
Improved Quadric Surface Impostors for Large
Bio-Molecular Visualization

Pranav D Bagur
Department of Information

Technology
National Institute of

Technology Karnataka,
Surathkal

prnvbagur@gmail.com

Nithin Shivashankar
∗

Computer Science and
Automation

Indian Institute of Science,
Bangalore

nithin@csa.iisc.ernet.in

Vijay Natarajan
Computer Science and

Automation
Supercomputer Education and

Research Center
Indian Institute of Science,

Bangalore
vijayn@csa.iisc.ernet.in

ABSTRACT
The shape of biomolecules, such as proteins, may be rep-
resented using different representations like space-fill, ball-
stick, backbone, or secondary structures. The secondary
structure of proteins, comprising of sheet-like, helix-like and
loops structures, represent a higher level abstraction of its
structure. With ever increasing sizes of protein structure
data produced by high resolution x-ray crystallography and
cryo-electron microscopy, biologists often rely on visualiza-
tions to better understand the overall structure of proteins.
In this paper, we present a unified framework for accelerat-
ing the rendering of various representations of these struc-
ture using GPUs. The framework first produces “impostor
primitives”, which are simple linear element approximations
of quadric objects, such as spheres, cylinders, and helices.
Next, the rasterizations of the impostors are corrected to
produce pixel-precise renderings of the quadric objects. We
incorporate this framework into a bio-molecular visualiza-
tion tool proteinvis to demonstrate quantitative and qual-
itative performance gains over earlier approaches for render-
ing various representations of proteins.

Keywords
Bio-Molecular Visualization, GPU acceleration, Billboard-
ing

1. INTRODUCTION
Biomolecules, such as proteins and nucleic acids (DNA

and RNA), are involved in every aspect of cellular function.
Often times, understanding their structure is key to under-
standing their function. In the past, crystallographers and
biologists created detailed real-world models, called Corey-
Pauling-Koltun models, using wooden or synthetic spheres

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’12, December 16-19, 2012, Mumbai, India
Copyright 2012 ACM 978-1-4503-1660-6/12/12 ...$15.00.

to represent atoms and sticks to represent bonds [6, 10].
Today, these models of protein structures, referred to as
space-filling and ball-stick models, have been adopted in
computer graphics systems to create visual representations.
Furthermore, biomolecules such as proteins, exhibit struc-
tural regularity by the formation of structures such as he-
lices and sheets. This secondary structure is used to create
abstracted representations which, at a coarser level, help
in revealing the overall structure of the protein. The need
for insight into biomolecular structure has led to the cre-
ation of a large number of free and commercial visualiza-
tion applications. By the use of X-ray crystallography and
cryo-electron microscopy, bio-molecular structural data is
made available at an ever increasing rate through world-
wide collaborative efforts such as the protein data bank (See
http://www.rcsb.com) [3, 2]. With increase in size and detail
of available data, it becomes crucial for visualization systems
to produce high-quality visualizations at interactive frame-
rates. Further, given the world-wide collaborative nature
towards research in bio-molecular and cellular systems, the
software should be deployable on commodity and off-the-
shelf hardware for its wider adoption.

In the past decade, the demand for specialized hardware
for computer games has catalysed the rapid development
of Graphic Processing Units (GPUs). Traditional graph-
ics systems were designed as multistage pipelines. GPUs,
consisting of several processing cores, are employed to ac-
celerate the graphics processing pipeline. Modern GPUs
expose programmability of the vertex generation, geome-
try generation, and fragment coloring stages of the pipeline.
With programmable GPUs, it is now possible to create high-
quality visualizations at interactive frame-rates using com-
modity hardware. Many efforts in the bio-molecular visual-
ization field also aim to leverage this technology. This paper
presents a unified framework to accelerate the rendering of
protein molecules.

