
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY XXXX 1

Comparative Analysis of Merge Trees using
Local Tree Edit Distance

Raghavendra Sridharamurthy, Student Member, IEEE , and Vijay Natarajan, Member, IEEE

Abstract—Comparative analysis of scalar fields is an important problem with various applications including feature-directed
visualization and feature tracking in time-varying data. Comparing topological structures that are abstract and succinct representations
of the scalar fields lead to faster and meaningful comparison. While there are many distance or similarity measures to compare
topological structures in a global context, there are no known measures for comparing topological structures locally. While the global
measures have many applications, they do not directly lend themselves to fine-grained analysis across multiple scales. We define a
local variant of the tree edit distance and apply it towards local comparative analysis of merge trees with support for finer analysis. We
also present experimental results on time-varying scalar fields, 3D cryo-electron microscopy data, and other synthetic data sets to
show the utility of this approach in applications like symmetry detection and feature tracking.
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1 INTRODUCTION

Comparative analysis and visualization of scalar fields is
an important problem with applications to feature detection
and tracking, symmetry detection in scalar fields, and in
general to the study of time-varying data. Topological struc-
tures like merge trees (Figure 1) provide an abstract and
combinatorial representation of the scalar field. These repre-
sentations enable the analysis methods to focus on topolog-
ical features of interest. A careful study of similarities and
differences between the topology-based representations can
lead to meaningful comparisons of the underlying scalar
fields. Multiple similarity measures (alternatively compar-
ison measures or distance measures) have been proposed
to compare scalar fields and topological structures [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. However,
most of them describe methods to compare these structures
globally. While global comparisons help us address a variety
of interesting problems such as feature tracking, detection
of periodicity in time-varying data, shape comparison, and
temporal summarization, it cannot be used for finer analy-
sis, specifically of the local structure or substructures of the
corresponding topological features. For example, consider
the split trees rooted at i and j in Figures 2(a) and 2(b).
Global comparison measures convey the overall dissimilar-
ity, but do not capture the similarity between the regions
that map to the pairs of subtrees rooted at (i10, j7) , (i8, j6)
and (i7, j5) respectively. This type of fine grained or multi-
scale analysis leads to interesting applications and hence
there is a need for a measure that detects similarity both
locally and across multiple scales.
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1.1 Contributions

In this paper, we propose a local tree edit distance based
method to compare substructures of scalar fields across
multiple scales. The comparison measure is an adaptation
of the global tree edit distance for merge trees (MTED)
introduced by Sridharamurthy et al. [13]. However, it is
substantially different in terms of the definition, properties,
approach to its computation, and applications. This paper
makes the following key contributions:

1) A novel local tree edit distance (LMTED) to compare
substructures in scalar fields.

2) A proof that it satisfies metric properties.
3) A dynamic programming algorithm to compute the

LMTED efficiently.
4) A notion of truncated persistence to compute costs

of matching / correspondences, which brings in the
additional benefit of saving computation time by
reducing the number of comparisons.

5) Experiments to demonstrate the practical value of
the distance towards symmetry detection at multi-
ple scales, analysis of the effects of smoothing and
subsampling, a fine grained analysis of topological
compression, and applications to feature tracking.

The MTED supports only a few of the above-mentioned
applications. Even in these cases, it is restricted to compar-
isons on a coarser level or requires a higher level of user
intervention. Feature tracking is not possible with MTED
without significant modifications.
1.2 Related work

Point-to-point comparisons like RMS distance or norms such
as Lp, 1 ≤ p < ∞ may be used to compare scalar fields. But,
there is no natural notion of hierarchy that can be harnessed.
Further, these measures are sensitive to small perturbations
in the data.

Existing measures that compare topological structures,
and by extension the underlying scalar fields, are global.
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(a) 2D scalar field (b) join tree (c) split tree

Fig. 1. Merge trees. (a) A 2D scalar field together with its critical points
and a set of isocontours. (b,c) A merge tree tracks the connectivity of
sublevel sets (preimage f−1(−∞, c]) or the superlevel sets (preimage
f−1[c,∞)). We consistently use the ( ) color map for the scalar
field and the ( ) color map for representing critical points
based on their Morse index (0: minimum, 1: 1-saddle, 2: 2-saddle, 3:
maximum).

(a) Split tree 1 (b) Split tree 2

Fig. 2. Scalar fields f1 and f2 that are not globally similar but contain
locally similar regions. Split trees are overlaid on top of the scalar fields

They sometimes ignore the hierarchy present in topological
structures such as the contour tree and typically cannot
be used to compare local structures in a meaningful way.
Sridharamurthy et al. [13] summarize previously developed
comparison measures and describe in detail several meth-
ods including the bottleneck distance between persistence
diagrams [1], Interleaving distance [3], distance based on
branch decomposition of merge trees [5], edit distance be-
tween Reeb graphs [2], [10], functional distortion distance
between Reeb graphs [4], and comparing metric graphs
by persistence distortion [8]. Many of these methods are
computationally intractable or they are setup in such a way
that the computation considers the topological structure as
a whole without harnessing the hierarchy present within.

Simple and practical similarity measures that are not
metrics have also been studied. Saikia et al. [7] propose a
measure that compares histograms constructed based on the
merge trees. As in the case of bottleneck distance, this mea-
sure ignores the topological structure during comparison.
The applications do involve local structures but they are
query based. The measure can be computed efficiently and
is useful in practice. Saikia and Weinkauf [11] extend this
measure and demonstrate applications to feature tracking
in time-varying data. The measure is used to track a single
feature (or a collection of features) if the feature is specified
by the user in a query.

Saikia et al. [6] also introduce the extended branch
decomposition graph (eBDG) that describes a hierarchical
representation of all subtrees of a merge tree and designed
an efficient algorithm to compare them. They also present
experimental results on time-varying data. While the rep-
resentation and comparison is based on the hierarchy, they

demonstrate its use in applications by explicitly choosing
or selecting region(s) of interest rather than considering the
collection of all pairs of subtrees.

Scalar fields may also be compared based on their
isosurfaces. Since theoretically, the number of isosurfaces
is infinite, the comparison requires a selection of a finite
number of isosurfaces of interest. Tao et al. [14] extend the
notion of isosurface similarity maps, first conceptualized by
Bruckner and Möller [15], to construct matrices of isosurface
similarity maps (MISM), and use it to explore multivari-
ate time-varying data. This involves construction of self-
similarity maps, temporal similarity maps, and variable
similarity maps followed by temporal clustering and vari-
able grouping. Finally, paths spanning across these maps
are used to guide the visual comparison. The choice of
the isovalues used is crucial but the inclusion hierarchy
followed by isosurfaces is not utilised.

