On-Demand Augmentation of Contour Trees

Mohit Sharma
Indian Institute of Science, Bangalore
mohitsharma@iisc.ac.in

ABSTRACT

The contour tree represents the topology of level sets of a scalar
function. Nodes of the tree correspond to critical level sets and arcs
of the tree represent a collection of topologically equivalent level
sets connecting two critical level sets. The augmented contour tree
contains degree-2 nodes on the arcs that represent regular level
sets. The degree-2 nodes correspond to regular points of the scalar
function and other critical points that do not affect the number of
level set components. The augmented contour tree is significantly
larger in size and requires more effort to compute when compared
to the contour tree. Applications of the contour tree to data ex-
ploration and visualization require the augmented contour tree.
Current approaches propose algorithms to compute the contour
tree and the augmented contour tree from scratch. Precomputing
and storing the large augmented contour tree will not be necessary
if the contour tree can be augmented on-demand. This paper poses
the problem of computing the augmented contour tree given a con-
tour tree as input. Computational experiments demonstrate that
the on-demand augmentation can be computed fast while resulting
in good memory savings.

CCS CONCEPTS

+ Human-centered computing — Visualization techniques;
Scientific visualization; « Theory of computation — Compu-
tational geometry.

ACM Reference Format:

Mohit Sharma and Vijay Natarajan. 2018. On-Demand Augmentation of
Contour Trees. In 11th Indian Conference on Computer Vision, Graphics and
Image Processing (ICVGIP 2018), December 18-22, 2018, Hyderabad, India,
Anoop M. Namboodiri, Vineeth Balasubramanian, Amit Roy-Chowdhury,
and Guido Gerig (Eds.). ACM, New York, NY, USA, Article 104, 8 pages.
https://doi.org/10.1145/3293353.3293384

1 INTRODUCTION

Data from science and engineering disciplines is often represented
as a scalar function over a geometric domain. For example, medical
imaging data such as from CT or MRI scans is available as a stack
of 2D images and represented as a 3D scalar function. Temperature,
pressure, and precipitation data from weather and climate simu-
lations or satellite imagery is represented as a 2D scalar function
over the surface of earth or a 3D scalar function. Rapidly increasing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICVGIP 2018, December 18-22, 2018, Hyderabad, India

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6615-1/18/12...$15.00
https://doi.org/10.1145/3293353.3293384

Vijay Natarajan
Indian Institute of Science, Bangalore
vijayn@iisc.ac.in

Figure 1: Contour tree for a 2D scalar function. A level set is
the preimage of a real value. Each connected component of
a level set is mapped to a point in the contour tree. Maxima
are shown in red, minima in blue, and merge/split saddles
in green. (Zoomed in) Augmented contour tree contains the
degree-2 nodes also, shown in gray, which correspond to re-
maining vertices of the input domain.

computational power has resulted in the generation of high resolu-
tion data that are large in size and rich in number of features. This
increase has necessitated the development of new feature-aware
techniques for visualizing and exploring the data. Topology-based
methods provide an abstract representation of data and have been
successfully used to represent, store, query, and explore these rich
data sets.

The contour tree is a popular and well studied topological struc-
tures in the visualization and computational geometry commu-
nity [2, 3, 25, 26]. A level set of a scalar function is a preimage of a
real value. The contour tree tracks the evolution of the connectivity
of level sets of a scalar function. Figure 1 shows the contour tree for
a 2D scalar function. Note that the nodes of the tree correspond to
critical points of the scalar function, namely minima, maxima, and
saddles. The nodes have degree 1 or 3. The augmented contour tree
also contains degree-2 nodes corresponding to the regular points
of the scalar function and other critical points that do not affect
the number of level set components. The augmented contour tree
is useful to compute a mapping from the tree into the domain of
the scalar function. However, precomputing and storing the aug-
mented contour tree is costly because its size is comparable to the
size of the input. In comparison, the contour tree is much smaller in
size in practice. Several applications require the mapping from arcs
of the contour tree to sub-domain regions [8, 21, 25]. We address
this requirement by describing a simple algorithm for augmenting
an existing contour tree on demand. We describe results of com-
putational experiments on different datasets ranging from a few
thousand to a million vertices to demonstrate the storage benefits
and efficiency of the method in practice.


