
An Interactive Framework for Reconstructing 3D Neuronal
Structures

Kanuj Kumar a
kanujkumar@csa.iisc.ernet.in

Vijay Natarajan a, b
vijayn@csa.iisc.ernet.in

S. K. Sikdar c
sks@mbu.iisc.ernet.in

Kalyan V Srinivas c
kalyan0000@gmail.com

a Computer Science And Automation, Indian Institute of Science, Bangalore, India
b Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India

c Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India

ABSTRACT
Neuron reconstruction is a complex and tedious task and
neurobiologists today have to rely on time-consuming man-
ual methods. Methods that entail manual tracing may in-
troduce systematic inaccuracies. This necessitates the use
of automated methods for reconstruction of neuronal struc-
tures. Despite recent advancements, the automation of re-
construction process either does not exhibit robustness against
noise of microscopy images or fails to capture precise den-
dritic structures. This motivates the development of semi-
automated methods that require crucial but minimal expert
user input. In this paper, we present a fast and interactive
framework for reconstruction of neuronal structures that em-
ploys automatic methods while allowing a user to provide
expert input if the results are unsatisfactory. The frame-
work is designed as a multi-stage pipeline, where in the
user provides numerical input parameters to guide the re-
construction process and validates the output of automated
methods visually. The user is also assisted by the framework
in calculating the optimal values of required parameters for
reconstruction. The framework is also able to handle dis-
continuities and produce a connected geometric model of
the neuron structure.

Keywords
3D Neuron Reconstruction, Interactive Framework

1. INTRODUCTION
The reconstruction of a neuronal structure using a semi-

automatic or manual system has always been a time consum-
ing task because of the complex morphologies of neuronal
cells and noise imposed by the imaging conditions. While a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICVGIP ’14, December 14-18, 2014, Bangalore, India
Copyright 2014 ACM 978-1-4503-3061-9/14/12 ...$15.00
http://dx.doi.org/10.1145/2683483.2683502

Figure 1: A flexible framework for reconstructing the neu-
ronal surface from a stack of 2D images.

few techniques of varying degrees of automation have been
suggested to reconstruct neuron morphologies in the past
[9, 11, 12, 13], their precision is limited by quantization er-
rors arising from insufficient imaging resolution. Thus, the
objective of decreasing the user interaction often conflict to
ensure the accuracy and the topological correctness of the
models. Considering the incomplete results of the automatic
procedures, neuro-biologists still use the commercially avail-
able semi-manual processing techniques. The accuracy of
these however is strongly dependent on individual interpre-
tation to estimate mid-lines and diameters of dendrites. One
of the commercially available software tools is NeuroLucida
(by MicroBrightField, Inc, USA) which performs the man-
ual tracing of boundaries of the neurite structure where user
specifies the terminal and seed points. Unfortunately, the
manual tracing of complex dendritic trees in large data-sets
becomes overly tedious and time consuming, thus necessi-
tating the need of flexible system. Framework introduced in
this paper uses automated methods with driving parameters
to guide the reconstruction of neuronal surface. Further, we
aim to reconstruct a connected surface even in the presence
of discontinuities in the input images caused by uneven dye
distribution. The framework also supports an automated
pipeline with calculation of optimal driving parameters. In

particular, key contributions of this paper include

• a flexible system for extracting boundary contours of
the neuron within each 2D slice

• a modification of the beta-connection algorithm to re-
construct the neuronal surface from a set of contours
that includes a correction component to ensure that
the output is connected

• an integrated framework that includes the above meth-
ods for neuronal surface reconstruction with minimal
but critical user input

