
Computational Geometry 61 (2017) 1–23
Contents lists available at ScienceDirect

Computational Geometry: Theory and

Applications
www.elsevier.com/locate/comgeo

Approximation algorithms for Max Morse Matching ✩

Abhishek Rathod ∗, Talha Bin Masood, Vijay Natarajan

Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 April 2016
Accepted 18 October 2016
Available online 24 October 2016

Keywords:
Discrete Morse theory
Computational topology
Approximation algorithms
Homology computation

In this paper, we prove that the Max Morse Matching Problem is approximable, thus
resolving an open problem posed by Joswig and Pfetsch [1]. For D-dimensional simplicial
complexes, we obtain a (D+1)/(D2+D+1)-factor approximation ratio using a simple edge
reorientation algorithm that removes cycles. For D ≥ 5, we describe a 2/D-factor approxima-
tion algorithm for simplicial manifolds by processing the simplices in increasing order of
dimension. This algorithm leads to 1/2-factor approximation for 3-manifolds and 4/9-factor
approximation for 4-manifolds. This algorithm may also be applied to non-manifolds
resulting in a 1/(D+1)-factor approximation ratio. One application of these algorithms is
towards efficient homology computation of simplicial complexes. Experiments using a
prototype implementation on several datasets indicate that the algorithm computes near
optimal results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Discrete Morse theory is a combinatorial analogue of Morse theory that is applicable to cell complexes [2]. It has become
a popular tool in computational topology and visualization communities [3,4] and is actively studied in algebraic, geometric,
and topological combinatorics [5,6].

The idea of using discrete Morse theory to speedup homology [7], persistent homology [8] and multidimensional per-
sistence computations [9] hinges on the fact that discrete Morse theory helps reduce the problem of computing homology
groups on an input simplicial complex to computing homology groups on a collapsed cell complex. Ideally, if one were
to compute a discrete gradient vector field with minimum number of critical simplices (unmatched vertices in the Hasse
graph) or maximum number of regular simplices (matched Hasse graph vertices), then the time required for computing
homology over the collapsed cell complex would be very small. However, finding a vector field with maximum number
of gradient pairs is an NP-hard problem as observed by Lewiner [10] and Joswig et al. [1] by showing a reduction from
the collapsibility problem introduced by Eǧecioǧlu and Gonzalez in [11]. We study efficient approximations to the maximum
number of gradient pairs in a discrete gradient vector field.

Computing the homology groups has several applications, particularly in material sciences, imaging, pattern classification
and computer assisted proofs in dynamics [12]. More recently, homology and persistent homology have been appraised to
be a more widely applicable computational invariant of topological spaces, arising from practical data sets of interest [13].
An approximate Morse matching designed using the algorithms described in this paper may be used to compute homology
efficiently. One of the primary motivations for this work was that a previous study [7] involving discrete Morse theory

✩ The work is partially supported by the Department of Science and Technology, India under grant SR/S3/EECE/0086/2012.

* Corresponding author.
E-mail addresses: abhishek@jcrathod.in (A. Rathod), tbmasood@csa.iisc.ernet.in (T. Bin Masood), vijayn@csa.iisc.ernet.in (V. Natarajan).
http://dx.doi.org/10.1016/j.comgeo.2016.10.002
0925-7721/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comgeo.2016.10.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:abhishek@jcrathod.in
mailto:tbmasood@csa.iisc.ernet.in
mailto:vijayn@csa.iisc.ernet.in
http://dx.doi.org/10.1016/j.comgeo.2016.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2016.10.002&domain=pdf

2 A. Rathod et al. / Computational Geometry 61 (2017) 1–23
in homology computation reported noteworthy speedup over existing methods. Their method used a modification of the
coreduction heuristic [14] to construct discrete Morse functions. We start with a twin goal in mind — first to introduce
rigor into the study by developing algorithms with approximation bounds and then to have a practical implementation that
achieves nearly optimal solutions.

1.1. Max Morse Matching Problem

The Max Morse Matching Problem (MMMP) can be described as follows: Consider the Hasse graph HK of a simplicial
complex K whose edges are all directed from a simplex to its lower dimensional facets. Associate a matching induced
orientation to HK such that the resulting oriented graph HK is acyclic. The goal is to maximize the cardinality of matched
(regular) nodes. Equivalently, the goal is to maximize the number of gradient pairs. The approximate version of Max Morse
Matching Problem seeks an algorithm that computes a Morse matching whose cardinality is within a factor α of the optimal
solution for every instance of the problem.

1.2. Prior work

Joswig et al. [1] established the NP-completeness of Morse Matching Problem. They also posed the approximability of
Max Morse Matching as an open problem pg. 6 Sec. 4 [1]. Several followup efforts seek optimality of Morse matchings
either by restricting the problem to 2-manifolds or by applying heuristics [1,7,15–19]. Recently, Burton et al. [20] developed
an FPT algorithm for designing optimal Morse functions.

1.3. Summary of results

We describe a (D+1)/(D2+D+1)-factor approximation algorithm for Max Morse Matching Problem on D-dimensional sim-
plicial complexes. This algorithm uses maximum-cardinality bipartite matching on the Hasse graph HK to orient it. We
then use a BFS-like traversal of the oriented Hasse graph HK to classify matching edges as either forward edges if they
do not introduce cycles or backward edges if they do. We use a counting argument to prove an approximation bound that
holds for manifold as well as non-manifold complexes.

For simplicial D-manifolds, we propose two approximation algorithms. The first approximation algorithm provides a ratio
of 2/(D+1), for D ≥ 3. The ratio is improved to 2/D , for D ≥ 5, via a refinement that specifies the order in which the graph is
processed. It leads to 1/2-factor and 4/9-factor approximations for 3-manifolds and 4-manifolds, respectively. Both algorithms
process simplices of lowest dimension first followed by higher dimensions in increasing order. Every d-dimensional simplex
is first given the opportunity to match to a (d − 1)-dimensional simplex. If unsuccessful, it is then given the option of
matching to a (d + 1)-dimensional simplex. Furthermore, both algorithms employ optimal algorithms for designing gradient
fields for 0-dimensional and D-dimensional simplices (in the case of manifolds). The refinement processes subgraphs with
small vertex degree with higher priority and hence achieves a better approximation ratio.

We provide evidence of practical utility of our algorithms through an extensive series of computational experiments.

2. Background

2.1. Discrete Morse theory

Our focus in this paper is limited to simplicial complexes and hence we restrict the discussion of Forman’s Morse theory
below to simplicial complexes. Please refer to [21] for a compelling expository introduction.

Definition 1. A simplicial complex K is a finite collection of simplices that satisfies the following conditions:

1. A face of a simplex in K also belongs to K.
2. The intersection of two simplices σ1, σ2 ∈K is either empty or a face of both σ1 and σ2.

Let K be a simplicial complex, and let σ d, τ d−1 be simplices1 of K. The relation ≺ is defined as: τ ≺ σ ⇔ {τ ⊂
σ and dimτ = dimσ −1}. Alternatively, we say that τ is the facet of σ and σ is a cofacet of τ . The boundary bd(σ) and the
coboundary cbd(σ) of a simplex are defined as: bd(σ) = {τ |τ ≺ σ } and cbd(σ) = {ρ|σ ≺ ρ}. A function f :K → R is called
a discrete Morse function if it assigns higher values to cofacets, with at most one exception at each simplex. Specifically, for
a function f : K → R for every σ ∈ K, let N1(σ) = #{ρ ∈ cbd(σ)| f (ρ) ≤ f (σ)} and N2(σ) = #{τ ∈ bd(σ)| f (τ) ≥ f (σ)}.
Such a function is called a discrete Morse function if for every σ ∈K, N1(σ) +N2(σ) ≤ 1. If N1(σ) =N2(σ) = 0, then the
simplex σ is critical, else it is regular.

1 A d-dimensional simplex σ d may be denoted either as σ or σ d depending on whether we wish to emphasize its dimension.

A. Rathod et al. / Computational Geometry 61 (2017) 1–23 3
A pair of simplices
〈
αm, β(m+1)

〉
with α ≺ β and f (α) ≥ f (β) determines a gradient pair. Each simplex must occur in at

most one gradient pair of V . A discrete gradient vector field V corresponding to a discrete Morse function f is a collection of
simplicial pairs

〈
α(p), β(p+1)

〉
such that

〈
α(p), β(p+1)

〉 ∈ V if and only if f (α) ≥ f (β).

A simplicial sequence {σm
0 , τm+1

0 , σm
1 , τm+1

1 , . . . σm
q , τm+1

q , σm
q+1} consisting of distinct simplices (σi ≺ τi) ∈ V and σi+1 ≺

τi is called a gradient path of f .

2.2. The Hasse graph of a simplicial complex

The Hasse graph HK of a simplicial complex K is an undirected graph whose vertices are in one-to-one correspondence
with the simplices of the complex. To every simplex σ d

K ∈ K associate a vertex σ d
H ∈ HK . The edges in the Hasse graph

are determined by facet incidences. HK contains an edge between a vertex that represents2 simplex σ d and a vertex that
represents simplex τ d−1 if and only if τ ≺ σ .

We refer to the set of vertices in HK representing d-dimensional simplices as the d-level of the Hasse graph. The
d-interface of HK is the subgraph consisting of vertices in the d-level and the (d − 1)-level of HK together with all the
edges connecting these two levels.

The Hasse graph HK of a D-dimensional complex K has (D + 1) levels and D interfaces. To understand Morse theory
in terms of Hasse graph one needs to assign orientations to it.

Definition 2 (Oriented Hasse graph, up-edges, down-edges). If we assign orientations to all edges of Hasse graph HK , we obtain
an oriented Hasse graph denoted by HK . In graph HK , for two simplices σ d, τ d−1, an edge τ d−1 → σ d ∈ HK going from
lower dimensional simplex τ d−1 to a higher dimensional simplex σ d is called an up-edge. The edge σ d → τ d−1 ∈ HK is
called a down-edge.

If we orient HK in such a way that all edges are down-edges, then this orientation corresponds to the trivial gradient
vector field on complex K for which all simplices are critical. We call this the default orientation on HK .

Matching-based orientation. Start with the default orientation on HK . Associate a matching M to HK . If an edge
〈τ d−1, σ d〉 ∈ M, then reverse the orientation of that edge to τ d−1 → σ d ∈ HK . We require the matching induced ori-
entation to be such that the graph HK is a directed acyclic graph. Chari [22] first observed that every matching-based
orientation of HK that leaves the graph HK acyclic corresponds to a unique gradient vector field on complex K. For such
a matching-based acyclic orientation of the graph, every up-edge in the oriented Hasse graph corresponds to a gradient
pair and every unmatched vertex corresponds to a critical simplex of the gradient vector field. Not every matching-based
orientation of HK will leave HK acyclic. Fig. 1 shows a simplicial complex and a matching-based orientation of the Hasse
graph. We can now define the Max Morse Matching Problem more formally.

Definition 3 (Max Morse Matching Problem). A discrete gradient vector field that maximizes the number of gradient pairs
over the set of all discrete gradient vector fields on a simplicial complex K is known as a Maximum Morse Matching on K.
The Max Morse Matching Problem is to find such an optimal Morse Matching. In terms of the Hasse graph, a Maximum
Morse Matching may be defined as the maximum cardinality of an acyclic matching.

We now discuss a few properties of cycles and paths in a matching-based orientation of HK . Matching-based orienta-
tions have the interesting property that all cycles are restricted to a fixed interface in the oriented Hasse graph. In other
words, if a cycle were to span multiple interfaces in the Hasse graph, then it will violate the condition that the orien-
tation is matching-based. Similarly, all edges in a given path belong to a unique interface of the Hasse graph. Also, in a
matching-based orientation, source nodes and sink nodes in the d-interface are not involved in any cycles in the d-interface.

Definition 4 (Source and sink nodes). A simplex σ d is a source node for the d-interface if it has only outgoing edges to d − 1
simplices. If in addition, simplex σ d is matched to a (d + 1)-simplex, then it is a regular source node for the d-interface, else
it is a critical source node. Similarly, a simplex τ d−1 is a sink node for the d-interface if it has only incoming edges from
d-simplices. If τ d−1 is matched to a (d − 2)-simplex, then it is known as a regular sink node else it is known as a critical sink
node.