Lukasczyk et al. [16], [17] introduce the concept of nested
tracking graphs to track the entire family of isosurfaces
over time while preserving their nested hierarchy of the
isosurfaces. Features are often represented by isosurfaces,
so the method applies to feature tracking. While the method
does facilitate tracking features in all scales and across time,
it does not support generic comparison between features.

Symmetry detection in scalar fields is another important
application that involves the comparison of local substruc-
tures to decide if the scalar field contains repeating patterns.
The notion of symmetry has been well studied by Thomas
and Natarajan [18], [19], [20]. While the comparison meth-
ods that they describe work well for symmetry detection,
the methods have not been applied to detect local simi-
larities between different scalar fields in general. In other
words, the symmetry detection problem is a special case of
the more general local similarity detection problem.

Sridharamurthy et al. [13] introduce a tree edit distance
between merge trees (MTED). The algorithm to compute the
distance processes the trees in a bottom-up fashion. Com-
puting the global distance involves computing distances
between various pairs of subtrees, which are not necessarily
merge trees. In this work, we show how such a global
tree edit distance can be extended towards a fine-grained
comparison of scalar fields. Specifically, the global MTED
is restricted to cases where only the tree at the top of the
hierarchy is guaranteed to be a merge tree. In contrast, we
facilitate comparison between all pairs of subtrees of merge
trees by ensuring that all comparisons are between trees that
are guaranteed to be merge trees.

2 TREE EDIT OPERATIONS

In this section, we introduce necessary background on edit
operations between rooted trees with a focus on merge trees.

2.1 Merge tree

Let f : X −→ R denote a scalar function defined on
a manifold domain X. A level set is the preimage f−1(c)
of a real value c (Figure 1(a)). The merge tree of f (Fig-
ures 1(b) and 1(c)) tracks the connectivity of sublevel sets
(f−1(−∞, c], join tree) or superlevel sets (f−1[c,∞), split
tree) [21]. The split tree (Figure 3) of a generic scalar function
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is a simple rooted binary tree. Nodes of the split tree include
critical points of f : maxima, saddles, and the global mini-
mum (root). The maxima have 0 children, the saddles have
2 children, and the global minimum has 1 child. All maxima
are paired with saddles based on the notion of topological
persistence [22], except for the global maximum which is
paired with the global minimum. A persistence pair (m, s)
represents a topological feature (connected component of
superlevel set) that is created at a maximum m during
a downward sweep of the domain X and destroyed at a
saddle s. The persistence of such a maximum-saddle pair is
defined as the difference in function value at the two critical
points, pers(m) = pers(s) = f(m) − f(s). The persistence
diagram is a plot of the persistence pairs (f(m), f(s)) on the
plane. The join tree is defined similarly, its nodes consist of
minima, saddles, and the global maximum (root). Several
serial and parallel algorithms are available for fast compu-
tation of merge trees [21], [23], [24], [25].

2.2 Tree edit distance
The distance between a pair of trees may be defined by
introducing edit operations that transform one tree into
another [26]. Each edit operation has an associated cost. The
tree edit distance is defined as the cost associated with a
sequence of edit operations that transforms one tree into
another while minimizing the total cost. We now introduce
the edit operations between labeled trees, following defi-
nitions from Zhang [27]. For a node i in a rooted tree T ,
deg(i) denotes the number of children of i and parent(i) is
its parent in the tree. The maximum degree of a node in T
is denoted as deg(T ). The set of labels of T is denoted by Σ,
and λ /∈ Σ denotes the null or empty character. An empty
tree is denoted by θ. Since we focus on labeled trees, we use
the same notation to refer to the node and its label.

Edit operations. We consider three edit operations that
modify a rooted tree, one node at a time: relabel, insert, and
delete, together with associated costs.

1) relabel: A relabel i −→ j corresponds to an opera-
tion where the label i ∈ Σ of a node is changed to a
label j ∈ Σ.

2) delete: A delete operation i −→ λ removes a node
with label i ∈ Σ and all children of the node i are
made children of parent(i).

3) insert: An insert operation λ −→ j inserts a node
with label j ∈ Σ as a child of another node i by
moving all children of i to children of j.

We define a cost function γ that assigns a non-negative
real number to each edit operation. It is useful if the cost
function γ satisfies metric properties [13].

Edit distance. The distance between two trees T1, T2 is
defined as

De(T1, T2) = min
S

{γ(S)}, (1)

where S is a sequence of edit operations that transforms T1

to T2. Zhang et al. [28] showed that De is equal to the cost of
an ancestor preserving mapping between nodes of T1 and
T2 but computing De is an NP-complete problem.

2.3 Constrained edit distance mappings
Incorporating an additional constraint, namely restricting
the mapping of disjoint subtrees to disjoint subtrees, makes
the problem computationally tractable. This constraint is
clearly meaningful in the context of merge trees because
disjoint subtrees correspond to spatially disjoint regions
in the domain and hence spatially disjoint features. We
now describe a constrained edit distance Dc and the cor-
responding mappings [27]. The recursive definition of Dc

naturally incorporates the constraint. We refer the reader to
the supplementary material for a few illustrative examples.

We use i and j with or without subscripts to denote
both the nodes and their labels in the trees T1 and T2,
respectively. Let i1, i2, . . . , ini

be the children of i and
j1, j2, . . . , jnj

be the children of j. Let T [i] denote the
subtree rooted at i and F [i] denote the unordered forest
obtained by deleting the node i from T [i]. Further, let θ
denote the empty tree. Then,

Dc(θ, θ) = 0, (2)

Dc(F1[i], θ) =
ni∑
k=1

Dc(T1[ik], θ), (3)

Dc(T1[i], θ) = Dc(F1[i], θ) + γ(i −→ λ), (4)

Dc(θ, F2[j]) =

nj∑
k=1

Dc(θ, T2[jk]), (5)

Dc(θ, T2[j]) = Dc(θ, F2[j]) + γ(λ −→ j), (6)

Dc(T1[i], T2[j])

= min


Dc(θ, T2[j]) + min

1≤t≤nj

{Dc(T1[i], T2[jt]) − Dc(θ, T2[jt])},

Dc(T1[i], θ) + min
1≤s≤ni

{Dc(T1[is], T2[j]) − Dc(T1[is], θ)},

Dc(F1[i], F2[j]) + γ(i −→ j).

(7)

Dc(F1[i], F2[j])

= min


Dc(θ, F2[j]) + min

1≤t≤nj

{Dc(F1[i], F2[jt]) − Dc(θ, F2[jt])},

Dc(F1[i], θ) + min
1≤s≤ni

{Dc(F1[is], F2[j]) − Dc(F1[is], θ)},

min
Mr(i,j)

γ(Mr(i, j)).