2. RELATED WORK
Several algorithms have been proposed for 3D reconstruc-

tion of neurons from optical microscopy data, which can be
broadly divided into two categories as centerline-extraction
based and boundary-extraction based.
Centerline-extraction based methods[5, 8, 11, 12,
13]. In this approach, neuron morphology is extracted from
a centerline model (or skeleton) and the reconstruction is
generated assuming a cylindrical model (a tubular-like shape
of dendrites). Using this approach has the advantage of com-
puting accurate topological structure, but issues such as ir-
regularities of dendrites’ surfaces are ignored during extrac-
tion of centerline. Also, this approach is computationally in-
tensive since most of the operations are performed on every
voxel. Moreover, in contrast to boundary-extraction based
methods, it involves both local and global characterization
while modeling neurites. Few of the methods categorized
under this approach are described below. Zhao et al.[13]
compute a geometrical model using a 3D cylinder filter to
formulate the shape of a neurite fiber. From the model, they
derive a tracing algorithm based on templates. Once the set
of fragmentary trace or neurite fibers have been obtained for
an image, they are assembled to form a neuronal tree struc-
ture. They define a neurite graph consisting of individual
fibers and assign the geodesic distance as the cost of edges.
The graph is then filtered to derive tree structure where the
template parameters can also be varied to adapt to differ-
ent neurite sizes. If many branches are present in a small
region, such as the end of an axonal projection, the fitting
template may jump from one branch tip to another or fail to
fit on a short segment between two branch points resulting
in topological errors. Also the method fails to trace com-
plete segments when there are discontinuities in neurites.
Fleuret et al.[5] describe a method for tracing of dendrites
pattern by computing an optimal tree using a modified min-
imum spanned tree procedure which combines a EM-based
local estimate of the probability of voxel belonging to a neu-
ron filament with the global tree (or skeleton) properties
of the complete structure. They formulate the problem as
Bayesian inference and avoid having to de-noise the image
by keeping a probabilistic semantic in the result of the seg-
mentation step. The problem is decomposed as derivation of
inference measure from actual location of the dendritic tree
and its voxels’ visibility in the images. The problem with
the approach involves high computational cost, especially to
handle the list of all possible voxels.
Urban et al.[11] proposed a skeletonisation algorithm to pro-
duce the segmentation of the structures in the images. The
authors explicitly determine the voxels that belong to the
pipette and the soma employing the information that these

two correspond to brightest features (voxels) in the images.
To extract the medial axis of the segmented neuron, they
employ a distance transform based skeletonisation method
that guarantees to be tree-structured, which is then used
to cull false dendrites from the neuron. An approximat-
ing spline is then fitted to each path in the tree of paths
representing the medial axes of the salient branches in the
binarized neuron data. Finally, a cylinder-tree representa-
tion of the neuron is computed using dendrite widths along
each spline. The framework proposed by the authors is un-
able to handle apparent dendrite gaps and irregularities in
dendrites.
Boundary-extraction based methods[4, 6, 10]. In this
approach, voxels representing the boundary of structure are
extracted using algorithms such as watershed or threshold-
ing. These voxels are then chained together either by vec-
toral (directional) tracing or using dynamic programming
to search for a minimum cost path. The main problem with
this approach is the ability to produce continuity of edges.
It requires further post-processing to link the broken edges.
The linking algorithms may introduce unnecessary ambigu-
ity and incorrect links of noisy data. Recent work[4] has
adapted the approach to include global information to re-
solve these ambiguities.
Uehara et al.[10] describe a reconstruction algorithm based
on a wave propagation. The algorithm generates a field in-
dicating the probability of each voxel belonging to a cylin-
drical structure. A digital wave is then propagated through
this field to provide dendrite paths. However, the multi-scale
gradient analysis used is computationally expensive for large
volume data.
Hamilton et al.[6] present an algorithm that operates by
performing connectivity testing over voxel neighborhoods to
extract a graph representation of the structures. Voxels are
obtained using the combination of thresholding, skeletoni-
sation, and thinning process. The resulting graph is then
analyzed for width of connected nodes to filter the vox-
els that belong to the soma and the artifacts. Assuming
the tree structure of the neurite, graph is then filtered to
prevent the cycles and loops by computing the minimum
spanning tree. Resulting fragments are connected through a
semi-interactive method where user specifies the region of er-
ror. The surface is computed by checking presence of vacant
voxel in neighborhood connectivity of voxels. Although, the
resulting structure consists of accurate topology, it is unable
to represent any intermediary branching between voxels and
the method is computationally expensive since it operates on
each voxel for every process in the algorithm.

3. THE FRAMEWORK
The framework divides the task of reconstruction of the

neuron structure from image data into three modules shown
in Figure 1. The segmentation module extracts the bound-
ary of neurite structures within each image. It starts with
computation of boundary polygons based on locally adapted
threshold for an image and computes a connected compo-
nent to filter the noisy structures. The choice of input pa-
rameters is assisted via immediate visualization of results
from the extraction process. The goal of the reconstruction
module is to find a best surface consistent with the extracted
polygons in segmentation module. It achieves this via con-
struction of a triangulation from the extracted boundary
polygons. This triangulation is extended further to create

correspondence between polygons of adjacent sections. Dis-
continuities, often emerging from insufficient resolution of
images are handled in correction module. Connection mod-
ule first computes the minimum spanning tree (MST) over
the connected-contour graph and then establish a link be-
tween contours if the corresponding pair is connected by an
edge in the MST. This linking of contours is represented in
binary image via rasterization of shortest line segment con-
necting these contours. New binary images are then fed as
input to segmentation module to recompute the extracted
contours.