1.1 Related Work
The use of GPUs to accelerate and create high quality ren-

derings of biomolecules has been active for a few years. Tra-
ditional molecular visualization applications such as VMD
([8]) and PyMol ([14]), being rich in terms of functionality
and features, now leverage GPUs to produce good quality
renderings for the common representations. Other appli-
cations such as TexMol [1] and QuteMol [16] focus on di-

rectly leveraging GPUs to generate high quality visualiza-
tions. Illuminated ellipsoids, by Gumhold [7], find appli-
cation in many biomolecular visualization applications for
rendering space-fill representations. Tarini et al. [16] de-
scribe a technique to enhance rendering of space fill models
using ambient occlusion. Lampe et al. [13] describe a two
level rendering hierarchy to exploit the structural duplica-
tion in proteins for efficient rendering using GPUs. Krone
et al. [11] describe techniques to accelerate the rendering
of the secondary structure of proteins. They also describe
techniques for generating high-quality rendering of molecu-
lar surfaces [12]. Sigg et al. [15] describe accurate render-
ing of sphere ellipsoid and cylinder primitives, whose use is
demonstrated for bio-molecular visualizations. In our work,
we extend the methodology for fast accurate rendering of
spherical elements, developed by Gumhold [7], to both cylin-
drical and helical quadric surface elements. We also gener-
alize the cylindrical elements described by Sigg et al. [15] to
produce smooth tube-like rendering of curves. In compari-
son to the methods developed by Gumhold [7] and Sigg et
al. [15], our representations belong to a unified framework
which extends to helical elements also, while achieving su-
perior frame rates. In comparision to methods by Krone et
al. [11], our representation of the α-helix secondary structure
requires a single primitive for each helix, thereby requiring
far lesser memory and overhead, which results in two to four
times increase in frame rates for rendering the secondary
structures of proteins.

1.2 Contributions
We present a framework using GPUs for the creation of

high quality visualizations of the primary and secondary
structure of proteins. Our framework adopts a two-step pro-
cess for creating pixel precise renderings of quadric objects
namely spheres, cylinders, and helices. The first stage pro-
duces an approximation of the object using simple linear
elements such as triangles. The second stage corrects the
rasterizations to produce precise renderings of the objects
on every pixel. We develop the framework towards the ren-
dering of the following quadric elements:

• Spherical Elements: We simplify the ellipsoid model
from by Gumhold [7] to render spherical objects. Fur-
ther spherical elements are handled within a unified
framework that handles other quadric elements also.

• Cylindrical Elements We describe a procedure to
produce pixel precise renderings of cylindrical objects.
Since the primary application of this element is the
rendering of tubular surfaces, the cylinders are de-
signed to be cut by arbitrarily oriented planes. In addi-
tion, the normals on the tubular surface are computed
to ensure a smooth appearance.

• Helical Elements We present a novel extension of
the cylindrical element to render helical elements. This
representation results in approximately two times on
average and upto four times increase in the frame rates
for rendering helical elements.

We implement the above framework in a tool called pro-
teinvis to represent primary and secondary protein struc-
tures. For the primary structure representations, the spher-
ical element is applied to the space-fill representation, the

(a) (b)

Figure 1: (a) Amino acids consist of an amino group (NH2),
and a carboxylate group (COOH), attaching to a carbon
atom (Cα). Amino acids are differentiated by the residue
(R) attaching to Cα. (b) A peptide-bond is formed between
two amino acids, by the carbon of the carboxylate group in
the first and the nitrogen of the amino group in the second.

spherical and cylindrical element is applied to the ball-stick
representation. For secondary structure representations, the
helical element is used to render α-helices and the cylindri-
cal element is used to represent the free loops formed by the
protein backbone.

Thus the framework enables a unified mechanism for rep-
resenting various protein structures. We evaluate our imple-
mentation, in terms of performance and quality, against ear-
lier related methods. We achieve upto two times increase in
framerates compared to popular protein viewers while main-
taining same quality of rendering. The improved perfor-
mance will enable biologists to visualize larger biomolecules
on desktop PCs or laptops without compromising the qual-
ity of the interaction or rendering.

2. BACKGROUND
Biomolecules are complex assemblies of atoms that per-

form key biological functions at the cellular level such as
storage of genetic information (nucleic acids such as DNA
and RNA) and facilitating biological functions. It has long
been known that the structure and spatial conformation of
these molecules are key to their function.

Proteins.
Proteins form a sub-class of biomolecules that comprise of

a linear sequence of amino acids linked by peptide bonds to
form poly-peptide chains. There are twenty naturally occur-
ring amino acids which bond together to yield a vast number
of distinct proteins. Structurally, amino acids consist of an
amino group (NH2) linked to a carbon atom (Cα), which is
in turn linked to the carbon atom of a carboxylate group
(COOH) (see Figure 1a). Peptide bonds across the amino
and the carboxyl groups of consecutive amino acids, which
form by the loss of hydrogen and hydroxyl (OH) atoms (see
Figure 1b). Amino acids are typically differentiated by a
residue which attaches to the Cα atom. The sequence of
amino acids is referred to as the primary structure of the pro-
tein and the sequence of nitrogen, Cα, carbon, and oxygen
is referred to as the backbone of a protein.

