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Abstract This article presents a robust Morse theory-1

based framework for segmenting 3D x-ray computed2

tomography image (CT) and computing the fabric, rel-3

ative arrangement of particles, of granular ensembles.4

The framework includes an algorithm for computing the5

segmentation, a data structure for storing the segmenta-6

tion and representing both individual particles and the7

connectivity network, and visualizations of topological8

descriptors of the CT image that enable interactive ex-9

ploration. The Morse theory-based framework produces10

superior quality segmentation of a granular ensemble as11

compared to prior approaches based on the watershed12

transform. The accuracy of the connectivity network13

also improves. Further, the framework supports the effi-14

cient computation of various distribution statistics on15

the segmentation and the connectivity network. Such16

a comprehensive characterization and quantification of17

the fabric of granular ensembles is the first step towards18

a multiple length scale understanding of the behavior.19
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1 Introduction 23

Understanding of the mechanical behavior of geomateri- 24

als from the micro-scale (i.e., inter-particle interactions) 25

to the macro-scale (or, continuum scale) has significantly 26

benefited engineering of physical infrastructure. Such 27

an understanding straddling multiple length scales has 28

established beyond reasonable doubt that the ensemble 29

mechanical response is an integration of the arrange- 30

ment and interaction of individual particles in geomate- 31

rials such as sand, clay, structured sand, and structured 32

clay [46, 34, 7]. Numerical techniques such as discrete ele- 33

ment methods and imaging experiments using x-ray com- 34

puted tomography (CT) have enormously contributed 35

to this understanding of geomaterial behavior. Prior to 36

use of x-ray CT, fabric and microstructure studies were 37

limited to only two-dimensional packing [33, 34]. Access 38

to CT has enabled extraction and quantification of the 39

three-dimensional fabric and its evolution under different 40

stress paths [11, 49, 20, 21, 3, 16, 1]. Within the overall 41

workflow of quantification of fabric of soils, the method 42

used for image segmentation crucially determines the 43

quality of the results. In this paper, we present a novel 44

approach for segmentation based on Morse theory, which 45

is a branch of topology that studies the relationship be- 46

tween the connectivity of spaces and scalar functions 47

defined on them. Crucial to the goal of quantification 48

of fabric, this Morse theory-based approach simultane- 49

ously supports a data structure that efficiently stores 50

both the segmentation and the connectivity network 51

that represents the inter-particle arrangement. 52
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1.1 Previous work53

Fabric Quantification. Initial quantification of the54

fabric of sands using CT techniques has been reported55

by multiple authors [2, 3, 16, 24, 26]. More recently, the56

fabric of weakly cohered glass-ballotini has also been in-57

vestigated [44, 43]. The basic premise of this CT-based58

analysis of fabric is the collection of images through59

the cross-section of a laboratory or natural sample, and60

concomitant image segmentation and analysis. Segmen-61

tation refers to the process of labeling or identification62

of different phases or objects present in the image. In63

this study, images of weakly cemented granular materi-64

als captured through x-ray CT are analyzed. The small65

amount of epoxy present mediates the contact between66

particles. Air voids present in this ensemble, are also67

segmented.68

Once the particles and contacts are identified, the69

inter-particle arrangement is studied by computing the70

coordination number distribution, or more commonly by71

computing a fabric tensor. The fabric tensor is a mea-72

sure of the orientation distribution of the particles [32].73

Characteristics of the fabric tensor and its formulation74

have been enumerated in recent work [43].75

Watershed-based segmentation. In previous work,76

including the above-mentioned studies, variants of the77

watershed algorithm [30, 37] have been typically used78

to segment the particles and to identify the contacts79

(or epoxy bonds). These watershed-based algorithms re-80

quire as input a scalar field that contains, in its topology,81

exactly one catchment for each particle i.e., the presence82

of exactly one field minimum / maximum corresponding83

to each particle. Further, [48] show the contact orienta-84

tion obtained through conventional and random walker85

based watershed implementation is either error-prone86

or computationally expensive.87

The watershed algorithm identifies and labels each88

catchment (particle) and its ridge line (epoxy bonds).89

The segmentation method begins by first binarizing the90

volume image corresponding to a particle-void gray level91

cutoff. Following this, the binarized particles are tested92

to ensure that they do not contain inherent flaws such93

as regions of low attenuation intensity. Next, a distance94

transform is applied on the complementary image to95

obtain a scalar field such that each particle contains96

exactly one maximum. Due to the irregular shape of the97

particles, the distance transform generates one dominant98

peak and several small peaks. These small peaks are99

removed by applying the h-maxima transform, which100

suppresses all the maxima (peaks) that are lower than101

the specified tolerance [45]. An appropriate threshold for102

the h-maxima transform is chosen manually by an expert103

user. This transform provides exactly one maximum for104

each particle. Next, the field is inverted such that each 105

particle contains exactly one minimum. The labeled par- 106

ticles are computed by applying the watershed algorithm 107

to the inverted modified distance field. This algorithm 108

progressively fills the basins defined by each minimum 109

from below by uniformly raising the “water level”. Wa- 110

ter from two adjacent basins meet along their common 111

boundary, the separating ridge, that passes through the 112

contact region. Figure 1 illustrates the different steps in 113

the watershed-based approach and contrasts it with our 114

proposed Morse theory-based approach thereby high- 115

lighting the benefits of the latter. 116

An important limitation of the watershed technique 117

is that it fails for non-convex shaped particles, partic- 118

ularly those that contain a neck, and results in over- 119

segmentation. A carefully chosen threshold for the h- 120

maxima transform addresses this problem to some ex- 121

tent. However, a single threshold uniformly applied to 122

the entire scalar field fails to capture all possible cases 123

and the method often results in over-segmentation. Also, 124

the quality of the result naturally depends on the manual 125

choice of threshold for the h-maxima. Other extensions 126

and variants have been proposed [50, 26] to handle the 127

over-segmentation problem. These methods either rely 128

on a single absolute user-specified threshold or adaptive 129

local application of watershed, which is computationally 130

inefficient and expensive. 131

Topology-based segmentation. Topological frame- 132

works like discrete Morse theory [17] and persistent 133

homology [13] enable effective tools for the study and 134

analysis of scientific data due to their ability to robustly 135

extract shape and structure even in the presence of 136

noise [19, 18, 6]. The physical properties of porous and 137

granular materials are closely related to the geometry 138

and topology of the material structure. So, topological 139

methods have been found to be useful in the study of 140

diverse phenomena within this domain, ranging from 141

the crystallization process in bead packings [38] to per- 142

meability in sandstone [22]. Persistent homology-based 143

pipelines have been used for summarizing essential struc- 144

tural properties [38, 25] and Morse theory has been used 145

to extract robust geometric representations of the ma- 146

terial structure [19, 36, 10]. Robins et al. [36] and Frei- 147

drichs et al. [10] first described the benefits of discrete 148

Morse theory for the segmentation and skeletonization of 149

3D images, including an application to the computation 150

of the pore network of a silica sphere pack from 3D CT 151

scan data. The focus of their work is on computing the 152

Morse-Smale (MS) complex and hence the other steps 153

of the CT scan analysis pipeline such as the boundary 154

surface computation and geometry extraction are not 155

discussed. Further, the use of a manually selected sim- 156

plification threshold results in the lack of an intuitive 157
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Fig. 1: Visual comparison of the watershed-based and the proposed Morse theory-based approaches to process and
analyze 3D CT data. The comparison helps identify key differences between the two method pipelines in terms of
computation, output, and supported analysis. The unified data structure retrieved from the MS complex supports
various analysis tasks.

