
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY XXXX 1

Comparative Analysis of Merge Trees using
Local Tree Edit Distance

Raghavendra Sridharamurthy, Student Member, IEEE , and Vijay Natarajan, Member, IEEE

Abstract—Comparative analysis of scalar fields is an important problem with various applications including feature-directed
visualization and feature tracking in time-varying data. Comparing topological structures that are abstract and succinct representations
of the scalar fields lead to faster and meaningful comparison. While there are many distance or similarity measures to compare
topological structures in a global context, there are no known measures for comparing topological structures locally. While the global
measures have many applications, they do not directly lend themselves to fine-grained analysis across multiple scales. We define a
local variant of the tree edit distance and apply it towards local comparative analysis of merge trees with support for finer analysis. We
also present experimental results on time-varying scalar fields, 3D cryo-electron microscopy data, and other synthetic data sets to
show the utility of this approach in applications like symmetry detection and feature tracking.

Index Terms—Merge tree, scalar field, local distance measure, persistence, edit distance, symmetry detection, feature tracking.

✦

1 INTRODUCTION

Comparative analysis and visualization of scalar fields is
an important problem with applications to feature detection
and tracking, symmetry detection in scalar fields, and in
general to the study of time-varying data. Topological struc-
tures like merge trees (Figure 1) provide an abstract and
combinatorial representation of the scalar field. These repre-
sentations enable the analysis methods to focus on topolog-
ical features of interest. A careful study of similarities and
differences between the topology-based representations can
lead to meaningful comparisons of the underlying scalar
fields. Multiple similarity measures (alternatively compar-
ison measures or distance measures) have been proposed
to compare scalar fields and topological structures [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. However,
most of them describe methods to compare these structures
globally. While global comparisons help us address a variety
of interesting problems such as feature tracking, detection
of periodicity in time-varying data, shape comparison, and
temporal summarization, it cannot be used for finer analy-
sis, specifically of the local structure or substructures of the
corresponding topological features. For example, consider
the split trees rooted at i and j in Figures 2(a) and 2(b).
Global comparison measures convey the overall dissimilar-
ity, but do not capture the similarity between the regions
that map to the pairs of subtrees rooted at (i10, j7) , (i8, j6)
and (i7, j5) respectively. This type of fine grained or multi-
scale analysis leads to interesting applications and hence
there is a need for a measure that detects similarity both
locally and across multiple scales.

• R. Sridharamurthy and V. Natarajan are with the Department of Com-
puter Science and Automation, Indian Institute of Science, Bangalore,
560012.
E-mail: {raghavendrag,vijayn}@iisc.ac.in

1.1 Contributions

In this paper, we propose a local tree edit distance based
method to compare substructures of scalar fields across
multiple scales. The comparison measure is an adaptation
of the global tree edit distance for merge trees (MTED)
introduced by Sridharamurthy et al. [13]. However, it is
substantially different in terms of the definition, properties,
approach to its computation, and applications. This paper
makes the following key contributions:

1) A novel local tree edit distance (LMTED) to compare
substructures in scalar fields.

2) A proof that it satisfies metric properties.
3) A dynamic programming algorithm to compute the

LMTED efficiently.
4) A notion of truncated persistence to compute costs

of matching / correspondences, which brings in the
additional benefit of saving computation time by
reducing the number of comparisons.

5) Experiments to demonstrate the practical value of
the distance towards symmetry detection at multi-
ple scales, analysis of the effects of smoothing and
subsampling, a fine grained analysis of topological
compression, and applications to feature tracking.

The MTED supports only a few of the above-mentioned
applications. Even in these cases, it is restricted to compar-
isons on a coarser level or requires a higher level of user
intervention. Feature tracking is not possible with MTED
without significant modifications.
1.2 Related work

Point-to-point comparisons like RMS distance or norms such
as Lp, 1 ≤ p < ∞ may be used to compare scalar fields. But,
there is no natural notion of hierarchy that can be harnessed.
Further, these measures are sensitive to small perturbations
in the data.

Existing measures that compare topological structures,
and by extension the underlying scalar fields, are global.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY XXXX 2

(a) 2D scalar field (b) join tree (c) split tree

Fig. 1. Merge trees. (a) A 2D scalar field together with its critical points
and a set of isocontours. (b,c) A merge tree tracks the connectivity of
sublevel sets (preimage f�1(−∞; c]) or the superlevel sets (preimage
f�1[c;∞)). We consistently use the () color map for the scalar
field and the () color map for representing critical points
based on their Morse index (0: minimum, 1: 1-saddle, 2: 2-saddle, 3:
maximum).

