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Abstract—This document presents additional material supporting the paper “Comparative Analysis of Merge Trees using Local Tree
Edit Distance”. We recall definitions and descriptions of mappings between trees within the scope of tree edit distances (content from
Sridharamurthy et al. [1, Supplementary Material]). We describe the detailed algorithm to compute LMTED, and present the
pseudocode. We also provide additional results of the application of LMTED to symmetry detection in various datasets.

✦

1 TREE EDIT DISTANCE MAPPINGS AND ILLUSTRA-
TIONS [1]
The LMTED is based on tree mappings, the same as MTED.
In this section, for easy reference and completeness, we restate
the properties of tree edit distance mappings, both unconstrained
and constrained. We also include examples to understand their
properties. The description and images in this section is from
the paper describing MTED [1, Supplementary Material]. The
illustrations are on simple examples of trees with equal number of
nodes and that are similar to each other. Further, only the relevant
mappings between node-pairs are highlighted in the figures.

1.1 Unconstrained tree edit distance mappings
The unconstrained edit distance mappings satisfy the following
properties [2]. A triple (Me,T1,T2) defines the edit distance map-
ping from T1 to T2, where each pair (i1, j1),(i2, j2) ∈ Me satisfies
the following properties:

1) i1 = i2 if and only if j1 = j2 (one-to-one)
2) i1 is an ancestor of i2 if and only if j1 is an ancestor of j2

(ancestor ordering).

Figures 1 and 2 illustrate these properties using a small example.
The mapping in Figure 2(b) is one-to-one but does not satisfy the
ancestor preservation property, i1 is ancestor of i2 but j1 is child
of j2.

1.2 Constrained tree edit distance mappings
The constrained edit distance mappings satisfy the following
properties [2]. A triple (Mc,T1,T2) is called a constrained edit
distance mapping if,

1) (Mc,T1,T2) is an edit distance mapping, and
2) Given three pairs (i1, j1),(i2, j2),(i3, j3) ∈ Mc, the least

common ancestor lca(i1, i2) is a proper ancestor of i3 if
and only if lca( j1, j2) is a proper ancestor of j3.

Figure 3 illustrates an important property required for a
mapping to be constrained, namely disjoint subtrees map to
disjoint subtrees. Figure 3(b) illustrates a mapping that satisfies the
properties of unconstrained tree edit distance mapping but is not a

constrained tree edit distance mapping. The node i3 is a descendant
(immediate descendant in this case) of the lca(i1, i2) = I but j3 is
not a descendant of the lca( j1, j2) = J.

(a) one-one mapping (b) violates one-one mapping

Fig. 1. Unconstrained tree edit distance mappings satisfying the one-to-
one mapping property. (a) A mapping that satisfies the property. (b) A
mapping that violates the property. Image source: Figure 1 from [1,
Supp. Material]

(a) ancestor preserving mapping (b) ancestor order not preserved

Fig. 2. Unconstrained tree edit distance mappings satisfying the an-
cestor preservation property. (a) A mapping that satisfies the property.
(b) A mapping that violates the property. Image source: Figure 2 from [1,
Supp. Material]

(a) disjoint subtrees map to disjoint
subtrees

(b) disjoint subtrees do not map to
disjoint subtrees

Fig. 3. Constrained tree edit distance mappings satisfying the disjoint
subtree mapping property. (a) A mapping that satisfies the property.
(b) A mapping that violates the property. Image source: Figure 3 from [1,
Supp. Material]
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These mappings are meaningful in the context of merge trees
and form the basis of both MTED and LMTED with suitable
modifications and appropriate cost models.

2 LMTED ALGORITHM

In this section, we describe the LMTED algorithm along with
the pseudocode for the sake of completeness. The algorithm
is based on Zhang [2] with suitable modifications to locally
compare merge trees. Algorithm 1 computes the LMTED. It is a
dynamic programming (DP) based algorithm that follows from
the recurrences described in Section 3.3 of the paper and using
the cost model defined in Section 3.2, which in turn is based on
the truncated persistence defined in Section 3.1 of the paper. The
properties of LMTED is discussed in Section 4.2 of the paper.