choice or guide for selecting noise simplification thresh-158

olds. Gyulassy et al. [19] also adapted Morse theory in159

their pipeline to extract the core filament structure of160

porous materials. Their curved skeleton-based represen-161

tation is computed by carefully simplifying a distance162

field in order to identify and extract features of inter-163

est from the MS complex. They are able to identify164

consistent and stable core structures of porous solids,165

thus extracting meaningful results about the material166

properties. Their method design exemplifies the benefits167

of adapting Morse theoretic ideas to fit the context of168

an application focused pipeline.169

Our method falls into the category of Morse theory-170

based approaches that aim to study material packing171

structures, but it is distinct from previous work on three172

essential points. First, our proposed method packages173

the benefits of discrete Morse theory as a part of a174

comprehensive and coherent pipeline for analysis of CT175

images with the objective of computing a robust geo-176

metric representation of the granular material structure.177

Second, the pipeline is designed to support a smooth and178

convenient end-user experience with intuitively tunable179

parameters that generalizes well to diverse use-cases.180

Third, our focus is on the study of the material phase of181

the packing structure of granular materials as opposed 182

to the study of pore spaces in earlier work. 183

1.2 Contributions 184

This paper presents a new Morse theory-based frame- 185

work for computing, storing, and exploring the fabric 186

in geomaterials. We apply this framework on x-ray CT 187

images of a mono-dispersed steel sphere packing for 188

benchmarking and on an epoxy bonded sand packing 189

to demonstrate its utility and advantages over existing 190

approaches. The framework incorporates a new method 191

for segmentation, introduces a new connectivity network 192

that supports further statistical analysis, and a visual- 193

ization tool that supports interactive exploration of the 194

granular ensemble, see Figure 1. Key contributions of 195

this paper include 196

– A robust algorithm for computing a segmentation 197

of a 3D x-ray CT image. The segmentation is rep- 198

resented as the Morse complex of the scalar field 199

corresponding to the CT image. Further, the algo- 200

rithm is amenable to parallel computation. 201

– An effective method for simplification and noise 202

removal. A topological persistence [15, 13] based 203
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method removes both geometric and topological204