To demonstrate the performance of the framework, we

Figure 2: Confocal microscopy scan of subicular pyramidal
neuron cell

have acquired a dataset that consists of noise and artifacts
inherent from the mechanism used for imaging. As evident,
the dataset (Figure 2) consists of diffraction effects causing
a spread of a point object in the image characterized by its
point spread function. Also, variable contrast is exhibited in
images due to uneven dye distribution within the cell causing
apparent discontinuity in structures. Also, many features of
interest (such as thin dendrites) are at the limit of imaging
resolution.
Dataset. The dataset (Figure 2) shows the structure of
single subicular pyramidal neuron cells from hippocampal
region in the rat brain slice preparation. Images were ac-
quired with confocal microscopy with the neuron filled with
Biocytin through a patch pipette electrode and stained with
streptavidin conjugated with Fluorescein fluorophor dye. The
dataset consists of 47 sections with voxel resolution of 0.65µm
in the x− y axis and 0.5µm in the z axis. Excitation wave-
length was set to 488nm with index of refraction correspond-
ing to that of water. The depth of image is 8 bits/pixel with
resolution of 512× 512 in x− y scale.

3.1 SEGMENTATION
The segmentation module was designed to enable fast ex-

traction and visualization of the structures from the images.
Based on the approaches used, it is applicable to data ob-
tained from any imaging modality. This module considers
each image as a 2D matrix, where each component of the
matrix represents the intensity value of a pixel. In this con-
text, we represent the image stack as a function I(x, y, z)
that maps voxel coordinates onto their intensity values.

3.1.1 VISUAL BINARY SEGMENTATION
To segment the structures from these images we chose

thresholding as it is one of the simplest and least computa-

tionally intensive technique for image segmentation. How-
ever, low imaging resolution and presence of arbitrary noise
often acts contrary to choice of optimal threshold value.
Thus, we incorporated visual tools in framework to produce
a reliable segmentation. To ensure that all the possible sig-
nals are captured, framework first produce an initial over-
complete segmentation with threshold as the decay point of
the peak in intensity histogram of the entire image. The
segmented image is overlay-ed on source image and easily
manipulated in real-time by varying the threshold value to
extract more information. Figure 3a) shows the screen-shot
of the visual tools incorporated in the framework. User is

(a) (b)

Figure 3: (a) Initial overcomplete segmentation (b) Local
threshold selection with bounding box

also given the choice to specify local threshold for a resize-
able bounding region (Figure 3b). This way user can even
extract small structures which may not be otherwise covered
with a global threshold for the entire image. Additionally,
user can also cull objects or artifacts, within the specified
region by choosing higher threshold for that region. The
size of region is made configurable that can be expanded in
z depth if user chooses to specify threshold for the set of
images in the local region.
To remove artifacts such as presence of small holes or ob-
jects in the segmented image, framework provides user with
choice of morphological operations to be applied on these
segmented image. Each morphological operation comes ei-
ther with 8-connective or 4-connective neighborhood tem-
plates. User can visually verify the application of mor-
phological operation on these images and has the option
of choosing the template and the number of operations as
tunable features.

3.1.2 BOUNDARY EXTRACTION AND CONTOUR
TRACING

The reconstruction module requires the boundary of the
extracted structure. In order to extract the boundary pix-
els, we check the neighborhood of each pixel for its label
(foreground or background). If the 4-connective neighbor-
hood of a pixel p contains the background label, then we
mark p as a boundary pixel. Each boundary pixel is linked
to the nearest boundary pixel to create a contour. A con-
tour is either internal or external depending on whether its
consists of inner or outer boundary pixels. To trace a con-
tour from boundary pixels, the algorithm scans the image
from top to bottom and left to right while looking for an
unscanned boundary pixel. Starting at the first unscanned

pixel, the algorithm traverses its neighborhood in clockwise
order, starting from position 2 in the pixel neighborhood
graph in Figure 5a. While traversing the neighborhood, the
algorithm locates the next unscanned boundary pixel n and
previous boundary pixel p. The algorithm uses predefined
path templates to trace the contour given a configuration of
three unscanned boundary pixels p, c, n.
A path template (Figure 4a) is a predefined ordering of con-