3. A (D+1)/(D2+D+1)-factor approximation algorithm for simplicial complexes

We now describe an approximation algorithm for the Max Morse Matching Problem that is applicable to simplicial
complexes. The idea is to first compute a maximum-cardinality matching, and in a subsequent step, remove any cycles that

2 From here on, for the sake of brevity, while referring to the vertex in HK representing simplex σ d , we drop the suffix H from σ d
H , i.e., instead of

referring to it as vertex σ d
H we refer to it as simplex σ d .

4 A. Rathod et al. / Computational Geometry 61 (2017) 1–23
Fig. 1. Consider a simplicial complex with five triangles (ABC, ACD, ACE, BCE, ABE). We obtain the oriented Hasse graph for a simplicial complex (left) and
its matching induced orientation (right). Two simplices are critical (hollow) and others are regular (filled).

may be introduced due to the matching induced orientation. The key steps are outlined in Algorithm 1. We begin with
notes on notations and definitions.

Notation. When we denote an up-edge as χ(α, β), we mean to say that it is an edge connecting simplex αd−1 to simplex
βd and is labeled as χ . We may write it either as χ(α, β) or χ depending on whether we want to emphasize vertices
incident on χ . The corresponding down-edge with reversed orientation is denoted as χ or χ(β, α).

Definition 5 (Leading up-edges of an up-edge). In an oriented Hasse graph HK , if we have an up-edge χ1(α1, β1) followed by
a down-edge χ2(β1, α2) followed by up-edge χ3(α2, β2), we say that χ3 is a leading up-edge of χ1.

Definition 6 (Facet-edges of a simplex). In an oriented Hasse graph HK , for a simplex σ d (where d ≥ 1), the set of oriented
edges between σ d to (d − 1)-simplices incident on σ d (along with respective orientations) are known as the facet-edges
of σ d .

Given a Hasse graph HK on complex K, Algorithm 1 begins by computing maximum-cardinality graph matching on
graph HK and then uses this matching to induce an orientation on HK . Let HK denote the oriented Hasse graph based on
graph matching and HV denote the output graph. While there exists an up-edge χ in HK , we make χ a seed-edge and use
it as a starting point for a BFS-like traversal on graph HK . This traversal is done using procedure BFSComponent(), which
returns a set of edges Cχ . The edge-component Cχ of a seed edge χ is the set of edges discovered in the BFS-like traversal
of graph HK with χ as the start edge. Each time we discover a new edge-component, we delete it from HK , and add it to
HV . We exit the while loop when all up-edges are exhausted.

If a simplex σ d is either a critical node or a regular source node, then its facet-edges are not reachable in the BFS
traversal through any of the up-edges in HK . In a final step, we include all remaining edges from HK to HV .

The procedure BFSComponent() computes the component edges by processing edges from the queue one at a time. Let
χ0(α0, β0) be the edge at the top of the queue. We add all the facet-edges of simplex β0 to the edge-component C . We now
examine the leading up-edges of χ0. If χi(αi, βi) is a leading up-edge of χ0, then we check if the addition of facet-edges
of simplex βi to C creates cycles. If it does, then we classify χi as a backward edge, reverse the orientation of χi , and add
the facet-edges of βi to C . If this addition does not introduce cycles, then we classify χi as a forward edge, and enqueue it
in the queue of up-edges. Please refer to Fig. 2. Enqueuing χi guarantees that at some stage when χi gets dequeued, we
will end up adding facet-edges of simplex βi to C . When the queue is exhausted, C contains the entire edge-component of
some seed-edge.

We first prove an acyclicity lemma on edge-components returned by procedure BFSComponents() in Algorithm 1.

Lemma 1. The graph induced by edges in an edge-component is acyclic.

A. Rathod et al. / Computational Geometry 61 (2017) 1–23 5
Algorithm 1 The frontier edges algorithm.
Input: Simplicial complex K
Output: Graph HV , an acyclic matching-based orientation of Hasse graph HK of K.
1: Construct Hasse graph HK of K.
2: Perform maximum-cardinality graph matching on HK .
3: Let HK denote the matching induced orientation of HK and E(HK) its edge set.
4: Initialize the edge set of HV , E(HV) ← ∅.
5: while ∃χ ∈ E(HK) such that χ is an up-edge do
6: Cχ ← BFSComponent(HK, χ)

7: E(HK) ← E(HK) \ Cχ

8: E(HV) ← E(HV) ∪ Cχ

9: end while
10: E(HV) ← E(HV) ∪ E(HK)

11: procedure BFSCOMPONENT(HK, χ)
12: C ← ∅
13: Initialize the queue Q ← ∅
14: enqueue(Q, χ)

15: while Q is non-empty do
16: χ0(α0, β0) ← dequeue(Q)

17: C ← C ∪ facetEdges(β0)

18: for every leading up-edge χi(αi , βi) of χ0 do
19: if the graph induced by edges in (C ∪ facetEdges(βi)) has cycles then
20: Reverse orientation of χi in graph HK
21: C ← C ∪ facetEdges(βi)

22: else
23: enqueue(Q, χi)
24: end if
25: end for
26: end while
27: return C
28: end procedure

Fig. 2. Two cases in BFSComponent(). Left: A forward edge χ is identified. The edge χ along with the down-edges incident on β are added to the
edge-component. Right: A backward edge χ is identified. The edge χ̄ along with the down-edges incident on β are added to the edge-component.

Proof. Consider the graph induced by edges in edge-component C belonging to the d-interface. We know that an up-edge,
say χ j is classified as a forward edge if and only if the inclusion of χ j does not create a cycle with up-edges that were
included prior to χ j in edge-component C . Hence, we can be sure that inclusion of set of all forward edges does not create
cycles. Moreover, every time a backward edge, say χi(αi, βi) is encountered, we include the inverse orientation of χi in C ,
which creates a sink node at αi and source node at βi for the d-interface of the Hasse graph. Also, all paths emanating from
(d − 1)-simplices that were visited in a previous edge-component go to sinks. Furthermore, every down-edge in C is either
(a.) incident on a sink belonging to C , or (b.) incident on a (d − 1)-simplex that is incident on a forward edge belonging to
C , or (c.) incident on a (d − 1)-simplex that was visited in a previous edge-component. In either case, it is easy to see that
all flow terminates at sinks. Hence, the graph induced by edges in a particular edge-component is acyclic. �
Lemma 2. The output graph HV is acyclic.

Proof. We prove this claim via induction over sequential addition of edge-components.
Base Case: To begin with, the output graph HV is the empty graph. From Lemma 1, we know that the graph induced
by edges in an edge-component is acyclic. So, HV remains acyclic following the addition of the first edge-component C1
to HV .
Inductive Hypothesis: Suppose that following the addition of edges belonging to ith edge-component Ci , HV remains
acyclic.
Now, we need to prove that following the addition of edges belonging to Ci+1, HV remains acyclic. To begin with, using
Lemma 1, we note that the graph induced by Ci+1 is acyclic. So, if there does exist a cycle in HV following the addition of
Ci+1, then a forward up-edge of this cycle must belong to Ci+1, and a forward up-edge must belong to an edge-component
C jk , where jk < (i +1). In particular, this means that there exists a down-edge belonging to a component C jk that is incident
on simplex α1 such that a forward edge χ1(α1, β1) ∈ Ci+1. But, if α1 was reachable while traversing C jk , then χ1(α1, β1)

would have been classified as a forward edge in C jk , i.e., χ1(α1, β1) ∈ C jk – a contradiction. Hence, such cycles do not exist.
Finally, in line 10 of Algorithm 1, after having added all edge-components, we add all the facet-edges of d-simplices that are

6 A. Rathod et al. / Computational Geometry 61 (2017) 1–23
either unmatched or facet-edges of d-simplices that are matched to one of their cofacets. In such cases, they act as source
nodes within d-interfaces and do not introduce cycles because all cycles are restricted to the d-interface. �
Lemma 3. The output graph HV is a matching-based acyclic orientation of undirected Hasse graph of the complex HK.

Proof. We first prove that HV is an orientation of HK , i.e., for every undirected edge in HK there is a corresponding
directed edge in HV . To prove this, we will show that for every simplex βd , all undirected edges from β to its facets in HK
have a corresponding oriented edge in HV .
Case 1: Suppose that β is matched to one of its facets in matching induced oriented graph HK . Then, this up-edge incident
on β was classified either as a forward edge or as a backward edge. In either case, all its facet-edges are inserted in HV in
procedure BFSComponent().
Case 2: Now suppose that β is either unmatched or it is matched to one of its cofacets. Then, none of its facet-edges can
be reached through a graph traversal that starts with some up-edge in HK . Therefore, these facet-edges are not a part of
any of the edge-components, and they are all down-edges. However, in line 10 of Algorithm 1, all these remainder edges are
included in HV .
Since the above two cases hold true for every simplex σ d with d ≥ 1, this proves that HV is an orientation of graph
HK . The orientation of HV is matching-based since the up-edges that are included are subset of edges coming from
maximum-cardinality bipartite matching. In Lemma 2, we have already proved that graph HV is acyclic. Hence, the output
graph HV is a matching-based acyclic orientation of undirected Hasse graph of the complex HK . �
Definition 7 (Classified edges, frontier edges). An edge marked within the BFSComponent() as forward or backward is called
a classified edge. A leading up-edge that is not yet classified is called a frontier edge.

We establish the approximation ratio using a counting argument that works specifically for simplicial complexes. We
refer to this argument as the frontier edges argument. Suppose we are processing an edge-component that belongs to
the d-interface of the Hasse graph for some d ≤ D . Let the iterator variable i count the number of up-edges in the edge-
component that have so far been classified as either forward or backward. If at the end of the ith iteration, there are |Fi|
forward edges, |Bi| backward edges and |Zi | frontier edges, then our approximation ratio is |Fi |/(|Fi |+|Bi |+|Zi |). In other
words, we assume the worst case scenario where all the frontier edges are possibly backward. In every iteration of the BFS,
we classify one of the frontier edges as a forward edge or a backward edge and then update the ratio until we exhaust
the entire edge-component. In the (i + 1)th iteration, if a frontier edge is classified as a forward edge, then the number of
forward edges will be |Fi+1| = (|Fi | + 1) and the number of frontier edges will be |Zi+1| = (|Zi | + d − 1). If a frontier edge
is classified as a backward edge, then the number of backward edges will be |Bi+1| = (|Bi | + 1) and the number of frontier
edges will be |Zi+1| = (|Zi | − 1).

Lemma 4. The number of forward edges in an edge-component belonging to the d-interface of the Hasse graph is at least (d+1)/(d2+d+1)

fraction of the total number of up-edges in the edge-component.

Proof. We will use induction to prove our claim.
Base Case: The seed edge χ0 of the edge-component is naturally a forward edge. We note that any cycle in the Hasse graph
of a simplicial complex has minimum length 6 and involves at least 3 up-edges. Since this does not hold for general, regular
cell complexes, simplicial input is crucial for the proof to work. Cycles do not appear until after two iterations. These two
iterations constitute the base case. Therefore, |F1| = 1, |B1| = 0 and |Z1| = 0. Also, the leading up-edges of χ0 are also
forward edges. If χ0 has no leading up-edges, then the edge-component is exhausted and |F1 |/(|F1|+|B1|) = 1. If χ0 has K
leading up-edges, each such edge has, in turn, at most jk leading up-edges, then the total number of forward edges will be

|F2| = 1 + K , |B2| = 0 and |Z2| =
K∑

k=1
jk . It is easy to check that the worst case for ratio |F2 |/(|F2|+|B2|+|Z2|) occurs when

K = d and jk = d for each k. This gives us the worst case ratio for the quantity |F2 |/(|F2|+|B2|+|Z2|) to be (d+1)/(d2+d+1). Please
refer to Fig. 3.
Induction Hypothesis: After i iterations of BFS, the ratio |Fi |/(|Fi |+|Bi |+|Zi |) ≥ (d+1)/(d2+d+1).
Induction Step: For the (i + 1)th iteration, suppose one of the frontier edges is classified as a forward edge. Then, |Fi+1| =
(|Fi | + 1) and |Zi+1| ≤ (|Zi | + d − 1). Note that (|Zi | + d − 1) is the worst case estimate for |Zi+1| assuming that the
newly included forward edge has d leading up-edges. Therefore, the numerator of the ratio |Fi |/(|Fi |+|Bi |+|Zi |) increases by
1 whereas the denominator increases by d. Also, we have 1/d > (d+1)/(d2+d+1). Using the elementary fact that if A

B ≥ E
F and

C
D ≥ E

F , then (A+C)
(B+D)

≥ E
F for non-negative values of A, B, C, D, E and F , we get:

|Fi+1|
(|Fi+1| + |Bi+1| + |Zi+1|) ≥ |Fi| + 1

(|Fi| + |Bi| + |Zi|) + d

≥ (d + 1)

2
(d + d + 1)

A. Rathod et al. / Computational Geometry 61 (2017) 1–23 7
Fig. 3. The frontier edges argument. Top: The base case with d + 1 forward edges, d2 frontier edges and no backward edges. The ratio of forward edges and
total number of up-edges is d+1

d2+d+1
. Middle: When one of the frontier edges is classified as backward, the ratio remains the same. Bottom: When one of

the frontier edges is classified as a forward edge, the ratio improves to d+2
d2+2d+1

.