noise resulting in the desired segmentation. The205

method enables both a flexibility in the choice of206

integrated geometric and topological criterion for207

simplification and an intuitive choice of threshold208

for the criterion.209

– An improved boundary surface computation method210

that constructs the necessary input for the segmenta-211

tion algorithm. An active-contour [8] based method212

computes an optimal boundary surface of the parti-213

cles in the packing. The surface is locally adapted214

to the best separating scalar value and is thus free215

of the assumption of a single global threshold.216

– A unified data structure for storing both the segmen-217

tation and contacts. The data structure representing218

the Morse complex supports fast queries. Further,219

it enables efficient noise removal while guaranteeing220

consistency in the topological relationship between221

the segments.222

– Construction of a geometrically meaningful connec-223

tivity network between contacting particles in the224

packing. The arcs of the network adapt to the ge-225

ometry of the particles and are guaranteed to lie226

within the packing as they connect particle centers227

and contacts, thus accurately representing the pack-228

ing structure even for complex non-convex particle229

geometries.230

– An effective method for visualizing the segmentation231

and the connectivity network. The segmentation,232

contacts, and connectivity network are visualized233

via high quality rendering of the cells of the Morse234

complex.235

Experimental results demonstrate that the segmentation236

results are superior to watershed-based methods, both237

in terms of segmentation quality and identification of238

contacts. The proposed method is suitable for both239

simple and complex CT granular datasets with non-240

convex morphology, and has the potential to generalize241

to broad range of particle sizes including those with242

particle breakage.243

2 Challenges244

In this section, we describe the main challenges faced in245

the process of analyzing 3D CT images using existing246

techniques. These challenges serve as the underlying247

motivation for the design of our approach.248

Characteristics of reconstructed CT data. Recon-249

structed 3D CT images of granular ensembles can be250

very challenging to process because of the reconstruction251

artifacts, noise, and irregular geometry of the particles.252

The x-ray CT scans suffer from noise and artifacts, the253

incompatibility between the reconstructed values and 254

their attenuation densities, due to the inconsistencies in 255

x-ray source (polychromatic source), object (cylindrical 256

shape of the object), detector, and reconstruction algo- 257

rithm [23]. Figure 2 shows the reconstructed volume and 258

a representative slice of the epoxy-bonded sand speci- 259

men. The background intensity and the reconstructed 260

values of sand particles vary across the specimen due 261

to artifacts and noise. The reconstructed image is af- 262

fected by beam hardening — the average reconstructed 263

values of air, epoxy, and sand are significantly higher 264

near the periphery than the central region. The partial 265

volume effect results in dark streaks near the periphery. 266

We also observe occasional low reconstructed valued 267

regions in sand due to flaws within the particles that 268

manifest into intra-particle voids after thresholding. Fur- 269

ther, the epoxy and pore air have similar attenuation 270

coefficients that, together with the background noise, 271

makes the segmentation of the epoxy phase challenging. 272

In addition to reconstruction-based artifacts, the actual 273

geometry of the particles in the packing too can often 274

be highly non-convex, irregular, and show great vari- 275

ation in shape, size, and volume. This combination of 276

artifacts and diversity in particle geometry necessitates 277

specifically designed segmentation techniques that are 278

not only inherently robust but make no assumptions 279

about the particle geometry and distribution of noise. 280

Manual selection of boundary surface. A watershed- 281

based segmentation method begins by computing a sur- 282

face that bounds the particles. Otsu’s method is the 283

popular choice of boundary surface extraction method. 284

It often reports a surface that fails to accurately capture 285

the geometry of the packing. One approach to address 286

this shortcoming is to manually explore the histogram 287

of values in the CT scan and fine tune the choice of 288

isosurface that represents the boundary surface. This 289

manual approach, in addition to being tedious, may 290

still fail to correctly capture the packing geometry. For 291

instance, we highlight one such situation in Figure 3, 292

where a volume rendering of the CT scan with a well 293

tuned color and opacity map is used to illustrate the dif- 294

ference between the actual particle geometry and what 295

is identified by a carefully selected isosurface. Further, 296

we also observe that isosurfaces corresponding to dif- 297

ferent isovalues capture the correct packing geometry 298

within different regions of the CT data. This indicates 299

that a single uniform choice of isosurface is not sufficient 300

to model the boundary surface geometry. An incorrect 301

boundary surface has the potential to grossly affect 302

downstream analysis, making it difficult to compute 303

accurate segmentation and contact information. 304

Simplification and noise removal. The tendency 305

of watershed-based segmentation to over-segment non- 306
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Fig. 2: Left: Direct volume rendering of CT scan of a sand sample using a grayscale color map and opacity which
increases linearly with the CT intensity values. Note how the particle boundaries are not clear and there is noise in
the data. Moreover, the sand particles have varying intensity, and some imaging artifacts appear as horizontal
bands of varying intensity values. Right: A cross section of the CT volume highlights similar issues. Additionally,
imaging artifacts at the periphery of the sample is apparent.

Fig. 3: Left: Direct volume rendering of the CT data using a fine-tuned color map. Right: Manually selected
isosurface guided by a histogram. Notice how the isosurface does not agree well with the CT data, specially in the
region enclosed by the red box.

convex geometry necessitates the employment of region-307

merging heuristics such as the h-maxima transform. The308

h-maxima transform requires the user to select the de-309

sired depth value up to which local maxima are to be310

suppressed. A good manual choice is essential for achiev-311

ing good results. However, this choice of parameter is 312

tedious and unintuitive. It is often difficult to choose a 313

parameter value with a high level of confidence because 314

evaluating the effect of this choice requires the compu- 315

tation of the entire segmentation followed by statistics 316
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(a) h-maxima threshold=0.0 (b) h-maxima threshold=1.0

(c) h-maxima threshold=2.0 (d) h-maxima threshold=3.0

Fig. 4: In the watershed-based approach to segmentation, it is challenging to identify a “correct” h-maxima threshold.
Note how the chosen threshold affects the final segmentation. Often, this threshold is chosen using a trial-and-error
process. In some cases, the threshold identification is guided by prior knowledge of the sample, say the expected
particle size or expected number of particles in the sample.

on the segmented particles. Further, small changes in317

h-maxima value may result in large variations in the318

segmentation, which implies that approximate solutions319

may not be satisfactory. In Figure 4, we illustrate the320

watershed segmentation of a granular ensemble at dif-321

ferent h-maxima thresholds. Note how relatively similar322

h-maxima parameter values result in different segmen-323

tation results.324

Network extraction. The natural step after comput-325

ing the segmentation and a set of contacts between par-326

ticles is to construct a connectivity network. To achieve327

this, the particles associated with each contact are iden-328

tified by searching within the neighborhood (26 pixel329

connectivity) of each contact. A simple network, where 330

connectivity of particles is represented by straight lines 331

between particle centres that share a contact, is used to 332

represent the packing. This is an abstract representation 333

and does not represent the geometry of the contact or 334

connectivity. 335

3 Background 336

This section reviews the necessary mathematical back- 337

ground for the topological methods described in this 338

paper. We introduce terminology and key concepts on 339

Morse functions, MS complex, and topological simplifica- 340
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(a) (b)

(c) (d)

Fig. 5: Morse complex and its cells. (a) A synthetic scalar field shown using pseudo colors. Points identified as
maxima are shown as red spheres. (b) Morse complex partitions the domain of the scalar field based on descending
manifolds of maxima. (c) A pair of adjacent maxima are highlighted, their descending manifolds are shown in
yellow and green. The 2-saddle at the interface of these two maxima is shown as a blue sphere. The descending
manifold of this 2-saddle is the grey surface at the interface between the descending manifolds of the two maxima.
The bold black line is the ascending manifold of the 2-saddle which also connects the two maxima. (d) The integral
lines within the descending manifolds of the two maxima. Notice how these lines converge towards the two maxima
and form a separation surface around the 2-saddle. This structure and partition is robustly extracted using the MS
complex.

tion, which are required for understanding the definition341

of our proposed connectivity network, the segmentation,342

and particle extraction methods described in the next343

section.344

3.1 Morse function and Morse complex345

Morse theory studies the relationship between the topo-346

logical properties of a space and the critical points of347

a smooth real valued function defined on the space.348

We introduce the necessary terms from Morse theory349

and refer the reader to books on this topic for further350

details [28, 13].351

Consider a smooth (twice differentiable) scalar func-
tion f : R3 → R. A point pc ∈ R3 is called a critical

point of f if the gradient of f at pc is zero,

∇fpc
=

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
pc

= 0. (1)

The critical point pc is called non-degenerate if its Hes-
sian (matrix of second partial derivatives at pc) is non-
singular. The function f is called a Morse function if all
its critical points are non-degenerate and have distinct
function values. Any smooth function f can be infinites-
imally perturbed into a Morse function. The number
of negative eigenvalues of the Hessian corresponds to
the Morse index of the critical point. Critical points
of a three-dimensional function f can be of four types:
minima (index-0), 1-saddle (index-1), 2-saddle (index-2),
and maxima (index-3). An integral line is a curve in R3
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whose tangent vector at a point on the curve is parallel
to the gradient of f at that point. The integral line
passing through a point p is the solution to

∂

∂t
L(t) = ∇f(L(t)),∀t ∈ R (2)

