
Efficient Output-Sensitive Construction of Reeb
Graphs?

Harish Doraiswamy1 and Vijay Natarajan1,2

1 Department of Computer Science and Automation
2 Supercomputer Education and Research Centre

Indian Institute of Science, Bangalore 560012, India.
{harishd,vijayn}@csa.iisc.ernet.in

Abstract. The Reeb graph tracks topology changes in level sets of a scalar func-
tion and finds applications in scientific visualization and geometric modeling.
This paper describes a near-optimal two-step algorithm that constructs the Reeb
graph of a Morse function defined over manifolds in any dimension. The algo-
rithm first identifies the critical points of the input manifold, and then connects
these critical points in the second step to obtain the Reeb graph. A simplifica-
tion mechanism based on topological persistence aids in the removal of noise and
unimportant features. A radial layout scheme results in a feature-directed drawing
of the Reeb graph. Experimental results demonstrate the efficiency of the Reeb
graph construction in practice and its applications.

1 Introduction

The Reeb graph of a scalar function describes the connectivity of its level sets. The ab-
stract representation of level-set topology within the Reeb graph enables development
of simple and efficient methods for modeling objects and visualizing scientific data.
Reeb graphs and their loop-free version, called contour trees, have a wide variety of
applications including computer aided geometric design [20, 25], topology-based shape
matching [13], topological simplification and cleaning [11, 24], surface segmentation
and parametrization [12, 26], and efficient computation of level sets [22]. They serve as
an effective user interface for selecting meaningful level sets [2, 5] and transfer func-
tions for volume rendering [23].

1.1 Related work

Several algorithms have been proposed for constructing Reeb graphs. However, only
a few produce provably correct Reeb graphs. Shinagawa and Kunii proposed the first
algorithm for constructing the Reeb graph of a scalar function defined on a triangulated
2-manifold [19]. Their algorithm explicitly tracked connected components of the level
sets and has a running time of O(n2), where n is the number of triangles in the input.
Cole-Mclaughlin et al. [7] improved the running time to O(n logn) by maintaining the

? This work was supported by the Department of Science and Technology, India, under Grant
SR/S3/EECE/048/2007.

level sets using dynamically balanced search trees. In a recent paper, Pascucci et al. [17]
proposed an online algorithm that constructs the Reeb graph for streaming data. Their
algorithm takes advantage of the coherency in the input to construct the Reeb graph
efficiently. In the case of streaming data, where triangles are processed one after an-
other, the algorithm essentially attaches the straight line Reeb graph corresponding to
the current triangle with the Reeb graph computed so far. Even though the algorithm has
a O(n2) behavior in the worst case, it performs very well in practice for 2-manifolds.
However, the optimizations that result in fast incremental construction of Reeb graphs
for 2-manifolds do not provide a performance benefit in higher dimensions. We adopt
a simple but different approach to compute Reeb graphs that traces connected compo-
nents of interval volumes (the volume between two level sets). This approach results in
an algorithm that exhibits good worst-case behavior and works well in practice - while
we obtain good running times for 2-manifolds, our algorithm performs better than the
online algorithm for 3-manifolds.

For the special case of loop-free Reeb graphs, Carr et al. [4] described an elegant
O(v logv) algorithm that works in all dimensions, where v is the number of vertices
in the input. Besides the naı̈ve O(n2) algorithm and the online algorithm, there is no
known algorithm for computing Reeb graphs of manifolds in higher dimension. The
presence of loops in the Reeb graph implies that its decomposition into a join and
split tree, which was crucial for the efficiency of the algorithm by Carr et al., may
not exist. Efficient storage and manipulation of connected components of level sets
will lead to fast construction of Reeb graphs. Cole-Mclaughlin et al. [7] adopt this
approach to obtain an efficient algorithm for 2-manifolds. However they exploit the
unique property of one-dimensional level sets that their vertices can be ordered, and
hence, their algorithm does not directly extend to higher dimension manifolds. Other
algorithms for computing Reeb graphs follow a sample based approach that produces
potentially inaccurate results [13, 21].