On the other hand, if a frontier edge is classified as a backward edge, then |Bi+1| = (|Bi | + 1) and |Zi+1| = (|Zi | −
1). So, the numerator and the denominator of the ratio |Fi+1|/(|Fi+1|+|Bi+1|+|Zi+1|) remain unchanged, which gives us
|Fi+1|/(|Fi+1|+|Bi+1|+|Zi+1|) = |Fi |/(|Fi |+|Bi |+|Zi |). In both cases, the bound holds after (i + 1) iterations. �

Since every edge-component that belongs to a d-interface achieves a ratio of at least (d+1)/(d2+d+1) edges, if we sum
over all the edge-components, we get the ratio (d+1)/(d2+d+1) for that d-interface. In other words, we preserve at least
(d+1)/(d2+d+1) of the total number of matchings at every d-interface. The ratio (d+1)/(d2+d+1) becomes worse with increas-
ing d. So, the worst case ratio is (D+1)/(D2+D+1) where D is the dimension of the complex. Therefore, we get the following
result on the approximation ratio.

Theorem 5. Algorithm 1 computes a (D+1)/(D2+D+1)-factor approximation for Max Morse Matching Problem on simplicial complexes
of dimension D.

Proof. Note that for a matching-based orientation, the number of regular simplices is equal to twice the cardinality of the
matching. Let |M| denote the cardinality of the maximum matching. Then, 2|M| is an upper bound on the Max Morse
Matching, i.e., optimal number of regular simplices ≤ 2|M|. Since we preserve at least (D+1)/(D2+D+1) of these matchings,
the number of regular simplices we obtain is at least 2 (D+1)

(D2+D+1)
|M| ≥ (D+1)

(D2+D+1)
O P T . Therefore, Algorithm 1 provides a

D+1
(D2+D+1)

-factor approximation for the Max Morse Matching Problem on simplicial complexes. �
Remark 1. It is worth noting that every time we select an up-edge χ in the while loop from lines 5–9 of Algorithm 1, if
we were to reverse the orientations of all leading up-edges of χ , we obtain a trivial 1/(D+1)-factor algorithm. This naïve
algorithm is described in more detail in Section 5.1.

3.1. A 5/11-factor approximation for 2-dimensional simplicial complexes using frontier edges algorithm

In this section, we observe that we can further tighten our analysis of Algorithm 1 by restricting the problem to
2-dimensional simplicial complexes. We exploit the geometry of 2-complexes as proved in Lemma 6 in order to establish
an improved ratio in the base case.

Lemma 6. If α is a forward edge and β1 is a leading forward edge of edge α and if γ1 and γ2 are leading up-edges of β1 , then only one
of the two edges γ1 and γ2 can possibly be a backward edge that creates a cycle with edge α.

Proof. Without loss of generality, in this proof, we will use concrete labeling of simplices. We make an elementary geo-
metric observation to prove this claim. Suppose α is a forward edge between a 1-simplex, say AB matched to a 2-simplex
ABC. So, α can alternatively be denoted as edge AB–ABC. Now, suppose 1-simplex BC is matched to another 2-simplex BCD
constituting forward edge β1, then of the two 1-simplices BD and CD, BD can possibly match a 2-simplex, say BDA, which
effectively makes edge BD–BDA (say γ1) a backward edge. However it is impossible to have a forward edge incident on

8 A. Rathod et al. / Computational Geometry 61 (2017) 1–23
Fig. 4. An example illustrating Algorithm 2. Left: The input Hasse graph. Middle: The d-simplices matched during execution of the algorithm on the
d-interface are deleted from the (d + 1)-interface. Right: The final matching is obtained by combining matchings from all interfaces.

1-simplex CD (say γ2) that is also simultaneously incident on 1-simplex AB since any 2-simplex has at most three vertices.
Hence proved. �
Lemma 7. The number of forward edges is at least 5/11 fraction of the total number of up-edges in the edge-component.

Proof. Once again, we will use induction to prove our claim.
Base Case: In the case of 2-manifolds, we can count up to three levels of BFS for the base case, which in turn gives us an
improvement in ratio. The seed edge α of the edge-component is clearly a forward edge. We note that any cycle in the
Hasse graph of a simplicial complex has minimum length 6. Therefore, |F1| = 1, |B1| = 0 and |Z1| = 0. Also, the leading
up-edges of α (if any) are also forward edges. If α has no leading up-edges, then the edge-component is exhausted and
|F1|/(|F1|+|B1|) = 1. If α has one leading up-edge β1, then |F2| = 2, |B2| = 0 and |Z2| = 2. Therefore, |F2|/(|F2|+|B2|+|Z2|) = 1/2.
If α has two leading up-edges β1 and β2, then |F2| = 3, |B2| = 0 and |Z2| = 4. Therefore, |F2|/(|F2|+|B2|+|Z2|) = 3/7. By
Lemma 6, both leading up-edges of β1, γ1 and γ2, cannot be backward. So, suppose one of them (say γ1) is backward and
γ2 is forward. Then, |F3| = 4, |B3| = 1 and |Z3| = 4. Therefore, |F3|/(|F3|+|B3|+|Z3|) = 4/9. Similarly, we must also consider
the leading up-edges of β2, of which at most one of them can be backward. The worst case occurs for the configuration
when exactly one leading up-edge each of β1 and β2 are backward. This configuration gives |F3| = 5, |B3| = 2 and |Z3| = 4.
Hence, |F3|/(|F3|+|B3|+|Z3|) = 5/11.
Induction Hypothesis: Following i iterations of BFS, the ratio |Fi |/(|Fi |+|Bi |+|Zi |) ≥ 5/11.
Induction Step: For the (i + 1)th iteration, suppose one of the frontier edges is classified as a forward edge. Then, |Fi+1| =
(|Fi | +1) and |Zi+1| = (|Zi | +1). Therefore, the numerator of the ratio |Fi |/(|Fi |+|Bi |+|Zi |) increases by 1 whereas the denomi-
nator increases by 2. However, since 1/2 > 5/11, we have |Fi+1|/(|Fi+1|+|Bi+1|+|Zi+1|) = (5+1)/(11+1) > 5/11. On the other hand, if a
frontier edge is classified as a backward edge, then |Bi+1| = (|Bi | +1) and |Zi+1| = (|Zi| −1). So, the numerator and the de-
nominator of ratio |Fi+1|/(|Fi+1|+|Bi+1|+|Zi+1|) remain unchanged, which gives us |Fi+1 |/(|Fi+1|+|Bi+1|+|Zi+1|) = |Fi |/(|Fi |+|Bi |+|Zi |).
When all the up-edges of the edge-component are exhausted, we don’t have anymore frontier edges and the ratio for the
edge-component after processing |F | forward edges and |B| backward edges will be |F |/(|F |+|B|), and by our inductive
argument the ratio will be at least 5/11. �

Once again, since every edge-component achieves a ratio of at least 5/11 edges, if we sum over all the edge-components,
we get the following theorem as an immediate outcome of the lemma above.

Theorem 8. Algorithm 1 is a 5/11-factor approximation algorithm for Max Morse Matching Problem when restricted to 2-dimensional
simplicial complexes.

4. Approximation algorithms for simplicial manifolds

4.1. A 2/(D+1)-factor approximation algorithm for simplicial manifolds

We will restrict our attention to manifolds without boundary. The key idea in Algorithm 2 is that the matching is
constructed within one d-interface at a time, starting with the lowest interface and ending with the highest one. For
manifolds, this is advantageous because it allows us to count matched/critical simplices differently. In particular, every
d-simplex (where 1 ≤ d ≤ D − 1) is given two chances to get matched. Please refer to Fig. 4. We first try to match a
d-simplex, say σ d , while constructing the Morse matching for the d-interface. If σ d remains unmatched for the d-interface,
then we try to match it for the (d + 1)-interface. The trick of giving a second chance to critical simplices works fine for
all dimensions except for D-dimensional critical simplices. Fortunately, for manifolds, we can easily design a vector field
with only one critical simplex for dimension D . Since non-manifold-complexes may have unbounded number of critical
D-simplices the analysis becomes non-trivial. For Algorithm 2, one may still derive approximation bounds for non-manifold
complexes by using a line of reasoning analogous to one used in Section 4.2.1.

Algorithm 2 exploits special structures at the lowest and highest interface. For instance, for any D-dimensional manifold,
there are well known algorithms in literature [1,18,20] for designing optimal gradient vector field for the 1-interface and
the D-interface. See Appendix A of [20]. As noted in [20], we can associate a special graph structure to the D-interface.

A. Rathod et al. / Computational Geometry 61 (2017) 1–23 9
Algorithm 2 The interface algorithm.
Input: Simplicial complex K
Output: Graph HV , an acyclic matching-based orientation of Hasse graph HK of K.
1: � Notation: [Cd−1

d denotes the critical (d − 1)-simplices for d-interface. Rd is the set of all regular simplices for d-interface and Md is the set of gradient pairs
for d-interface. E(HV) denotes the edge set of HV .]

2: Construct Hasse graph HK of K.
3: E(HV) is initialized to default down-edge orientation on all edges.
4: for d = 1 to D do
5: Gd ← extractdInterface(HK, d)

6: if d = 1 then Apply 1ComplexOpt(G1)

7: else if d = D then Apply manifoldOpt(GD)

8: else Apply intermediateApx(Gd, d)

9: end if
10: end for

11: procedure DELETEANDREORIENT(Cd−1
d , Rd, Md)

12: Reorient edges of HV based on matchings in edge set Md for the d-interface)

13: Delete nodes
{
Cd−1

d ,Rd

}
from HK

14: end procedure

15: procedure 1COMPLEXOPT(W)
16: Apply the optimal algorithm on W . (See DFSoptimal() in Appendix A).
17: deleteAndReorient(C0

1 , R1, M1)
18: end procedure

19: procedure MANIFOLDOPT(W)
20: Apply the optimal algorithm on the dual graph. (See DFSoptimal() in Appendix A).
21: Reorient edges of HV based on matchings in edge set MD for the D-interface.
22: end procedure

23: procedure INTERMEDIATEAPX(W, d)
24: Apply Algorithm 1 described in Section 3 on graph W .
25: For every unmatched simplex τ d−1 such that all its cofacets σ d

1 . . . σ d
K are also unmatched, choose one of the simplices σ d

i , i ∈ [1, K] and introduce the matching
〈τ ,σi〉.

26: deleteAndReorient(Cd−1
d , Rd, Md)

27: end procedure

Definition 8 (Dual graph). The dual graph of a simplicial D-dimensional manifold K is the graph whose vertices represent
the D-simplices of K and whose edges join two D-simplices with a common (D − 1)-facet.

For the sake of completeness, we describe the optimal algorithms for 1-interface and the D-interface in Appendix A.
Like in Algorithm 1, we first obtain the Hasse graph of complex K. Subsequently, we extract the d-interface of the Hasse

graph. For the d-interface, we design a Morse matching and reorient the output graph HV based on it. We then delete all
the regular simplices of the d-interface and the critical (d − 1)-simplices. This updated Hasse graph is available for the next
iteration when the (d + 1)-interface is extracted and so on. For the 1-interface and the D-interface, the optimal algorithms
are applied to design the Morse matchings. For d-interfaces, where 1 < d < D , procedure intermediateApx() of Algorithm 2
is applied to design the Morse matchings.