with initial value L(0) = p. The function f monotoni-352

cally increases or decreases along an integral line. The353

end points of an integral line corresponding to the limits354

as t approaches −∞ and ∞, its origin and destination355

respectively, are critical points of f . The set of all in-356

tegral lines originating at a critical point pc together357

with pc is called the ascending manifold of pc. Simi-358

larly, pc together with the set of all integral lines whose359

destination is pc is called the descending manifold of360

pc. Figure 5 shows a simple 3D scalar field, its critical361

points, and descending manifolds.362

The descending manifolds (similarly, ascending man-363

ifolds) of all critical points of f partition the domain364

of f . This partition is called the Morse complex and365

consists of cells of dimensions 0, 1, 2, and 3. The de-366

scending manifold of a critical point with index i has367

dimension i. Therefore, the descending manifold of a368

maximum is a three dimensional volume (3-manifold),369

the descending manifold of a 2-saddle is a two dimen-370

sional sheet (2-manifold), the descending manifold of a371

1-saddle is a one dimensional arc (1-manifold) and the372

descending manifold of a minimum is the minimum itself.373

Conversely, the ascending manifold of a critical point374

with index i has dimension 3− i. We propose the use of375

the Morse complex to represent the individual particles376

and the connectivity network between the particles.377

The overlay of the ascending and descending mani-378

folds results in a finer partition of the domain of f called379

the Morse-Smale complex (MS complex). Each cell of380

the MS complex is a set of integral lines that share a381

common origin and destination. The MS complex is a382

well studied topological structure and there are several383

efficient algorithms developed for computing hierarchical384

representations of the complex [40, 42]. More important385

in the context of this paper, the Morse complex can be386

extracted directly as a subset of the MS complex.387

3.2 MS complex computation388

CT scan data is available as a 3D density image, which389

can be modeled as a continuous scalar function defined390

on the vertices of a 3D cube grid and interpolated within391

each cell. The cube grid represents the domain of the392

scalar function. Ideas from Morse theory can be trans-393

ferred to piecewise continuous functions to define critical394

points [15] via local comparison of function values. Fur-395

ther, a simulated perturbation ensures that neighboring396

vertices do not have equal function values and hence the 397

gradient is zero only at critical points. This perturba- 398

tion helps classify the critical points. Earlier algorithms 399

employed numerical approaches to compute the MS 400

complex and were affected by the errors in the computa- 401

tion of interpolants and derivatives. In contrast, we use 402

combinatorial methods for MS complex computation. 403

We use a parallel algorithm based on discrete Morse 404

theory, which introduces a discrete analog of gradients 405

as a directed edge between grid cells and computes inte- 406

gral lines as paths in a directed graph [40]. By avoiding 407

derivative computations, this method ensures robust- 408

ness of the results. In addition, the method provides 409

theoretical guarantees for the correctness of adjacency 410

relationship between cells of the output complex. 411

The 3D cube grid represents the domain as a col- 412

lection of cells, a cubical complex. Voxels of the input 413

are vertices (0-cells) of the grid; edges, faces, and cubes 414

are the 1-, 2-, and 3-cells. The parallel algorithm of 415

Shivashankar and Natarajan [40] computes discrete rep- 416

resentations of the ascending and descending manifolds 417

of the critical points of the function and supports oper- 418

ations for topological simplification as described in the 419

following section. The descending manifold of a max- 420

imum is a collection of connected 3-cells in the grid, 421

a volumetric region. The descending manifold of a 2- 422

saddle is a collection of connected 2-cells resulting in 423

a surface. The descending manifold of a 1-saddle is an 424

arc consisting of a sequence of edges (1-cells) and the 425

descending manifold of a minimum is a solitary 0-cell, 426

namely the minimum. The ascending manifolds are com- 427

puted similarly and represented as a collection of 3-cells 428

(minimum), 2-cells (1-saddle), 1-cells (2-saddle), and 429

0-cell (maximum). 430

3.3 Topological simplification 431

A pair of critical points of f , that is connected via a 432

single arc in the MS complex, may be removed via a 433

critical point pair cancellation, resulting in a simpler 434

MS complex [15, 14]. Morse theory guarantees the ex- 435

istence of a simpler function f ′ corresponding to the 436

simpler MS complex. Pairs of critical points represent 437

topological features. For example, the 2-saddle-maximum 438

pairs in Figure 5c represents the two volumetric regions 439

(yellow and green). We employ the critical point pair 440

cancellation for topological simplification, iteratively re- 441

moving small features that result from high frequency 442

noise or sampling artifacts in the CT scan. Two crucial 443

advantages of this approach are that (a) the algorithm 444

is combinatorial and does not suffer from errors due 445

to numerical computation, and (b) it supports con- 446
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trolled simplification where the data outside of a local447