(a) (b)

Figure 4: (a) Path-template for the given p, c, n ordering
of pixels (b) Traced polygons (represented by circles) from
path-template based algorithm

tour vertices that are linked together while traversing the
neighborhood of an unscanned pixel p. Each contour ver-
tex (blue dot) is located at the mid point of an edge of the
corresponding unscanned pixel. These path-templates are
designed in a way that ensures that the resulting contour is
single pixel wide. There are 68 path templates in total. The
use of path templates simplifies the boundary extraction pro-
cess and ensures non-intersecting contours. Figure 4b shows
a path template (represented by dots) for one of the configu-
rations of p, c, and n. Here x denotes other unscanned pixels.
After adding the contour vertices from the path-template,
the algorithm searches for the next unscanned pixel until
the algorithm returns to the first unscanned pixel. Internal
contours are traced in the same manner by moving in anti-
clockwise order of neighborhood traversal. Figure 4b shows
a linked boundary (blue) by using path templates and cre-
ation of non-intersecting contours as compared to contour
generated with Moore’s Neighbor Tracing algorithm (red).

3.1.3 COMPONENT EXTRACTION
While user may have sufficiently extracted the informa-

tion, often extracted stack may contain contours that are
not part of interest. To identify and eliminate these con-
tours, framework employs connected component analysis on
the contour stack. To compute these connected components,
we build an undirected graph G = (V,E) on the set of con-

Figure 5: Visualization of Contour Stack in 3D

tours where edges of the graph have an associated weight
equal to the geodesic distance between contours. We define
this geodesic distance between two contours C1 and C2 as
disg(Ci, Cj) = min(dis(vp, vq) where vp ∈ Ci, vq ∈ Cj), and
dis(vp, vq) is equal to the Euclidean distance between vertex
vp and vq. A pair of contours Ci and Cj (Ci ∈ section Sa and
Cj ∈ section Sb), have an edge between them iff a = b or
Sa, Sb are adjacent sections and disg(C1, C2) < t0, where t0
is the chosen threshold. Breadth-first search (BFS) is then
performed on the graph G to determine the connected com-
ponents. Usually, the selection of the largest component is
sufficient to represent the structure, but the choice is given
to the user to enable selection of multiple components from
the results. A projection of the aligned stack of contours is
then presented to the user where user can visually validate
the extracted contours set (Figure 5) and if necessary, can
vary the threshold in the viewer. The choice of threshold
t0 is simplified via analysis of components over all possi-
ble values of thresholds. Framework collects the number
of components and the length of the largest component in-
formation as parameters for analysis and optimal threshold
value is chosen from the range of values where slope of these
two graphs approximates to zero. Figure 6 shows the com-
ponent analysis plot for the input where the optimal range
for t0 is 20− 24.

Figure 6: Plot of number of connected components and size
of largest connected component of the component graph

3.2 RECONSTRUCTION
The reconstruction module in the framework is an adap-

tation of β-connection algorithm[7] with underlying tetra-
hedron disconnection method, modified to correctly han-
dle the branching problem for reconstruction of neuronal
structures. The algorithm relies on the construction of the
Delaunay Triangulation (DT) which generates a volumet-
ric representation connecting the contours of adjacent cross
sections. Although, similar approaches (Das et al.[3]) have
been proposed before, β-connection algorithm is particu-
larly adequate to our reconstruction module as it is capable
of generating multiple alternatives when establishing region
correspondence and intrinsically handles tiling and branch-
ing problem using DT . In addition, the algorithm also deals
with the topological singularities that may appear during the
process of reconstruction so that the reconstructed object is
a manifold (which is a highly desirable property for numeri-
cal simulations). More importantly, all the operations in the
reconstruction process are combinatorial enabling a more ro-
bust and efficient implementation.