The presence of bonds across amino acids in the polypep-
tide chains, such as weak hydrogen bonds between residues
and disulphide bonds, facilitate spatial orientations of the
backbone which typically conform to minimize the total en-
ergy of the system. This leads to formation of some regular
structures, such as α-helices and β-sheets, and irregular coils
of the backbone. These structures are referred to as the sec-

(a) (b) (c)

Figure 2: Various representations of the ribonuclease
molecule 1D5H. (a) Space-fill. (b) Ball-stick. (c) Backbone
spline, α-helices and β-Sheets.

ondary structure of the protein.

Visual Representations.
The space-filling model of bio-molecules a common repre-

sentation of primary protein structure. The model comprises
of three-dimensional volumetric spheres representing atoms
with the radius corresponding to the van der Waals radius
(see Figure 2a). These are essentially virtual representations
of the classic CPK models [6, 10]. The atomic position data
is available either experimentally or by simulation. Another
common representation of the primary structure is the ball-
stick model, where constant sized spheres are used for atoms
and lines or cylinders are used to represent bonds between
atoms (see Figure 2b). In the presence of large number of
atoms, it is often necessary to visualize only the backbone
of the protein.
Visualizations of secondary structure of proteins, other-

wise known as cartoon renderings, aid in providing a higher
level of abstraction. Of these, spline interpolations of the
backbone atoms, α-helices and β-sheets are among the most
common (see Figure 2c). The backbone spline representa-
tion is formed by interpolating a spline curve, such as B-
Spline or Catmull-Rom [5] splines, through the backbone
atom positions. The α-helix representations are formed by
extruding the backbone spline segments corresponding to
the helix along the axis of the helix. In proteins, β-sheets
form because of weak hydrogen bonds across amino acids
in different parts of the backbone. These sheets are often
represented by extruding the backbone spline segments cor-
responding to the sheets in the direction of these bonds.

Programmable Graphics Pipeline.
Traditional OpenGL graphics systems [17] are designed

as a multi-stage pipeline, used to transform primitives rep-
resenting geometry in 3D space to raster based images dis-
played on the screen. The pipeline (see Figure 3) accepts
linear elements, such as lines and triangles, as input. In
the first stage, OpenGL commands are evaluated to fetch
the parameters of vertices of input elements like position,
normal, color etc. In the next stage, the per-vertex infor-
mation is transformed from model coordinate system to a
world coordinate system via the model-view transformation.
Also, the vertex positions are projected along view-rays to
a view-plane via the projection transformation. The projec-
tion transformation can be orthographic, i.e, view-rays are
orthogonal to the view-plane, or perspective, i.e, view-rays
originate from an eye behind the view-plane. In the next
stage, the projected vertices are assembled into their prim-

Figure 3: A typical OpenGL programmable graphics
pipeline showing three programmable stages.

itives. Next, portions of the primitives which lie within the
viewport, the rectangular portion of the view-plane corre-
sponding to the desired output image, are rasterized into
pixel fragments. The next stage assigns a color and depth
along the view-ray for each fragment. The depth information
is used by the z-buffer algorithm so that the intersections of
3D objects are rendered correctly i.e. when fragments of
two or more elements are rendered on to the same image
pixel, the color of the one that is closest to the eye is used
for the image.

Modern GPUs allow programmablity of the per-vertex
operations stage, primitive assembly stage, and the per-
fragment operations stage. The programs for these stages
are called vertex-shaders, geometry-shaders and fragment-
shaders, respectively. The vertex shader modifies per-vertex
information such as position, vertex color, vertex normal etc.
The per-vertex output from the vertex shader for each prim-
itive is fed to the geometry shader, which outputs zero or
more primitives. The fragment shader is executed for each
output fragment of primitives from the geometry shader,
to update the fragment’s color and depth. The pipeline
is made more flexible by allowing shaders to communicate
user-defined scalar and vector valued parameters between
them. The geometry-shader specifies, or binds, values at the
vertices of primitives which are made available to fragment-
shader by linear interpolation along the vertex positions.