We now describe procedure intermediateApx() for designing gradient vector field on the d-interface Gd . Algorithm 1 is
essentially a maximum-matching followed by BFS-style cycle removal and hence can be performed on any bipartite graph.
In particular, we apply it on graph Gd for 1 < d < D . After cycle removal (from Algorithm 1) we may have a situation where
we have an unmatched simplex τ such that all its cofacets are also unmatched. In that case, we match τ with one of its
cofacets. We perform this operation for all unmatched (d − 1)-simplices whose cofacets are also unmatched. This completes
Morse matching for the d-interface. In procedure deleteAndReorient(), if σ d is incident on simplex τ d−1 and if τ is regular
at the (d −1)-interface, then we are justified in deleting it while processing the d-interface since τ is a regular sink node for
d-interface. The deletion of critical nodes does not affect the behavior of Algorithm 2 per se. We delete them here because
the procedure intermediateApx() is used as a subroutine in Algorithm 3 where this deletion is crucial.

Lemma 9. The orientation of Gd as computed by Algorithm 2 is acyclic.

Proof. Algorithm 1 provides an acyclic matching-based orientation of d-interface Gd . So, step 1 of intermediateApx() does
not introduce any cycles. Now consider an unmatched simplex τ d−1 such that all its cofacets σ d

1 . . . σ d
K are also unmatched.

For a directed acyclic graph there is an ordering relation α > β if there is a directed path from vertex α to vertex β . Note
that there is no ordering relation among σ d

1 . . . σ d
K since they are all critical. Introduction of the matching 〈τ ,σi〉 introduces

the ordering relations of the type σ j > σi for all j ∈ [1, K] and j �= i. Therefore, matching introduced by step 2 does not
introduce any cycles. Hence, the orientation of Gd as computed by Algorithm 2 is acyclic. �
Lemma 10. The orientation of the output graph HV is acyclic.

10 A. Rathod et al. / Computational Geometry 61 (2017) 1–23
Proof. From Lemma 9, we conclude that the orientation for every d-interface Gd , where 1 < d < D , is acyclic. Further,
optimal acyclic matchings are computed for 1-interface and D-interface, respectively. Combining these two facts with the
observation that every directed path is restricted to a unique d-interface, we conclude that the orientation of output graph
HV is acyclic. �

Now we introduce an idea that will help us prove approximation bounds for Algorithm 2. For the d-interface Gd , let
τ d−1 be a critical simplex, and let the set of cofacets of τ that are regular be {β1, β2, . . . , βK }. From line 25 of procedure
intermediateApx(), we know that this set is non-empty. Let βi where i ∈ [1 . . . K] be a cofacet of τ with minimum index
after performing a topological sort on the d-interface.3 Now, let αi be such that αi ≺ βi and 〈αi, βi〉 is a gradient pair.
Then, we can associate a canonical triplet 〈〈αi, βi〉 , τ 〉 to critical simplex τ d−1. Note that such a unique canonical triplet is
associated to every critical (d − 1)-simplex.

Lemma 11. For 1 < d < D, Algorithm 2 computes a 2/(d+2)-factor approximation to the Max Morse Matching restricted to the
d-interface of the Hasse graph of a D-dimensional manifold.

Proof. Let
〈
αd−1

i , βd
i

〉
be a gradient pair. βd

i has (d + 1) facets, of which at least one facet, namely αi , is regular. Therefore,
the gradient pair 〈αi, βi〉 appears in at most d canonical triplets. We group 〈αi, βi〉 with all the critical (d −1)-simplices that
contain

〈
αd−1

i , βd
i

〉
in their canonical triplets. Each critical (d − 1)-simplex appears in a unique group. Each group contains

exactly two regular simplices and at most d-critical simplices. So, for every group, we have the following ratio:

#matched simplices

#total simplices
≥ 2

(d + 2)

Hence, we obtain the approximation ratio of 2/(d+2) for the d-interface. �
The minimum of the ratio 2/(d+2) over all d, where 1 < d < D , is 2/(D+1). The 1-interface contributes to a single critical

simplex when the optimal algorithm is employed. See Appendix A.
Finally, we consider the D-interface in the lemma below.

Lemma 12. After constructing Morse matching at the D-interface, the following ratio holds true:

#matched simplices

#total simplices
≥ 4

D + 5

Proof. Now consider the dual graph structure of the D-interface. The vertex degree of the dual graph is bounded by D + 1.
Let N be the total number of vertices in the dual graph. So, the total number of edges in the dual graph is smaller than
(D+1)N

2 . Applying the optimal algorithm in Appendix A ensures that we have only one critical simplex in the dual graph.
The following ratio holds true:

#matched simplices

#total simplices
≥ 2(N − 1)

(D+1
2 + 1)N

= 2(N − 1)

(D+1
2 + 2)N − N

We have N ≥ D + 2 for a D-manifold without boundary because all D + 1 D-simplices adjacent to a given D-simplex are
distinct from each other. Further, (D + 2) ≥ (D+1

2 + 2) for D ≥ 1. So, N ≥ (D+1
2 + 2) for D ≥ 1. Hence, the above expression

can be rewritten as

#matched simplices

#total simplices
≥ 2(N − 1)

(D+1
2 + 2)N − (D+1

2 + 2)
= 2(N − 1)

(D+1
2 + 2)(N − 1)

= 4

D + 5
�

Note that 4/(D+5) ≥ 2/(D+1) for all D ≥ 3. So, the worst ratio over all d-interfaces, where 1 ≤ d ≤ D , is 2
(D+1)

. Since the
optimal number of regular simplices is bounded by the total number of simplices, we get the following theorem.

Theorem 13. For D ≥ 3, Algorithm 2 provides a 2/(D+1)-factor approximation for the Max Morse Matching problem for manifolds
without boundary.

We would like to make two remarks here regarding the approximation factor.
Firstly, the ratio is not affected by line 24 (first step) of procedure intermediateApx(). In particular, maximum-cardinality

bipartite matching is not required to obtain the approximation ratio. The approximation ratio depends entirely on line 25

3 We do not actually perform topological sort on the d-interface, but need it for making an argument.

A. Rathod et al. / Computational Geometry 61 (2017) 1–23 11
(second step) of intermediateApx(). Line 25 enables us to use the notion of canonical triplets to obtain the approximation
ratio. We include a matching-based preprocessing step prior to applying the second step because, in practice, doing so gives
significantly better results.

Secondly, the approximation ratio is over the total number of simplices. In that sense, Algorithm 2 and its analysis helps
further our understanding of combinatorial construction of manifolds. In other words, irrespective of the complex size, the
homology or the presence of non-collapsible elements, we can always collapse at least 2/(D+1) fraction of simplices in that
manifold!

4.2. A 2/D-factor approximation algorithm for simplicial manifolds

Once again, we restrict our attention to simplicial manifolds without boundary. We build on Algorithm 2 by exploiting
a finer substructure within each interface to obtain a further improvement in ratio for simplicial manifolds. We begin with
some definitions.

Definition 9 (Facet degree, min-facet simplex of the d-interface). The number of facets incident on a simplex in the Hasse graph
is defined as its facet degree. In particular, for the d-interface, consider the subset of d-simplices S with at least one facet.
We say that a d-simplex is a min-facet simplex of the d-interface if over all simplices in S it has the minimum number of
facets.

Note that in the course of Algorithm 3, the Hasse graph is modified in the sense that some simplices are deleted from
the Hasse graph. All d-simplices have facet degree (d + 1) in the original Hasse graph. Hence, the definition of facet degree
is more pertinent to d-simplices in the modified Hasse graph.

Definition 10 (Min-facet component of the d-interface). A min-facet component is a subgraph of the d-interface that is a maximal
connected graph induced by a set of min-facet simplices of the d-interface.

Like in Algorithm 2, we process the Hasse graph one d-interface at a time starting with the 1-interface and terminating
with the D-interface. Also, like in Algorithm 2, we use optimal algorithms to process the 1-interface and the D-interface
of the Hasse graph. Only the intermediate interfaces are processed differently. The procedure for handling intermediate
interfaces is outlined in Algorithm 3.

Algorithm 3 The Min-facet component algorithm.

1: procedure INTERAPXMINFACET(Gd)
2: while sizeOfMinFacet(Gd) > 0 do
3: FC ← extractMinFacetComponent(Gd)

4: Apply intermediateApx(FC , d) from Algorithm 2
5: end while
6: end procedure

By design, procedure intermediateApx() from Algorithm 2 need not process the entire d-interface Gd at one go. It may
take any subgraph of the d-interface as its input. The key idea is to iteratively compute Morse matching by executing
intermediateApx() on a min-facet component and after designing a vector field on this component, we subsequently delete
it from the d-interface Gd . As a consequence, Gd grows increasingly sparse, and when the entire d-interface has no edges
left, the while loop terminates. Fig. 5 illustrates sample executions of the Algorithm 3.

Lemma 14. If the d-interface of the Hasse graph is connected, then the (d − 1)-interface is connected.

Proof. Suppose the d-interface of the Hasse graph is connected. If any two arbitrary (d − 2)-simplices γs and γd can be
shown to be connected, then the (d − 1)-interface is connected. To begin with let α0 be any (d − 1)-simplex with γs as
its facet and αk be any (d − 1)-simplex with γd as its facet. If α0 = αk , there is nothing to prove. So, for the remainder
of the proof we shall assume that α0 �= αk . Since the d-interface of the Hasse graph is connected, there exists a simple
path lying entirely in the d-interface of the Hasse graph connecting any two (d − 1)-simplices. In other words, there exists
a simple path {α0, β1, α1 . . . , α(k−1), βk, αk} connecting α0 and αk where all βi, i ∈ [1, k] are d-simplices and all αi, i ∈
[0, k] are (d − 1)-simplices. Now, since every d-simplex βi, i ∈ [1, k] is common to two (d − 1)-simplices α(i−1) and αi
belonging to the simple path connecting α0 and αk , we know that α(i−1) and αi will share a facet, which we denote by
γ

(d−2)
i . In other words, we construct a new simplicial sequence S = {α0, γ1, α1 . . . , α(k−1), γk, αk} from the simple path

{α0, β1, α1 . . . , α(k−1), βk, αk}, where γi = α(i−1) ∩ αi . However, note that in this case, γi may possibly be equal to γ j for
some i �= j. See Fig. 6 for an example. Without loss of generality, assume γs �= γ1 and γd �= γk . We prove connectivity of
γs and γd by induction. For the base case, we note that γs is connected to γ1 since γ1 and γs are facets of simplex α0.
For the induction step, suppose γs is connected to γi . Now, consider the next two elements in sequence S , namely αi and

12 A. Rathod et al. / Computational Geometry 61 (2017) 1–23
Fig. 5. Algorithm 3 processes the min-facet component in the d-interface (bold edges). Regular simplices are denoted by filled vertices. Critical simplices and
unprocessed simplices are denoted by hollow vertices. Left: Deletion of (d − 1)-simplices of a min-facet component disconnects the graph. Right: Deletion
of (d − 1)-simplices of the new min-facet component keeps the graph connected. This process continues until none of the d-simplices have any facets left.

Fig. 6. In this figure, we wish to establish the connectivity of γs and γd in the 1-interface. Let α0 and αk be 1-simplices containing γs and γd , respectively.
It is known that the 2-interface is connected. So, we can find the gradient sequence α0β1α1 . . . β8αk . If we let γi = αi−1 ∩ αi , then we can extract a new
sequence α0γ1α1 . . . γ8αk . Finally, as explained in Lemma 14, this sequence can be used to obtain subsequence γsα0γ1α3γ2α6γ3αkγd , which establishes
connectivity between γs and γd .

γ(i+1) . If γi = γ(i+1) , then αi makes no contribution towards finding a path connecting γs and γd and hence we ignore it.
Else if γi �= γ(i+1) , then both γi and γ(i+1) are facets of αi and hence γi is connected to γ(i+1) in the (d − 1) interface. By
transitivity, γs is connected to γ(i+1) , which completes the induction step. Finally, both γk and γd are facets of αk . Hence,
γk is connected to γd . By transitivity γs is connected to γd . This proves that there exists a subgraph of the (d − 1)-interface
that connects any two arbitrary (d − 2)-simplices γs and γd . Hence proved. �
Lemma 15. For a connected D-manifold without boundary, all d-interfaces are connected.