neighborhood is not affected.448

The cancellation changes both the combinatorial449

structure of the MS complex as well as the geome-450

try of the ascending and descending manifolds of the451

surviving critical points. In this paper, we focus on 2-452

saddle-maximum cancellation because we are interested453

in computing the individual particle segments. Let p2q3454

represent a pair of critical points where the subscript455

indicates the index of the critical point. First, p2, q3,456

and all arcs incident on them are deleted. Next, arcs457

incident on q3 are routed to the surviving maximum458

that is connected to p2 in the MS complex. Finally, the459

geometry of the descending manifold of q3 is merged460

into the descending manifold of the surviving maximum461

that was connected to p2.462

The order of the cancellations plays an important463

role in determining the structure and geometry of the464

resulting simplified MS complex. Intuitively, given the465

aim of the simplification, the order should depend on466

the importance or size of a feature represented by a467

pair of critical points. While this importance can be468

defined in different ways, a commonly used and effective469

definition is the difference in function value between the470

pair of critical points. We iteratively apply critical point471

pair cancellation ordered by the difference in function472

value between the pair of adjacent critical points in the473

MS complex.474

3.4 Persistence diagrams and persistence curves475

An important practical consideration is the choice of the476

amount of simplification to be performed. The simplifi-477

cation threshold is defined as the maximum difference478

in function value between the canceled critical point479

pairs. This difference in function value is also referred480

to as the persistence of a critical point pair. Visual rep-481

resentations called persistence diagrams and persistence482

curves are often used to aid the choice of a threshold483

that separates noise from features of interest [13, 9]. A484

persistence diagram is a 2D scatter plot of the function485

values of the canceled critical point pairs. A persistence486

curve is a graph plot of the number of surviving critical487

points on the y-axis against an increasing simplification488

threshold on the x-axis. A dense collection of points489

very close to the diagonal in the persistence diagram490

is visually representative of a set of noisy features. A491

simplification threshold to remove such a collection of492

critical point pairs can be computed by locating the493

knee of the persistence curve, which corresponds to a494

sharp change in the slope of the curve.495

4 Methodology 496

In this section, we describe our method for the analysis 497

of 3D CT scans of material packing. The method first 498

constructs a geometric and a topological structure – a 499

segmentation of the packing into its constituent particles, 500

and a topologically accurate contact-based connectivity 501

network between the particles. The structures are con- 502

structed in two steps. First, we extract the material’s 503

boundary surface and compute its associated distance 504

field. Second, we use the shape and connectivity in- 505

formation as captured by the gradient of the distance 506

field to inform the segmentation and network extrac- 507

tion. Figure 1 presents an overview of the method while 508

comparing it with the watershed-based approach and 509

Figure 6 illustrates the individual steps of the method 510

using a synthetic 3D dataset. 511

We begin with a description of the dataset followed 512

by the individual steps of the method. 513

4.1 Dataset and preprocessing 514

We analyze a 3D CT scan of a packing of sand particles 515

coated with epoxy at the contacts. The packing has 516

a contact bound structure i.e., the cementation exists 517

only at the contacts in a skeleton of sand particles [44]. 518

The scan has a dimension of 888 × 912 × 1360 voxels 519

with a resolution of 12.5 µm per voxel. For the data to 520

fit in memory, we first downsample the scan by a factor 521

of 4 across each dimension. The downsampled image is 522

computed using a simple mean operation across 4 × 4 523

× 4 sized cubes. We then run our analysis algorithms 524

on the downsampled data of size 222 × 228 × 340. 525

Further, the epoxy bonds are not segmented separately 526

due to the weak contrast in the reconstructed values 527

of epoxy and pore air. However, this does not affect 528

the segmentation accuracy because the packing has a 529

contact bound structure and the epoxy bonds form at 530

the particle contact. 531

4.2 Boundary surface extraction 532

The material boundary surface is extracted using an 533

automatic bi-modal threshold computation followed by 534

an iterative local refinement of the corresponding iso- 535

surface. 536

We use Otsu’s method [35] to compute the thresh- 537

old for the initial boundary isosurface. Otsu’s method 538

takes as input the 3D image and essentially searches 539

for an optimal threshold that divides the image into 540

two classes - foreground and background. Optimality, 541
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Fig. 6: Method pipeline. First, compute a bounding surface based on an automatically determined bi-modal
threshold and a local active contour-based refinement. Next, compute a signed distance field from this surface and
the MS complex for this scalar field. Simplify the MS complex via iterative cancellation of pairs of adjacent critical
points in the MS complex. The difference in function value between the pair of critical points, called its persistence,
is used to determine the order of cancellation. The threshold for simplification is determined by analyzing the
persistence diagram. The segmentation is computed as the descending manifolds of the maxima in the simplified
complex. Apply geometry driven pruning to compute the connectivity network.

in this search, is defined as a minimum intra-class vari-542

ance. While the Otsu threshold-informed isosurface is a543

good starting point, attempting to pick a single scalar544

threshold that minimizes intra-class variance globally545

for the two classes may result in a surface that is locally546

non-optimal. Specifically, a global threshold restricts547

the search to isosurfaces of the function. The boundary548

surface is not necessarily modeled well by an isosurface,549

especially in regions where a locally better surface geom- 550

etry is ignored due to the restriction and assumption of 551

a single globally optimal isovalue. We therefore employ 552

a local refinement procedure using an active contour 553

model to construct a better boundary surface. Active 554

contour models apply local updates on an input surface 555

to optimize a given objective function. In particular, 556

we adapt the Chan-Vese method [8], also known as the 557
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Active Contours Without Edges (ACWE) method. The558

ACWE method, as opposed to using a gradient based559

objective function to extract a boundary surface, tries560

to minimize intra-class variance both inside and outside561

the surface within an iteration. The primary advantage562

of the ACWE method is its ability to robustly handle563

images with noisy boundaries without relying on nu-564

merical and potentially unstable gradient computations.565

We adapt the ACWE model to our setting by ignor-566

ing the smoothness and rigidity terms in the standard567

ACWE objective function to allow for sharp features in568

the boundary surface. As a result, our model effectively569

minimizes the following objective:570

F (C, c1, c2) = λ1

∫
Inside(C)

|f(x, y, z)− c1|2 dxdydz

+ λ2

∫
Outside(C)

|f(x, y, z)− c2|2 dxdydz,

where C is the surface in the current iteration, f is571

the image intensity scalar function defined at each voxel,572

c1 is the average intensity of voxels inside C, c2 is the573

average intensity of voxels outside C, λ1 is the normal-574

izing constant for initial number of points and range of575

intensity inside C, and λ2 is the normalizing constant for576

initial number of points and range of intensity outside577

C.578

Our active contour framework successfully gives us579

high quality particle boundary surfaces across packings580

of a diverse set of materials and geometries.581

4.3 Segmentation and connectivity network582

computation583

Next, we segment and compute the connectivity network584

of the individual particles in the ensemble based on the585

geometry of the extracted boundary surface. A popu-586

lar two-step approach for segmenting connected regions587

that touch each other first computes a distance trans-588

form from a bounding surface followed by a watershed589

transform [37], described in section 1.1. In watershed590

transform, the central point of the contact region be-591

tween two catchment basins is a 2-saddle of the distance592

field. The 2-saddles are therefore natural representatives593

of the regions of contact between two particles in the594

packing. Watershed-based methods are however prone595

to over-segmentation of non-convex regions. Such re-596

gions may contain multiple local maxima of the distance597

field. So, it is necessary to design region merging proto-598

cols that fix the over-segmentation errors. In our work,599

we achieve robustness and computational efficiency in600

the two-step pipeline by using a fast Chamfer distance 601

transform [27] and the topological framework of the MS 602

complex. We use the MS complex for (a) characterizing 603

and computing the catchment basins and regions of con- 604

tact, and (b) to fix over-segmentation using an elegant 605

combinatorial topological simplification procedure. 606

Initial catchment basin computation. The descend- 607

ing 3-manifolds of maxima of the distance field corre- 608

spond to the catchment basins and aid in computing the 609

segmentation. We retrieve the set of all descending mani- 610

folds of maxima from the Morse complex of the distance 611

field. The set of these descending manifolds, further 612

restricted to lie within the material boundary surface, 613

is a segmentation of the packing into its individual par- 614

ticles. This step may produce over-segmented regions 615

due to imaging noise or small variations in the distance 616

field may introduce multiple local maxima within some 617

non-convex regions. 618

Topological simplification. Next, we apply topolog- 619

ical simplification to merge such regions and fix the 620

over-segmentation. As described earlier, the topological 621

simplification proceeds through an iterative cancellation 622

procedure, canceling critical point pairs with persistence 623

below a given simplification threshold. In our method, 624

we restrict such cancellations to 2-saddle-maxima pairs. 625

Intuitively, the cancellation operation essentially merges 626

regions represented by low persistent maxima connected 627

with the higher persistence regions. Persistence of a 628

2-saddle-maxima pair, can be loosely defined as the 629

difference in function values, thus representing the dif- 630

ference between the radius of the contact (represented 631

by the distance value of the 2-saddle) and the radius of 632

the particle (represented by the distance value of the 633

maxima). High persistent pairs are therefore particles 634

where the contacts are much closer to the boundary sur- 635

face than the central points in the particles. Conversely, 636

low persistent pairs are particles where the width of 637

the contact is comparable to the width of the entire 638

particle thus implying that the particle may possibly be 639

over-segmented. 640

We select a persistence threshold for simplification 641

by identifying a knee in the persistence curve, a plot of 642

decreasing persistence values over all critical point pairs. 643

The presence of a clear knee in the curve indicates a 644

clear separation of features from noise. Following noise 645

removal via topological simplification, the quality of 646

the segmentation can be further improved based on 647

additional geometric criteria. For instance, we observed 648

over-segmentation in particles with high-width contacts 649

relative to particle size. We fix it by using the ratio of 650

the distance field values at the 2-saddle and maximum. 651

In particular, particles with the aforementioned ratio 652

greater than 0.75 were often found to be over-segmented 653
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and were thus merged with their neighbor particle, as654