(a) Split tree 1 (b) Split tree 2

Fig. 2. Scalar fields f1 and f2 that are not globally similar but contain
locally similar regions. Split trees are overlaid on top of the scalar fields

They sometimes ignore the hierarchy present in topological
structures such as the contour tree and typically cannot
be used to compare local structures in a meaningful way.
Sridharamurthy et al. [13] summarize previously developed
comparison measures and describe in detail several meth-
ods including the bottleneck distance between persistence
diagrams [1], Interleaving distance [3], distance based on
branch decomposition of merge trees [5], edit distance be-
tween Reeb graphs [2], [10], functional distortion distance
between Reeb graphs [4], and comparing metric graphs
by persistence distortion [8]. Many of these methods are
computationally intractable or they are setup in such a way
that the computation considers the topological structure as
a whole without harnessing the hierarchy present within.

Simple and practical similarity measures that are not
metrics have also been studied. Saikia et al. [7] propose a
measure that compares histograms constructed based on the
merge trees. As in the case of bottleneck distance, this mea-
sure ignores the topological structure during comparison.
The applications do involve local structures but they are
query based. The measure can be computed efficiently and
is useful in practice. Saikia and Weinkauf [11] extend this
measure and demonstrate applications to feature tracking
in time-varying data. The measure is used to track a single
feature (or a collection of features) if the feature is specified
by the user in a query.

Saikia et al. [6] also introduce the extended branch
decomposition graph (eBDG) that describes a hierarchical
representation of all subtrees of a merge tree and designed
an efficient algorithm to compare them. They also present
experimental results on time-varying data. While the rep-
resentation and comparison is based on the hierarchy, they

demonstrate its use in applications by explicitly choosing
or selecting region(s) of interest rather than considering the
collection of all pairs of subtrees.

Scalar fields may also be compared based on their
isosurfaces. Since theoretically, the number of isosurfaces
is infinite, the comparison requires a selection of a finite
number of isosurfaces of interest. Tao et al. [14] extend the
notion of isosurface similarity maps, first conceptualized by
Bruckner and Möller [15], to construct matrices of isosurface
similarity maps (MISM), and use it to explore multivari-
ate time-varying data. This involves construction of self-
similarity maps, temporal similarity maps, and variable
similarity maps followed by temporal clustering and vari-
able grouping. Finally, paths spanning across these maps
are used to guide the visual comparison. The choice of
the isovalues used is crucial but the inclusion hierarchy
followed by isosurfaces is not utilised.

Lukasczyk et al. [16], [17] introduce the concept of nested
tracking graphs to track the entire family of isosurfaces
over time while preserving their nested hierarchy of the
isosurfaces. Features are often represented by isosurfaces,
so the method applies to feature tracking. While the method
does facilitate tracking features in all scales and across time,
it does not support generic comparison between features.

Symmetry detection in scalar fields is another important
application that involves the comparison of local substruc-
tures to decide if the scalar field contains repeating patterns.
The notion of symmetry has been well studied by Thomas
and Natarajan [18], [19], [20]. While the comparison meth-
ods that they describe work well for symmetry detection,
the methods have not been applied to detect local simi-
larities between different scalar fields in general. In other
words, the symmetry detection problem is a special case of
the more general local similarity detection problem.

Sridharamurthy et al. [13] introduce a tree edit distance
between merge trees (MTED). The algorithm to compute the
distance processes the trees in a bottom-up fashion. Com-
puting the global distance involves computing distances
between various pairs of subtrees, which are not necessarily
merge trees. In this work, we show how such a global
tree edit distance can be extended towards a fine-grained
comparison of scalar fields. Specifically, the global MTED
is restricted to cases where only the tree at the top of the
hierarchy is guaranteed to be a merge tree. In contrast, we
facilitate comparison between all pairs of subtrees of merge
trees by ensuring that all comparisons are between trees that
are guaranteed to be merge trees.

2 TREE EDIT OPERATIONS

In this section, we introduce necessary background on edit
operations between rooted trees with a focus on merge trees.

2.1 Merge tree

Let f : X −→ R denote a scalar function defined on
a manifold domain X. A level set is the preimage f�1(c)
of a real value c (Figure 1(a)). The merge tree of f (Fig-
ures 1(b) and 1(c)) tracks the connectivity of sublevel sets
(f�1(−∞, c], join tree) or superlevel sets (f�1[c,∞), split
tree) [21]. The split tree (Figure 3) of a generic scalar function

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY XXXX 3

is a simple rooted binary tree. Nodes of the split tree include
critical points of f : maxima, saddles, and the global mini-
mum (root). The maxima have 0 children, the saddles have
2 children, and the global minimum has 1 child. All maxima
are paired with saddles based on the notion of topological
persistence [22], except for the global maximum which is
paired with the global minimum. A persistence pair (m, s)
represents a topological feature (connected component of
superlevel set) that is created at a maximum m during
a downward sweep of the domain X and destroyed at a
saddle s. The persistence of such a maximum-saddle pair is
defined as the difference in function value at the two critical
points, pers(m) = pers(s) = f(m) − f(s). The persistence
diagram is a plot of the persistence pairs (f(m), f(s)) on the
plane. The join tree is defined similarly, its nodes consist of
minima, saddles, and the global maximum (root). Several
serial and parallel algorithms are available for fast compu-
tation of merge trees [21], [23], [24], [25].