Proof. Let K be the number of connected components of the D-interface. Then, βD = K . Since a connected manifold without
boundary has βD = 1, we conclude that the D-interface is connected. Combining this fact with Lemma 14 implies that all
d-interfaces are connected. �

A. Rathod et al. / Computational Geometry 61 (2017) 1–23 13
Fig. 7. Unlike in the case of manifolds without boundary, in this example we have a complex whose 2-interface is disconnected to begin with. After
designing vector field for the 1-interface, suppose we delete all the matched 1-simplices from the Hasse graph. Then, there exists a connected component
in the 2-interface for which all 2-simplices of that connected component has three facets. (In this case, this connected component comprises of a single
simplex with all three solid edges.)

Lemma 16. Following the design of gradient vector field for the (d − 1)-interface, if the deletion of regular sinks of d-interface graph
disconnects the d-interface, then every connected component has at least one simplex with facet degree smaller than d + 1.

Proof. From Lemma 15 we know that the d-interface is a single connected component to begin with. Suppose that the
regular sinks of d-interface graph are deleted in some sequence. Suppose that γ d−1 is the first simplex whose deletion
disconnects the d-interface graph. Then, every connected component (in the traditional graph theory sense) has at least one
d-simplex, which is incident on γ d−1. Hence, upon deletion of γ d−1, every connected component will have at least one
simplex with facet degree smaller than (d + 1). The same argument can be continued for subsequent deletions and resulting
disconnections. �

To see that Lemma 15 is essential for Lemma 16 to work, we see an example in Fig. 7 where lack of connectivity in the
d-interface leads to components (in the d-interface) with minimum facet degree equal to (d + 1).

Lemma 17. For a d-interface, every min-facet component has facet degree bounded by d.

Proof. We prove the claim by induction.
Base Case: From Lemma 16, having deleted all the regular sinks of the d-interface, there exists at least one simplex with
facet degree bounded by d in every connected component. We arbitrarily choose a min-facet simplex in one of the con-
nected components of the d-interface and discover the min-facet component around it by exploring neighboring d-simplices
iteratively. Such a min-facet component has facet degree bounded by d. We design vector field on this min-facet component
and subsequently delete it from the d-interface.
Induction Hypothesis: Suppose that we have designed a vector field on (i − 1) min-facet components and subsequently
deleted them. Each time, there exists at least one simplex with facet degree bounded by d in every connected component.
Induction Step: Now, we discover the ith min-facet component, say Fi . Suppose this min-facet component belongs to some
connected component C j .

14 A. Rathod et al. / Computational Geometry 61 (2017) 1–23
Case 1: Fi contains all (d − 1)-simplices in C j If Fi consists of all the (d − 1)-simplices of C j , then upon deletion of Fi , all
d-simplices of C j \Fi will have zero facet degree and we will attempt to match the d-simplices of C j \Fi for the
(d + 1)-interface. Also, upon deletion of Fi , the other connected components continue to satisfy the facet degree
(bounded by d) condition.

Case 2: C j \Fi has at least one (d − 1)-simplex Suppose if Fi � C j and C j \ Fi has one or more (d − 1)-simplices. Then,
there exists at least one d-simplex, say σ in C j \Fi with at least one edge incident on a (d − 1)-simplex in Fi and
at least one edge incident on a (d − 1)-simplex in C j \Fi . Having designed a gradient vector field on Fi , we delete
the regular simplices and the critical (d − 1) simplices belonging to Fi . Now, we consider two subcases that are
illustrated in Fig. 5

Case 2a: C j stays connected after deleting Fi Consider the case when C j stays connected after deleting the ith
min-facet component. In this case, the facet degree of σ will reduce by at least 1, and hence, the facet
degree of σ is bounded by d. There may be other simplices in Fi � C j whose facet degree may also
reduce. All other connected components are unaffected. So, every component will have min-facet degree
bounded by d.

Case 2b: C j gets disconnected after deleting Fi Now, consider the case where upon deletion of Fi , C j splits into
several components. Imagine that we are not deleting the simplices of Fi all at once, but sequentially.
Making an argument along the lines of Lemma 16, we conclude that irrespective of which connected
component the min-facet component is chosen from, it will have facet degree bounded by d.

Therefore, in each of the cases, after deletion of the ith min-facet component Fi , there exists at least one simplex with
facet degree bounded by d in every connected component of the d-interface. �
Lemma 18. An orientation of the min-facet component FC based on the matchings computed by procedure interApxMinFacet() is
acyclic.

The proof of the Lemma 18 is identical to the proof of Lemma 9.

Lemma 19. An orientation of the d-interface of output graph HV based on the matchings computed by procedure interApxMinFacet()
is acyclic.

Proof. We prove this claim by induction. We use a condition, namely the vertex deletion criterion, which says that: For the
d-interface, a (d − 1)-simplex satisfies the vertex deletion condition if and only if all paths that go through that simplex end
up in a sink.
Base Case: Suppose that we are processing the first min-facet component for the d-interface. From Lemma 18, we know that
an orientation of edges of a min-facet component is acyclic. For this orientation, a path from any vertex in the component
ends up in a sink. Therefore, if we were to delete all the (d − 1)-simplices in the min-facet component, we would obey the
vertex deletion criterion. If graph HV is oriented based on the matchings found in the first min-facet component, then it is
acyclic.
Induction Step: Suppose that we have processed i min-facet components and suppose that we have used these min-facet
components to orient the d-interface of HV and so far it is found to be acyclic. Also, the vertices deleted so far are those that
have satisfied the vertex deletion condition. Now, suppose we have extracted the (i + 1)th min-facet component, say Fi+1.
While the edges that lead to sinks maybe absent in min-facet component Fi+1 , the corresponding d-simplices in output
graph HV will have these edges. If we restrict our attention to undeleted edges, then from Lemma 18, the orientation of
edges of (i + 1)th min-facet component itself is acyclic, i.e., all paths will lead strictly to critical sinks of Fi+1 . But, if we
look at the corresponding orientation in HV , the paths emanating from a (d − 1) simplex of Fi+1 will either end up in
critical sinks of Fi+1 (through undeleted edges) or in regular/critical sinks of F j for j < (i + 1) (through deleted edges). In
any case, all paths originating from (d − 1)-simplices of Fi+1 go to sinks thereby satisfying the vertex deletion criterion.
Also, designing gradient field on F j does not introduce cycles in HV . Morse matching on the d-interface is designed when
all the min-facet components are processed and deleted. Since none of them introduce cycles, we say that output graph HV
is acyclic. �
Lemma 20. For the d-interface, the ratio #matched simplices

#total simplices ≥ 2
d+1 .

Proof. The proof is identical to that of Lemma 11 except for one important difference. In the case of Algorithm 2, for
a d-interface every d-simplex has d + 1 facets. But according to Lemma 17, for a min-facet component, the facet degree
is bounded by d. Using the notion of canonical triplets for a min-facet component, for every gradient pair, we get at
most (d − 1) critical simplices. So, the ratio #matched simplices

#total simplices ≥ 2
d+1 for every min-facet component. For a d-interface, ev-

ery (d − 1)-simplex is part of some min-facet component and is classified as a regular simplex or as a critical simplex

A. Rathod et al. / Computational Geometry 61 (2017) 1–23 15
and subsequently deleted from the d-interface. Therefore, the bound of 2/(d+1) carries over from min-facet components to
d-interfaces. �

If we take the minimum for the ratio 2/d+1 over all d, such that 1 < d < D , we get 2/D. By Lemma 12, for the
D-interface, the ratio #matched simplices

#total simplices is equal to 4
D+5 . Note that 4/(D+5) ≥ 2/D , for all D ≥ 5. So, for D ≥ 5, the worst

ratio of #matched simplices
#total simplices over all d-interfaces where 1 ≤ d ≤ D is 2

D . Since the optimal number of regular simplices ≤ total
number of simplices, we get the following theorem.

Theorem 21. For D ≥ 5, Algorithm 3 provides a 2/D-factor approximation for the Max Morse Matching problem.

On the other hand, for 3-manifolds and 4-manifolds, we have 4/(D+5) < 2/D . So, for 3-manifolds, the approximation ratio
is 4/(3+5) = 1/2. Similarly, for 4-manifolds, the approximation ratio is 4/(4+5) = 4/9. This gives us the following result.

Theorem 22. For D = 3, Algorithm 3 provides a 1/2-factor approximation for the Max Morse Matching problem. For D = 4, we obtain
a 4/9-factor approximation algorithm.

4.2.1. Approximation bound for non-manifold complexes
Note that Algorithm 3 can be applied to non-manifold complexes as well if we apply the optimal algorithm for the

1-interface and procedure intermediateApx() for the remaining interfaces. To prove a bound for non-manifold complexes,
we need to do a slightly different kind of analysis. We begin with a few definitions. Let T denote the set of all (D −
1)-simplices of the Hasse graph. Let B denote the (D − 1)-simplices that have been paired with (D − 2)-simplices and let
|A| = |T | − |B|. Let RD denote the set of regular simplices found by Algorithm 3 at the D-interface. We now establish a
relation between |RD | and |A|.

Lemma 23. |RD | ≥ 2
r |A| where r = D if the D-interface is connected and r = (D + 1) if the D-interface is not connected.4

Proof. First we consider the case when the D-interface is not connected at the start of Algorithm 3. At each stage of
Algorithm 3, the minimum facet-degree of a simplex is not more than (D + 1). Once again, we use the idea of canonical
triplets. Every critical (D − 1)-simplex occurs in a unique canonical triplet. Also, every regular (D − 1)-simplex occurs in at
most D canonical triplets. So, every regular (D − 1)-simplex corresponds to a set of at most D critical (D − 1)-simplices.
Together they make up the entire set A. Hence we have |RD | ≥ 2

D+1 |A|.
Now suppose the D-interface is connected at the start of the Algorithm. Then, Lemma 16 and Lemma 17 apply and the

minimum facet-degree of a simplex (in a min-facet component) is not more than D . In this case, a regular (D − 1)-simplex
occurs in at most (D − 1) canonical triplets. Accordingly, |RD | ≥ 2

D |A|. �
Now, let R denote the set of all regular simplices found by Algorithm 3 and let RL =R −RD .
Let SD−2 denote the set of vertices of the Hasse graph that belong to one of the d-interfaces where 1 ≤ d ≤ (D − 2)

and SD−1 denote the set of vertices of the Hasse graph that belong to one of the d-interfaces where 1 ≤ d ≤ (D − 1). Let
S =SD−2 ∪ B . Finally, let |S| denote the cardinality of vertex set S and |SD−1| denote the cardinality of vertex set SD−1.

Lemma 24. |RL | ≥ 2
D |S|.

Proof. Let GS be the graph induced by set S . Note that every simplex belonging to graph GS occurs in some canonical
triplet. In particular this happens to be true since all (D − 1)-simplices of S are matched by Algorithm 3. Using Lemma 20
for Algorithm 3 applied to GS , the ratio #matched simplices

#total simplices ≥ 2
D . In other words, we get, |RL | ≥ 2

D |S|. �
Let O denote the cardinality of regular nodes found by optimal Morse Matching.

Lemma 25. O ≤ |SD−1| + |T |.

Proof. The maximum number of simplices of the D-level that can be matched by any algorithm is bounded by |T|, i.e., the
total number of simplices of the (D − 1)-level. Also, the set SD−1 consists of all simplices of the Hasse graph except those
that belong to the D-level. So, the optimal algorithm cannot possibly match more than |SD−1| + |T | number of simplices of
the Hasse graph. �

We now consider the expression D|RL | + r|RD |,

4 Note that the D-interface of a general, non-manifold simplicial complex may or may not be connected.

16 A. Rathod et al. / Computational Geometry 61 (2017) 1–23
D|RL | + r|RD | ≥ 2|S| + 2|A| using Lemma 23 and Lemma 24

≥ |S| + |B| + 2|A| using the fact that B ⊆ S

≥ (|S| + |A|) + (|B| + |A|)
= |SD−1| + |T | by definition

≥ O using Lemma 25

If the D-interface is connected we get,

D|R| = D|RL | + D|RD | ≥ O, i.e., |R| ≥ 1

D
O

If the D-interface is not connected we get,
(D + 1)R = (D + 1)|RL | + (D + 1)|RD | ≥ D|RL | + (D + 1)|RD | ≥O, i.e., |R| ≥ 1

(D+1)
O.

Therefore, for non-manifold complexes, Algorithm 3 gives a 1/D approximation if the D-interface is connected and a
1/(D+1) approximation if the D-interface is not connected.