https://doi.org/10.1145/3293353.3293384
https://doi.org/10.1145/3293353.3293384

ICVGIP 2018, December 18-22, 2018, Hyderabad, India

1.1 Related work

The contour tree was first studied in the context of a GIS application
by de Berg and van Kreveld [6]. They proposed a divide and conquer
approach to compute the contour tree of the elevation function
defined over a 2D domain. This algorithm computes the contour tree
in O(nlog n) time, where n represents the number of triangles in the
mesh representing the domain of the elevation function. Kreveld
et al. [24] described an algorithm that efficiently tracks level set
components to compute the contour tree in O(nlogn) time for
2D scalar functions and in O(n?) for 3D scalar functions. Tarasov
and Vyalyi [20] improved upon earlier methods by performing
two sweeps over the domain, one in increasing and another in
decreasing function value to identify the merges and splits in the
level set components. In a final step, they merge the results of the
two sweeps to compute the contour tree in O(nlog n) time for 3D
input. Carr et al. [2] simplify the sweep-based approach even further
to compute a join and split tree from two sweeps. The two trees are
merged to construct the contour tree. The algorithm computes the
contour tree for scalar functions defined over any d-dimensional
domain and runs in O(vlogv + na(n)), where n is the number of
tetrahedra and v is the number of vertices in the input domain, and
a is the inverse Ackermann function.

Chiang et al. [4] proposed a different approach, one that traces
monotone paths to directly identify arcs in the contour tree. The
method first queries the local neighborhood of all vertices to identify
component critical points. Next, it traces monotone paths between
these critical points to construct the join and split trees. The algo-
rithm takes O(tlog ¢t + n) time, where t is the number of critical
points and n is the number of tetrahedra in domain. This algo-
rithm is provably optimal based on a Q(tlogt) lower bound for
contour tree construction [23]. The contour tree is the loop free
version of the Reeb graph [18], which has also been extensively
studied [5, 9, 17, 22].

Parallel algorithms have also been developed for computing the
contour tree. These algorithms are primarily data parallel and word
on data sampled on a grid, however a few task parallel methods have
also been developed. Pascucci and Cole-McLaughlin [16] described
a data parallel algorithm that works on data sampled at vertices of
a 3D grid and computes the contour tree for the piecewise polyno-
mial function obtained using a trilinear interpolant. The sequential
version runs in O(n + t log n) time, where ¢ is the number of criti-
cal points and n is the number of vertices. The parallel algorithm
provides a linear speed up with the number of processors.

Acharya and Natarajan [1] developed an algorithm that uses a
hybrid approach resulting in good improvements in terms of run-
ning time and memory usage. The grid domain is split into smaller
sub-domains using an octree based subdivision. Local join and split
trees are computed for these sub-domains using a monotone path
tracing based method. The local trees are stitched together to con-
struct global join and split trees, which are in turn merged together
in a final step resulting in the contour tree. The sequential running
time for this method is O(n + (¢ + n2/3)log(t + n2/3)), where t is the
number of critical points and n is the total number of vertices.

More recently, Gueunet et al. [11] presented a task parallel algo-
rithm to compute augmented merge trees. The worst case running

Mohit Sharma and Vijay Natarajan

time for this algorithm is equal to the traditional sequential algo-
rithms but it is very fast in practice. The algorithm uses a clever
sequence of breadth first search traversals and a priority queue to
identify individual arcs of the augmented merge tree. Other parallel
algorithms, distributed [12, 14, 15] and shared memory [13], have
also been proposed. However these algorithms do not typically com-
pute the augmented version of the contour tree. An exception is
the work of Gueunet et al., which considers the augmented version
but focuses on the relatively simpler merge trees.