3. IMPOSTOR PRIMITIVES
We now proceed to discuss our framework for quadric ele-

ments using the programmable graphics pipeline. The pro-
cedure to render these elements proceeds in two stages. The
first stage is carried out on the geometry shader and the
second stage is carried out on the fragment shader. In the
first stage, the quadric element is approximated by linear el-
ements called “impostors”, quads in the case of spheres and
hexahedrons in the case of cylinders and helices. The ge-
ometry shaders generates impostors such that the raster im-
ages of the impostors would contain the raster images of the
quadric elements. The geometry shader also binds the model
coordinates of impostor vertices so that for each fragment
an interpolated model coordinate is available. In the second
stage, the impostors fragments are culled if they are not part
of the quadric object’s raster image. Otherwise, the correct
depth and color of the fragment is updated. The above task
is carried out by computing the intersection of the quadric
object with the view-ray, from the eye position (in model
coordinate) through the fragment’s model coordinate. The
eye position is obtained in model coordinates by multiplying
the inverse of the model-view transformation to the eye po-
sition in world coordinates ((0, 0, 0) in OpenGL). The depth

Silhouette

Lines

Normal

Im
p
o
s
to

r
Q

u
a
d

Z-Correction
View-ray

Eye

Silhouette

Point

Figure 4: Schematic depicting the rendering of spheres in
perspective projection

is updated as the distance from the eye to the intersection
point (in world coordinates). In our implementations we
consider only perspective projection, though the framework
can be adapted for orthographic projection. Thus, in the
second stage, we adopt the convention of referring to view-
ray as the ray from the eye through the fragment’s position
in model coordinates. For high-quality images, the surface
normal at the point of intersection is computed to be passed
on for lighting algorithms using the Phong lighting [4] model.
In the following sub-sections we discuss in detail the pro-

cedure for rendering the spherical, cylindrical, and helical
elements. In particular, we discuss the generation of impos-
tor elements in the first stage, and the computation of view-
ray-quadic-object intersections for each fragment to obtain
accurate depth and surface normal in the second stage.

3.1 Spherical Impostor
The spherical impostor is a simpler version of the illu-

minated ellipsoids method, by Gumhold [7]. The input to
the first stage is the position and radius of the sphere in
model coordinates. The first stage begins by computing two
mutually orthogonal unit vectors that are also orthogonal
to the direction from the center to the eye (see Figure 4).
Two silhouette lines, or lines from the eye tangential to the
sphere, exist in the plane containing one of the vectors and
the eye-center line. Each silhouette point, the point on the
sphere and a silhouette line, is computed using the right tri-
angle formed by the itself, the center, and the eye. The four
silhouette points thus obtained define a quad. The vertices
of the quad are projected along their respective silhouette
lines away from the eye such that the quad is tangential to
the sphere. This quad is generated by the geometry-shader.
In the second stage, the solution to the quadratic equation
representing sphere and view-ray intersection is computed.
If there is no solution, the fragment is discarded. If there
is only one solution, the fragment’s true depth is calculated
and if it is to be clipped (i.e. fragment is on the other side
of the view plane) then it is discarded. In the case of two
solutions, the solution closer to the eye along the view-ray
is checked followed by the second solution. If both solutions
are to be clipped, then the fragment is discarded. The tech-
nique by Tarini et al. [16], to avoid spheres popping in and
out when they are positioned very close to the view plane,
is used.

3.2 Cylindrical Impostor
The cylinder impostor is designed to provide tube-like ren-

derings of poly-lines. Each segment of the poly-line is mod-
eled as an infinite cylinder cut by two planes (see Figure 5a).
The normal of the cutting plane at an end point is com-
puted as the average of the direction of the two segments

(a) (b) (c)

Figure 5: Schematic depicting the rendering of a cylindrical
element, given four consecutive points on a poly-line p, q, r, s
and a radius R. (a) The infinite cylinder with axis ~qr and ra-
dius R is cut by planes passing through q and r with normals
~nq := −(~pq+ ~qr)/2 and ~nr := (~qr+ ~rs)/2 respectively. ~pq, ~qr,
and ~rs are unit vectors. (b) In the first stage, a hexahedron
is generated in the geometry shader. Two faces of the hex-
ahedron lie on the planes (q, ~nq) and (r, ~nq). The remaining
four faces are defined by by lines in the direction of ~qr and
passing through four points on the plane (q+r