3.2.1 BETA CONNECTION
The basis of the β-connection algorithm was initially in-

troduced by Boissonnat[1] who proved that the regions which
are geometrically well positioned can be found through topo-
logical tests on the DT . Later, Nonato et al.[7] showed that
the distance measure among regions can be intrinsically de-
rived from DT , responsible for establishing the connection
among them. The distance parameter was defined as a pos-
itive integer parameter, called β. Varying β allowed the
construction of different correspondence for a given set of
contours. As a part of the algorithm, it is necessary to dis-

Figure 7: Vertex Displacement for inter-component discon-
nection

connect different β components completely by translation of
vertices to intermediary level between sections. This transla-
tion is done to We compute the centroid of tetrahedra whose
vertices are being translated and move the vertices towards
the centroid to avoid intersections in the reconstructed sur-
face (see Figure 7).

3.2.2 DISCONNECTION ALGORITHM
The β-connection algorithm in itself reconstructs the ob-

ject that satisfies the manifold condition. The algorithm
subdivides the external tetrahedra and translates the ver-
tices created on the subdivision of these tetrahedra to an in-
termediary position between the sections, generating branches
at that intermediary level. However with the subdivision
process, the β-connection algorithm generates branches (as
shown in Figure 8a) in inner regions of adjacent sections with
presence of tetrahedra belonging to same β-component. We
handle the branching problem by completely avoiding the
connections in inter-section region, by introducing a system-
atic disconnection method which also satisfies the manifold
condition. We disconnect tetrahedra whose elimination gen-
erate singularities based on their orientation and edge clas-
sification:
Tetrahedra with one vertex in a section and other
vertices in adjacent section. For these tetrahedra hav-
ing two of its edges as external, we divide along the external
and intra-section edges and then translate the vertices along
these edges (as shown in Figure 9a where cb and bd are the
external edges). For tetrahedra having three of its edges ly-
ing in external region, we follow the division criteria as in
Figure 9b where cb, dc and bd are the external edges.
Tetrahedra with two edges in adjacent sections. For
these tetrahedra having two of edges as external, we subdi-
vide along all of its external edges and translate the vertices
along these edges (as shown in Figure 9b where ad and bc
are external edges). For tetrahedra having two of its edges
on contour boundary and one external edge, we subdivide
as shown in Figure 9a, where dc is the external edge.
In our algorithm, neighborhood around the vertex of edges

(a)

(b)

Figure 8: (a) Reconstruction of surface between adjacent
sections (b) Branching in contours from our disconnection
method

which are lying on the contour is always maintained, which
inturn ensures that reconstructed object is a manifold. Fig-
ure 8b illustrates the results of disconnection algorithm ap-
plied to a pair of sections in the dataset.

3.3 CORRECTION
Correction module comes in action if the reconstruction

module is unable to generate a connected component with
a given contour set. This is generally due to segmenta-
tion process producing a set of spatially distant contours.
Varying the β parameter in reconstruction module to estab-
lish a higher correspondence creates unwanted connections
in these regions since the value remains same for an inter-
section region. Framework solves this problem by comput-
ing the minimum spanning tree (MST) of the components in
contour stack. Extracted contours are then merged to create
new contour stack. The above mentioned process increases
the proximity factors of distant regions (or contours), which
then enables the correspondence among them in the recon-
struction module with the same β value.

3.3.1 CONTOUR COMPONENT GRAPH
To compute this MST, we first build a graphG1 among the

contours in cross-sections with its edges formed by relation
disg(Cj , Ck) > 1 for all Cj , Ck ∈ sections Si, Si+1. Next,
we compute the components by performing a BFS on graph
G1. These components (shown in Figure 10a) are then used
as nodes for constructing the graph Gc. The edges of graph
Gc are assigned a label lab(Coj , Cok) = min(disg(Cm, Cn)
for all Cm ∈ Coj ∩ Si, Cn ∈ Cok ∩ Si; i = 1, ..., k), where
Coj and Cok are the nodes of graph Gc. Next, we filter
the edges of graph Gc by the relation lab(Coj , Cok) < t1,
where t1 is the chosen threshold. The selection of threshold
is again done through component analysis plot (see Figure
10b). Finally, we compute the minimum spanning tree on

(a) (b)

Figure 9: Disconnection of (a) tetrahedron with two external edges (cb and bd) lying on a section and tetrahedron with two
edges lying on contours in adjacent section(b) tetrahedron with two external edges (ad and bc)

the filtered component graph Gc. The resultant output of
the algorithm is either a single component or a set of con-
nected components, determined by connectedness of the fil-
tered component graph Gc. To establish the correspondence
among the contours of obtained forest (or tree), we rasterize
the segmented images along the shortest path connecting
the two contours. These binary images are then re-fetched
to the segmentation module to extract the boundary. The
reconstruction process is then repeated in pipeline.