1.2 Contributions

In this paper, we pose the problem of augmenting an existing con-
tour tree. Several applications of the contour tree require a mapping
between selected arcs of the contour tree and the corresponding
subset of the domain. We present a simple and efficient algorithm
that processes an input contour tree together with the domain of
the scalar function to produce the contour tree, whose arcs are
augmented with all degree-2 nodes. The algorithm uses a breadth
first search traversal similar to Gueunet et al. [11] to identify a
degree-2 nodes corresponding to an arc but avoids the use of a
priority queue thereby saving computation time. The algorithm
can be easily incorporated into existing visualizations and analysis
workflows.

The augmented contour tree is typically much larger in size when
compared to the contour tree. We demonstrate via computational
experiments that the savings in terms of memory usage is indeed
significantly large, while the time required to augment the tree is
reasonable. The key benefit is that the augmentation algorithm may
be invoked on demand and hence results in large saving (typically
10Xx-20x) in terms of storage. We also describe applications such as
feature-aware selection and isocontour extraction that will benefit
from the on-demand augmentation.

2 LEVEL SET TOPOLOGY

We begin by introducing the notion of level set topology and how
it is represented within the contour tree. We refer the reader to a
text on computational topology [10] for a more detailed description
of the relevant terms and definitions.

A scalar function f is often represented as a sample over vertices
of a mesh that represents the input domain. The samples are inter-
polated within the interior of the mesh elements. The mesh may
be a structured grid such as a lattice grid or a triangulation. In the
case of a lattice grid, the scalar values at the vertices are extended
to the interior of the grid cells via trilinear interpolation. The term
scalar value and function value are used interchangeably. A level
set corresponding to a scalar value « is the preimage f~1(a) of . It
is also referred as the isocontour or isosurface, the set of all points
on the domain where the function value is equal to a. A contour is
a connected component of a level set.

Figure 1 shows a 2D scalar function and a few of its level sets.
Consider a sweep over the domain in increasing or decreasing order
of function value. Individual contours expand, shrink, or the level
set possibly changes topology. We are specifically interested in the
changes to the number of connected components of the level set.
The different possible changes in topology include creation of a
new contour, destruction of an existing contour, merging of two



On-Demand Augmentation of Contour Trees

contours, or splitting of a contour. The level set topology changes
only when it passes past a critical point of the scalar function. The
corresponding scalar value is called a critical value. During a sweep
in increasing order of function value, a new level set component
is created at a minimum, a component is destroyed at a maximum,
two contours merge into one or a single contour splits into two at
a saddle.

The contour tree is obtained by mapping each contour to a point.
Nodes of the contour tree correspond to the critical points where
level set topology changes. Arcs correspond to a collections of
contours that are topologically equivalent to each other. These
contours pass through vertices, which may be included into the arc
as degree-2 nodes thereby resulting in an augmented contour tree.

The contour tree in Figure 1 contains 9 minima (blue) and 4
maxima (red), the leaf nodes of the contour tree. The merge and
split nodes appear as degree-3 nodes (green). The degree-2 nodes
(gray) do not affect the level set topology. Vertices a and i are
two minima. Contours that originate from them merge at saddle
d as seen in the contour tree. The degree-2 nodes on the arc ad
correspond to vertices in the domain through which contours that
originate at vertex a passed before reaching vertex d. In this paper,
our aim is to locate these degree-2 nodes efficiently and augment
the arc appropriately.

3 AUGMENTING A CONTOUR TREE

We now describe an algorithm that computes all degree-2 nodes
corresponding to each arc of the contour tree.

3.1 Algorithm

The algorithm takes as input a contour tree (with degree-1 and
degree-3 nodes) and the triangulation that represents the domain
of the scalar function. It performs a sequence of breadth first search
traversals on the input mesh, see Algorithm 1. The arcs of the
contour tree are processed iteratively, beginning with an arc that is
incident on a leaf node. The BFS traversal originating at a vertex
that corresponds to the leaf node determines all degree-2 nodes
that augment the arc. After processing, the arc is removed from the
tree potentially transforming an interior node into a leaf node.