2
, ~qr) defined

by q+r
2

±R~u±R~v. Here ~u and ~v are any pair of orthogonal
unit vectors that are also orthogonal to ~qr. (c) In the second
stage, each rasterized fragment is corrected. First, the point
c on the cylinder, and the line from eye position e passing
through impostor’s coordinate o, is computed. If no inter-
section exists or if c is outside either of the planes, (q, ~nq)
and (r, ~nr), the fragment is discarded. The depth value of
c is written to the depth buffer. The point c is projected
onto the cut planes along ~qr to yield the points cq and cr.
The normal at the point c is computed as (1−w) ~qcq+w ~rcr,

where w :=
‖c−cq‖
‖cr−cq‖ .

incident upon the end point. In the first stage, the geom-
etry shader computes the intersection of four infinite lines
with the cutting planes (see Figure 5b). In the second stage,
the fragment shader computes the intersection of the infinite
cylinder and the view-ray (see Figure 5c). This resolves to a
quadratic equation, which has at most two real solutions. If
no real solutions exist, the fragment is discarded. Otherwise,
only the intersection point closest to the eye is considered.
The fragment is also discarded if this point is outside either
plane. The correct depth from the eye position is written
to the depth buffer. The surface normal at the intersection
point is negative of the direction of its projection on to the
cylinder’s axis. This normal is discontinuous across cylin-
drical elements on either side of a cut plane. We produce
smooth normal across cut planes by computing them as a
convex combination of the projections of the normal to the
cut planes along the cylindrical axis (see Figure 5c). This
normal is then passed on to the Phong lighting calculations.

3.3 Helical Impostor
Points on a helix always lie on a cylinder. So, the first

stage of the cylinder impostor described above is reused with
a minor modification so that the cut planes are orthogonal to
the cylindrical axis, i.e., the cylinder is specified by the end
points and radius only. Additionally, the helix requires the
pitch along with a direction orthogonal to the axis, as input.
The direction is used to determine a point on the cylinder
through which the helix passes (see Figure 6). Also, the
helix is extruded along the axis by a constant width.

Figure 6: The helical element is created by modifying the
second stage of the cylindrical impostor. P represents the
pitch of the helix, w the width by which it is extruded. The
directions ~x and ~y normal to ~qr and each other provide an
orthonormal basis at q. The fragment shader computes the
first intersection c of the view-ray and the cylinder. This
point is projected to the point d on the axis. The direc-
tion along the corresponding helical point is computed by
~dh := cosθ ~x + sinθ ~y, where θ := 2π ‖d−q‖

P
. The point c is

retained only if 〈 ~dh, ~dc〉 < cos(2πw
P
), where ~dc is the unit di-

rection along the line from d to c. If c is rejected, the second
intersection of view ray and the cylinder is then evaluated
similarly.

There exists a one-to-one correspondence between the points
on the helix and its axis. The angle by which the helix turns,
so that the corresponding points on the axis move by half
the width, is computed. The cosine of this angle is made
available to the fragment shader as a threshold parameter.
The fragment shader begins by computing the first point on
the cylinder along the view-ray (see Figure 6). This cylinder
point c is projected to the axis. This axis point d yields a
corresponding helix point. Unit vectors from the axis point

to the cylinder point ~dc and helix point ~dh are computed. If
the inner product of the unit vectors is less than the thresh-

old parameter, it is retained. The first unit vector ~dc is used
as the normal of the helix surface. Since, the inner portions
of the cylinder that lie on the helix may also be visible, the
second intersection of the view-ray and the cylinder is also
evaluated similarly, if the first intersection is discarded. The
depth buffer is appropriately updated. If the second inter-
section point is not discarded, its normal is reversed. The
appropriate normal is passed on to the lighting calculations.

4. BIO-MOLECULAR VISUALIZATION US-
ING IMPOSTOR PRIMITIVES

This section discusses the application of the impostor prim-
itives discussed in Section 3. The two stage framework
is implemented in a protein visualization tool proteinvis
to accelerate rendering various representations of proteins.
In particular, the space-fill and ball-stick primary structure
representations and backbone loop cartoons and α-helix sec-
ondary structure representations leverage these primitives.
In the following paragraphs, we discuss in detail, the ap-
plication of the impostor primitives to the representations
listed above.

Space-fill and Ball-stick.
The spherical impostor is used for the visualization of the

space-fill representation. It is used together with the cylin-
der impostor it is used for the visualization of the ball-stick

(a) (b)

Figure 7: Glycine molecule rendered using impostor ele-
ments. (a) Space-fill model. (b) Ball-stick model.