1.2 Results

We present an efficient two-step algorithm for computing the Reeb graph of a piecewise-
linear (PL) function in O(n+ l + t log t) time, where n is the number of triangles in the
input mesh, t is the number of critical points of the function, and l is the size (number
of edges) of all critical level sets. The algorithm has various desirable properties. It is

– output-sensitive: the running time depends of the number of critical points of the
function, which is equal to the number of nodes in the Reeb graph, and the size of
critical level sets, which is indicative of the importance of features in the data.

– near-optimal: the size of critical level sets is usually O(n) in practice. So, the worst-
case running time is close to the optimal bound of (n+ t log t) [22].

– generic: the algorithm works, without any modifications, for functions defined on
d-manifolds and for non-manifolds.

– simple: the algorithm is simple to implement.

We also describe a method to simplify the Reeb graph based on an extended notion
of persistence [1] that removes short leaves and cycles in the graph. Finally, we describe

a feature-directed layout of the Reeb graph that serves as a useful interface for exploring
and understanding three-dimensional scalar fields. We also present experimental results
that demonstrate the efficiency of our algorithm.

2 Background

Let Md denote a d-manifold with or without boundary. A smooth, real-valued function
f : Md → R is called a Morse function if it satisfies the following conditions [7]:

1. All critical points of f are non-degenerate and lie in the interior of Md .
2. All critical points of the restriction of f to the boundary of Md are non-degenerate.
3. All critical values are distinct i.e., f (p) 6= f (q) for all critical points p 6= q.

The above conditions typically do not hold in practice for PL functions. However, simu-
lated perturbation of the function [8, Section 1.4] ensures that no two critical values are
equal. All multiple saddles (degenerate) can be unfolded into simple (non-degenerate)
saddles by repeatedly splitting the link of the multiple saddle [9]. A total order on the
vertices helps in consistently identifying the vertex with the higher function value be-
tween a pair of vertices.

2.1 Critical points and level sets

Critical points of a smooth function are exactly where the gradient becomes zero. Ban-
choff [3] and later Edelsbrunner et al. [9] describe a combinatorial characterization for
critical points of a PL function, which are always located at vertices of the mesh. The
link of a vertex consists of all vertices adjacent to it and the induced edges, triangles, and
higher-order simplices. Adjacent vertices with lower function value and their induced
simplices constitute the lower link, whereas the adjacent vertices with higher function
value and their induced simplices constitute the upper link. For functions defined on
2- and 3-manifolds, the critical points are classified based on the number of connected
components (denoted as β0, the zeroth Betti number) of the lower and upper link. Clas-
sification of all critical points in higher dimensions requires the computation of higher
order Betti numbers.

The preimage of a real value is called a level set. The level set of a regular value is
a (d− 1)-manifold with or without boundary, possibly containing multiple connected
components. We are interested in the evolution of level sets against increasing function
value. Significant topological changes occur at critical points, whereas topology of the
level set is preserved across regular points [14].

In the context of Reeb graphs, we are only interested in critical points that modify
the number of level-set components. So, it is sufficient to count the number of connected
components of the lower / upper link for identifying these critical points. Given a critical
point ci with function value fi, we define a critical level set as the level set at a function
value infinitesimally below / above fi (i.e. f−1(fi± ε)).

For example, consider the case when d = 3. A level set of a 3-manifold is called
an isosurface. Figure 1 illustrates the topology changes that occur at critical points
of a 3-manifold. Specifically, the level set topology changes either by gaining/losing

Regular Minimum

Before

After

Maximum

2−Saddle1−Saddle

Before

After

Fig. 1. Figures above show the isosurfaces before
(f−1(c− ε)) and after (f−1(c + ε)) passing through a
point with function value c and the structure of the Reeb
graph at the corresponding node. Topology of the isosur-
face changes when it evolves past a critical point.