Figure 2 shows a small triangulation with a scalar function de-
fined on its vertices and the corresponding contour tree. We will
use this example to understand the intuition that drives the design
of the algorithm. Labels within the vertices of the mesh and nodes
of the tree correspond to the function value. The algorithm reports
the collection of gray vertices that belong to each arc of the contour
tree.

In order to augment an arc (4,10), we need to identify all vertices
(regular points and genus-modifying saddles) from the domain
lying on the path from 4 to 10 with function values between 4 and
10 i.e., the nodes {5,6,7.1,8}. A simple method to identify these nodes
is a breadth first search traversal starting from 4 in the direction of
increasing function value. The traversal terminates when it reaches
the vertex 10. The BFS may visit nodes 12 and 14 before reaching
the node 10. To avoid including such nodes, we perform a simple
comparison test and include a node only if the function value is
smaller than 10. The comparison test is suitably modified if the BFS

ICVGIP 2018, December 18-22, 2018, Hyderabad, India

o

Figure 2: (left) A scalar function sampled at vertices of a
triangle mesh and linearly interpolated within the triangle
interior. (right) The corresponding contour tree containing
4 leaf nodes, two minima and two maxima, and 2 interior
nodes corresponding to saddle points.

originates from a higher vertex and is in the direction of decreasing
function value.

The sequence in which the arcs are traversed and the source end
point for the BFS traversal need to be carefully chosen to ensure
that the procedure remains simple. For example, assume that the arc
(10,4) is traversed for augmentation and the BFS originates at the
node 10. The traversal cannot be restricted to vertices corresponding
to the arc, they may belong to either arc (10,4) or (10,7). So, the
traversal always originates at a leaf node.

Let (4,10) be the first arc processed by the algorithm. After aug-
mentation, the arc is marked as processed or removed from the tree.
Let (7,10) be the second arc that is augmented. Figure 3 shows the
mesh and the contour tree after processing both arcs. All vertices
traversed during the two BFS traversals are marked visited. Node
10 is now a leaf node. Next, a BFS originating at node 10 augments
the arc (10,12). A BFS traversal that originates from a leaf node
necessarily traverses a simply connected region and hence directly
identifies all vertices that belong to the incident arc.

3.2 Seed list for traversal

The traversal originating at node 4 terminates when it reaches the
node 10. Further, nodes with function value greater than 10 are
discarded. So, no additional nodes are included into the arc (4,10).
However, the traversal may miss visiting certain nodes. Consider
the sub-domain shown in Figure 4, the scalar function defined over
it, and the corresponding contour tree.

Assume that the arcs (0,4) and (2,4) are already processed and
augmented. Visited vertices are marked. Next, when a BFS traversal
begins from vertex 4 to augment the arc (4,10), it terminates im-
mediately because none of the neighbors (vertex 1 and 11) can be
visited. Vertex 1 is already visited and vertex 11 is higher than 10.
The BFS terminates without visiting vertices 5,6,7,8 that it should
have included into the arc. Such a situation may arise at a saddle
point, none of whose adjacent vertices may correspond to the arc.
Vertex 5 is adjacent to vertices 1 and 11. It is visited during the



ICVGIP 2018, December 18-22, 2018, Hyderabad, India

Figure 3: After augmenting arcs (4,10) and (7,10): The trian-
gle mesh and the contour tree are simultaneously traversed
in order to identify the degree-2 nodes that belong to each
arc of the contour tree. Nodes annotated with an encircled
v denote vertices that are already visited. Dashed arcs in the
contour tree are already augmented. Traversal beginning
from the node 10 will not process these dashed arcs.

o

Figure 4: A sub-domain and the relevant arcs from the con-
tour tree. Dashed arcs in the contour tree are already aug-
mented, the degree-2 nodes are not shown here to avoid clut-
ter. Traversal beginning from node 4 along the arc (4,10) will
not be able to proceed because its immediate neighbors are
either already visited or do not belong to the arc. This situa-
tion may arise at saddle points. This necessitates a seed list
to be stored at node 4, which can be populated with vertices
(5, in this case) while traversing other arcs such as (0,4) that
terminate at 4.

traversal from 0 while augmenting the arc (0,4) but discarded be-
cause the function value is higher than 4. We propose to maintain
a seed list associated with the saddle point 4 that may be used to
initialize the BFS queue and begin the traversal. This seed list may
be populated with the vertex 5 and other such vertices that are
visited while augmenting arcs that end at node 4.