(a) (b) (c)

Figure 8: Construction of the tube-like rendering of the
backbone. (a) The Cα atoms of the backbone are used as
input for the B-spline procedure. (b) The spline is sampled
uniformly to generate a poly-line. (c) The cylinder impostor
is used to generate tube-like renderings of each section of the
poly-line.

model (see Figure 7). The application renders the spheres
as points which are then processed by the spherical impos-
tor framework. The sphere center and radius are available
to the geometry shader as the vertex position and a user-
defined vertex attribute, respectively. The application ren-
ders bonds as line segments between atoms which are then
processed by the cylindrical impostor framework. The cylin-
der impostor model is simplified so that the cutting planes
define an upright cylinder, i.e., the plane normals are along
the cylinder axis. Thus, only the end points of bonds are
sent as input to the cylinder impostor framework. The bond
radius is treated as a global constant.

Backbone loop.
The rendering of the backbone of a protein chain is accel-

erated using the cylinder impostor to create tube-like coils
that trace the backbone Cα atoms. The Cα atoms in each
residue of the polypeptide chain are used as control points of
a uniform cubic B-spline similar to the approach by Krone
et al. [11] (see Figure 8a). This spline is represented as a
sequence of line segments. The number of samples is chosen
to balance efficiency and quality. The cylinder impostor is
used to render cylindrical elements for each line segment on
the spline with cut planes determined by the preceding and
succeeding line segments (see Figure 8c).

α-Helices.
Rendering the α-helix representation is accelerated by the

(a) (b) (c)

Figure 9: The helix impostor is placed and oriented using
the section of the backbone spline corresponding to the he-
lix. (a) A triplet of uniformly spaced points along the spline
section is used to approximate the binormal direction at the
middle point. The average of a pair of binormals from sam-
ples separated by 1.8 residues approximates the helix axis,
since the helix executes a turn every 3.6 residues. The av-
erage of many such estimates is used as the helix direction.
(b) The points on the spline section are projected to a plane
with with normal as the helix direction to determine a point
on the axis and the radius. (c) The spline section is replaced
by the impostor.

use of the helical impostor (see Figure 9c). α-helices, in

their most common form, have a pitch of 5.4 Å, and are
thus closely approximated by an ideal helix. Also, they exe-
cute a complete turn every 3.6 residues. First, the direction
of the helical axis is determined. Kahn [9] describes a pop-
ular algorithm to determine the axis. However, it requires
at least four consecutive Cα atoms to be present on the he-
lix. This condition does not hold in many cases. We use
a simpler approximation, using the backbone spline section
corresponding to the helix. We begin by first sampling sets
of three equally spaced points on the spline section. Each
triple provides a pair of directions oriented from the second
to the first and third. The spacing of the samples along the
spline section is controlled such that their inner product is
lesser than a threshold. This ensures that the cross prod-
uct does not approach the zero vector. The cross product
coarsely approximates the binormal vector direction. This
vector can be resolved into a component that aligns with the
helix axis (ideally) and one that lies on the plane containing
the helix axis as well as the binormal vector. The second
component is canceled by a binormal vector from a second
triple sample diametrically opposite on the helix. We obtain
the second sample 1.8 residues away from the current sam-
ple. The axis direction is averaged over as many such pairs
of sample triplets that fit on the spline section. A point on
the axis is determined by first projecting all the points on
the spline section to the plane with normal as the previously
computed axis direction, and then computing the mean of
the projections (see Figure 9b). The radius of the helix is
computed as the average distance between the mean and
all projections. The end points on the helical axis are ob-
tained by projecting the end points of the backbone spline
section to the helical axis. The helix is rotated such that it
passes through the first sample point on the spline section
(see Figure 9c).

Viewer SF BS BB α SS
VMD 1.9.1 2.38 2.0 25 - 35
PyMol 1.4 45 10 - - 21
proteinvis 52 60 68 460 83

Table 1: Frame rates of our implementation for various rep-
resentations of the GroEL molecule 1AON compared with
other viewers. First column lists the viewer name. Columns
2-6 show the frame rates for space-fill representation (SF),
ball-stick representation (BS), backbone representation us-
ing cylinders (BB), α-helix representation (α), and sec-
ondary structure representation (SS) consisting of α-helices,
β-sheets, and loops.