Fig. 2. Reeb graph of the height
function defined on a surface with
two tunnels. Reeb graph tracks the
topology of level sets.

v
1

A1
a

v

1

2

Fig. 3. Mapping between arcs in
the Reeb graph and cylinders in
the input.

a component or by gaining/losing genus. The isosurface gains a component when it
evolves past a minimum and loses a component when it evolves past a maximum. At
2-saddles, the local pictures in Figure 1 indicate an apparent splitting of a component
into two. Global behavior of the isosurface component will determine if this is indeed
a split or a reduction in genus.

2.2 Reeb graph

The Reeb graph of f is obtained by contracting each connected component of a level
set to a point [18]. The Reeb graph expresses the evolution of connected components
of level sets as a graph whose nodes correspond to critical points of the function, see
Figure 2. Figure 1 illustrates the structure of the Reeb graph for 3-manifolds at various
types of nodes. In the case of saddles, the corresponding node has degree 3 if the saddle
merges/splits components, and degree 2 if it is a genus modifying saddle.

This view of the Reeb graph focuses on the mapping between components of indi-
vidual level sets and nodes or points within arcs of the graph. We propose the use of an
alternate mapping between nodes / arcs of the graph and components of critical level
sets / equivalence classes of regular level set components. The two mappings are con-
sistent with each other. The advantage of the alternate view is that it leads to a simple
and efficient algorithm to compute the Reeb graph. For example, in Figure 3, the arc
a1 is mapped to cylinder A1, a collection of regular level set components that are topo-
logically equivalent to each other. The boundary of A1 consists of two critical level set

components. The end point v2 of the arc originating at v1 can be computed by tracing
the cylinder from the lower boundary component to the upper component.

2.3 Input

We assume that the input manifold is represented by a triangulated mesh, the function is
sampled at vertices, and linearly interpolated within each simplex. In the case of higher
dimensional manifolds (d ≥ 3), the algorithm requires only the 2-skeleton (vertices,
edges, and triangles) of the mesh.

3 The Reeb graph algorithm

We now describe an algorithm that computes the Reeb graph of a PL function f de-
fined on a 3-manifold. The algorithm directly extends to d-manifolds (d ≥ 2) and non-
manifolds but in order to simplify the description, we will consider the case of d = 3 in
this section. The algorithm proceeds in two phases:

1. Locate critical points of the input and sort them based on function value.
2. Connect critical point pairs to obtain arcs of the Reeb graph.

A vertex is regular if it has one lower link component and one upper link component.
All other vertices are critical. A critical point is a maximum if the upper link is empty
and a minimum if the lower link is empty. Number of components of the upper and
lower links are computed using a breadth first traversal of the link. We only need to
locate the critical points and classify them as either a minimum, maximum or saddle.

3.1 ls-graph

Tracking components of the level set requires only a 1-skeleton (vertices and edges)
representation of the level set. Edges in a level set of f will pass through a set of trian-
gles in the input mesh. We track components of level sets between two function values
f1 and f2 (f1 < f2) by traversing triangles through which each component of the level
set passes as function values are varied from f1 to f2. We introduce a dual graph that
stores triangle adjacencies and helps track level set components. This graph Gls (V,E),
called the ls-graph , is a directed graph whose nodes V = {t1, t2, . . . , tn} corresponds to
the n triangles {T1,T2, . . . ,Tn} in the input mesh. Each node ti is assigned a cost equal
to the maximum over function values at the vertices of the triangle Ti. Let v0,v1, and v2
(f (v0) < f (v1) < f (v2)) be vertices of a triangle Ti. Gls contains an edge between ver-
tices ti and t j if triangles Ti and Tj are adjacent, unless Ti and Tj share the edge (v0,v1)
and the cost of t j is greater than f (v1), see Figure 4. The dotted, solid and dashed lines
within the triangles indicate the edges of the level set when the function value becomes
greater than f (v0), f (v1) and f (v2) respectively. An edge is directed towards the node
with higher cost. Traversing an edge in Gls implicitly tracks a component of a level set
as function value increases. If this edge does not cross a critical value, then the traversal
is equivalent to tracing a path within a cylinder. Figure 4(f) shows a configuration where
the level set potentially splits and hence no edge is inserted between ti and t j.