(8)

Here, Mr(i, j) is the restricted edit distance mapping be-
tween F1[i] and F2[j]. Nodes within different trees of F1 are
mapped to nodes lying in different trees of F2. Essentially,
if Mr maps node i1 to j1 and node i2 to j2, then i1 and
i2 belong to a common tree in F1[i] if and only if j1 and
j2 belong to a common tree in F2[j]. The minimum cost
restricted mapping may be computed by constructing a
weighted bipartite graph (Figure 4) in such a way that the
cost of the minimum weight maximum matching MM(i, j)
is exactly the same as the cost of the minimum restricted
mapping Mr(i, j),

min
Mr(i,j)

γ(Mr(i, j)) = min
MM(i,j)

γ(MM(i, j)) (9)

2.4 MTED between merge trees
The constrained tree edit distance (MTED) between two
merge trees T1, T2 is defined as the constrained edit distance

MTED(T1, T2) = Dc(T1, T2) (10)
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(a) Split tree 1 (b) Split tree 2

Fig. 3. Split trees corresponding to the scalar fields shown in Figure 2.
One persistence pair is shown within each split tree (orange link). When
comparing subtrees T1[i8] or T2[j5], nodes i5 and j4 are unpaired. So,
dummy nodes i′10 and j′7 are inserted with |f1(i10) − f1(i′10)| < ε and
|f2(j7)−f2(j′7)| < ε to serve as root and as a pair of the unpaired node.

where the cost of edit operations is governed by one of
the two cost models (the L∞ cost CW or overhang cost
CO) introduced by Sridharamurthy et al. [13] instead of the
generic cost model defined by Zhang [27].

Both the L∞ cost CW and the overhang cost CO, are
intuitive and incorporate properties of merge trees. For the
sake of illustration, we describe CW here and refer to [13,
Section 4.2.2] for the definition of CO.

Consider nodes p ∈ T1 and q ∈ T2. Both p and q appear
as points (bp, dp) and (bq, dq) in the respective persistence
diagrams. Here, bp represents the lower of the function
values between p and its persistence pair, also referred to
as the birth time of the topological feature. Similarly, dp
represents the higher value, also referred as the death time.
The CW cost of edit operations are defined as

γ(p −→ q) = min

{
max(|bq − bp|, |dq − dp|),
(|dp−bp|+|dq−bq|)

2

(11)

γ(p −→ λ) =
|dp − bp|

2
(12)

γ(λ −→ q) =
|dq − bq|

2
(13)

The constrained edit distance Dc with the CW cost model
can be used to compute MTED using a dynamic program-
ming algorithm.

3 LOCAL TREE EDIT DISTANCE

We introduce a local version of Dc, a local tree edit distance
(LMTED) between merge trees. We begin with a few neces-
sary definitions. For illustration, we consider the split trees
in Figure 3. These trees correspond to the scalar fields in
Figure 2.

3.1 Truncated persistence

The cost of edit operations in MTED [13] is based on the
topological persistence of the node(s). Specifically, their L∞

cost CW is the L∞ distance between the point pair in
the persistence diagram corresponding to the two nodes
(relabel) or the distance between the point in the persistence
diagram and the diagonal (insert / delete). While comparing

subtrees such as T2[j5] (Figure 3(b)), a node j4 whose persis-
tence pair is the global root j contributes a large value to the
edit distance. Using the same cost for j4 while comparing all
subtrees containing the node may not be appropriate. For
example, subtrees T2[j5] and T2[j] map to two regions in
the domain that are vastly different in size. To alleviate this
inconsistency, we introduce the notion of dummy nodes and
truncated persistence. While comparing the subtree T2[j5]
with other subtrees, we insert a dummy node j′7 that serves
as a root of the subtree T2[j5] and as the pair of j4. The
function value at the dummy node differs from the parent
of j5 at most by a small value ε.

An unpaired node in a subtree corresponds to a leaf
whose persistence pair is outside the subtree. We use iu and
ju to denote unpaired nodes in T1[i] and T2[j], respectively.
Dummy nodes corresponding to T1[i] and T2[j] are denoted
by i′ and j′. For an unpaired node iu ∈ T1[i] and a truncated
root that is represented by a dummy node i′, we define
truncated persistence as

tpi′(iu) = |f1(iu)− f1(i
′)|. (14)

Note that a leaf node will be unpaired in some subtree and,
in some cases, it can be unpaired in multiple subtrees (for
example, j4). The subscript i′ in the definition specifies the
subtree under consideration.

3.2 Truncated cost
The cost of the edit operations need to be updated based on
the truncated persistence for unpaired nodes iu and ju. Let
γ denote the original cost of an edit operation derived from
the L∞ cost CW used in MTED. We define a new truncated
cost γ′ as

γ′(i −→ j) =


γ(i −→ λ), i ̸= iu, j = ju|λ,
γ(λ −→ j), i = iu|λ, j ̸= ju,

γ(i −→ j), i ̸= iu, j ̸= ju,

0, i = iu|λ, j = ju|λ,

(15)

3.3 LMTED between merge trees
We now describe a new local tree edit distance that is
appropriate for localized comparison of merge trees, discuss
its properties, and present an algorithm for computing the
distance. The local tree edit distance (LMTED) for a pair of
trees rooted at i and j is denoted LMTED(i, j) and defined
as follows:

LMTED(i, j) = D′(i, j) + Γ(iu −→ ju). (16)

Here, Γ(iu −→ ju) denotes the relabel cost computed using
the truncated persistence values of iu and ju. D′(i, j) is the
modified edit distance between the two trees that excludes
the cost between the unpaired nodes from each tree.

We now describe the recursive formulation of D′(i, j).
The key difference between LMTED and MTED is the way in
which unpaired nodes are handled. The original formula-
tion (as for Dc) applies as is for the paired nodes, not for
the unpaired nodes. The unpaired node changes depending
on the level of the subtree, as we move from the leaves
towards the root of the merge tree. As we traverse a merge
tree bottom-up considering all possible subtrees, a node can
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Fig. 4. Illustrating LMTED. To compute LMTED between subtrees rooted
at i and j, we treat the subtrees containing the unpaired nodes iu, ju,
labeled as iui , juj and highlighted in orange, differently. For other
nodes, the formulation is same as MTED. For iu, ju, we use truncated
persistence to determine the costs. In the matching required to compute
M ′

r(i, j), we consider truncated persistence to determine the weights
of all edges incident on iui , juj (highlighted in orange). s and t are the
source and destination nodes of the flow problem that is equivalent to
the matching problem to determine M ′

r(i, j). The cardinalities of the two
sides are made equal by inserting a set of nj dummy nodes adjacent to
s and ni dummy nodes adjacent to t.

be unpaired until we reach the level containing its pair,
following which it remains paired until the end. When the
node is unpaired, at every level its contribution changes.
We account for the contribution from the unpaired node to
D′(i, j) in a final step and so we are able to retain a recursive
formulation. Once the node is paired, its contribution (equal
to its persistence) does not change further. This demands a
new recursive formulation which can handle both the sce-
narios. The new formulation D′ will thus be a modification
of Dc.