5. RESULTS
The above discussed techniques were implemented in a

bio-molecular visualization software proteinvis. To vali-
date our approaches quantitatively, we compare our algo-
rithm with existing software.

We conducted our evaluations on an Intel Xeon worksta-
tion, with 16GB RAM, and an NVIDIA GeForce GTX 260
Graphics card with 896 MB memory. In our experiments, we
use two lights and a viewport of 1024x768. For the backbone
representation using the cylindrical impostor, the spline was
sampled with six points for each section of the spline.

Comparison with Popular Protein Viewers.
We compute the frame rate and compare our implementa-

tion against popular molecular visualization programs, namely
VMD [8] and PyMol [14]. Both VMD and PyMol imple-
ment a spherical impostor method for space-fill renderings.
Table 1 shows the comparison of the frame rate for the
above viewers for the GroEL molecule 1AON (approximately
59K atoms, see Figure 10). Our method performs consider-
ably better for the space-fill and ball-stick representations.
For the tube representation, to generate comparable visu-
als, VMD was configured to use ten sided polygonal approx-
imations of circular elements, shaded using phong shading.
We again note that the performance is considerably better.
For the α-helix, we observe good performance due to the
usage of a single element for each helix. Other viewers of-
fer visualization of helices together with loops and β-sheets.
Hence, we report frame rates for rendering all three struc-
tures in our implementation and compare it with the car-
toon and new cartoon representations in PyMol and VMD
respectively. Again, we observe better performance due to
the usage of quadric primitives. Figure 11 shows a compari-
son of the rendering secondary structures of the ribonuclease
1D5H molecule with VMD. Artifacts due to the spline twist-
ing, which are present in VMD’s and PyMol’s rendering, are
not seen in proteinvis’s rendering.

Performance Statistics and Quality.
Table 2 shows the frame rates for molecules of various

sizes. We note that the rendering of α-helices using heli-
cal impostors is significantly faster than other representa-
tions due to the usage of fewer primitives. Figure 9c shows
the backbone spline along with the helical impostors for the
1D5H molecule. As can be seen, the helical impostors closely
approximate the turns of the backbone spline.

We also compare the performance of our secondary struc-
ture rendering with Krone et al. [11] (see Table 3). In par-

Molecule # atoms SF BS BB α SS
1D5H 1122 556 900 2000 6000 1538
4RHV 6267 180 407 600 5000 500
1RCX 37,455 61 113 116 600 120
1AON 58,673 55 80 68 460 83
1HTQ 90,672 41 60 50 111 54

Table 2: Frame rates for various representations of molecules
with varying sizes. First column lists the PDB ID ([2]) of
the molecule. Second column lists the number of atoms in
the PDB file. Columns 3-7 show the frame rates for space-
fill representation (SF), ball-stick representation (BS), back-
bone representation using cylinders (BB), α-helix represen-
tation (α), and secondary structure representation (SS) con-
sisting of α-helices, β-sheets, and loops.

Molecule # atoms SS Hybrid [11]
1OGZ 943 870 550
1VIS 2481 556 200
1TII 5478 274 150
1AF6 10,049 160 100
1AON 58,673 34 10

Table 3: Frame rates for molecules with varying sizes ren-
dered using the backbone tubes and helices. First column
lists the PDB ID ([2]) of the molecule. Second column lists
the number of atoms in the PDB file. Third column shows
the frame rates of our implementation of secondary struc-
tures (SS). Fourth column shows the frame rates of Krone
et al.’s [11] hybrid method for backbone, α-helices and β-
sheets. Both renderings use the same graphics hardware; an
NVIDIA GTX 8800 card with 768 MB RAM.

ticular, we compare with their hybrid implementation using
six segments per spline and phong lighting using the same
graphics hardware i.e. GTX 8800 with 768 MB of graphics
memory. We find that our implementation performs bet-
ter, primarily because of the usage of fewer primitives for
the geometry of the backbone and helices. We note that
even though our technique is computationally intensive in
the fragment shader stage, it performs better overall.

