the pair of
adjacent nodes.

We simplify the Reeb graph using repeated application of
the three mentioned operations:

1) Perform node reduction where possible.
2) Choose the least important leaf / loop and prune it.

Leaves and loops that can be pruned are stored in a priority
queue ordered based on the persistence of the corresponding
critical point pair. If a pruning operation results in a reducible
node, then node reduction is performed immediately. All new
leaves and prunable loops created by the above operations are
in turn inserted into the priority queue. Note that we use the
simplification process as an aid for visualizing Reeb graphs
and not to modify the input function. Realizing the function
representing the simplified Reeb graph may require changing
the topology of the input.

5.2 Reeb graph layout

We now describe two different layout schemes for visualizing
the Reeb graph. The first scheme embeds the Reeb graph
within the input domain, whereas the second scheme generates
an abstract visual representation of the hierarchical structure
of the topological features in the data.

Embedded Reeb graph layout. Each arc of the Reeb graph
is obtained by tracking the corresponding monotone cylinder
using the LS-graph. The path thus obtained has the property
that it lies entirely within the input domain, specifically in the
interior of its corresponding cylinder. These paths constitute
an embedded layout of the Reeb graph with the property that
all arcs lie within the input domain.

Fig. 9. The spanning contour tree of a Reeb graph is
structurally similar to a contour tree. Removal of a1 results
in a spanning contour tree. Removing a2 results in a tree
with an invalid degree-2 node.

Figure 8(a) shows the Reeb graph of a solid 4-torus em-
bedded within its volume. The Reeb graph is computed for
the height function defined on the input. Minima are shown
in blue, maxima in red, and saddles in green.

Feature directed radial layout. We build upon the orrery
layout proposed for contour trees [38] to obtain a layout
for Reeb graphs. The extension to Reeb graphs is non-trivial
because of the presence of loops. We overcome this difficulty
by designing a four step layout scheme:

• First, extract a spanning contour tree of the Reeb graph.
• Second, compute a branch decomposition of this spanning

tree.
• Third, use a radial layout scheme to embed the spanning

tree in 3D.
• Finally, add the non-tree arcs to the layout.

The spanning contour tree is a spanning tree of the Reeb
graph that satisfies the structural properties of a contour
tree, namely all degree-2 nodes in this spanning tree have
exactly one neighbor node with higher function value and one
neighbor node with lower function value. Not all spanning
trees satisfy this property. For example, in the two graphs
shown in Figure 9, removing arc a1 results in a spanning
contour tree. Removal of a2 also results in a spanning tree,
but one that does not correspond to a valid contour tree.

A branch decomposition is an alternate representation of a
contour tree that explicitly stores the topological features and
their hierarchical relationship [38]. A branch is a path between
two leaves of the contour tree or a path that connects a leaf
to an interior node of another branch.

All branches of the spanning contour tree are drawn as L-
shaped polylines and the y-coordinate corresponds to function
value. The (x,z) coordinates are computed for each branch
using a radial layout scheme. The root branch is located at
the origin and others are placed on concentric circles centered
at the origin. All branches that connect to an interior node
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(a) (b)

(c) (d)

Fig. 10. Reeb graphs computed for the height function defined on non-manifold meshes. (a) Non-manifold Armadillo
dataset, (b) the Crank dataset, (c) a 3D Sierpinski simplex subdivided twice, and (d) a 4D Sierpinski simplex subdivided
twice.

of the root branch are equally spaced around the origin at
a fixed distance from it. Branches that connect to an interior
node of a first-level branch are placed in the second concentric
circle within a wedge centered at a level-one branch. The
angle subtended is proportional to the number of descendant
branches. In order to avoid intersections when the non-tree
arcs are inserted, we include a dummy branch for each loop
arc before calculating the angular wedge subtended at each
branch. Figures 8(b) and 8(c) show the layout for the Reeb
graph computed for the height function defined on a 4-torus.
Figure 10 shows the radial layout for Reeb graphs of a few
non-manifold meshes.

6 APPLICATIONS OF REEB GRAPHS

We now describe four applications of Reeb graphs to visual-
ization and graphics.