Likewise, one can obtain 1/(D+1) approximation bound for Algorithm 2 irrespective of whether or not the complex is
connected.

5. Experimental results

All three approximation algorithms proposed in this paper are implemented in Java. In this section, we describe results
of experiments comparing six different algorithms for Morse matching. In particular, we compare the algorithms proposed
in this paper with the reduction heuristic, the coreduction heuristic and a naïve approximation algorithm described in
Section 5.1. A prototype implementation was used to observe the practical performance of these algorithms on more than
800 complexes. We used both synthetic random datasets and complexes generated by Hachimori [23] (also used in an
earlier work [20]) and Lutz [24], for experiments. Random complexes were generated according to the method described by
Meshulam and Wallach [25] and a variant. In the variant, we select a random number of valid d-simplices for all 1 ≤ d ≤ D
instead of selecting a random number of D-simplices and inferring all faces. We refer to the complexes generated by this
variant as Type 2 random complexes. For additional details on these complexes see Section 5.6.

It is clear that the quantity 2|M|, where |M| is the size of maximum-cardinality matching as well as the quantity
N − 	βi , which is equal to the difference between number of simplices and the sum of Betti numbers provide conservative
upper bounds on the number of regular cells in the optimal Morse matching. Let R be the set of regular simplices generated
by a Max Morse approximation algorithm. We estimate the quality of the approximation using the ratio |R|

Min(2|M|,N−	βi)
.

Tables 1, 2, 4 and 5 list estimated approximation ratios on selected datasets. Algorithm 3 consistently provided the best
ratios, always greater than 0.93 for all 300 random complexes in our dataset. For more than 450 manifolds from the
Lutz dataset, Algorithm 3 reported worst estimated approximation ratio of 0.969. Algorithm 3 provided optimal estimated
approximation ratio for 56% of manifolds from the Lutz dataset. These results suggest that Algorithm 3 not only provides
good theoretical bounds, but also performs well practically.

In sections that follow, we first discuss a naïve approximation algorithm and the reduction and coreduction heuristics
followed by experiments on datasets from four different sources.

5.1. A 1/(D+1)-factor naïve approximation algorithm

Consider the following approximation algorithm: Given a simplicial complex K compute its Hasse graph HK . Perform
maximum-cardinality matching on graph HK and obtain the matching-based orientation HK . Include all the down-edges
of HK in the output graph HO .

1. Pick an arbitrary up-edge e and include it in HO .
2. Include the reversed orientations of all the leading up-edges of e in HO .
3. Remove up-edge e and the leading up-edges of e from HK
4. Repeat steps 1–3 until all up-edges of HK are exhausted.

Clearly, HO has no cycles because none of the up-edges in HO has leading up-edges. Also, for every up-edge that we
select, we reverse at most D up-edges. Since the cardinality of the maximum matching is an upper bound on optimal value
of Max Morse Matching, we get an approximation ratio of 1/(D+1) for this algorithm.

At the outset, the ratio (D+1)/(D2+D+1) obtained by Algorithm 1 does not seem to be a significant improvement over
1/(D+1). However, as we shall witness in sections that follow, the estimated approximation ratios observed for the naïve
algorithm are significantly worse in practice. In fact, in order to ensure that the approximation algorithms designed for Max
Morse Matching problem remains relevant for applications like homology computation, scalar field topology etc., we need
to design algorithms that can be shown to have good theoretical approximation and complexity bounds combined with
competitive estimated approximation ratios.

A. Rathod et al. / Computational Geometry 61 (2017) 1–23 17
5.2. Coreduction and reduction heuristics

The coreduction heuristic for constructing Morse matchings was introduced by Harker et al. [7]. In this section, we
briefly describe reduction and coreduction heuristics for constructing Morse matchings on simplicial complexes for the sake
of completeness. Suppose we are given a simplicial complex K. We first describe the coreduction heuristic.

Perform the following steps until complex K is empty:

1. If there is a simplex α with a free cofacet β available, include the pair 〈α, β〉 in the set of Morse matchings, and delete
α and β from K.

2. If no such simplex with a free cofacet is available, then select a simplex γ of lowest available dimension, make it
critical, and delete it from K.

Recall that in Section 4.2, Definition 9, we had introduced the idea of min-facet simplex of the d-interface. Similarly, one
may extend the definition of min-facet simplex to the entire Hasse graph as follows:

Definition 11 (Min-facet simplex of the Hasse graph). A min-facet simplex of the Hasse graph is a simplex with the minimum number
of facets in the Hasse graph.

It is worth noting that, for simplicial D-manifolds, if we modify step 2 of the coreduction algorithm to choose a min-facet
simplex of the Hasse graph whenever a simplex with a free cofacet is not available, then we can use the same techniques as
in Section 4.2 to establish a 2/D approximation ratio for D ≥ 5 using the modified coreduction algorithm. Next, we describe
the reduction heuristic.

Perform the following steps until complex K is empty:

1. If there is a simplex β with a free facet α available, include the pair 〈α, β〉 in the set of Morse matchings, and delete α
and β from K.

2. If no such simplex with a free facet is available, then select a simplex γ of highest available dimension, make it critical,
and delete it from K.

5.3. Experiments on the Hachimori dataset

This dataset consists of complexes downloaded from Hachimori’s collection of simplicial complexes.5 Table 1 lists the
observed approximation ratios for all the algorithms. For complexes in Table 1, maximum size of 	βi is 2. The coreduc-
tion heuristic provided the best approximation ratios for this dataset. However, Algorithm 3 reported ratios comparable to
the coreduction algorithm. Algorithm 3 reports optimal Morse matching for 7 of the 20 complexes in this dataset, while
coreduction gives optimal result for 10 complexes.

5.4. Experiments on the Lutz manifold dataset

The second dataset consists of manifolds of dimensions ranging from 3 to 11. These manifolds were downloaded from a
library of manifolds created by Lutz.6

Table 2 lists approximation ratios observed for selected complexes within this dataset. For manifolds in Table 2, maxi-
mum size of 	βi is 14 whereas the average size of 	βi is 5.07. Coreduction heuristic provided the best approximation ratios
for this dataset. However, Algorithm 3 matched the performance of coreduction heuristic for many complexes and in some
cases outperformed coreduction. Also, Algorithm 3 was consistently better than reduction heuristic.

Table 3 summarizes the results obtained using Algorithm 3 for manifolds of different dimensions. We observed optimal
results for 56% of the complexes. The worst approximation ratio was observed to be 0.969. The descriptions of homology
groups of these complexes are also available in the library. For all the complexes in this dataset, we compute the homol-
ogy by application of Morse matching algorithm, followed by boundary operator computation and subsequently applying
the Smith Normal Form. The running time of homology computation was of the order of milli-seconds for most of these
complexes.

5.5. Experiments on random complexes

We followed the method described by Meshulam and Wallach [25] to generate random complexes. These complexes
contain all possible d-simplices for the given number of vertices, for 0 ≤ d < D . However, D-simplices are randomly chosen
from all possible D-simplices based on probability p(D). We generated two datasets of 100 complexes each. For each set,

5 http :/ /infoshako .sk.tsukuba .ac .jp /~hachi /math /library /index _eng .html.
6 The Manifold page: http :/ /page .math .tu-berlin .de /~lutz /stellar /vertex-transitive-triangulations .html.

http://infoshako.sk.tsukuba.ac.jp/~hachi/math/library/index_eng.html
http://page.math.tu-berlin.de/~lutz/stellar/vertex-transitive-triangulations.html

18 A. Rathod et al. / Computational Geometry 61 (2017) 1–23
Table 1
Observed approximation ratios for Hachimori’s Simplicial Complex Library. N indicates the number of simplices in
the complex. Cored refers to Coreduction Algorithm, Red refers to Reduction Algorithm. For a given input, the best
estimated approximation ratios across all algorithms tested are highlighted in bold.

Input N Estimated approximation ratios

Naïve Algo 1 Algo 2 Algo 3 Cored Red

2D complexes
projective 31 0.800 0.933 0.933 0.933 0.933 0.933
dunce_hat 49 0.667 0.917 0.958 0.958 0.958 0.917
bjorner 32 0.667 0.933 1.000 1.000 1.000 0.867
nonextend 39 0.632 0.895 0.947 1.000 1.000 0.895
c-ns 75 0.703 0.892 0.946 0.946 0.946 0.865
c-ns2 79 0.615 0.897 0.974 0.974 1.000 0.846
c-ns3 63 0.667 0.871 0.968 0.968 0.968 0.903
simon 41 0.750 0.950 0.950 0.950 0.950 0.850
simon2 31 0.667 0.800 0.933 0.933 0.933 0.867

3D complexes
poincare 392 0.651 0.933 0.954 0.979 0.990 0.923
knot 6,203 0.628 0.942 0.940 0.997 1.000 0.927
bing 8,131 0.640 0.946 0.943 0.997 0.999 0.933
nc_sphere 8,474 0.616 0.941 0.945 0.989 1.000 0.937
rudin 215 0.617 0.935 0.944 1.000 1.000 0.925
gruenbaum 167 0.663 0.928 0.928 1.000 1.000 0.904
ziegler 119 0.695 0.983 0.915 1.000 1.000 0.864
lockeberg 216 0.636 0.944 0.972 1.000 1.000 0.897
mani-walkup-C 464 0.645 0.944 0.922 1.000 1.000 0.922
mani-walkup-D 392 0.621 0.923 0.923 0.990 0.990 0.908

5D complexes
nonpl_sphere 2,680 0.554 0.841 0.883 0.989 0.997 0.954

Table 2
Observed approximation ratios for a few selected manifolds in Lutz’s manifold library. N indicates the number of
simplices in the complex. Cored refers to Coreduction Algorithm, Red refers to Reduction Algorithm. For a given
input, the best estimated approximation ratios across all algorithms tested are highlighted in bold.

Input N Estimated approximation ratios

Naïve Algo 1 Algo 2 Algo 3 Cored Red

3_12_13_3 192 0.649 0.936 0.957 1.000 1.000 0.926
3_12_1_6 240 0.672 0.933 0.908 0.992 0.992 0.882
3_15_11_1 390 0.649 0.948 0.974 0.984 1.000 0.953
4_15_2_24 810 0.610 0.898 0.911 1.000 1.000 0.935
4_15_4_1 965 0.566 0.875 0.902 0.987 0.996 0.919
5_15_2_12 1,350 0.565 0.862 0.896 0.990 0.999 0.951
5_14_3_16 1,120 0.572 0.873 0.898 0.998 1.000 0.959
6_15_2_2 5,130 0.516 0.801 0.841 0.987 0.998 0.961
6_15_2_1 1,890 0.546 0.847 0.877 0.995 1.000 0.957
7_14_3_4 6,272 0.499 0.768 0.820 1.000 0.999 0.955
8_14_2_15 9,326 0.479 0.747 0.782 1.000 1.000 0.962
9_15_4_1 21,310 0.458 0.716 0.757 0.996 1.000 0.961
10_14_38_1 15,038 0.460 0.716 0.754 1.000 1.000 0.960
11_15_2_1 30,846 0.443 0.688 0.737 1.000 1.000 0.961

we generated a subset of 20 complexes with fixed p(D), which varies from 0.1 to 0.9. The number of vertices was chosen
to be 20 and 16 for the 4 and 6 dimensional datasets, respectively. In Table 4, we report the results for a single complex
selected from each subset. It should be noted that Algorithm 3 performs well even for random complexes with non-trivial
homology. For Algorithm 3, the worst estimated approximation ratio over 100 randomly generated 4-dimensional complexes
was observed to be 0.939. For the 100 randomly generated 6-dimensional complexes it was observed to be 0.953. We
observed that Algorithm 3 outperformed reduction and coreduction heuristics for this dataset.

5.6. Experiments on Type 2 random complexes

We also used a variant of the method described by Meshulam and Wallach [25] for generation of random complexes,
where we choose random number of d-simplices for all d. The generation of these random complexes proceed from lowest
dimension to highest, and a random simplex is added to the complex only if all its facets are part of the complex. We gener-
ated a dataset containing 100 5-dimensional complexes with following parameters: number of vertices was chosen as 40, the
probability of selecting a d-simplex is given by the vector [1, 1, 0.7, 0.9, 1, 0.9]. With these parameters we obtain complexes

A. Rathod et al. / Computational Geometry 61 (2017) 1–23 19
Table 3
In this table, we summarize the results for all the 446 complexes in Lutz manifold dataset. The
results are grouped row-wise for each dimension. Avg size refers to the average number of sim-
plices for complexes of dimension D . Worst ratio refers to worst estimated approximation ratio
for Algorithm 3 whereas Avg ratio refers to average estimated approximation ratio for Algorithm 3,
for complexes of dimension D . % optimal refers to percentage of complexes for which Algorithm 3
computes the optimal Morse matching.