f

Ti Tj

v
0

v
1

v
2

v
3

Ti

Tj

v
0

v
1

v
2

v
3

Ti

Tj

v
0

v
1

v
2

v
3

Ti Tj

v
0

v
1

v
2

v
3

Ti Tj

v
0

v
1

v
2 v

3

Ti
Tj

v
0

v
1

v
2

v
3

(a) (b) (c)

(d) (e) (f)

Fig. 4. The ls-graph contains an edge between ti and t j in all
cases except the forbidden configuration in (f).

i

c

c

p

Fig. 5. Connecting critical
points in the algorithm

3.2 Connecting the critical points

Our iterative algorithm uses the ls-graph to compute arcs in the Reeb graph. Let {c1,c2, . . . ,ct}
be the ordered set of critical points with function values { f1, f2, . . . , ft} (fx < fy when-
ever x < y). Let Li denote the set of triangles that contain the components of the critical
level set f−1(fi− ε) that are modified by ci. The ith iteration of the algorithm connects
ci with a set of critical points cp (fp > fi).

The star of a vertex consists of all simplices incident on the vertex. All simplices in
the star where the function value is greater than the vertex constitute the upper star. Let
the upper star of ci contain k connected components (k ≤ 2 for a Morse function). Each
component of the star corresponds to a possible arc in the Reeb graph starting from ci.
Initiate a search in the ls-graph beginning with a node ti j corresponding to a triangle Ti j
in the jth component (j = 1...k) of the upper star of ci. We move to a higher cost node
in Gls at each step of the search. The search terminates when we find a node t ′i j with cost
greater or equal to fi+1. An arc connects the nodes corresponding to ci and ci+1 in the
Reeb graph iff the triangle T ′

i j belongs to the set Li+1. This search represents a monotone
ascent through the cylinder. The search procedure for the ith iteration is illustrated in
Figure 5, which shows a slice of the input mesh with the relevant triangles. Triangles in
Lp are shaded, different colors indicating disjoint components of the level set.

We use a triangle-edge data structure [15] to store the input triangulation. The ls-
graph is implicitly stored in this data structure because each triangle-edge pair stores a
reference to neighboring triangle-edge pairs. During the search, we tag a visited node
with a label [i, j] if its cost is lesser or equal to fi+1. If T ′

i j does not belong to Li+1, we
continue the search until we reach a node with cost greater or equal to fi+2, in order to
determine if an arc in the Reeb graph connects ci with ci+2. We repeat the search until
it is successful.

If a search initiated in the ith iteration from a node in the jth component of the upper
star reaches a node with a tag [i, j′] (j 6= j′), then ci is a genus modifying saddle and
therefore the Reeb graph remains unchanged. The critical point ci is again a genus mod-
ifying saddle if the search reaches a node, whose corresponding triangle lies in a critical
isosurface component that was previously visited from a different upper star component
of ci. Note that it is impossible for the search initiated in the ith iteration to reach a ver-

tex tagged [i′, j] (i 6= i′) for any j, because this will imply that two components of a level
set merged into one at a regular vertex.

The Reeb graph is stored as an adjacency list whose nodes correspond to critical
points of the function. An arc from ci to cp is added if the search finds a triangle in Lp.
Once all critical points are processed, the adjacency list will represent the Reeb graph.