2.2 Tree edit distance
The distance between a pair of trees may be defined by
introducing edit operations that transform one tree into
another [26]. Each edit operation has an associated cost. The
tree edit distance is defined as the cost associated with a
sequence of edit operations that transforms one tree into
another while minimizing the total cost. We now introduce
the edit operations between labeled trees, following defi-
nitions from Zhang [27]. For a node i in a rooted tree T ,
deg(i) denotes the number of children of i and parent(i) is
its parent in the tree. The maximum degree of a node in T
is denoted as deg(T). The set of labels of T is denoted by Σ,
and λ /∈ Σ denotes the null or empty character. An empty
tree is denoted by θ. Since we focus on labeled trees, we use
the same notation to refer to the node and its label.

Edit operations. We consider three edit operations that
modify a rooted tree, one node at a time: relabel, insert, and
delete, together with associated costs.

1) relabel: A relabel i −→ j corresponds to an opera-
tion where the label i ∈ Σ of a node is changed to a
label j ∈ Σ.

2) delete: A delete operation i −→ λ removes a node
with label i ∈ Σ and all children of the node i are
made children of parent(i).

3) insert: An insert operation λ −→ j inserts a node
with label j ∈ Σ as a child of another node i by
moving all children of i to children of j.

We define a cost function γ that assigns a non-negative
real number to each edit operation. It is useful if the cost
function γ satisfies metric properties [13].

Edit distance. The distance between two trees T1, T2 is
defined as

De(T1, T2) = min
S

{γ(S)}, (1)

where S is a sequence of edit operations that transforms T1

to T2. Zhang et al. [28] showed that De is equal to the cost of
an ancestor preserving mapping between nodes of T1 and
T2 but computing De is an NP-complete problem.

2.3 Constrained edit distance mappings
Incorporating an additional constraint, namely restricting
the mapping of disjoint subtrees to disjoint subtrees, makes
the problem computationally tractable. This constraint is
clearly meaningful in the context of merge trees because
disjoint subtrees correspond to spatially disjoint regions
in the domain and hence spatially disjoint features. We
now describe a constrained edit distance Dc and the cor-
responding mappings [27]. The recursive definition of Dc

naturally incorporates the constraint. We refer the reader to
the supplementary material for a few illustrative examples.

We use i and j with or without subscripts to denote
both the nodes and their labels in the trees T1 and T2,
respectively. Let i1, i2, . . . , ini

be the children of i and
j1, j2, . . . , jnj

be the children of j. Let T [i] denote the
subtree rooted at i and F [i] denote the unordered forest
obtained by deleting the node i from T [i]. Further, let θ
denote the empty tree. Then,

Dc(θ, θ) = 0, (2)

Dc(F1[i], θ) =
niX
k=1

Dc(T1[ik], θ), (3)

Dc(T1[i], θ) = Dc(F1[i], θ) + γ(i −→ λ), (4)

Dc(θ, F2[j]) =

njX
k=1

Dc(θ, T2[jk]), (5)

Dc(θ, T2[j]) = Dc(θ, F2[j]) + γ(λ −→ j), (6)

Dc(T1[i], T2[j])

= min

8><>:
Dc(θ, T2[j]) + min

1�t�nj

fDc(T1[i], T2[jt])�Dc(θ, T2[jt])g,

Dc(T1[i], θ) + min
1�s�ni

fDc(T1[is], T2[j])�Dc(T1[is], θ)g,

Dc(F1[i], F2[j]) + γ(i �! j).

(7)

Dc(F1[i], F2[j])

= min

8><>:
Dc(θ, F2[j]) + min

1�t�nj

fDc(F1[i], F2[jt])�Dc(θ, F2[jt])g,

Dc(F1[i], θ) + min
1�s�ni

fDc(F1[is], F2[j])�Dc(F1[is], θ)g,

min
Mr(i;j)

γ(Mr(i, j)).

(8)

Here, Mr(i, j) is the restricted edit distance mapping be-
tween F1[i] and F2[j]. Nodes within different trees of F1 are
mapped to nodes lying in different trees of F2. Essentially,
if Mr maps node i1 to j1 and node i2 to j2, then i1 and
i2 belong to a common tree in F1[i] if and only if j1 and
j2 belong to a common tree in F2[j]. The minimum cost
restricted mapping may be computed by constructing a
weighted bipartite graph (Figure 4) in such a way that the
cost of the minimum weight maximum matching MM(i, j)
is exactly the same as the cost of the minimum restricted
mapping Mr(i, j),

min
Mr(i,j)

γ(Mr(i, j)) = min
MM(i,j)

γ(MM(i, j)) (9)

2.4 MTED between merge trees
The constrained tree edit distance (MTED) between two
merge trees T1, T2 is defined as the constrained edit distance

MTED(T1, T2) = Dc(T1, T2) (10)