Mohit Sharma and Vijay Natarajan

Data: AdjD: Adjacency list for domain,

AdjC: adjacency list for contour tree

Result: Out: map with key as arc and value as list of regular
nodes which belong to that arc

while AdjC is not empty do

for every node w in AdjC.keys() do

if w has more than 1 adjacent node in AdjC then

| continue
end
start = w

end = AdjC[start]

queue = [start] + initialSeedlist of start

for i in queue do
| visited[i] = true

end

while queue is not empty do

u = queue.pop_front()

if function value of start < function value of end
then

initialSeedlist[end] = initialSeedlist[end] +
unvisited neighbors of u in AdjD with higher
function value than end

neighbors = unvisited neighbors of u in AdjD
with leser function value than end

nd

else

initialSeedlist[end] = initialSeedlist[end] +
unvisited neighbors of u in domain with
lesser function value than end

neighbors = unvisited neighbors of u in
domain with higher function value than end

o

end

for every n in neighbors do
queue.push(n)
visited[n] = true

end

if u is not a critical point then
| out[start,end].append(u)

end

remove AdjC|[start]

remove start from AdjC[end]

if AdjC[end] is empty then

remove AdjC[end]
end
end
end
end
return Out

Algorithm 1: Algorithm to augment a contour tree

3.3 Run time Analysis

The algorithm consists of a sequence of modified BES traversals.
Each vertex of the domain is visited once via each incident edge. So,
the algorithm runs in O(n) time where n is the number of edges in
the input mesh. In practice, the running time is smaller but largely
affected by the number of critical points, namely the degree-1 and



On-Demand Augmentation of Contour Trees

degree-3 nodes in the contour tree. A possible reason could be the
creation and maintenance of the seed list for the degree-3 nodes.

4 EXPERIMENTAL RESULTS

We report results of computational experiments on 10 different
datasets ranging from in size from 3.4K to 1 Million vertices. The
contour tree is computed using the open source library ReCon [7].
The augmentation algorithm is implemented in python. The ex-
periments were performed on a workstation with an Intel Xeon
Processor E5405 CPU (2.00 GHz base frequency, 12 MB L2 cache)
and 8 GB RAM. The running times and memory required to store
the augmented contour tree are reported in Table 1.

Datasets testGauss200 and testGauss300 are synthetically gen-
erated, by sampling a sum-of-gaussians function on a 2D grid.
Other datasets are polygonal models from Visionair’s shape repos-
itory [19]. For each of the polygonal model, the scalar function
value at each vertex is computed as the average distance from 1000
randomly chosen points on the surface. The two columns on the
extreme right in Table 1 list the space required to store the contour
tree and the augmented contour tree, respectively. The augmented
contour tree typically requires at least 10X-20X more space, which
can be saved due to the on-demand augmentation. The time re-
quired to augment all arcs of the contour tree is reasonable even
with a simple python based implementation. It is comparable to
run times reported for the sequential version of the algorithm by
Gueunet et al. [11]. The running time increases with the number
of critical points.

5 APPLICATIONS

We now discuss three different applications that require the aug-
mented contour tree and how the proposed on-demand augmenta-
tion will be beneficial.

5.1 Feature-aware selection

The contour tree serves as a useful interface for the user to se-
lect features in the data. For example, a node of the contour tree
corresponds to a critical point of the scalar function and an arc cor-
responds to a sub-domain. This sub-domain is a topological feature
and is represented by a pair of critical points. During an interactive
visual exploration exercise, a user may want to select and highlight
a collection of topological features. This is immediately possible
if the augmented contour tree is available. More specifically, the
specific arcs need to be augmented on-demand.