3.3 Analysis

Correctness. Let cp (fi < fp) be a critical point such that there is an arc from ci to
cp in the Reeb graph. So, if we track a component of the level set at function value
infinitesimally above fi and keep increasing the function value until it reaches fp, then
the topology of that component remains unchanged until the function value reaches fp.
Consider a triangle Ti j that contains the level set component when the tracking begins.
As we increase the function value past the cost of the node ti j, the level set component
passes through an adjacent triangle with cost greater than that of ti j. This is equivalent
to the search in the ls-graph as performed by the algorithm. The algorithm continues the
above procedure until we reach a node t ′i j with cost greater than or equal to fp. Since
the cost of the preceding node is less than fp, an isosurface component at a function
value infinitesimally below fp will pass through the triangle T ′

i j. Since the Reeb graph
contains an arc between critical points ci and cp, the triangle T ′

i j will belong to the set
Lp and our algorithm will identify the arc (ci,cp) of the Reeb graph.

Running time. Let n be the number of triangles in the input and t be the number of
critical points of the input PL function. Triangles adjacent to a given triangle can be
found in O(1) time using the triangle-edge data structure. The ls-graph is implicitly
stored in this data structure. Critical points are located by computing the number of
connected components of the lower and upper links, which can be done in O(n) time
using the triangle-edge data structure. Sorting the critical points takes O(t log t) time.

The sets Li for each critical point ci can be found by marching through the triangles
that contain f−1(fi − ε). This can be accomplished in O(l) time, where l = ∑i |Li|, is
the number of triangles in all the sets Li. Though it is possible in theory that l = O(n2),
the size of the critical level sets is usually O(n) in practice.

Each node ti in the ls-graph has at most 6 neighbors (since each triangle can be in
at most two tetrahedra). Hence, the number of edges in the ls-graph is O(n). During the
search procedure, each node is tagged exactly once and visited at most 6 times (from
each of its tagged neighbors). Thus the traversal of the graph is accomplished in O(n)
time. Each update of the adjacency list representation takes constant time. Total number
of such updates is equal to the number of arcs in the Reeb graph. A conservative bound
for the number of edges in the Reeb graph is given by the number of triangles in the
input. Hence, maintaining the Reeb graph takes O(n) time. Combining the above steps,
we obtain an O(n+ l + t log t) running time for our algorithm.

3.4 d-manifolds and non-manifolds

The level set of a regular value for a Morse function defined on a d-manifold is a (d−1)-
manifold. The connectivity of a level set is represented by its 1-skeleton. Hence, similar
to 3-manifolds, tracking the connected components of the level set requires only a 1-
skeleton representation, which can be extracted from the 2-skeleton of the input mesh.
So, the algorithm works directly on the 2-skeleton representation of d-manifolds. In the
case of non-manifolds, the algorithm will again work on the 2-skeleton representation.
We relax the definition of critical points to include all vertices that modify the topology
of the level set. Candidate critical points are again located by counting the number of
connected components of the lower and upper link.

4 Visualization of Reeb graphs

4.1 Simplification of Reeb graphs

Simplification is necessary for effective visualization of large and feature rich data be-
cause it aids in noise removal and creation of feature-preserving multiresolution repre-
sentations. A topological feature in the input is represented by a pair of critical points,
typically an arc in the Reeb graph. Unimportant features in the data can be removed
by repeated cancellation of low persistence critical point pairs [10], which also leads to
a multiresolution representation of the input scalar field. Features can also be ordered
and removed based on geometric measures like hypervolume [5]. Existing algorithms
for contour tree simplification remove critical point pairs that create / destroy a level
set component. We simplify the Reeb graph using a notion of extended persistence [1]
that pairs genus modifying critical points in addition to pairing component creators with
destroyers.

Our approach to Reeb graph simplification is similar to the one used to simplify
contour trees [5]. In addition to the leaf pruning and node reduction simplification op-
erations, we perform an additional loop pruning operation on the Reeb graph. Leaf
pruning removes a leaf and the incident arc from the Reeb graph. A leaf connecting to
a degree-2 saddle is not pruned. Node reduction removes a degree-2 node by merging
the two adjacent edges. The loop pruning operation removes a loop defined by adjacent
nodes connected by two parallel arcs, from the Reeb graph. This operation is equiva-
lent to removing one of the parallel arcs and performing node reduction on the pair of
adjacent nodes.