defined by the 2-saddle.655

Contact identification. A 2-saddle of the distance656

field with a positive value represents a connection be-657

tween two contacting particles because the descending658

manifolds of the maxima associated with the particles659

meet at the 2-saddle. The ascending 1-manifold of the660

2-saddle is therefore a steepest ascent arc connecting the661

2-saddle to the maxima associated with the contacting662

particles. The set of all ascending manifolds of 2-saddles663

is thus a geometrically meaningful connectivity network664

between the contacting particles in the packing. How-665

ever, retrieving this entire set from the MS complex666

results in a number of spurious and clustered 2-saddles667

and multiple arcs connecting a pair of maxima. Since668

multiple contacts may exist between a pair of parti-669

cles, it is important to distinguish between the primary670

2-saddles that represent the central point within a con-671

tact region and spurious 2-saddles that are alternate672

representations of a given contact region. We achieve673

this by computing all explicit contact regions between674

two connected particles and picking the saddle with the675

highest function value from each such extracted region.676

For each pair of particles, the contact regions are677

computed by clipping the descending 2-manifold of the678

highest 2-saddle. The descending 2-manifold is clipped679

by the boundary surface i.e., all 2-cells containing ver-680

tices with distance value less than 0 are removed. The681

connected components of the remaining 2-cells repre-682

sent the contact regions. While extracting the connected683

components, we mark the highest 2-saddle within each684

component and retain its arc in the connectivity net-685

work. We remove all other spurious arcs and therefore686

extract a robust contact-based connectivity network for687

the granular ensemble packing.688

5 Implementation689

In this section, we describe implementation details of690

the proposed method and the practical experience of691

executing the pipeline shown in Figure 6. We highlight692

the unified data structure that supports efficient and693

robust processing, and the principled simplification that694

results in good quality segmentation. From a user’s695

perspective, executing the pipeline consists of three696

main steps:697

Boundary extraction. The first step processes the698

input CT image, computes and stores the boundary699

surface that separates material from the surrounding700

volume. The surface is stored as a distance field, sampled701

at the same resolution as the input CT image. The user702

provides the CT scan as input and the software runs the703

active contour optimization, automatically computing 704

the required parameters, and returns the distance field. 705

MS complex computation and simplification. The 706

second step processes the distance field to construct the 707

MS complex, computes the persistence curve, and dis- 708

plays it to the user. Guided by the curve, the user selects 709

an appropriate persistence threshold. An appropriate 710

choice is the knee in the curve as indicated in Figure 6. 711

The iterative cancellation based simplification directed 712

by a measure of importance such as difference in scalar 713

function values simplifies all gradient based manifolds 714

consistently. The persistence curve is a succinct and 715

abstract visual representations of the distribution of 716

extracted particle segments corresponding to a selected 717

simplification measure. It provides a data-driven process 718

to the user for selecting a simplification threshold. The 719

MS complex is simplified based on the selected thresh- 720

old to separate scan noise and concave protrusions from 721

potentially important features. 722

The resulting simplified MS complex is stored. All 723

ascending and descending manifolds are stored in a 724

topologically consistent fashion. Specifically, three types 725

of manifolds are computed – the 3D descending mani- 726

folds of maxima that represent the segmentation into 727

individual particles, the 2D descending manifolds of 728

2-saddles that are processed to compute the contact re- 729

gions between particles, and the 1D ascending manifolds 730

of 2-saddles that represent the connectivity network. 731

The computed manifolds are stored in a unified data 732

structure that supports fast queries by separating the 733

storage of the connectivity of the MS complex from its 734

geometry. The nodes and arcs (0-cells and 1-cells) of the 735

MS complex are stored as a graph and the geometry is 736

extracted on demand. The data structure also enables 737

flexible and efficient processing of the manifolds while 738

guaranteeing that the topological relationships between 739

the manifolds are maintained consistently. Specifically, 740

it supports global simplification of the MS complex to 741

remove noise and the local clustering of 2-saddles in the 742

connectivity network using the contact regions. 743

The algorithms for computing the MS complex are 744

amenable to parallel computation and execute on multi- 745

core CPUs and GPUs resulting in small run times [40]. 746

Note that seemingly time-intensive tasks such as com- 747

puting the persistence curve are executed efficiently in 748

our pipeline due to fast combinatorial algorithms that 749

require only the connectivity of the MS complex for 750

these steps. 751

Geometry extraction. The third step focuses on ex- 752

tracting the desired geometric and topological structures 753

from the simplified MS complex. The user can optionally 754

extract and store the segmentation, contact information, 755

and the connectivity network. The segmentation consists 756
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of the segmented volume together with associated parti-757