Figure 5 shows two datasets and the corresponding contour
trees. Nodes of the contour tree are ordered along the vertical axis
based on their scalar value. One arc is selected (pink) in the contour
tree and the corresponding region is highlighted in the domain.
In Figure 5(a), the inner contours (white) correspond to the scalar
value (4.12) at the maximum contained within the pink region and
the outer contour (white) corresponds to the value (3.14) at the
other end point saddle of the arc. Note that multiple arcs span
the same interval of scalar values as the selected arc. The white
contours highlight these “sibling” regions. A long arc is selected
for the cat dataset, which corresponds to a region within its tail.

ICVGIP 2018, December 18-22, 2018, Hyderabad, India

5.2 Isocontour extraction

One of the first steps in the scalar function visualization workflow
is isocontour extraction. More specifically, the user may want to
extract individual contours. A naive but costly approach is to tra-
verse all cells of the input mesh and identify the cells that contain
the required contour. Given the augmented contour tree, we can
quickly query the tree to identify the set of arcs of the augmented
contour tree that span the input scalar value and trace the contour
beginning from the corresponding cells in the domain.

Consider the contour tree in Figure 2. If we want to locate the
triangles covered by the level set corresponding to scalar value 8,
we first identify the arcs of the contour tree that span the value
8. In this case, we identify two arcs, (4,10) and (7,10). Within each
arc, we identify nodes whose scalar value is closest to 8 and hence
located a cell (triangle in this case) containing a level set component.
Beginning from this cell, we trace the contour using a BFS traversal
that explores the neighborhood of the cell to identify the next cell
that contains the contour.

Figure 6 shows all contours for a given input scalar value in 3
different datasets. The number of triangles traversed in Figure 6(c)
is 1349. This is significantly smaller than the 2.2 Million triangles
in the input domain that a naive algorithm will have to traverse in
order to extract the isocontour.

5.3 Partial augmentation

The user may often specify a region of interest. In this case, it may
be sufficient to augment only certain arcs of the contour tree. The
proposed algorithm can be modified to support partial augmen-
tation. In Figure 2, we want to augment the arc (4,10). We could
achieve this by invoking a single BFS traversal from the node 4. If
we want to augment the arc (10,12), then we need to first traverse
arcs (4,10) and (7,10) but not necessarily all arcs in the contour tree.

6 CONCLUSIONS

We described an algorithm for computing an augmented version of
the contour tree on demand that results in significant savings in
terms of storage space. If the number of critical points is small, the
augmentation of the entire tree can be computed in a reasonable
amount of time using a sequential implementation. The proposed
algorithm can be easily modified to augment a select few arcs. In
this case, the computation time will be much smaller and the storage
space savings will be more significant.

The algorithm may be easily parallelized, arcs incident on max-
ima and minima may be simultaneously augmented resulting in
faster augmentation of the contour tree. The on-demand augmen-
tation of select arcs will enable a software tool for exploration and
visualization of a scalar field via interactive selection of arcs in the
contour tree.

ACKNOWLEDGMENTS

This work is supported by the Department of Science and Technol-
ogy, India (DST/SJF/ETA-02/2015-16) and the Robert Bosch Centre
for Cyber Physical Systems, Indian Institute of Science. We thank
Vishnu Nandakumaran for helping generate the contour tree fig-
ures.



ICVGIP 2018, December 18-22, 2018, Hyderabad, India

Mohit Sharma and Vijay Natarajan

H
T

(c) testGauss200 : contour tree

TR
o

(d) cat : contour tree

Figure 5: Feature-aware selection. Vertices that belong to the sub-domain (a,b) corresponding to a particular arc of the contour
tree (c,d) are highlighted. The selected arc and the corresponding region is shown in pink. White contours represent the
boundary of regions corresponding to other arcs that span the same scalar values as the selected arc. (c) Arc with end point
scalar values {3.14, 4.12} is selected. (b) Arc with end point scalar values {0.09, 0.54} is selected.