We simplify the Reeb graph using repeated application of the three mentioned op-
erations: (1) Perform node reduction where possible, (2) Choose the least important
leaf / loop and prune it. Leaves and loops that can be pruned are stored in a priority
queue ordered based on the persistence of the corresponding critical point pair. If a
pruning operation results in a reducible node, then node reduction is performed imme-
diately. All new leaves and loops created by the above operations are in turn added to
the priority queue. Note that we use the simplification process as an aid for visualizing
Reeb graphs and not to modify the input function. Realizing the function representing
the simplified Reeb graph may require changing the topology of the input.

2
a

a
1

a
1

a
2

Fig. 6. The spanning contour
tree of a Reeb graph is struc-
turally similar to a contour tree.
Removal of a1 results in a span-
ning contour tree. Removing a2
results in a tree with an invalid
degree-2 node.

(a)
model

(b) Reeb graph: side
view

(c) Reeb graph: top
view

Fig. 7. Radial layout of the Reeb graph of the height function
on a 4-torus.

4.2 Reeb graph layout

We build upon the orrery layout proposed for contour trees [16] to obtain a layout for
Reeb graphs. The extension to Reeb graphs is non-trivial because of the presence of
loops. We overcome this difficulty by designing a four step layout scheme:

– First, extract a spanning contour tree of the Reeb graph.
– Second, compute a branch decomposition of this spanning tree.
– Third, use a radial layout scheme to embed the spanning tree in 3D.
– Finally, add the non-tree arcs to the layout.

The spanning contour tree is a spanning tree of the Reeb graph that satisfies the
structural properties of a contour tree. All degree-2 nodes in this spanning tree have
exactly one neighbor node with higher function value and one neighbor node with lower
function value. Not all spanning trees satisfy this property. For example, in Figure 6,
removing arc a1 results in a spanning contour tree. Removal of a2 also results in a
spanning tree, but one that does not correspond to a valid contour tree.

A branch decomposition is an alternate representation of a contour tree that explic-
itly stores the topological features and their hierarchical relationship [16]. A branch is a
path between two leaves of the contour tree or a path that connects a leaf to an interior
node of another branch.

All branches of the spanning contour tree are drawn as L-shaped polylines and the
z-coordinate corresponds to function value. The (x,y) coordinates are computed for
each branch using a radial layout scheme. The root branch is located at the origin and
others are placed on concentric circles centered at the origin. All branches that connect
to an interior node of the root branch are equally spaced around the origin at a fixed
distance from it. Branches that connect to an interior node of a first-level branch are
placed in the second concentric circle within a wedge centered at a level-one branch.
The angle subtended is proportional to the number of descendant branches. In order to

Table 1. Reeb graph computation time for various 2D and 3D input. For all 2D models, solid
8-torus, and fighter, the Reeb graph was computed for the height function. In all other cases, the
function is available with the data set.

Time taken (sec)
Dimension Model #Triangles #Critical points Our algorithm Online algorithm

2D

bunny 40000 217 0.7 0.1
Laurent Hand 99999 92 1.5 0.43

Neptune 998840 1757 24.3 3.7

3D

engine 27252 160 2 0.7
solid 8-torus 34832 18 0.56 0.14

fighter 143881 8 2.2 28
PMDC 237291 902 8 17
blunt 451601 827 213 406

nucleon 652964 2203 254 1638
post 1243200 132 70 1671

avoid intersections when the non-tree arcs are added, we include a dummy branch for
each loop arc before calculating the angular wedge subtended at each branch. Figure 7
shows the layout for the Reeb graph of a 4-torus.