From Figure 4 and using similar terminology as before,
let i1, i2, . . . , ini

be the children of i and j1, j2, . . . , jnj
be

the children of j. Let T1[i] denote the subtree rooted at i and
F1[i] denote the unordered forest obtained by deleting the
node i from T1[i]. Again, iu and ju are unpaired nodes in
T1[i] and T2[j], respectively. Let iui

be the child lying on the
path between i and iu in T1[i] and juj

be the child lying on
the path between j and ju in T2[j].

Recall that θ denotes the empty tree and Dc(, ) denotes
MTED. Then D′ is recursively defined as follows:

D′(θ, θ) = 0, (17)

D′(F1[i], θ) =
ni∑

k=1,k ̸=ui

Dc(T1[ik], θ) +D′(T1[iui
], θ), (18)

D′(T1[i], θ) = D′(F1[i], θ) + γ′(i −→ λ), (19)

D′(θ, F2[j]) =

nj∑
k=1,k ̸=uj

Dc(θ, T2[jk]) +D′(θ, T2[juj ]),

(20)
D′(θ, T2[j]) = D′(θ, F2[j]) + γ′(λ −→ j), (21)

minT2
= min

 min
1≤t≤nj ,t̸=uj

{Dc(T1[i], T2[jt])−Dc(θ, T2[jt])},

{D′(T1[i], T2[juj
])−D′(θ, T2[juj

])}

minT1
= min

 min
1≤s≤ni,t̸=ui

{Dc(T1[is], T2[j])−Dc(T1[is], θ)},

{D′(T1[iui ], T2[j])−D′(T1[iui ], θ)}

minFj
= min

 min
1≤t≤nj ,t̸=uj

{Dc(F1[i], F2[jt])−Dc(θ, F2[jt])},

{D′(F1[i], F2[juj
])−D′(θ, F2[juj

])}

minFi
= min

 min
1≤s≤ni,t̸=ui

{Dc(F1[is], F2[j])−Dc(F1[is], θ)},

{D′(F1[iui ], F2[j])−D′(F1[iui ], θ)}

D′(T1[i], T2[j]) = min


D′(θ, T2[j]) +minT2

,

D′(T1[i], θ) +minT1
,

D′(F1[i], F2[j]) + γ′(i −→ j).
(22)

D′(F1[i], F2[j]) = min


D′(θ, F2[j]) +minFj ,

D′(F1[i], θ) +minFi ,

min
M ′

r(i,j)
γ′(M ′

r(i, j)).
(23)

All terms that involve subtrees containing the unpaired
node (orange) are updated to incorporate D′, whereas the
constrained edit distance Dc appears elsewhere. The bipar-
tite graph formulation that is used to compute the minimum
cost restricted mapping between forests is also updated to
incorporate D′ and is now denoted as M ′

r(i, j) (Figure 4,
bottom).

3.4 Cost model and properties
We can employ either of the costs, the L∞ cost CW or
the overhang cost CO introduced for the MTED [13, Section
4.2]. Both costs are proven to be metrics. If they remain so
even with the newly introduced cost based on the truncated
persistence, then by Zhang [27] the LMTED satisfies metric
properties. The proofs of non-negativity and symmetry is
straightforward because γ′ together with Γ is defined in
terms of γ, which in turn satisfies both properties because it
is a combination of sum, max, and min of absolute values.

We now prove the triangle inequality for γ′ together
with Γ. Let T1[i], T2[j], and T3[k] be three subtrees with un-
paired nodes iu, ju, ku. We insert dummy nodes i′, j′, k′ and
construct trees T1[i

′], T2[j
′], and T3[k

′]. The truncated per-
sistence values tpi′(iu), tpj′(ju), tpk′(ku) in subtrees T1[i],
T2[j], T3[k] are respectively equal to the regular persistence
values within trees T1[i

′], T2[j
′], T3[k

′]. For a given triple
i1 ∈ T1[i], j1 ∈ T2[j], k1 ∈ T3[k], we will show that triangle
inequality holds by considering different cases.
Case 1: Nodes i1, j1, k1 are all unpaired or are all paired.
When all the nodes i1, j1, k1 are paired, γ′ = γ and hence
triangle inequality holds. If all are unpaired, γ′(i1 −→ j1) =
γ′(j1 −→ k1) = γ′(i1 −→ k1) = 0. Further, Γ(i1 −→ j1),
Γ(j1 −→ k1) and Γ(i1 −→ k1) are equal to relabel costs
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(γ) for the trees T1[i
′], T2[j

′] and T3[k
′] and hence triangle

inequality holds [13, Section 4.3].
Case 2: Two nodes are unpaired. The case where i1 and
k1 are unpaired while j1 is paired is impossible because of
the constraint that unpaired nodes are mapped to unpaired
nodes and the operation is forced to be a relabel.
Case 2.1: i1 and j1 are unpaired. Then the LHS

γ′(i1 −→ j1) + γ′(j1 −→ k1) + Γ(i1 −→ j1) (24)
= 0 + γ(λ −→ k1) + Γ(i1 −→ j1) (25)

= γ(λ −→ k1) + Γ(i1 −→ j1), (26)

and the RHS

γ′(i1 −→ k1) = γ(λ −→ k1). (27)

Since Γ(i1 −→ j1) ≥ 0 always, we have LHS ≥ RHS.
Case 2.2: j1 and k1 are unpaired, then the LHS

γ′(i1 −→ j1) + γ′(j1 −→ k1) + Γ(j1 −→ k1) (28)
= γ(ii −→ λ) + 0 + Γ(j1 −→ k1) (29)

= γ(ii −→ λ) + Γ(j1 −→ k1), (30)

and the RHS

γ′(i1 −→ k1) = γ(i1 −→ λ). (31)

Since Γ(j1 −→ k1) ≥ 0 always, we again have LHS ≥ RHS.
Case 3: A single node is unpaired. This is impossible be-
cause of the constraint that unpaired nodes are mapped only
to unpaired nodes via a relabel edit operation.
In all cases, the truncated cost γ′ together with Γ satisfies
the triangle inequality. So, it follows from Zhang [27] that
LMTED is indeed a metric.

4 COMPUTING LMTED

We propose a modified dynamic programming based al-
gorithm for computing LMTED between merge trees. The
use of truncated persistence as cost of the edit operations
implies that LMTED can be computed using solutions to non-
overlapping sub-problems for computing Dc. However, the
dynamic programming formulation needs to be modified
because D′ recursively depends both on D′ and Dc.

4.1 Dynamic Programming tables
Consider the subtrees T [i10] and T [i8] in Figure 3. The
node i5 is unpaired. Within the subtree T [i8], node i5 has
truncated persistence tpi′8(i5). But, its truncated persistence
is equal tpi′10(i5) when considering the subtree T [i10]. Dy-
namic programming works by storing the results of sub-
problems within a table so that it can be reused. Entries
corresponding to both (in general, more than two) values of
truncated persistence are required for the computation.