The notation is the same as in the paper. The DP tables are
named Dc and D′. Similarly, γ denotes the original cost model
and γ ′ denotes the truncated cost model. Line 2 initializes the
distances between two empty trees to 0. The loops spanning
lines 3− 8 and 9− 14 fill the table entries for both Dc and D′

corresponding to the distances between the empty tree and all
trees and forests. Note that lines 6,7 and 12,13 are new additions
compared to the MTED algorithm, which depend on values from
both Dc and D′. The nested loops spanning lines 15− 26 fill the
entries that correspond to distances between non-empty forests and
trees. Again, lines 19−24 are additions to the MTED algorithm. To
avoid clutter, the expressions minFj ,minFi ,minT2 ,minT1 are written
separately, though they are part of the expressions calculating D′

in lines 23,24. Though the expressions look complicated, if we
substitute D′ with Dc, γ ′ with γ , and M′

r with Mr in the RHS of the
expressions in lines 23,24 we get the original MTED expressions
which are in lines 17,18. The entry Dc(T1[m],T2[n]) in the table
with m= |T1| and n= |T2| corresponds to the final result for MTED.
In case of LMTED, if we are interested in the distance between the
pair of subtrees rooted at i and j, then the distance is given by

LMTED(i, j) = D′(i, j)+Γ(iu −→ ju). (1)

Γ(iu −→ ju) denotes the relabel cost computed using the truncated
persistence values of iu and ju. The algorithm computes the
distance in

O(|T1|× |T2|× (deg(T1)+deg(T2))× log2(deg(T1)+deg(T2)))

time in the worst case. The analysis is as described by Zhang [2].

3 SYMMETRY DETECTION

In this section, we provide additional experimental results to
demonstrate the utility of LMTED towards symmetry detection
and provide additional evidence for the claims in Section 6.2.
Finding symmetric structures in scalar fields is a very important
problem [3]–[5]. We use CryoEM data from EMDB [6], which
contains 3D electron microscopy density data of macromolecules,
subcellular structures, and viruses. We first compute the merge
tree, simplify the tree using a small persistence threshold, and
consider all possible subtrees. We also ensure the subtrees are
modified so that they satisfy merge tree properties. Since the
distances are computed in the modified DP for all subproblems,
the distances between these subtrees are already computed and
recorded. The refinement described in Section 5.1 reduces the
number of pairs of subtrees that are compared.

We have chosen two examples – EMDB 1603 (12 Angstrom
resolution cryo-electron microscopy reconstruction of a recom-
binant active ribonucleoprotein particle of influenza virus) to
show how the symmetric regions are found without any matrix
reordering and EMDB 1897 (AMP-Activated Protein Kinase) to
illustrate the case where reordering might be required.

The volume rendering of EMDB 1603 is shown in Figure 4(a)
The modified DP is calculated for the merge tree of EMDB 1603,
which has pairs of subtrees marked based on refinement criteria to
get the distance matrix DM as shown in Figure 4(b). The empty
regions in the DM corresponds to pairs of subtrees which are not
being compared as they are eliminated by the refinement steps
discussed in Section 5.1 of the paper. Consider the submatrices
highlighted, these correspond to set of regions in the data which
are symmetric. For clarity, we have shown the submatrices and the
corresponding set of regions in Figures 5(a), 5(b), 5(c), 5(d). We
can observe that we are able to detect multiple set of symmetric
regions in different scales. Note that the set of regions correspond-
ing to 4×4 submatrix given by 122,125 is detected even though
it belongs to the noisy regions outside the molecule because of
its large size. Since the method prioritizes larger regions, the
submatrix occurs at the bottom right.

A volume rendering of EMDB 1897 is shown in Figure 6(a).
The distance matrix DM is shown in Figure 6(b). We observe
that the symmetric regions do not appear as submatrices. It is
difficult to visually inspect the matrix and detect the submatrices
(unlike EMDB 1654 discussed in Section 6.2 of the paper). Matrix
reordering techniques (leaf-reordering [7]) are applied on the DM
to obtain the matrix shown in Figure 6(c). After reordering, we ob-
serve that the symmetric regions appear together. The highlighted
submatrices correspond to a set of symmetric regions in the data.
For clarity, we have shown the submatrices and the corresponding
set of regions in Figure 7. We observe multiple sets of symmetric
regions at different length scales.
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Algorithm 1: LocalTreeEditDistance (LMTED) [2]
Data: Merge trees T1,T2.
Result: D′(T1[i],T2[ j]) and Dc(T1[i],T2[ j]), where 1 ≤ i ≤ |T1|, 1 ≤ j ≤ |T2|

1 begin
2 Dc(θ ,θ) = 0,D′(θ ,θ) = 0
3 for i = 1 to |T1| do

4 Dc(F1[i],θ) =
ni
∑

k=1
Dc(T1[ik],θ)

5 Dc(T1[i],θ) = Dc(F1[i],θ)+ γ(i −→ λ )

6 D′(F1[i],θ) =
ni
∑

k=1,k ̸=ui

Dc(T1[ik],θ)+D′(T1[iui ],θ)

7 D′(T1[i],θ) = D′(F1[i],θ)+ γ ′(i −→ λ )
8 end
9 for j = 1 to |T2| do

10 Dc(θ ,F2[ j]) =
n j

∑
k=1

Dc(θ ,T2[ jk])