5 Experimental Results

The Reeb graph construction algorithm was implemented in Java and tested on a Pen-
tium 4, 2.4 GHz machine with 1 GB main memory. Our implementation accepts a func-
tion sampled at vertices of a simplicial mesh as input, computes the Reeb graph, and
stores it as an edge list. Table 1 shows the time taken by our implementation to compute
the Reeb graph for various models. We compare the performance of our algorithm with
the online algorithm described in [17]. While the online algorithm performs well for
2D data, our algorithm performs substantially better for 3D data. We expect that the
algorithm will also be efficient in practice for higher dimensional input. The running
time depends on the number of critical points, clearly indicating the output sensitivity
of our algorithm. For large datasets that do not fit in memory, our implementation can
be extended similar to the contour tree algorithm described in [6]. Also, no code op-
timizations have been applied. An implementation in C / C++ will exhibit significant
improvement in the performance.

Figure 8 shows the Reeb graph for the height function defined on the Laurent hand
model. The near-horizontal branches in the Reeb graph indicate that the function is
noisy near the wrist. Our implementation allows the user to interactively simplify and
visualize the Reeb graph by specifying a persistence threshold. Simplification using a
low persistence threshold removes these unimportant features. The remaining branches
correspond to the palm and fingers and the loop corresponds to the thumb and fore-
finger. Figure 9 shows the Reeb graph computed for two biological data sets: dnaB
and GroEL. In both data sets, the volumetric domain represents the molecule and the
scalar field is the height function. Loops in the Reeb graph indicate possible tunnels in

(a) Reeb graphs before and after various iterations
of simplification.

(b) partition induced by the full
resolution and simplified Reeb
graphs.

Fig. 8. Reeb graph computed for height function on Laurent hand and induced partition on the
surface.

(a) dnaB (b) GroEL

Fig. 9. Reeb graph computed for height function on volume representation of two molecules:
dnaB and GroEL. The transfer function shown in the middle determines the color map.

the molecule. The Reeb graph of dnaB contains two loops and that of GroEL has five
loops.

6 Conclusions and Future Work

We have described a simple output-sensitive near-optimal algorithm that constructs the
Reeb graph of a PL function. Compared to prior known algorithms that run in O(n2)
time, our algorithm has a worst case running time of O(n + l + t log t), where n is the
number of triangles in the mesh representing the domain, t is the number of critical
points of the function and l is size of all critical level sets. The algorithm works with-
out any modification for functions defined on manifolds in any dimension, and for
non-manifold domains. We have also described a method to simplify the Reeb graph
based on an extended notion of persistence and provided a feature-directed layout of
the Reeb graph that serves as a useful interface for exploring and understanding three-
dimensional scalar fields. We have shown through our experimental results that our
algorithm performs efficiently in practice. The iterations of the algorithm being inde-
pendent of each other, provide an inherent scope for parallelization.

References

1. AGARWAL, P. K., EDELSBRUNNER, H., HARER, J., AND WANG, Y. Extreme elevation on
a 2-manifold. Disc. Comput. Geom. 36, 4 (2006), 553–572.

2. BAJAJ, C. L., PASCUCCI, V., AND SCHIKORE, D. R. The contour spectrum. In Proc. IEEE
Conf. Visualization (1997), pp. 167–173.

3. BANCHOFF, T. F. Critical points and curvature for embedded polyhedral surfaces. Am.
Math. Monthly 77 (1970), 475–485.

4. CARR, H., SNOEYINK, J., AND AXEN, U. Computing contour trees in all dimensions.
Comput. Geom. Theory Appl. 24, 2 (2003), 75–94.

5. CARR, H., SNOEYINK, J., AND VAN DE PANNE, M. Simplifying flexible isosurfaces using
local geometric measures. In Proc. IEEE Conf. Visualization (2004), pp. 497–504.

6. CHIANG, Y.-J., LENZ, T., LU, X., AND ROTE, G. Simple and optimal output-sensitive
construction of contour trees using monotone paths. Comput. Geom. Theory Appl. 30, 2
(2005), 165–195.

7. COLE-MCLAUGHLIN, K., EDELSBRUNNER, H., HARER, J., NATARAJAN, V., AND PAS-
CUCCI, V. Loops in Reeb graphs of 2-manifolds. Disc. Comput. Geom. 32, 2 (2004), 231–
244.