Consider a subtree T [i] with an unpaired node iu and the
path from iu to the global root r as shown in Figure 5. Let iv
be the pair of iu, clearly iv ∈ ancestor(i). While processing
the unpaired node iu, we need to distinguish between two
cases:

O: The contribution of iu is measured by persistence as
defined in the usual sense.

M: Contribution of iu is measured by an appropriate
instance of truncated persistence.

Fig. 5. Illustration of Cases O and M. The portion of the path colored in
red corresponds to case M while the portion of the path colored in green
corresponds to case O.

Case O corresponds to all subtrees rooted at ia ∈
ancestor(i), where iv ≤ ia ≤ r in the directed path
highlighted in green in Figure 5. Case M corresponds to
trees rooted at ia such that iu ≤ ia < iv , which also includes
i as highlighted in red in Figure 5.

We wish to design an algorithm that makes a single
pass over the two input merge trees and computes LMTED
between all pairs of subtrees. In order to achieve this objec-
tive, we propose a modified dynamic programming method
that uses two tables. One table stores the values of Dc for
sub-problems, as defined and proposed for MTED [27]. We
introduce a second table that stores D′, partial solutions to
the modified edit distance for sub-problems. Figure 6 and
Figure 7 show the dynamic programming table correspond-
ing to Dc and D′, respectively. Entries in the second table
D′ are defined as follows:

1) To compute the entry (i, j), we need first populate
the entries for the subtrees of T1[i] and T2[j]. Say,
we need to compute the entry at (ik, jl), where
ik ∈ T1[i], jl ∈ T2[j]. If the subtrees rooted at ik and
jl do not contain the unpaired nodes iu and ju, i.e.,
iu /∈ T1[ik] and ju /∈ T2[jl], then we pick the corre-
sponding entry from Dc, namely Dc(T1[ik], T2[jl]).
Figure 8 and Figure 9 shows the entries required to
compute the entry (i, j) in both tables.

2) If the subtrees rooted at ik and jl contain the un-
paired nodes, we refer to the modified table D′,
whose entries are computed using truncated persis-
tence.

Figure 6 shows the original table used to compute Dc.
It does contain entries corresponding to different pairs of
subtrees, but only the global entry (i, j) corresponds to a
distance between two merge trees. Other local comparisons
involve subtrees that are not merge trees. Figure 7 is the
modified table storing values of D′. Figures 8 and 9 show
the difference between the original and modified tables,
and the entries that are required to calculate Dc(i10, j7)
and D′(i10, j7). The labels correspond to the merge trees
from Figure 3. We denote tree distance entries by dc(, ) and
d′(, ), and forest entries by fc(, ) and f ′(, ). The node i5
is unpaired in T1[i10] and j4 is unpaired in T2[j7]. In case
of Dc, there is no distinction between paired and unpaired
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Fig. 6. Dynamic programming table for Dc. The only useful entry in this
table is the one corresponding to (i, j). Other entries do not represent
a meaningful distance because the subtrees compared to compute the
entries are not merge trees. Entries in the row and column labeled −1
correspond to comparison with the empty tree θ.

Fig. 7. The modified DP table corresponding to D′, which is used to
compute LMTED. This table contains an additional row and column when
compared to the table for Dc. This additional row and column stores
the truncated persistence values for the unpaired nodes corresponding
to the current level. Entries in this table represent valid (and useful)
distance between merge trees, which are subtrees of the trees rooted at
i and j, respectively.

nodes. So, Dc(i10, j7) depends only on the following entries
of the original table – dc(i10,−1), dc(−1, j7), dc(i7, j7),
dc(i8, j7), dc(i10, j5), dc(i10, j6), and fc(i10, j7). In case of
D′, for all subtrees involving unpaired nodes (T1[i8], T2[j5]),
the corresponding entries are read from the modified table,
while the remaining entries are read from the table for
Dc. So, the required entries include d′(i10,−1), d′(−1, j7),
dc(i7, j7), d′(i8, j7), d′(i10, j5), dc(i10, j6), and f ′(i10, j7).
Further, the entries in the additional row and column are
also required. They contain the truncated persistence values
for the unpaired nodes corresponding to the current level.

4.2 Algorithm and Analysis
Zhang described an algorithm for computing the tree edit
distance for labeled unordered trees [27]. It is a dynamic pro-
gramming based algorithm that follows from the properties
discussed in Section 2.3. We adapt this dynamic program-
ming based method for computing LMTED but compute
and maintain two tables Dc and D′ simultaneously. The
algorithms fills entries in both tables Dc and D′ iteratively.
An entry within a table is computed and filled if entries
corresponding to all sub-problems are already filled in
previously. This implicitly corresponds to traversing the
two input trees in a bottom up fashion in tandem. After

Fig. 8. Entries required to calculate Dc(i, j) ( ) and D′(i, j) ( ) in the
table for Dc. The required entry is denoted by a green square.The lower
triangle entries correspond to forests and upper triangle entries to trees.

Fig. 9. Entries required to calculate D′(i, j) ( ) in the modified table. The
required entry is denoted by a green square.The lower triangle entries
correspond to forests and upper triangle entries to trees.

both tables are filled, LMTED is computed for all pairs of
subtrees following the definition i.e., as a sum of D′ and Γ.
In the worst case, the algorithm computes LMTED between
all pairs of subtrees in O(|T1|× |T2|× (deg(T1)+deg(T2))×
log2(deg(T1)+ deg(T2))) time, similar to MTED. Section 2 of
the supplementary material describes the LMTED algorithm
in detail with pseudocode. In practice, the computation is
restricted to a much smaller set of entries that need to
be filled within both tables. This restricted set of entries
is identified in a preprocessing step as described in the
following section. Also, note that the time is amortized over
all pairs of subtrees.

5 REFINEMENT AND OPTIMIZATION

Given two merge trees, we observe that in many applica-
tions it is unnecessary to compute LMTED between all pairs
of subtrees. This section describes refinements that reduces
the number of pairs of subtrees that are considered for
LMTED computation. This optimization leads to faster com-
putation times. This step may be skipped if it is necessary to
compare all pairs of subtrees. We also describe a refinement
that ensures that all subtrees considered for comparison are
merge trees.

5.1 Ordering subtrees
The dynamic programming algorithm works for any order-
ing of nodes. The entries required to compute the distance
between a pair of subtrees are computed if they are not
already available from the table. However, we choose to
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order the nodes by assigning a priority based on the size
of the subtree rooted at the node and on the number of grid
points in the domain mapped to the subtree (i.e., volume
of the corresponding region in the domain). This ordering
facilitates easy identification of similar regions via visual
inspection of the distance matrix because subtrees of similar
size appear in the close vicinity of one another within the
matrix.