4. RESULTS AND DISCUSSION
We now discuss the reconstruction of chosen dataset along

the different stages of the pipeline in the framework and how
varying parameters in the different modules of affects the re-
constructed structur. Based on histogram analysis defined
in 3.1.1, an initial estimate of threshold, g0 = 22 with an
overcomplete segmentation is provided by the framework.
We further tune the threshold using visual tools in selected
regions to extract the small structures. Once we sufficiently
extract the information in thresholding process, we use mor-
phological operations on the images to patch holes and va-
cant neighbourhood pixels in the images. The results of
morphological operations (two operations of openings fol-
lowed by two operations of closing) with available neighbor-
hood template are shown in Figures 11a and 11b. Next, we
extract the boundaries in the images to form the required
contour stack. Figure 13a shows the result of component
filtration algorithm. Contours shown in red have been se-
lected for extraction with the chosen threshold value. We
selected the threshold value from component analysis plot
shown in Figure 6 with optimal parameter range of 20− 24.
The reconstructed mesh for the contour stack is shown in
Figure 13b with chosen β value of 1. As evident in the recon-
structed model, module was unable to generate a connected
component for extracted contours of dendritic branches re-
gions of neuron. Thus we employ correction module. Fig-
ure 13c shows the new extracted contour stack with merged
contours shown in blue. We chose threshold value of t1 =
10 from component analysis plot 10b of extracted contour
stack. Figure 12 shows the final reconstructed mesh where it
is extended correctly as a connected component in the den-
dritic branches with newly created connections marked in
blue. The overall total time taken by our framework for the
reconstruction of given dataset was arround 624.07sec ≈ 10
minutes. The framework was deployed on HP workstation
xw6600 machine (equipped with an Intel Xeon quad-core

(a)

(b)

Figure 10: (a) Components of Contour Graph G1 (b) Plot
of number of connected components and size of largest con-
nected component of the component graph.

processor E52053 1.86 GHz, 6 MB L2 cache, 1066 MHz FSB
and 8 GB of RAM). On comparison with commercial soft-
wares such as NeuroLucida, it takes an average time of 4-6
hours to manually trace the boundaries and generate the
surface of the given dataset. Moreover, the fact that the pa-
rameters of the framework can be adapted depending on the
represented neuron structure or noise in the image, shows
its adaptability to generate an adequate reconstruction of
structures of different scale and size.

5. ERROR ANALYSIS
To validate the accuracy of reconstruction from our frame-

work, we constructed a virtual neuron model using 3D mod-
elling and compared the results of reconstruction with the
original mesh. The virtual model contains a soma, axon
and flow of dendrites in 3D space (as shown in Figure 14a).

(a)

(b)

Figure 11: Application of morphological operations to seg-
mented image with (a) 4-adjacent neighborhood template
(b) 8-adjacent neighborhood template

Figure 12: Final reconstructed mesh with newly created con-
nections(blue)

Following the design, we computed the cross sections of the
model at intervals in z scale, where we used normalized value
for computing interval length to maintain the aspect ratio
of model. Further, to introduce the partial effect of adjacent
images in the focused image, we took average of intensities
of pixels in adjacent sections to form a crossover image. To
achieve the partial volume effect and intensity decay, we ap-
plied the lens blur effect to the images. This process helped
us achieve realistic challenges often present in the images
due to uneven dye distribution and point spread of micro-
scope optics. Finally, we fed these images to our framework
and obtained the reconstructed mesh (Figure 14b) of the
virtual neuron model.
For analysis, we used a proprietary tool called Metro[2] which
numerically compares two triangular meshes by computing
the difference of each sampled vertex of the surface of the
source mesh to the target mesh. The output from the Metro
tool consists of mean and RMS distance as the two measures
to evaluate the approximation. We used both reconstructed
mesh (backward) and original mesh (forward) as the sam-
pled mesh and evaluated the results. We computed percent-

(a)

(b)

(c)

Figure 13: (a) Selected contours (marked in red) from stack
with the threshold, t0 = 22 (b) Reconstructed mesh with
noisy components (marked in blue) (c) New contour stack
with merging of contours (marked in blue) in corrections
module for threshold t1 = 10

(a)

(b)

Figure 14: (a) Virtual Neuron Model (b) Reconstructed
Neuron model with framework

Table 1: Error Analysis Results from Metro tool

Mean RMS Percentage Error
Forward Distance 2.41 3.20 0.4
Backward Distance 2.55 3.08 0.4

age error on the non-sampled mesh as value of mean distance
with respect to diagonal of the bounding volume of sampled
mesh. The results reported in Table 1, indicate that the
errors are low.