6.1 Segmentation of surface meshes
The cylinders partition the input mesh into potentially interest-
ing features. A minor extension of our two-step algorithm also
traces the cylinders. While computing the arcs of the Reeb
graph, instead of tracing a single monotone ascending path
within a cylinder, we trace all monotone ascending paths in
the cylinder. This is accomplished by performing a depth first
traversal or a breadth first traversal in the LS-graph beginning
from a node dual to a triangle in the upper star of the critical
point ci. The set of triangles dual to LS-graph nodes visited
during this traversal constitute the cylinder formed by the arc
(ci,cp).

In order to find interesting features on the surface, we com-
pute the average geodesic function on the input mesh [5], and
use the Reeb graph computed on this function to segment the
surface. Figure 11(a) shows the Olivier hand model partitioned
using the Reeb graph. Figure 11(b) shows a segmentation of
the raptor model into its key features such as the main body,
tail, legs and talons, jaws, and tongue. In both examples,
we use the simplified Reeb graph to identify the segments
and appropriately color each segment. We group arcs of
the simplified Reeb graph into different clusters based on
the location of the segment corresponding to it, and assign
different colors to each cluster. This operation is currently
done manually, but can be automated with further geometric
processing.

6.2 Reeb graphs of interval volumes

Scientific simulation data and measurements from imaging
devices are often available as scalar values sampled on a
three dimensional rectilinear grid. The scalar values in the
interior of a cell is computed using trilinear interpolation.
Since the input volume may have an irregular shape, it is
quite likely that several cells in the rectilinear grid are not
present in the original volume. These cells are padded with a
scalar value of zero or a suitable constant. This results in a
loss of the original topology of the input domain, which now
becomes simply connected. We study the input scalar field
by computing the Reeb graph of interval volumes [39], [40],
which is the preimage of a given range of scalar values.

We first convert the rectilinear grid into an unstructured
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(a)

(b)

Fig. 11. Using Reeb graphs to segment surfaces into features of interest. (a) Segmentation of the Olivier hand.
(b) Partition induced by the Reeb graph on the Raptor model. The Reeb graph and the simplified Reeb graph used to
segment the surface are also shown beside the models.

mesh by decomposing each cube into a set of tetrahedra fol-
lowing the method outlined by Sohn [41]. This decomposition
preserves the topology of all isosurfaces. Assuming trilinear
interpolation, the value of the input scalar function at a point
(x,y,z) within a unit cube is

f (x,y,z) = f000(1− x)(1− y)(1− z)+ f001(1− x)(1− y)z
+ f010(1− x)y(1− z)+ f011(1− x)yz

+ f100x(1− y)(1− z)+ f101x(1− y)z
+ f110xy(1− z)+ f111xyz,

where fi jk is the value of the function at the vertex (i, j,k)
of the cube. Similar to PL functions defined on tetrahedral
meshes, maxima and minima of the piecewise-trilinear func-
tion occur at vertices of the grid. However, a saddle point may
be located on a face or within the body of the cube. Saddle
points can be located by equating the partial derivatives of f
to zero and applying the necessary boundary conditions. Each
cube is then decomposed into a constant number of tetrahedra
depending on the number of face and body saddles [41].
If a tetrahedron thus created contains the boundary of the
isovolume, we first split the tetrahedron along the boundary
into a smaller tetrahedron and a prism. We retain the smaller
tetrahedron or the subdivided prism depending on which lies
in the interior of the isovolume.

We run our two-step algorithm on the tetrahedral mesh
obtained from the above-described decomposition. Generating

the mesh takes time linear in size of the grid. Also, the number
of tetrahedra in the generated mesh is linear in the number of
grid nodes. Thus, the time complexity for computing the Reeb
graph for a structured mesh remains unchanged. Figure 12(a)
shows a volume rendered image of the silicium data set along
with its Reeb graph embedded within the volume. The Reeb
graph was computed for the original dataset. Figures 12(b)
and 12(c) and the accompanying video show the Reeb graphs
of an interval volume extracted from the data. The Reeb
graph for the height function of the original input would be a
straight line, while the Reeb graph computed after removing
the padding exhibits loops as shown in Figure 12(c).

6.3 Spatially-aware transfer function design

Reeb graphs can be used to design effective transfer functions
for volume rendering [15], [17]. Each cylinder can be accessed
using arcs of the Reeb graphs and assigned individual colors
and opacity, thereby creating a volume rendered image that
distinctly highlights the user-specified areas of the volume.
We propose a procedure that allows the user to identify
and highlight regions of the volume that are characterized
by its geometric feature. The user could specify a different
transfer function for a specific geometric feature of interest as
compared to the rest of the volume. The main idea here is to
choose a region of interest with ease in the volume rendered
image based on the geometry of the input. We describe this
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(a)

(b) (c)

Fig. 12. Visualization of the Silicium dataset: volume rendered images with the embedded Reeb graph and the radial
layout. (a) The rectilinear volume. (b) Interval volume, and (c) Height function (y-coordinate) defined on the interval
volume.

procedure below:

1) Compute the Reeb graph for a geometric function de-
fined on the volume.