6. CONCLUSIONS
We have presented a unified two stage framework to ren-

der quadric elements using GPUs. This framework is imple-
mentable using geometry and fragment shaders. We adopt
this framework to define quadric “impostor” elements for
spheres, cylinders cut by arbitrary planes, and helices. We
implement these elements in protein visualization to accel-
erate the rendering of space-fill, ball-stick, backbone-tubes,
and α-helix representations of proteins. We show quantita-
tive and qualitative improvements over earlier methods for
rendering similar representations.
In future it would be interesting to consider applying our

secondary structure rendering techniques for nucleic acids.
Here too, the presence of regular structures in the form of
double helices might be exploitable on GPUs. Currently,
impostored helices appear as thin strips. Development of
“thick” helices, as is common in other viewers, using impos-
tors is challenging. The implicit assumption of impostoring
helices is that the axis for each helix roughly remains the

same. This is not true for molecules such as haemoglobin.
Development of adaptive impostoring techniques in such
cases is also an interesting direction for future work.

7. REFERENCES
[1] C. Bajaj and P. Djeu. Texmol: Interactive visual

exploration of large flexible multi-component
molecular complexes. In Proc. IEEE Conf.
Visualization, pages 243–250, 2004.

[2] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland,
T. N. Bhat, H. Weissig, et al. The Protein Data Bank.
NAR, 28:235–242, 2000.

[3] F. C. Bernstein, T. F. Koetzle, G. William, D. J.
Meyer, M. D. Brice, J. R. Rodgers, et al. The protein
databank: a computer-based archival file for
macromolecular structures. JMB, 112:535–542, 1977.

[4] J. F. Blinn. Models of light reflection for computer
synthesized pictures. SIGGRAPH, 11(2):192–198, July
1977.

[5] E. Catmull and R. Rom. A class of local interpolating
splines. Comp. aided geom. design., pages 317–326,
1974.

[6] R. B. Corey and L. Pauling. Molecular models of
amino acids, peptides and proteins. Rev. Sci. Instr.,
24:621–627, 1953.

[7] S. Gumhold. Splatting illuminated ellipsoids with
depth correction. In Proc. VMV, pages 245–252, 2003.

[8] W. Humphrey, A. Dalke, and K. Schulten. VMD –
Visual Molecular Dynamics. J. Mol. Graph, 14:33–38,
1996.

[9] P. C. Kahn. Defining the axis of a helix. Computers &
Chemistry, 13(3):185–189, 1989.

[10] W. L. Koltun. Precision space-filling atomic models.
Biopolymers, 3:665–679, 1965.

[11] M. Krone, K. Bidmon, and T. Ertl. Gpu-based
visualisation of protein secondary structure. Proc. of
TPCG 2008, pages 115–122, 2008.

[12] M. Krone, J. Stone, T. Ertl, and K. Schulten. Fast
visualization of gaussian density surfaces for molecular
dynamics and particle system trajectories. pages
67–71.

[13] O. D. Lampe, I. Viola, N. Reuter, and H. Hauser.
Two-level approach to efficient visualization of protein
dynamics. IEEE Trans. Vis. Comput. Graph.,
13(6):1616–1623, 2007.

[14] L. Schrödinger. The PyMOL molecular graphics
system, version 1.3r1. August 2010.

[15] C. Sigg, T. Weyrich, M. Botsch, and M. Gross.
GPU-based ray-casting of quadratic surfaces. In
Eurographics Symp. Point-Based Graph., pages 59–65,
2006.

[16] M. Tarini, P. Cignoni, and C. Montani. Ambient
occlusion and edge cueing for enhancing real time
molecular visualization. IEEE Trans. Vis. Comput.
Graph., 12(5):1237–1244, 2006.

[17] M. Woo, J. Neider, T. Davis, and D. Shreiner.
OpenGL Programming Guide: The Official Guide to
Learning OpenGL, Version 1.2. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 3rd
edition, 1999.

(a) (b) (c)

(d) (e) (f)

Figure 10: Visualizations of the primary and secondary structures of the GroEL 1AON and glutamine synthetase 1HTQ
molecules, which contain approximately 59,000 atoms and 90,000 atoms respectively. (a) , (d) Space-fill representation.
(b) , (e) Ball-stick representation. (c) , (f) Secondary structure shown with α-helices β-sheets and loops.

(a) (b) (c)

Figure 11: The secondary structures of ribonuclease molecule 1D5H rendered using (a) VMD, (b) proteinvis, and (c) PyMol.
Artifacts due to the spline twisting are present in VMD’s and PyMol’s rendering, which are not seen in proteinvis’s rendering.
The number of segments per spline section was six for both PyMol and proteinvis. VMD only allows configuring the number
of segments used to approximate the circular cross section of a tube which was also set to six.