cle centres. The contact information consists of contact758

regions between a pair of particles and the associated759

contact points. The connectivity network connects the760

particle centers and contact points. This comprehensive761

collection of structures can then conveniently be used762

to facilitate user-desired downstream analysis.763

In addition to the intuitive parameter-free pipeline,764

the code is easy to install and execute. The core al-765

gorithms used in the pipeline, including the boundary766

surface and discrete MS complex computation are avail-767

able from existing software packages [47, 39, 29, 41]. We768

further plan to release our source code in the public769

domain for use by the community.770

6 Benchmarking and Experimental Results771

In this section, we present results and experiments to772

validate our approach and illustrate the key benefits773

of our method compared to standard watershed-based774

pipelines for the analysis of granular materials. The sec-775

tion is divided into three main parts. We first benchmark776

our method by computing physically expected statis-777

tics for a packing of mono-dispersed steel beads. After778

validating our approach on a well-studied dataset, we779

demonstrate the utility of the method for the analysis780

of complex packing structures by processing a cemented781

sand packing. We compute and visualize the segmenta-782

tion and connectivity network for the packing and high-783

light observed statistical trends. Finally, we compare784

the quality of computed results and ease of computation785

with a recent watershed-based pipeline for the analysis786

of cemented granular materials [44]. All computational787

experiments were performed on a workstation with an788

Intel Xeon E5-1660 v4 @ 3.8 GHz processor with 8789

cores, 128 GB main memory, and an Nvidia Quadro790

P2000 graphics card with 6 GB RAM. As described ear-791

lier, the MS complex is computed using a GPU parallel792

algorithm [41]793

6.1 Benchmarking: mono-dispersed steel sphere packing794

We use the tomography scan of a packing of mono-795

dispersed steel beads to benchmark our algorithm. We796

compare physically expected statistics like the average797

coordination number and diameter (in mm) in the pack-798

ing to perform the benchmarking. The original scan has799

a dimension of 681 × 681 × 1004. In order to segment800

this large volume, the analysis is carried out by splitting801

the volume into five blocks (1-201, 202-402, 403-603,802

604-804, and 805-1004 along the height) and four in-803

termediate blocks (131-271, 332-472, 533-673, 734-874804

along the height). These blocks were chosen such that 805

each particle is completely captured in at least one of 806

the blocks. The center of each particle was remapped 807

to the original volume and all duplicate entries and 808

partially split particles were removed. Table 1 presents 809

the average diameter and coordination number for both 810

methods. The average diameters (0.98 mm and 1.0 mm) 811

are consistent within the resolution (16µm) of X-ray CT. 812

Theoretically, the average coordination number of a ran- 813

dom packing of mono-dispersed spherical particles with 814

infinite friction is known to lie in the interval [4,6], as 815

calculated using Maxwell counting [4]. A deviation from 816

the perfect spherical shape increases the average coordi- 817

nation number [12]. The average coordination number 818

in our computation (6.04 and 6.08) is close to the the- 819

oretical range and within the experimentally obtained 820

range [5]. 821

Table 1: Comparing statistics for mono-dispersed steel
beads.

Diameter Coordination
(mm) number

MS Complex - High res. 0.98 6.04(681× 681× 1004)

Watershed - High res. 1.00 6.08(681× 681× 1004)

We also study the effect of data resolution by com- 822

puting the statistics for downsampled versions of the 823

data. We create a medium resolution (341 × 341 × 824

502) and a low resolution (171 × 171 × 251) version 825

by downsampling by a factor of 2 and 4, respectively. 826

Figure 7 shows the segmentation and connectivity net- 827

work for medium resolution. The average diameters were 828

found to be 0.96 mm and 0.91 mm for medium and low 829

resolution, respectively. The difference from the actual 830

diameter increases with decreasing resolution (error in 831

the measurement), namely 32 µm (medium) and 64 µm 832

(low). The average coordination numbers were 6.03 and 833

6.06 for medium and low resolution volumes. These re- 834

sults are also consistent with the watershed results at 835

the original resolution. This indicates that our method is 836

robust to downsampling for the computation of average 837

statistics. 838

6.2 Visualizations of extracted geometric and 839

topological structures 840

In this section, we demonstrate our proposed method’s 841

potential for analyzing complex packing structures by 842
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Fig. 7: The segmentation (left) and connectivity network (right) for the mono-dispersed steel bead packing.

processing a cemented sand packing with varied par-843

ticle geometries. From the computed MS complex, we844

first extract the following geometric and topological845

structures:846

– Segmentation of the packing structure into its con-847

stituent individual particles.848

– Topological network of contact-based connections849

between particles, embedded in the domain using850

geometrically meaningful arcs.851

– Geometric regions of contact between connected par-852

ticles.853

Access to these structures facilitates both visual explo-854

ration and statistical analysis of the material packing855

structure. In particular, the computed segmentation and856

connectivity network is used to generate high-quality857

visualizations of the individual particles in the packing858

(Figure 8) and their contact structure (Figure 9).859

The MS complex data structure and persistence-860

based visualizations of the extracted segments (see Fig-861

ure 11) further allow for the convenient selection and862

visualization of specific segments and contacts of in-863

terest. The selection may be directed by a variety of864

geometric and topological criteria such as the coordina-865

tion number, volume, and relative width of the particle866

compared to the contact region. Figure 8 (right) and867

Figure 9 (right) highlight visualizations of such selected868

particles and Figure 10 illustrates the visualization of a869

selected contact and its extracted properties.870

6.3 Statistical Analysis871

In addition to localized exploration and analysis, our872

framework supports robust and efficient computation873

of detailed statistical metrics to study global trends in874

the packing structure. Figure 12 presents a comparison875

between the statistics. We highlight the similarities and 876

differences between the histograms of the coordination 877

number (with and without multiplicity), volume, and 878

the orientation of contacts for individual particles in the 879

packing. We report statistics computed using watershed- 880

based segmentation computed using both manual and ac- 881

tive contour based boundary surfaces. The histogram of 882

coordination number with the inclusion of multiple con- 883

tacts is significantly different from the watershed-based 884

method. The histogram computed by excluding multiple 885

contacts show similar trends, for example the most fre- 886

quent coordination number is observed in the range of 887

4 to 6. The distribution of volume of particles is similar 888

but there is a small difference in the actual counts. Both 889

methods predict that most contacts are oriented along 890

the z-direction (direction of gravity); this observation 891

is consistent with previous studies on fabric of granu- 892

lar materials and cemented granular materials [31, 44]. 893

The differences in counts of histograms is due to over- 894

segmentation of the particles by the watershed-based 895

method (discussed in section 6.4). 896

We also present a spherical histogram representation 897

of the sand packing obtained from this analysis, see Fig- 898

ure 13. Details on creating these spherical histograms 899

are provided elsewhere [43]. Further details on the quan- 900

tification of the fabric of this cemented sand ensemble 901

is presented in the supplementary material. 902

6.4 Watershed comparisons 903

In this section, we present a detailed comparison between 904

our method and a recently proposed watershed-based 905

pipeline for the analysis of cemented granular materials 906

[43]. Using the cemented sand packing as a case study, 907

the key benefits of our method are highlighted below 908

in a comparison divided across the fundamental steps 909
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Fig. 8: Global (left) and local (right) visualization of the segmentation of the packing into its constituent individual
particles. Particles are colored by their segmentation identifiers.

Fig. 9: Global (left) and local (right) visualization of the geometric embedding of the extracted connectivity network
of the packing. In the local view (right), bead centres are represented as red spheres and contacts as blue spheres.

of boundary extraction, segmentation, and connectivity910

network extraction.911

Boundary surface extraction. The histogram of scalar912

values is often used to select a global scalar threshold913

that separates the scan into regions containing material914

and the surrounding medium. A good separating surface915

consists of a collection of surface pieces that are defined916

by different scalar thresholds within different regions917

of the scan. As a result, a boundary surface that is de-918

fined by a single threshold contains noticeable artifacts919

that range from incorrectly merged particles to highly920

distorted particle geometries.921

In comparison, our method’s active contour-based922

optimization computes an optimal boundary surface923

(Figure 14) that locally adapts to the best separating924

value, and is thus free of the assumption of a single global925

threshold. Figure 14 highlights artifacts in a boundary 926

surface that is computed using a global threshold and 927

compares it against the improved surface computed 928

using our active contour-based approach. The higher 929

quality of the boundary surface results in an improve- 930

ment in the quality of downstream analysis. 931

Segmentation. The difference in quality of the ex- 932

tracted boundary, coupled with the watershed trans- 933

form’s tendency to over-segment in the presence of noise 934

and non-convex geometry, causes a tangible quality dif- 935

ference between the segmentation results of our Morse 936

theory-based approach and watershed-based methods. 937

As discussed in Section 2, post-processing heuristics 938

such as the h-maxima transform merge over-segmented 939

regions based on a given threshold. However, a precise 940

and optimal choice of threshold for the transform is 941
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Fig. 10: Extracted region and orientation of contact between two sand particles colored in blue and brown. The
translucent gray surface represents a clip of the extracted boundary surface of the particles near the contact region.
This surface is the descending 2-manifold of the 2-saddle that defines the contact. Constituent points of the contact
region are represented as white spheres, with the arrow displaying a fitted normal vector to the contact.