D No. of complexes Avg size Worst ratio Avg ratio % optimal

3 166 265 0.969 0.992 42.17
4 76 630 0.979 0.995 39.47
5 114 1,445 0.982 0.998 75.43
6 15 3,761 0.984 0.993 26.67
7 33 5,988 0.996 0.999 87.88
8 26 9,165 0.989 0.998 69.23
9 9 14,385 0.993 0.999 66.67
10 2 9,566 1.000 1.000 100.00
11 5 23,096 1.000 1.000 100.00

All 446 2,271 0.969 0.995 56.05

Table 4
This table lists estimated approximation ratios for a selected set of random complexes of dimensions
6 and 4. Each row represents results obtained by various algorithms for a single randomly gener-
ated instance. N indicates the number of simplices in the complex. Cored refers to Coreduction
Algorithm, Red refers to Reduction Algorithm. p(D) denotes the probability with which simplices
of dimension D are chosen. 	βi denotes the sum of Betti numbers. For a given input, the best
estimated approximation ratios across all algorithms tested are highlighted in bold.

p(D) N 	βi Estimated approximation ratios

Naïve Algo 1 Algo 2 Algo 3 Cored Red

Random 6D
0.1 16,036 3,862 0.515 0.746 0.784 1.000 1.000 0.958
0.3 18,324 1,574 0.477 0.739 0.765 0.996 0.989 0.967
0.5 20,612 740 0.437 0.672 0.704 0.964 0.940 0.936
0.7 22,899 3,003 0.428 0.653 0.705 0.991 0.981 0.951
0.9 25,188 5,292 0.425 0.634 0.710 1.000 0.998 0.953

Random 4D
0.1 7,745 2,327 0.598 0.900 0.914 0.999 0.996 0.979
0.3 10,846 800 0.470 0.704 0.727 0.952 0.915 0.927
0.5 13,947 3,877 0.465 0.692 0.732 0.992 0.978 0.956
0.7 17,047 6,977 0.452 0.669 0.739 1.000 0.996 0.954
0.9 20,148 10,078 0.463 0.671 0.752 1.000 1.000 0.957

Table 5
This table lists estimated approximation ratios for a selected set of 5-dimensional Type 2 random
complexes. Each row represents results obtained by various algorithms for a single randomly gen-
erated instance. N indicates the number of simplices in the complex. Cored refers to Coreduction
Algorithm, Red refers to Reduction Algorithm. 	βi denotes the sum of Betti numbers. For a given
input, the best estimated approximation ratios across all algorithms tested are highlighted in bold.

N 	βi Estimated approximation ratios

Naïve Algo 1 Algo 2 Algo 3 Cored Red

39,046 3,366 0.540 0.814 0.841 0.991 0.987 0.979
39,233 3,247 0.538 0.809 0.844 0.993 0.982 0.977
39,199 3,253 0.535 0.808 0.835 0.992 0.984 0.978
39,128 3,314 0.538 0.815 0.838 0.994 0.986 0.979
39,526 3,172 0.538 0.809 0.837 0.991 0.985 0.979

with non-trivial homology, as evidenced by their Betti numbers that lie in the range [1, 0, 0–1, 2945–3658, 51–106, 0–3].
Table 5 lists the results for five complexes selected from this dataset. The worst estimated approximation ratio over 100
randomly generated 5-dimensional complexes for Algorithm 3 was observed to be 0.989. We again observed that Algo-
rithm 3 consistently outperformed reduction and coreduction heuristics for all the complexes in this dataset.

5.7. Discussion on experimental results

For all datasets we studied, Algorithm 3 and Coreduction Algorithm outperform all other algorithms in terms of achieving
best estimated approximation ratios. For the Hachimori dataset and the Lutz dataset, the coreduction algorithm fares slightly

20 A. Rathod et al. / Computational Geometry 61 (2017) 1–23
better, whereas for random datasets, Algorithm 3 does better. In general, Algorithm 3 outperforms all other algorithms for
large sized complexes or when the size of 	βi is large.

6. Discussion on complexity

Maximum-cardinality bipartite matching is the primary bottleneck for all the algorithms described in this paper. Graph
matching can be performed in O (V 1.5) time for Hasse graphs of simplicial complexes using Hopcroft–Karp algorithm [26].
With appropriate choice of data structures, all other procedures of all three Algorithms can be made to run in linear time.

In particular, for Algorithm 3, we maintain separate queues for every facet-degree. Consider the graph G induced by
the min-facet degree simplices. To extract a min-facet component, we simply find a single connected component within
this graph G . Once the min-facet component is deleted from the d-interface, we update the facet-degrees of all affected
simplices within the d-interface. Therefore, extraction and maintenance of min-facet components is a linear time operation.

Also, for Algorithms 2 and 3, the approximation ratios do not depend on the graph matching steps. Graph matching step
merely serves the purpose of heuristic improvement. So, effectively by removing graph matching step from Algorithms 2
and 3 become linear time approximation algorithms. But this improvement in computational complexity is at the cost of
estimated approximation ratios observed in practice.

7. Conclusions and further work

We believe that approximation algorithms is the definitive algorithmic way to study Morse matchings. Our belief is
validated by theoretical results and additionally supported by experimental results where we get close to optimal ratios
even for random complexes.

In future, we plan to further improve the approximation bounds, remove dependency on graph matching (for improving
estimated approximation ratios) and develop efficient C++ implementations. In particular, to obtain dimension independent
bounds for Max Morse Matching Problem remains a challenging open problem.

Acknowledgements

We are grateful to anonymous referees for their constructive input. The first author would like to thank Michael Lesnick
for helpful discussions.

Appendix A. Optimal algorithms for 1-interface and D-interface

To begin with, we reproduce the definitions of the d-level of the Hasse graph and the d-interface of the Hasse graph
of a simplicial complex from Section 2.2. We also reproduce the definition of dual graph of a simplicial manifold from
Section 4.1.

We refer to the set of vertices in the Hasse graph representing d-dimensional simplices as the d-level of the Hasse graph.
The d-interface of the Hasse graph is the subgraph consisting of vertices in the d-level and the (d − 1)-level of the Hasse
graph together with all the edges connecting these two levels.

Definition 12 (Dual graph). The dual graph of a simplicial D-dimensional manifold K is the graph whose vertices represent
the D-simplices of K and whose edges join two D-simplices with a common (D − 1)-facet.

Consider a Morse matching M for a connected D-manifold K. Let γ (M) be the graph obtained from the primal graph
of K by removing all arcs (edges of K) matched with triangles in M . Let γ ∗(M) be obtained from the dual graph of K
by removing all the arcs ((D − 1)-simplices of K), where the corresponding (D − 1)-simplices are matched with (D −
2)-simplices of K in M . Note that γ (M) and γ ∗(M) contain all vertices and D-simplices of K, respectively. Let H(M)

denote the matching-based orientation of the Hasse graph H. Also, let H∗ denote the dual of Hasse graph H. In particular,
a vertex belonging to the d-level of the graph H∗(M) corresponds to an (n − d)-simplex of H(M). An edge joining a vertex
at the d-level of H∗ to a vertex at the (d − 1)-level of H∗ corresponds to an incidence relation between an (n − d)-simplex
and an (n − (d − 1))-simplex in K. In other words, H∗ is simply H turned upside down. Similarly, H∗(M) denotes matching
based orientation of the graph H∗ .

The existence of polynomial time algorithms for designing optimal Morse matchings for the D-interface is essential to
establishing an approximation bound for Algorithm 2 and Algorithm 3. The optimal algorithm for the D-interface relies
on Lemma 29, which has previously been proved using graph theoretic methods [1,20]. Although Lemma 6 of Appendix A
in [20] is stated and proved specifically for 3-manifolds, a similar argument can be used for D-manifolds, for any D ≥ 3
since only the 1-interface and the 2-interface of the dual Hasse graph are germane to establishing the connectivity of the
D-interface.

Lemma 26. The graph γ (M) is connected.

A. Rathod et al. / Computational Geometry 61 (2017) 1–23 21
Proof. Suppose that γ (M) is disconnected. Let N be the set of nodes in a connected component of γ (M), and let C be the
set of cut edges, that is, edges of K with one vertex in N and one vertex in its complement. Since K is connected, C is
not empty. By definition of γ (M), each edge in C is matched to a unique 2-simplex. Consider the directed subgraph D of
the Hasse diagram consisting of the edges in C and their matching 2-simplices. The standard direction of arcs in the Hasse
diagram (from the higher to the lower dimensional simplexes) is reversed for each matching pair of M , i.e., D is a subgraph
of H(M). We construct a directed path in D as follows. Start with any node of D corresponding to a cut edge e1. Go to the
node of D determined by the unique 2-simplex τ1 to which e1 is matched to. Then, τ1 contains at least one other cut edge
e2, otherwise e1 cannot be a cut edge. Now iteratively go to e2, then to its unique matching 2-simplex τ2, choose another
cut edge e3, and so on. We observe that we obtain a directed path e1, τ1, e2, τ2, · · · in D , i.e., the arcs are directed in the
correct direction. Since we have a finite graph at some point the path must arrive at a node of D , which we have visited
already. So, D (and therefore also H(M)) contains a directed cycle, which is a contradiction since M is a Morse matching.
Hence, γ (M) is connected. �
Remark 2. The connectivity of γ (M) is not directly interesting to us. However, the proof of connectivity of γ (M) serves as
a template for proving the connectivity of γ ∗(M). To prove the connectivity of γ ∗(M), in Appendix A of [20], Burton et al.
suggest the use of Poincaré duality without providing additional details. It is unclear how to use Poincaré duality directly
because dual cell structures do not always exist for all manifolds. This problem can be remedied by observing that the
0-level, the 1-level and the 2-level of H∗ along with the interfaces connecting them always form the face poset of a regular
2-dimensional cell complex. We shall sketch the proof of connectivity of γ ∗(M).

In order to construct a 2-dimensional cell complex, we must first construct an underlying 1-dimensional cell complex.
To do this, we associate a 0-cell σ ∗ to every D-simplex σ ∈ K and a 1-cell τ ∗ to every (D − 1)-simplex τ ∈ K. The set of
all such 0-cells and 1-cells is precisely the dual graph of complex K.

For a given (D − 2)-simplex κ , consider its boundary sequence defined as the sequence of D-simplices and (D −
1)-simplices {σ D

0 , τ (D−1)
0 , σ D

1 , τ (D−1)
1 , . . . , σ D

(q−1) , τ (D−1)
(q−1) , σ D

q } such that for all i, σi �= σ(i+1) , τi ≺ σi , τ(i+1) ≺ σi and
κ ≺ τi . Also, σ D

q is identical to σ D
0 , where q is the smallest index for which a repetition of D-simplices occurs in the sim-

plicial sequence. This is a unique sequence for a given κ and σ D
0 because each (D − 1)-simplex is a facet of exactly two

D-simplices and each σ D
i has exactly two facets τ((i−1) mod q) and τ(i mod q) incident on κ . The boundary sequence of κ has

a corresponding sequence of 0-cells and 1-cells in the dual graph of K, called the dual boundary sequence.

Lemma 27. Let K be a orientable simplicial manifold without boundary. Let H denote the Hasse graph of K and H∗ denote the dual of
the Hasse graph H. Then, the 0-level, the 1-level and the 2-level of H∗ along with the interfaces connecting them form the face poset
of a regular 2-cell complex.