11 Dc(θ ,T2[ j]) = Dc(θ ,T2[ j])+ γ(λ −→ j)

12 D′(θ ,F2[ j]) =
n j

∑
k=1,k ̸=u j

Dc(θ ,T2[ jk])+D′(θ ,T2[ ju j ])

13 D′(θ ,T2[ j]) = D′(θ ,F2[ j])+ γ ′(λ −→ j)
14 end
15 for i = 1 to |T1| do
16 for j = 1 to |T2| do
17

Dc(F1[i],F2[ j]) = min


Dc(θ ,F2[ j])+ min

1≤t≤n j
{Dc(F1[i],F2[ jt ])−Dc(θ ,F2[ jt ])},

Dc(F1[i],θ)+ min
1≤s≤ni

{Dc(F1[is],F2[ j])−Dc(F1[is],θ)},

min
MM(i, j)

γ(MM(i, j)).

18

Dc(T1[i],T2[ j]) = min


D(θ ,T2[ j])+ min

1≤t≤n j
{Dc(T1[i],T2[ jt ])−Dc(θ ,T2[ jt ])},

Dc(T1[i],θ)+ min
1≤s≤ni

{Dc(T1[is],T2[ j])−Dc(T1[is],θ)},

Dc(F1[i],F2[ j])+ γ(i −→ j).

19

minFj = min
{

min
1≤t≤n j ,t ̸=u j

{Dc(F1[i],F2[ jt ])−Dc(θ ,F2[ jt ])},

{D′(F1[i],F2[ ju j ])−D′(θ ,F2[ ju j ])}

20

minFi = min
{

min
1≤s≤ni ,t ̸=ui

{Dc(F1[is],F2[ j])−Dc(F1[is],θ)},

{D′(F1[iui ],F2[ j])−D′(F1[iui ],θ)}

21

minT2 = min
{

min
1≤t≤n j ,t ̸=u j

{Dc(T1[i],T2[ jt ])−Dc(θ ,T2[ jt ])},

{D′(T1[i],T2[ ju j ])−D′(θ ,T2[ ju j ])}

22

minT1 = min
{

min
1≤s≤ni ,t ̸=ui

{Dc(T1[is],T2[ j])−Dc(T1[is],θ)},

{D′(T1[iui ],T2[ j])−D′(T1[iui ],θ)}

23

D′(F1[i],F2[ j]) = min


D′(θ ,F2[ j])+minFj ,

D′(F1[i],θ)+minFi ,

min
M′

r(i, j)
γ ′(M′

r(i, j))

24

D′(T1[i],T2[ j]) = min

{
D′(θ ,T2[ j])+minT2 ,

D′(T1[i],θ)+minT1 ,

D′(F1[i],F2[ j])+ γ ′(i −→ j).

25 end
26 end
27 end
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(a) Volume rendering of EMDB 1603

(b) Distance Matrix DM with highlighted submatrices 1 and 2

Fig. 4. LMTED values in the DM are shown using a blue-red colormap
(0 0.1)

(a) Submatrix 1 (b) Submatrix 2

(c) regions 74 . . .82 and 85 . . .93 (d) regions 113 . . .121 and 122 . . .125

Fig. 5. Regions and the highlighted submatrices. Each of the subma-
trices highlighted in Figure (a) and (b) with the corresponding sets of
symmetric regions (c), (d). In (c) two representative regions are shown
in dark blue and dark green respectively along with regions which are
symmetric to these two colored with lighter shade of blue and green. In
(d) two representative regions are shown in dark green and red respec-
tively along with regions which are symmetric to these two colored with
lighter shade of green and orange.
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(a) Volume rendering of EMDB 1897

(b) Distance Matrix DM

(c) Reordered Distance Matrix DM with highlighted submatri-
ces 1 and 2

Fig. 6. LMTED values in the DM are shown using a blue-red colormap
(0 0.2)

(a) Submatrix 1 (b) Submatrix 2

(c) regions 80 . . .84 (d) regions 82 . . .85

(e) regions 52 . . .72 and 67 . . .68 (f) regions 73 . . .77 and 75 . . .79

Fig. 7. Regions and the highlighted submatrices. Figure (a) and (b) are
zoomed in versions of the submatrices 1 and 2 highlighted in 6(c). Each
of the submatrices highlighted in Figure (a) and (b) with the correspond-
ing sets of symmetric regions (c), (d), (e), (f). In (c), (d) a representative
region is colored in red and the symmetric regions colored in yellow. In
(e), (f) two representative regions are shown in red and blue respectively
along with region symmetric as yellow and grey.