6. CONCLUSIONS
Our approach to treat the disconnected fragments prob-

lem in the reconstruction of neuron structures offers flex-
ibility in the choice of degree of connections to be made.
Moreover, the fact that the resulting mesh is free of singu-
larities enables the resulting models to be used in simulations
without any need for post-processing. We feel that results
from our framework were more than adequate for the cho-
sen dataset and can be applied for functional visualization
of other neuron structures. From a neuro-biologists stand-
point, several characteristics are important, including the
centroid of a soma, its volume, its surface area, pattern in
the dendritic connectivity and topology of such structures,
which may be derived from our reconstructed mesh.

7. ACKNOWLEDGEMENTS
This work was partially supported by the DST Center for

Mathematical Biology, IISc, under Grants SR/S4/MS:419/07
and SR/S4/MS:799/12.

8. REFERENCES
[1] J. D. Boissonnat. Shape reconstruction from planar

cross sections. Computer Vision, Graphics, and Image
Processing, pages 1–29, 1988.

[2] P. Cignoni, C. Rocchini, and R. Scopigno.
Metro:measuring error on simplied surfaces. Istituto
per l’Elaborazione dell’Informazione - Consiglio
Nazionale delle Ricerche, Pisa, Italy, 1998.

[3] K. Das, A. Majumder, M. Siegenthaler, H. Keirstead,
and M. Gopi. Automated analysis of remyelination
therapy for spinal cord injury. Indian Conference on
Computer Vision, Graphics and Image Processing,
pages 314–321, 2010.

[4] A. Dima, M. Scholz, and K. Obermayer. Automatic
segmentation and skeletonization of neurons from
confocal microscopy images based on the 3-d wavelet
transform. IEEE Transaction on Image Processing,
pages 790–801, 2002.

[5] F. Fleuret and P. Fua. Dendrite tracking in
microscopic images using minimum spanning trees and
localized e-m. Technical report, Computer Vision Lab,
EPFL, 2006.

[6] W. He, T. Hamilton, A. Cohen, T. Holmes, C. Pace,
D. Szarowski, J. Turner, and B. Roysam. Automated
three-dimensional tracing of neurons in confocal and
brightfield images. Microscopy and Microanalysis,
pages 296–310, 2003.

[7] L. Nonato, A. Vargas, R. Minghim, and M. Oliveira.
Beta-connection: Generating a family of models from
planar cross sections. ACM Transactions on Graphics,
pages 1239–1258, 2005.

[8] A. Sadeghipiur. Algorithms of rutomatic
reconstruction of neurons form the confocal images.
Master’s thesis, 2008.

[9] A. Santamaria and I. Kakadiari. Automatic
morphological reconstruction of neurons from optical
imaging. Micscoscopy Image Analysis and
Applications in Biology Workshop, 2007.

[10] C. Uehara, C. Colbert, P. Saggau, and I.Kakadiaris.
Towards automatic reconstruction of dendrite
morphology from live neurons. IEEE Engineering in
Medicine and Biology Society, pages 1798–1801, 2004.

[11] S. Urban, S. OMalley, B. Walsh, A. Santamara-Pang,
P. Saggau, C. Colbert, and I. A. Kakadiaris.
Automatic reconstruction of dendrite morphology
from optical section stacks. Computer Vision
approaches to Medical Image Analysis, Lecture Notes
in Computer Science, pages 190–201, 2006.

[12] Y. Zhang, X. Zhou, J. Lu, J. Lichtman, D. Adjeroh,
ST, and Wong. 3d axon structure extraction and
analysis in confocal fluorescence microscopy images.
Neural computation, pages 1899–1927, 2008.

[13] T. Zhao, J. Xie, N. C. F. Amat, P. Ahammad,
H. Peng, F. Long, and E. Myers. Automated
reconstruction of neuronal morphology based on local
geometrical and global structural models.
Neuroinform, pages 247–261, 2011.