5.2 Comparison refinement

Since LMTED is computed between all pairs of subtrees of
the two input trees, the number of comparisons is deter-
mined by the size of the two trees. In general, the scalar
fields to be compared are unrelated, defined on different do-
mains, and have different ranges. So, comparing all pairs of
subtrees is necessary and unavoidable. However, in several
applications, it is not necessary or meaningful to compare
all pairs of subtrees. We describe two such scenarios to
motivate a refinement step that reduces the number of
comparisons.

1) Symmetry detection: The scalar field is compared
with itself. So, we can discard comparisons between
subtrees with vastly different sizes (for example,
T1[i4] and T1[i10] in Figure 3) or a subtree that is
contained within another subtree (like T1[i11] and
T1[i8]).

2) Time-varying data analysis: While analyzing a
time-varying scalar field, assuming a fine enough
temporal resolution, we may discard comparisons
between subtrees with vastly different sizes. We
may also discard comparisons between subtrees that
map to regions in the domain with significantly
different sizes (area / volume).

We define a set of criteria used to direct the refinement.
Each criterion is a ratio between measures or a statistic
computed for a subtree. Let T1, T2 be the two input merge
trees with nodes {i1, i2, . . . , ini

} and {j1, j2, . . . , jnj
}, and

roots r1 and r2, respectively. Consider a subtree T1[ik] and
the mapping to its associated region in the domain. This
region is a connected component of the preimage of the
range of scalar values corresponding to T1[ik]. Assuming
that the scalar function is defined over a 3D domain, the
volume of this region may be approximated by counting the
number of sample points (vertices or grid points, depending
on whether the domain is represented using a tetrahedral
mesh or a cube grid). The aggregate persistence Pik of
the subtree is computed as the sum of persistence of all
persistence pairs contained within the subtree. Given a pair
of subtrees T1[ik] and T2[jl], we use the ratio between

1) number of nodes in the subtrees |T1[ik]| / |T2[jl]|,
2) volume (or area) of the domain that maps to the two

subtrees, and
3) aggregate persistence of the subtrees Pik/Pjl

to determine the refinement. Thresholds for the ratios are
determined empirically. For each criterion, we plot the
number of pairs of subtrees against increasing values of the
ratio, identify the value of the ratio corresponding to a sharp
decline or the ’knee’ of the curve, and choose this value of

Fig. 10. Understanding LMTED. Columns of the distance matrix (DM)
represent subtrees rooted at nodes of merge tree T1, rows represent
subtrees rooted at nodes of tree T2. Nodes are ordered as per the
priority described in Section 5.1. LMTED values are shown using a blue-
red colormap (0 0.1) .

the ratio as threshold. If the plot does not exhibit a clear knee
then we set the threshold to 0.5. Further, if T1 = T2 then
we discard all comparisons between T1[ik] and all subtrees
contained within T1[ik].

5.3 Subtree refinement
Next, we preprocess the input to ensure that we compare
only those subtrees that are merge trees.

The subtrees that constitute the sub-problems in the
dynamic programming algorithm for MTED [13] are not
necessarily merge trees. Consider the scenario in Figure 3.
While trees T1[i] and T2[j] rooted at i and j are merge trees,
T1[i8] and T2[j5] are not merge trees as they contain un-
paired nodes, namely i5 and j4. The entry Dc(i8, j5) in the
DP table (Figure 6) contains a value that is used to computed
the MTED between T1[i] and T2[j]. But, it is not a meaningful
distance between subtrees T1[i8] and T2[j5] because the cost
model used for operations related to unpaired nodes i5, j4
depends on their original persistence. From Figure 2, it is
clear that the regions associated to the two subtrees are
similar to each other but the value of Dc(i8, j5) does not
reflect this similarity.

We insert a dummy node i′10 in T1[i8] with |f1(i′10) −
f1(i10)| < ε for a small ε > 0. In subsequent computations,
we consider T1[i

′
10] as the merge tree corresponding to the

subtree T1[i8]. Similarly, T2[j5] contains the unpaired node
j4. We insert a dummy node j′7 and consider T2[j

′
7] as

the merge tree corresponding to T2[j5]. This conversion is
consistent with the mapping between subtrees and regions
of the domain and hence results in meaningful distances.

6 APPLICATIONS

In this section, we demonstrate the utility of LMTED in
applications like symmetry detection, feature tracking, and
spatio-temporal exploration of scientific data. We also de-
scribe results of a comprehensive analysis of the effects
of subsampling, smoothing, and topologically controlled
compression. In all cases where a global comparison is
meaningful, results based on MTED [13] are taken as a
baseline.

6.1 Understanding the local tree edit distance
We begin with a simple study to understand LMTED, by
comparing two scalar fields shown in Figures 2, whose split
trees are shown in Figure 3. Figure 10 shows the distance
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(a) Volume rendering of the Rubisco RbcL8-RbcX2-8
complex(EMDB-1654)

(b) Distance Matrix (DM)

Fig. 11. LMTED values in the DM are shown using a blue-red colormap
(0 0.1) .

matrix (DM), entries corresponding to subtree pairs that are
discarded during the refinement step are blank. We observe
two blue blocks of size 4×6 and 2×3 in the DM, confirming
that there are two sets of similar regions and the pair
of similar subtrees T1[i10], T2[j7]. Note that the distances
between these similar regions are very small ≤ 0.000093
in contrast to the larger value of MTED (= 0.33) between the
two trees. Such instances of local similarity without global
similarity is common in scientific data. Further, LMTED also
captures similarity at different scales.

6.2 Symmetry Detection

Finding symmetric structures in scalar fields is a challenging
problem [18], [19], [20]). The MTED driven approach [13]
extracts a particular set of high persistent subtrees that
are known to be symmetric and compares them to verify
symmetry. We take a different approach where we detect
symmetry directly based on local similarity by comparing

the scalar field with itself. We use CryoEM data from
EMDB [29], which contains 3D electron microscopy density
data of macromolecules, subcellular structures, and viruses.
We first compute the simplified merge tree (using a small
persistence threshold < 1%) and consider pairs of subtrees
after refinements described in Section 5.

We illustrate and analyse the results using the Ru-
bisco RbcL8-RbcX2-8 complex (EMDB-1654) shown in Fig-
ure 11(a). We compute LMTED between all pairs of subtrees
of its merge tree after the refinement step. The resulting
DM is shown in Figure 11(b). Blank regions correspond to
subtree pairs that are discarded during the refinement step.
Submatrices highlighted in black correspond to regions in
the data that are symmetric. For clarity, we have shown
these submatrices together with the corresponding regions
in Figures 12, 13. We observe that LMTED detects symmetric
regions at different scales.