On-

Demand Augmentation of Contour Trees

ICVGIP 2018, December 18-22, 2018, Hyderabad, India

Table 1: Time to augment the contour tree for various datasets. The number of vertices and triangles in the domain, number of
nodes in the contour tree, time to compute the contour tree, data size, size of the contour tree and the augmented contour tree
are reported. We observe that the space required to store the augmented contour tree is much higher than the space required
to store the contour tree. [* The time required to compute the contour tree was less than 0.0001ms.]

Dataset vertices | triangles nodes | contour tree | Aug. tree Data | contour tree | Aug. tree

(domain) | (domain) | (contour tree) (time(sec)) | (time(sec)) (size) (size) (size)
cat 3.4K 6.8K 118 0* 0.07 231KB 3.6KB 28.3KB
testGauss200 40K 79K 82 0.26 1.40 4.1MB 2.9KB 351.3KB
testGauss300 90K 179K 88 0.53 426 | 10.2MB 3.2KB 801.4KB
Eros_400K 197K 394K 2223 1.07 8.34 20.1MB 83.6KB 1.9MB
Eros_800K 476K 953K 6013 2.14 29.27 43.9MB 233.4KB 4.8MB
bimba_1Mfaces 502K M 928 241 32.34 | 45.5MB 38.6KB 49MB
Chinese_dragon 656K 1.3M 16988 2.95 73.57 | 61.3MB 676.7KB 6.7MB
circular_box 701K 1.4M 95886 4.02 387.00 65.5MB 3.8MB 8.4MB
Ramesses 826K 1.6M 5953 4.29 119.40 | 77.5MB 235.6KB 8.2MB
Isidore_horse 1.1IM 2.2M 16372 5.10 131.82 | 106.4MB 639.5KB 11.3MB

(a) Eros_800K

(b) cat

(c) Isidore horse

Figure 6: Isocontour extraction. An isocontour (pink) intersects a small fraction of the input mesh triangles. The augmented
contour tree provides direct access to one triangle intersected by each isocontour component. A simple traversal beginning
from this triangle may be used to extract the entire isocontour. (a) Isovalue 0.17, (b) isovalue 0.2, and (c) isovalue 0.41.

REFERENCES

(1]

(2]

[3

=

(4]

A. Acharya and V. Natarajan. 2015. A parallel and memory efficient algorithm
for constructing the contour tree. In Proc. IEEE Pacific Visualization Symposium.
271-278.

H. Carr, J. Snoeyink, and U. Axen. 2003. Computing contour trees in all dimen-
sions. Comput. Geom. Theory Appl. 24, 2 (2003), 75-94.

Hamish Carr, Jack Snoeyink, and Michiel van de Panne. 2010. Flexible isosurfaces:
Simplifying and displaying scalar topology using the contour tree. Computational
Geometry 43, 1 (2010), 42-58.

Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. 2005. Simple and optimal output-sensitive
construction of contour trees using monotone paths. Comput. Geom. Theory Appl.
30, 2 (2005), 165-195.

K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci.
2004. Loops in Reeb graphs of 2-manifolds. Disc. Comput. Geom. 32, 2 (2004),
231-244.

Mark de Berg and Marc J. van Kreveld. 1997. Trekking in the Alps Without
Freezing or Getting Tired. Algorithmica 18,3 (1997), 306-323.

Harish Doraiswamy. 2013. ReCon: A fast algorithm to compute Reeb graphs.
(2013). http://vgl.csa.iisc.ac.in/software/software.php?pid=003

Harish Doraiswamy and Vijay Natarajan. 2012. Output-Sensitive Construction of
Reeb Graphs. IEEE Trans. Visualization and Computer Graphics 18 (2012), 146-159.
DOI:http://dx.doi.org/10.1109/TVCG.2011.37

Harish Doraiswamy and Vijay Natarajan. 2013. Computing Reeb graphs as a
union of contour trees. IEEE Trans. Visualization and Computer Graphics 19, 2

(10]
(11]

(12]

(13]

[14]

(15]
[16]

[17]

(2013), 249-262.

H. Edelsbrunner and J. Harer. 2009. Computational Topology: An Introduction.
Amer. Math. Soc., Providence, Rhode Island.

Charles Gueunet, Pierre Fortin, Julien Jomier, and Julien Tierny. 2017. Task-
based augmented merge trees with Fibonacci heaps. In Large Data Analysis and
Visualization (LDAV), 2017 IEEE 7th Symposium on. IEEE, 6-15.