Fig. 11: Persistence diagram (left) and curve (right) for the cemented sand packing. The knee in the persistence
curve (0.7) informs the choice of a noise threshold that separates features from noise. We can see how the selected
threshold removes the cluster of low-persistence noise (white region) from the remaining features (grey region) in
the persistence diagram.

elusive, and thus this merging process can potentially942

both struggle to correct over-segmentation or result in943

under-segmentation.944

Our persistence-based framework alleviates this in-945

convenience by providing an intuitive and statistically946

optimal choice of threshold for simplification. In par-947

ticular, we use the knee of the persistence curve (see948

Figure 11) to identify a precise and well-motivated choice949

of threshold. The persistence curve is a plot of the num-950

ber of segments for increasing values of simplification951

threshold. It can be computed efficiently due to the uni-952

fied data structure, which supports simple and efficient953

updates. Computing a similar curve for an h-maxima954

transform requires the repeated application of the trans-955

form for a large number of values while counting the956

segments, and still arriving at an approximation of the957

persistence curve. Figure 15 shows the watershed seg-958

mentation using a manually selected h-maxima thresh-959

old, which is identified via a visual inspection process 960

followed by an expert, and highlights the improvement 961

in segmentation achieved using the automatically com- 962

puted persistence curve-based threshold. The segmenta- 963

tion quality is better both in terms of the geometry of 964

individual particles and in terms of fewer cases of under- 965

and over-segmentation. 966

The quality of segmentation also implicitly influences 967

the accurate identification of contacts in the packing. 968

While geometric inaccuracy in a segmentation due to 969

a non-optimal boundary surface can affect the identi- 970

fied geometric position of the contacts, issues such as 971

under-segmentation and over-segmentation can result 972

in missing or spurious additional contacts. For instance, 973

true contacts may be missed due to under-segmentation, 974

and over-segmentation of a single particle leads to spu- 975

rious contacts between incorrectly identified segments. 976

Figure 16 compares the set of contacts identified by the 977
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Fig. 12: Statistical analysis of sand granular ensemble computed using the Morse theory-based and watershed-based
methods. Histogram of coordination numbers is similar when counting contacts with multiplicity, else the histograms
are similar. The distribution of volume of particles is similar but the actual counts are different.

two methods by plotting them on a manually tuned978

volume rendering of the CT scan. The volume rendering979

helps us visualize key differences in the contacts identi-980

fied by the two methods. The highlighted circles bring981

to attention particularly problematic regions, where982

either essential contacts are missed or are incorrectly983

placed or spurious additional contacts are identified by984

the watershed-based approach. Further, the large dis-985

parity in the number of identified contacts highlights986

the magnitude of difference in results between the two 987

approaches. 988

An additional benefit of our method is that the crite- 989

rion used for simplification can be suitably modified to 990

accommodate different packing structures with variation 991

in particle size and geometry. The topological simplifi- 992

cation step naturally supports alternative criteria for 993

iterative region-merging. The persistence diagram can 994

be used as an intuitive visual tool to explore the dis- 995

tribution of the packing based on the selected criteria, 996
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Fig. 13: (left) Normalized particle stereographic histogram and (right) normalized contact spherical histogram for
sand packing.

Fig. 14: High quality boundary surface extraction. A side-by-side visualization of a volume rendering of the CT
scan (left) along with the boundary surfaces extracted using the isosurface method (middle) and active contour
optimization (right). The inset highlights a region containing multiple artifacts in the isosurface boundary. The
geometry of an elongated particle is not captured correctly, it merges with other particles in the packing. The
volume rendering is generated using a manually tuned color and opacity map that delineates the individual particles.

thus providing a unified framework for the intuitive ex-997

ploration of diverse choices of criterion and associated998

thresholds.999

Connectivity network extraction. In order to rep-1000

resent the contact structure, existing methods use a1001

network of straight lines connecting particle centers and1002

contacts. However, in the case of non-convex particle1003

geometries, such a network fails to account for the ge-1004

ometry of the packing [44]. For example, arcs of the1005

network that are represented as line segments may lie1006

outside the individual particles.1007

Our method instead uses the gradient of the distance 1008

field to compute a geometry-aware connectivity network 1009

that resides within the packing structure, see Figure 9. 1010

The combination of the discrete Morse theory-based 1011

gradient and the unified persistence-based simplification 1012

allows us to efficiently compute a numerically robust 1013

connectivity network that accurately captures the global 1014

packing structure. 1015
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(a) Direct volume rendering (b) Watershed-based approach with h-
maxima threshold = 2.0

(c) Morse theory-based approach

Fig. 15: Improved segmentation. Comparison of particle segmentation obtained using the watershed and our Morse
theory-based approach. Red box: Geometry of the segments computed using the Morse complex agree better with
the original CT data thanks to the improved quality of the boundary surface. Green and Blue boxes: Multiple
cases of under segmentation in the watershed approach. In both cases, two particles are incorrectly identified as a
single particle whereas the Morse complex identifies them correctly. The volume rendering uses a manually tuned
color and opacity map to delineate individual particles.

7 Conclusions1016

In summary, we outline a robust and efficient approach1017

to compute the segmentation and connectivity network1018

of granular material packings from x-ray CT images.1019

Through the combination of active-contour optimization1020

and Morse theory, our approach functions as a unified1021

and fully-automated framework to compute, query, and1022

visualize the geometric and topological properties of1023

the packing structure. The automated nature of the1024

algorithm allows for convenient large-scale computation1025

and the persistence-based simplification approach en-1026

ables the intuitive exploration of variation in particle1027

geometries. Salient features of our method, such as the1028

locally-optimal boundary extraction, an efficient and1029

flexible framework for noise removal and geometry-aware1030

connectivity network, together ensure that the approach1031

generalizes to diverse packing structures with variation1032

in particle size, geometry, and material density.1033
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