2) Select the required feature using this Reeb graph. The
feature might correspond to a loop in the graph or a
collection of arcs.

3) Design a transfer function that highlights the selected
feature when compared to the rest of the volume. The
cylinders corresponding to the selected feature are ren-
dered using this transfer function.

4) Design a transfer function for the rest of the volume
possibly using the Reeb graph of the input scalar func-
tion.

Figure 13(a) shows a volume rendering of the silicium
dataset. We use the interval volume obtained by removing the
padding, and compute the Reeb graph for the height function
(y-coordinate) defined on this volume. We highlight two atoms
in the data set by selecting a loop in the Reeb graph and
designing a different transfer function for the corresponding
cylinders. Figure 13(b) highlights a single atom in the silicium
data set. In this case, we select one arc from the loop.

6.4 Interactive exploration of time-varying data

Time-varying data can be considered as a four dimensional
scalar field defined on a 4D grid. We decompose each 4D
hypercube in the grid into a set of pentatopes or 4-simplices.
We use this triangulated mesh as input and compute the Reeb
graph. By providing an interface to select arcs of the Reeb

graph, we are able to interactively view the corresponding
cylinders and explore the given time-varying data.

Figure 14 shows results of our experiment on the pressure
field in the hurricane Isabel data set. Figure 14(a) shows the
input as a set of volumes at four different time steps. The
Reeb graph corresponding to the input time-varying function
is shown on the right. Notice that by selecting an arc in
the Reeb graph, we are able to focus on different features
of the input. The arc selected in Figure 14(b) tracks the
eye of the hurricane across the different time steps. The arc
corresponding to the cylinder having the maximum function
range, shown in Figure 14(c) corresponds to region of the
hurricane surrounding the eye. Figure 14(d) shows how the
user can select a region of interest, namely the eye and the
neighboring region over time, by selecting multiple arcs of the
Reeb graph.

7 CONCLUSIONS

We have described a simple output-sensitive near-optimal
algorithm that constructs the Reeb graph of a piecewise-linear
scalar function. Compared to prior algorithms that run in
O(n2) time, our algorithm has a worst case running time of
O(n + l + t log t), where n is the number of triangles in the
input mesh, t is the number of critical points of the function
and l is size of all critical level sets. The algorithm works
without any modification for functions defined on manifolds
in any dimension, and for non-manifold domains. We also
outlined a method to simplify the Reeb graph based on an
extended notion of persistence. Our embedded layout and
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(a) (b)

Fig. 13. Reeb graph computed on y-coordinate function in the silicium data set is used to highlight interesting
geometric features. (a) Highlight the volumetric region corresponding to a loop in the Reeb graph by designing a
different transfer function. (b) Highlight an individual atom by selecting one arc in the Reeb graph and designing a
different transfer function for the corresponding cylinder.

feature-directed layout of the Reeb graph serve as useful
interfaces for exploring and understanding three-dimensional
scalar fields.

We believe that the Reeb graph will soon become a standard
tool for exploring scalar data and will supplement existing
techniques like level sets, volume rendering, and contour
spectrum. In this paper, we discussed how Reeb graphs can
be used to segment surfaces and design transfer functions
for volume rendering. We described the computation of Reeb
graph for interval volumes and time-varying function and how
they can be used to interactively study different regions of
interest in the data. We have demonstrated through various
experiments that our algorithm performs efficiently in practice.
Since the iterations of the algorithm are independent of each
other, there is an inherent scope for parallelization of our code.
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topology from isosurfaces,” ACM Trans. Graph., vol. 23, no. 2, pp. 190–
208, 2004.

[8] S. Takahashi, G. M. Nielson, Y. Takeshima, and I. Fujishiro, “Topolog-
ical volume skeletonization using adaptive tetrahedralization,” in GMP
’04: Proceedings of the Geometric Modeling and Processing 2004.
Washington, DC, USA: IEEE Computer Society, 2004, p. 227.
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