Any selection of submatrices from Figure 11(b) with a
common color corresponds to a set of symmetric regions,
we highlight some of them. In some cases matrix entries
corresponding to symmetric regions may not appear adja-
cent to each other as a submatrix. But, it may be possible to
visually identify the entries as belonging to a single cluster.
A row/column reordering helps the identification of these
clusters, see Behrisch et al. [30] for details. The reordering
may be restricted to a chosen submatrix to save computation
time. We describe a few additional experimental results
together with row/column reordering in the supplementary
material.

Comparison with previous methods. Thomas and Natara-
jan [18] process the branch decomposition of contour trees
by building feature descriptors, and use them to identify
similar subtrees. The main limitation of this approach to
symmetry detection is that it is based exclusively on the
structure and may fail when symmetric regions do not man-
ifest as repeating subtrees. For example, if the field is noisy,
subtrees corresponding to noise have high persistence, or
when the field has large flat regions. Their proposed hierar-
chy descriptor and similarity measure is a good estimate but
not as accurate as examining the complete hierarchy. It also
ignores the geometry of repeating regions leading to regions
with different geometry grouped together and regions with
similar geometry grouped differently. We use grid points
mapped to subtrees, as an easy-to-compute substitute for
geometric information. This also helps us to find symmetry
in multiple scales. We use merge trees instead of contour
trees and avoid computation of extremum graphs, geodesic
distances, or contour shape descriptors in contrast to previ-
ous methods [19], [20]. LMTED computation is costly com-
pared to the hierarchy descriptor based comparison [18].
We observe results similar to previous methods based on
explicit geometric shape descriptors [20], but a theoretical
guarantee requires further study.

6.3 Analysis of subsampling, smoothing, and topology
based compression

We analyse the effects of subsampling, smoothing and
topology based compression [31]. While subsampling and
smoothing is applied uniformly across the domain, the
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(a) DM 124 (b) DM 97

(c) volume 97 (d) volume 124 (e) volume 129

(f) volume 139 (g) volume 143

Fig. 12. Highlighted submatrices from Figure 11 and corresponding
regions. (d)-(g) Regions corresponding to submatrices highlighted in (a).
(c) Region corresponding to submatrix shown in (b)

(a) DM 10 (b) volume 10 (c) DM 18 (d) volume 18

(e) DM 22 (f) volume 22 (g) DM 44 (h) volume 44

(i) DM 56 (j) volume 56 (k) DM 77 (l) volume 77

Fig. 13. Smaller regions of the Rubisco RbcL8-RbcX2-8 complex
(EMDB-1654) corresponding to the highlighted submatrices.

(a) scalar function f2 (b) subsampled f2 (c) smoothened f2

(d) DM for f2, original and sub-
sampled

(e) DM for f2, original and
smoothened

Fig. 14. Measuring the effect of subsampling and smoothing (Images
sourced from Figure 14 from [13, Section 5.4]). (a) A synthetic function
f2 sampled over a 300× 300 grid. (b) f2 subsampled down to a 30× 30
grid over 9 iterations. (c) f2 smoothed in 9 iterations. (d) DM showing
distance between all pairs of subsampled datasets. (e) DMs showing
distances between all pairs of smoothed functions. Row and column
indices correspond to the iteration number, 1 corresponds to the lowest
resolution/extreme smoothing, 10 corresponds to the original. We again
use a blue-red colormap (low high). The scales on colormaps
for (d) and (e) are different

effects of compression vary in different parts of the domain.
We showcase how LMTED can be used to analyse these
effects meaningfully.

Effects of subsampling and smoothing. Topology changes
due to subsampling and smoothing are not thoroughly
quantified. While previous work does present some analysis
based on the MTED, it is global and not capable of providing
fine-grained analysis or explain the non-monotonic varia-
tion in many cases. We present a fine-grained analysis using
LMTED on a scalar field denoted as f2 [13, Section 5.4] and
we use the images of the scalar fields and the DMs from [13,
Figure 14] in Figure 14 to illustrate the benefits.

The non-monotonic variation of the distance along a row
/ column can be due to multiple factors. While the subsam-
pling and smoothing affects the number of critical points,
and therefore affects the distance, it is not the only deciding
factor. The distance is also affected by (a) type of critical
points inserted / removed, (b) their function values, and
(c) changes in persistence and pairing. We construct the DMs
of the MTED and LMTED for the subsampled functions. To
highlight the utility of LMTED, we pick the non-monotonic
entries indexed (3, 4), (3, 5), (3, 6) from Figure 14(d). The
trees are |T3| = 62, |T4| = 66, |T5| = 62, |T6| = 66. We
observe that |T3| = |T5| but Dc(T3, T5) > Dc(T3, T4) and
Dc(T3, T5) > Dc(T3, T6) even though |T3| ≠ |T4|, |T3| ≠
|T6|. Thus, size cannot explain the non-monotonicity. Also,
we notice that T3 and T5 are structurally similar, all edits are
relabels and there is negligible difference in the function val-
ues of the critical points too. The DMs (Figures 15(a),15(b))
show small changes in the pattern, but the values are similar.
The bottom-right portions of the DMs along with the values
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(a) LMTED DM for subtree pair
(T3, T4), size 62× 66

(b) LMTED DM for subtree pair
(T3, T5), size 62× 62

(c) Zoomed DM for (T3, T4) (d) Zoomed DM for
(T3, T5)

Fig. 15. Measuring the effect of subsampling using LMTED. We use a
blue-red colormap for the distances (0 0.1). Entries that are
discarded due to the refinement are marked with 1.000.

are shown in Figures 15(c), and 15(d). The diagonal entries
in left portion of Figure 15(c) related to (3, 4) shows a
gradual increase, while in case of Figure 15(d) related to
(3, 5) we observe an upward spike in the last entry. The cor-
responding entries for MTED in both cases change gradually,
even though for (3, 5) the increase is higher. LMTED uses
truncated persistence for all subtrees and effect of change in
persistence pairings is seen only in the global comparison,
causing a jump. So, the change in distance means that the
subsampling has caused a change in persistence pairing
when we go from resolution 4 to 5 and 5 to 6 but no such
change when we go from 3 to 4. Observation of the pairings
confirms this. We also saw that the pairing changes in 4 to 5
was reversed from 5 to 6, thus resulting in a lower value in
the entry (3, 6).

Fine-grained analysing using LMTED. LMTED can be used
in conjunction with MTED to quantify the changes caused by
subsampling (or smoothing). This is achieved by computing
MTED across all resolutions and checking if the variation is
monotonic. If yes, then the subsampling is likely to have
caused changes only in terms of (a) the number of critical
points, (b) the function values of the critical points, and
(c) persistence of critical points. If the variation is non-
monotonic with a jump in the last entries of corresponding
LMTED, then irrespective of other factors, there are changes
in persistence pairing resulting in changed matching costs
and large changes in distance. Due to the use of truncated
persistence in LMTED, we can detect such changes as jumps
in distances. While both MTED and LMTED may be unstable,
we observe in practice that they are more discriminative
than bottleneck and Wasserstein distances.