8. EDELSBRUNNER, H. Geometry and Topology for Mesh Generation. Cambridge Univ. Press,
England, 2001.

9. EDELSBRUNNER, H., HARER, J., NATARAJAN, V., AND PASCUCCI, V. Morse-Smale com-
plexes for piecewise linear 3-manifolds. In Proc. Symp. Comput. Geom. (2003), pp. 361–370.

10. EDELSBRUNNER, H., LETSCHER, D., AND ZOMORODIAN., A. Topological persistence
and simplification. Disc. Comput. Geom. 28, 4 (2002), 511–533.

11. GUSKOV, I., AND WOOD, Z. Topological noise removal. In Proc. Graphics Interface
(2001), pp. 19–26.

12. HÉTROY, F., AND ATTALI, D. Topological quadrangulations of closed triangulated surfaces
using the Reeb graph. Graph. Models 65, 1-3 (2003), 131–148.

13. HILAGA, M., SHINAGAWA, Y., KOHMURA, T., AND KUNII, T. L. Topology matching for
fully automatic similarity estimation of 3d shapes. In Proc. SIGGRAPH (2001), pp. 203–212.

14. MATSUMOTO, Y. An Introduction to Morse Theory. Amer. Math. Soc., 2002. Translated
from Japanese by K. Hudson and M. Saito.

15. MÜCKE, E. P. Shapes and Implementations in Three-Dimensional Geometry. PhD thesis,
Dept. Computer Science, University of Illinois, Urbana-Champaign, Illinois, 1993.

16. PASCUCCI, V., COLE-MCLAUGHLIN, K., AND SCORZELLI, G. Multi-resolution compu-
tation and presentation of contour trees. Tech. rep., Lawrence Livermore Natl. Lab., 2005.

17. PASCUCCI, V., SCORZELLI, G., BREMER, P.-T., AND MASCARENHAS, A. Robust on-line
computation of reeb graphs: simplicity and speed. ACM Trans. Graph. 26, 3 (2007), 58.

18. REEB, G. Sur les points singuliers d’une forme de pfaff complètement intégrable ou d’une
fonction numérique. Comptes Rendus de L’Académie ses Séances, Paris 222 (1946), 847–
849.

19. SHINAGAWA, Y., AND KUNII, T. L. Constructing a reeb graph automatically from cross
sections. IEEE Comput. Graph. Appl. 11, 6 (1991), 44–51.

20. SHINAGAWA, Y., KUNII, T. L., AND KERGOSIEN, Y. L. Surface coding based on Morse
theory. IEEE Comput. Graph. Appl. 11, 5 (1991), 66–78.

21. TUNG, T., AND SCHMITT, F. Augmented reeb graphs for content-based retrieval of 3d mesh
models. In SMI ’04: Proc Shape Modeling Intl. (2004), pp. 157–166.

22. VAN KREVELD, M., VAN OOSTRUM, R., BAJAJ, C., PASCUCCI, V., AND SCHIKORE,
D. R. Contour trees and small seed sets for isosurface traversal. In Proc. Symp. Comput.
Geom. (1997), pp. 212–220.

23. WEBER, G. H., DILLARD, S. E., CARR, H., PASCUCCI, V., AND HAMANN, B. Topology-
controlled volume rendering. IEEE Trans. Vis. Comput. Graph. 13, 2 (2007), 330–341.

24. WOOD, Z., HOPPE, H., DESBRUN, M., AND SCHRÖDER, P. Removing excess topology
from isosurfaces. ACM Trans. Graph. 23, 2 (2004), 190–208.

25. Y. SHINAGAWA, T. L. KUNII, H. S., AND IBUSUKI, M. Modeling contact of two complex
objects: with an application to characterizing dental articulations. Computers and Graphics
19, 1 (1995), 21–28.

26. ZHANG, E., MISCHAIKOW, K., AND TURK, G. Feature-based surface parameterization and
texture mapping. ACM Trans. Graph. 24, 1 (2005), 1–27.