Aaditya G Landge, Valerio Pascucci, Attila Gyulassy, Janine C Bennett, Hemanth
Kolla, Jacqueline Chen, and Peer-Timo Bremer. 2014. In-situ feature extraction
of large scale combustion simulations using segmented merge trees. In Proc.
ACM/IEEE Conf. on Supercomputing (SC14), Vol. 14.

Senthilnathan Maadasamy, Harish Doraiswamy, and Vijay Natarajan. 2012. A
hybrid parallel algorithm for computing and tracking level set topology. In High
Performance Computing (HiPC), 2012 19th International Conference on. IEEE, 1-10.
Dmitriy Morozov and Gunther Weber. 2013. Distributed merge trees. In Proceed-
ings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel
programming. ACM, 93-102.

Dmitriy Morozov and Gunther H Weber. 2014. Distributed Contour Trees. In
Topological Methods in Data Analysis and Visualization III. Springer, 89-102.
Valerio Pascucci and Kree Cole-McLaughlin. 2003. Parallel Computation of the
Topology of Level Sets. Algorithmica 38, 1 (2003), 249-268.

Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, and Ajith Mascarenhas.
2007. Robust on-line computation of Reeb graphs: simplicity and speed. ACM
Trans. Graph. 26, 3 (2007), 58.


http://vgl.csa.iisc.ac.in/software/software.php?pid=003
http://dx.doi.org/10.1109/TVCG.2011.37

ICVGIP 2018, December 18-22, 2018, Hyderabad, India

[18]

[19]

[20]

[21

[22]

[23]

[24]

[25]

G. Reeb. 1946. Sur les points singuliers d’une forme de Pfaff complétement
intégrable ou d’une fonction numérique. Comptes Rendus de L’Académie ses
Séances, Paris 222 (1946), 847-849.

Aim@Shape: Digital shape workbench. 2011. The Shape Repository. (2011).
http://visionair.ge.imati.cnr.it/ontologies/shapes/

Sergey P. Tarasov and Michael N. Vyalyi. 1998. Construction of contour trees
in 3D in O(n log n) steps. In Proceedings of the fourteenth annual symposium on
Computational geometry (SCG "98). ACM, New York, NY, USA, 68-75.

Dilip Mathew Thomas and Vijay Natarajan. 2011. Symmetry in scalar field
topology. IEEE Trans. Visualization and Computer Graphics 17, 12 (2011), 2035~
2044.

Tony Tung and Francis Schmitt. 2004. Augmented Reeb Graphs for Content-Based
Retrieval of 3D Mesh Models. In SMI "04: Proc Shape Modeling Intl. 157-166.

M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. R. Schikore. 1997.
Contour trees and small seed sets for isosurface traversal. In Proc. Symp. Comput.
Geom. 212-220.

M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. R. Schikore. 1998.
Contour trees and small seed sets for isosurface traversal. Technical Report UU-
CS-1998-25. Department of Computer Science, Utrecht University.

G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann. 2007. Topology-
controlled volume rendering. IEEE Trans. Visualization and Computer Graphics
13, 2 (2007), 330-341.

[26] Jianlong Zhou and Masahiro Takatsuka. 2009. Automatic Transfer Function Gen-

eration Using Contour Tree Controlled Residue Flow Model and Color Harmonics.
IEEE Trans. Visualization and Computer Graphics 15, 6 (2009), 1481-1488.

Mohit Sharma and Vijay Natarajan


http://visionair.ge.imati.cnr.it/ontologies/shapes/

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Level Set Topology
	3 Augmenting a contour tree
	3.1 Algorithm
	3.2 Seed list for traversal
	3.3 Run time Analysis

	4 Experimental Results
	5 Applications
	5.1 Feature-aware selection
	5.2 Isocontour extraction
	5.3 Partial augmentation

	6 Conclusions
	Acknowledgments
	References