Proof (Sketch). By definition, the 0-level of H∗ represents the D-simplices while the 1-level of H∗ represents the
(D − 1)-simplices of K. Clearly, the 0-level and the 1-level along with the 1-interface of H∗ forms the Hasse graph of
the dual graph of complex K. Hence, the 0-level and the 1-level along with the 1-interface of H∗ together form the face
poset of a 1-complex. Now, for every (D − 2)-simplex in K, we have a vertex belonging to the 2-level of H∗ . Finally, to
construct a 2-dimensional cell complex, we associate a dual 2-cell κ∗ to every (D − 2)-simplex κ and identify the boundary
of κ∗ with the dual boundary sequence of κ . It is easy to check that this 2-dimensional cell complex is regular. Hence,
the 0-level, the 1-level and the 2-level of H∗ along with the interfaces connecting them form the face poset of a regular
2-dimensional cell complex. �

We shall denote the cell complex whose face poset corresponds to the 0-level, the 1-level and the 2-level of H∗ along
with the interfaces connecting them as K∗

2 and the face poset of K∗
2 as H∗

2. H∗
2 is a subgraph of H∗ . H∗

2(M) is the matching
based orientation of H∗

2. For every directed path {κ∗
0 , τ ∗

0 , κ∗
1 , τ ∗

1 , . . . , κ∗
i , τ ∗

i } of dual cells in H∗
2(M), there exists a directed

path {τi, κi, . . . , τ1, κ1, τ0, κ0} of corresponding primal simplices in H(M) traced in reverse order. Hence, the absence of
cycles in H∗

2(M) can be inferred from the absence of cycles in H(M). To prove that γ ∗(M) is connected, we use the same
argument as in the proof of Lemma 26 on the graph γ ∗(M).

Lemma 28. The graph γ ∗(M) is connected.

Proof. Suppose that γ ∗(M) is disconnected. Let N be the set of nodes in a connected component of γ ∗(M), and let C be
the set of cut edges, that is, edges of K∗

2 with one vertex in N and one vertex in its complement. K∗ is connected since
K is a manifold without boundary. Hence, C is not empty. By definition of γ ∗(M), each edge in C is matched to a unique
2-cell in K∗

2. Consider the directed subgraph D of H∗(M) consisting of the edges in C and their matching 2-simplices. The
standard direction of arcs in H∗

2 (from the higher to the lower dimensional cells) is reversed for each matching pair of M ,
i.e., D is a subgraph of H∗

2(M). We construct a directed path in D as follows. Start with any node of D corresponding to a
cut edge e1. Go to the node of D determined by the unique 2-cell τ1 to which e1 is matched to. Then, τ1 contains at least

22 A. Rathod et al. / Computational Geometry 61 (2017) 1–23
one other cut edge e2, otherwise e1 cannot be a cut edge. Now iteratively go to e2, then to its unique matching 2-cell τ2,
choose another cut edge e3, and so on. We observe that we obtain a directed path e1, τ1, e2, τ2, · · · in D , i.e., the arcs are
directed in the correct direction. Since we have a finite graph at some point the path must arrive at a node of D , which
we have visited already. So, D (and therefore also H∗

2(M)) contains a directed cycle, which is a contradiction since M is a
Morse matching and H∗

2(M) has no cycles. Hence, γ ∗(M) is connected. �
We now rephrase the fact that γ ∗(M) is connected, in the terminology of interfaces.

Lemma 29. Suppose that following the design of Morse matching for the (D − 1)-interface, all the (D − 1)-simplices that are matched
are deleted. Then, upon execution of this operation the D-interface stays connected.

Proof. In particular, for a given manifold M , the D-interface obtained after deleting the (D − 1)-simplices that are matched
following the design of Morse matching for the (D − 1)-interface is denoted by γ ∗(M) in terminology of [20]. �

To design the vector field for 1-interface one may use DFS in the following way. Pick an arbitrary vertex s as the start
vertex and mark it critical. Then, invoke the procedure DFS(s):

procedure DFSoptimal(v ,G)

1. Mark v as visited
2. If there exists an edge 〈v, w〉 such that w is not visited, then match 〈w, 〈v, w〉〉.
3. DFS(w)

Lemma 30. There exist simple linear time algorithms to compute optimal Morse Matchings for 1-interface and D-interface of
D-dimensional manifolds.

Proof. Since the graph is connected, every vertex will be visited. Also, except for the start node, every other node is matched
before it is visited. The edges that are matched belong to the DFS search tree and hence do not form a cycle. Therefore, the
only critical vertex is the start vertex. Therefore, the simple procedure DFSoptimal() can be used to design optimal gradient
vector field for the 1-interface. Note that the direction of gradient flow for the 1-interface will be exactly opposite of the
direction of DFS traversal.

We can associate a dual graph to the D-interface. Also, from Lemma 29, we know that following the design of Morse
matching for the (D − 1)-interface and deletion of matched (D − 1) simplices, the dual graph remains connected. So, once
again, we can use the procedure DFSoptimal() on the dual graph. Therefore, upon application of DFS algorithm for the
D-interface, we will have exactly one critical D-simplex which is the start vertex for the DFS and all other D-simplices are
regular. This algorithm is optimal since input complex K is a manifold without boundary and hence must have at least one
critical D-simplex. �
References

[1] M. Joswig, M. Pfetsch, Computing optimal discrete Morse functions, SIAM J. Discrete Math. 20 (1) (2004) 11–25.
[2] R. Forman, Morse theory for cell complexes, Adv. Math. 134 (1) (1998) 90–145, http://dx.doi.org/10.1006/aima.1997.1650.
[3] F. Cazals, F. Chazal, T. Lewiner, Molecular shape analysis based upon the Morse–Smale complex and the Connolly function, in: Proceedings of the

Nineteenth Annual Symposium on Computational Geometry, ACM, 2003, pp. 351–360.
[4] N. Shivashankar, S. Maadasamy, V. Natarajan, Parallel computation of 2D Morse–Smale complexes, IEEE Trans. Vis. Comput. Graph. 18 (10) (2012)

1757–1770.
[5] D. Kozlov, Discrete Morse theory, in: Combinatorial Algebraic Topology, in: Algorithms Comput. Math., vol. 21, Springer, Berlin, Heidelberg, 2008,

pp. 179–209, Ch. 11.
[6] E. Miller, V. Reiner, B. Sturmfels, Geometric Combinatorics, vol. 13, American Mathematical Soc., 2007.
[7] S. Harker, K. Mischaikow, M. Mrozek, V. Nanda, H. Wagner, M. Juda, P. Dlotko, The efficiency of a homology algorithm based on discrete Morse theory

and coreductions, in: Proc. of 3rd Intl. Workshop on CTIC, vol. 1, 2010.
[8] K. Mischaikow, V. Nanda, Morse theory for filtrations and efficient computation of persistent homology, Discrete Comput. Geom. 50 (2) (2013) 330–353.
[9] M. Allili, T. Kaczynski, C. Landi, F. Masoni, A new matching algorithm for multidimensional persistence, arXiv preprint, arXiv:1511.05427.

[10] T. Lewiner, Constructing discrete Morse functions, Master’s thesis, Department of Mathematics, PUC-Rio, July 2002.
[11] Ö. Egecioglu, T.F. Gonzalez, A computationally intractable problem on simplicial complexes, Comput. Geom. 6 (1996) 85–98.
[12] T. Kaczynski, K. Mischaikow, M. Mrozek, Computational Homology, 1st edition, Appl. Math. Sci., Springer, 2004.
[13] G. Carlsson, Topology and data, Bull. Am. Math. Soc. 46 (2) (2009) 255–308.
[14] M. Mrozek, B. Batko, Coreduction homology algorithm, Discrete Comput. Geom. 41 (1) (2009) 96–118, http://dx.doi.org/10.1007/s00454-008-9073-y.
[15] R. Ayala, D. Fernández-Ternero, J.A. Vilches, Perfect discrete Morse functions on 2-complexes, Pattern Recognit. Lett. 33 (2012) 11.
[16] U. Bauer, C. Lange, M. Wardetzky, Optimal topological simplification of discrete functions on surfaces, Discrete Comput. Geom. 47 (2) (2012) 347–377,

http://dx.doi.org/10.1007/s00454-011-9350-z.
[17] P. Hersh, On optimizing discrete Morse functions, Adv. Appl. Math. 35 (3) (2005) 294–322, http://dx.doi.org/10.1016/j.aam.2005.04.001.
[18] T. Lewiner, H. Lopes, G. Tavares, Optimal discrete Morse functions for 2-manifolds, Comput. Geom. 26 (3) (2003) 221–233, http://dx.doi.org/10.1016/

S0925-7721(03)00014-2.
[19] T. Lewiner, H. Lopes, G. Tavares, Toward optimality in discrete Morse theory, Exp. Math. 12 (3) (2003) 271–285, http://dx.doi.org/10.1080/10586458.

2003.10504498.

http://refhub.elsevier.com/S0925-7721(16)30100-6/bib4A503036s1
http://dx.doi.org/10.1006/aima.1997.1650
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib43617A3033s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib43617A3033s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib736869766132303132s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib736869766132303132s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib4B6F3038s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib4B6F3038s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib4D696C3037s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib484D4D4E574A443130s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib484D4D4E574A443130s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib4D4E3133s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib4C616E3136s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib4C653032s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib45473936s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib4B4D4D3130s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib43613039s1
http://dx.doi.org/10.1007/s00454-008-9073-y
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib4146563132s1
http://dx.doi.org/10.1007/s00454-011-9350-z
http://dx.doi.org/10.1016/j.aam.2005.04.001
http://dx.doi.org/10.1016/S0925-7721(03)00014-2
http://dx.doi.org/10.1080/10586458.2003.10504498
http://dx.doi.org/10.1016/S0925-7721(03)00014-2
http://dx.doi.org/10.1080/10586458.2003.10504498

A. Rathod et al. / Computational Geometry 61 (2017) 1–23 23
[20] B.A. Burton, T. Lewiner, J. Paixão, J. Spreer, Parameterized complexity of discrete Morse theory, CoRR, arXiv:1303.7037.
[21] R. Forman, A user’s guide to discrete Morse theory, Sémin. Lothar. Comb. B 48c (2002) 1–35.
[22] M.K. Chari, On discrete Morse functions and combinatorial decompositions, Discrete Math. 217 (1–3) (2000) 101–113, http://dx.doi.org/10.1016/

S0012-365X(99)00258-7.
[23] M. Hachimori, Simplicial complex library, http://infoshako.sk.tsukuba.ac.jp/~hachi/math/library/index_eng.html, 2001.
[24] F. Lutz, Vertex-transitive triangulations, http://page.math.tu-berlin.de/~lutz/stellar/vertex-transitive-triangulations.html, 2011.
[25] R. Meshulam, N. Wallach, Homological connectivity of random k-dimensional complexes, Random Struct. Algorithms 34 (3) (2009) 408–417, http://dx.

doi.org/10.1002/rsa.v34:3.
[26] J.E. Hopcroft, R.M. Karp, A n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput. 2 (4) (1973) 225–231.

http://refhub.elsevier.com/S0925-7721(16)30100-6/bib424C50533133s1
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib466F3032s1
http://dx.doi.org/10.1016/S0012-365X(99)00258-7
http://infoshako.sk.tsukuba.ac.jp/~hachi/math/library/index_eng.html
http://page.math.tu-berlin.de/~lutz/stellar/vertex-transitive-triangulations.html
http://dx.doi.org/10.1002/rsa.v34:3
http://refhub.elsevier.com/S0925-7721(16)30100-6/bib484B3733s1
http://dx.doi.org/10.1016/S0012-365X(99)00258-7
http://dx.doi.org/10.1002/rsa.v34:3

	Approximation algorithms for Max Morse Matching
	1 Introduction
	1.1 Max Morse Matching Problem
	1.2 Prior work
	1.3 Summary of results

	2 Background
	2.1 Discrete Morse theory
	2.2 The Hasse graph of a simplicial complex

	3 A (D+1)(D2+D+1)-factor approximation algorithm for simplicial complexes
	3.1 A 511-factor approximation for 2-dimensional simplicial complexes using frontier edges algorithm

	4 Approximation algorithms for simplicial manifolds
	4.1 A 2(D+1)-factor approximation algorithm for simplicial manifolds
	4.2 A 2D-factor approximation algorithm for simplicial manifolds
	4.2.1 Approximation bound for non-manifold complexes

	5 Experimental results
	5.1 A 1(D+1)-factor naïve approximation algorithm
	5.2 Coreduction and reduction heuristics
	5.3 Experiments on the Hachimori dataset
	5.4 Experiments on the Lutz manifold dataset
	5.5 Experiments on random complexes
	5.6 Experiments on Type 2 random complexes
	5.7 Discussion on experimental results

	6 Discussion on complexity
	7 Conclusions and further work
	Acknowledgements
	Appendix A Optimal algorithms for 1-interface and D-interface
	References