Effect of topologically controlled lossy compression. Soler
et al. [31] describe a method to compress scalar fields that

Fig. 16. Topological effects of compression. Yellow stars in the DM
for the subtree pair T0.5, T1 correspond to regions that remain un-
changed. Distances in the DM are shown using a blue-red colormap
(0 0.4).

guarantees topology preservation. The method ensures that
the bottleneck distance between the persistence diagrams
of the compressed and uncompressed field is less than a
user specified threshold. Naturally, the method does not
consider spatial or hierarchical structure since it is restricted
to the persistence diagrams. We present here a fine-grained
analysis of the effects of compression using LMTED. Soler
et al. employ a topological compression followed by zfp.
In our experiments, we use only the former. We begin by
computing merge trees for both the compressed (Tc) and
uncompressed data (Tu). Since the two scalar fields are de-
fined over a common domain, we select pairs of subtrees of
Tc and Tu that correspond to the same region in the domain
and order them based on region size. We compute LMTED
between these subtree pairs and note that as we move up
the tree hierarchy, the distance remains 0.0 for some pairs.
The largest among the pairs represent regions that remain
unchanged post compression. Other LMTED values follow
a staircase pattern, staying level for a few pairs followed
by a jump in value. The jump indicates that compression
has caused a change in the corresponding subtree. Thus we
may identify and isolate regions where compression has no
effect in terms of the function value followed by regions
that are affected, and traversing the hierarchy of the merge
tree lends itself to a multi-scale analysis of the effects of
topological compression.

We show results of our analysis applied on AMP-
Activated Protein Kinase (EMDB-1897). We apply
topological compression using compression thresholds
0.5%, 1%, 2%, and compute merge trees T0.5, T1, T2 using
TTK [32]. To reduce the tree sizes in the experiment,
we consider T0.5 as the baseline uncompressed data. We
choose regions with 100% overlap and compute LMTED. In
Figure 17, we highlight region(s) that remain unchanged
for various thresholds of compression at multiple scales
together with a region that is affected due to compression.
Figure 16 shows the DM for the subtree pair T0.5, T1,
highlighting unchanged regions by a yellow star. We notice
that 19 regions remain unchanged between T0.5 and T1,
and 3 regions remain unchanged between T0.5 and T2.
A threshold on LMTED may be used to highlight regions
that are either affected or remain unaffected for various
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Fig. 17. CryoEM image of AMP-Activated Protein Kinase (EMDB-1897)
using different compression thresholds - 0.5%, 1%, and 2%. The region
in red is the largest region that remains unaffected, the region in light red
is the largest region that remains unaffected for compression threshold
of 1%, and orange corresponds to 2%. Regions in shades of green are
symmetric to the regions in light red and orange but are affected by
the compression. The regions in shades of blue are also affected by
compression. The entire protein is rendered grey and transparent for
context.

compression thresholds.

6.4 Spatio-temporal exploration and feature tracking

We demonstrate an application of LMTED to time-varying
scalar fields, in particular for identifying and tracking fea-
tures across time. We consider two scenarios – identify and
track all features to provide an overview and an interactive
query-driven mode for feature tracking.

In order to identify and track all interesting topological
features, we begin by computing a sequence of LMTED DMs
between consecutive timesteps. We apply the refinements
described in Section 5 and compute spatial overlaps be-
tween regions that correspond to the reduced set of subtree
pairs. We construct a track graph whose nodes represent
each region and insert an edge between two nodes in con-
secutive timesteps if there is a significant overlap between
the corresponding regions. Long paths in the track graph
correspond to long-lived features. We visualize all long-
lived features and their evolution over time including birth,
death, split, and merge events. The individual tracks are also
used as a starting point for further analysis. An alternative
approach is to allow the user to specify one or many features
within a particular timestep. We compute regions that are
symmetric to the given feature, compute tracks for each of
these regions, and visualize the tracks.

We demonstrate both scenarios using a 3D Bénard-von
Kármán vortex street dataset. The Okubo-Weiss criterion,
indicative of high vorticity regions, is sampled on a regular
grid [11]. The scalar field is available on 192 × 64 × 48
grid with 508 timesteps. We compute merge trees for all
timesteps and simplify them using a small persistence
threshold of 0.8% to remove noise. We compute LMTED on
the simplified merge trees after applying the appropriate
refinement steps mentioned in Section 5. The weight of an
edge in the track graph is set equal to the spatial overlap
(volume of overlap normalized by the volume of union)
between the corresponding regions. Overlaps below a 2%
threshold are considered negligible and not included into
the track graph.

We process the track graph to enumerate top tracks
ordered by either the length of the track or the sum of
weights (high to low). Further, short tracks (length < 10)
and tracks whose sum of weights is low (< 3.0) are removed
from consideration. We observe that the first track is a
thin region close to the cylinder obstruction, which remains

almost stationary. Other tracks that appear at the top of the
list include the primary and secondary vortices as identified
by [11], see Figure 18. These vortices are represented as
isosurfaces (isovalue 0.1).

In the second scenario, we use a primary and sec-
ondary vortex from timestep 399 as a query feature, see
Figure 19. First, we compute symmetric regions within the
same timestep in order to highlight other primary and
secondary vortices. Next, we compute tracks that contain
the query regions and visualize them. We observe that in the
first step LMTED can discriminate between the primary and
secondary vortices and, next, it helps efficiently track the
features (vortices) over time. This demonstrates the utility
of LMTED in the exploration of time-varying data.

The accompanying video in supplementary material
shows (a) the top tracks corresponding to the primary and
secondary vortices, (b) query based exploration.

There are a few exceptional situations where LMTED
is unable to discriminate between primary and secondary
vortices. This happens when, say, the chosen vortex is a
secondary vortex, corresponds to a leaf node in the merge
tree, and matches with a leaf node that corresponds to a
primary vortex. Further spatial overlap tests are necessary
to identify that the two regions do not correspond to each
other. To summarize, LMTED supports the generation of a
good overview visualization and serves as a starting point
for feature detection and tracking. Subsequent interaction
and visualization tasks are often necessary and these tasks
may closely depend on application specific requirements.

7 CONCLUSIONS

We described a local comparison measure (LMTED) between
two scalar fields by comparing subtrees of their merge trees.
The comparison measure supports local and fine-grained
analysis and visualization of similarities and differences
between two scalar fields. The measure satisfies metric
properties and can be efficiently computed. We demonstrate
its practical utility via applications to feature tracking, study
of topology controlled compression, and symmetry identi-
fication. In future work, we plan to develop a comparative
visualization framework based on the MTED and LMTED that
may be applied to time-varying and ensemble data.
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