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Abstract. Critical weather applications such as cyclone tracking require online visualization
simultaneously performed with the simulations so that the scientists can provide real-time
guidance to decision makers. However, resource constraints such as slow networks can hinder online
remote visualization. In this work, we have developed an adaptive framework for efficient online
remote visualization of critical weather applications. We present three algorithms, namely, most-
recent, auto-clustering and adaptive, for reducing lag between the simulation and visualization
times. Using experiments with different network configurations, we find that the adaptive
algorithm strikes a good balance in providing reduced lags and visualizing most representative
frames, with up to 72% smaller lag than auto-clustering, and 37% more representative than
most-recent for slow networks.
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1 Introduction

High-performance and high-fidelity numerical simulations are important for many scientific and
engineering domains such as weather modeling and computational fluid dynamics. Simulations running
on thousands of cores take less than a second of execution time per time step [23] and output huge
amount of data. While the ability to generate data continues to grow rapidly, the ability to comprehend
it encounters great challenges [10,17]. This is mainly due to the high simulation rates on modern-day
processors, as compared to the I/O and network bandwidths. Visualization of simulation output helps
in quick understanding of the data, thereby accelerating scientific discovery. However, for critical
applications such as hurricane tracking, the simulation output must be simultaneously visualized so
that scientists can provide real-time guidance to policy makers. In situ visualization [4,12] provides
some benefits, but has constraints such as physical memory limits, stalling of simulation, supporting
only predefined visualizations and requiring modification of simulation code. The scientist may also
remotely interact with the output on an analysis or visualization cluster present at supercomputing
sites. However, slow speeds in medium/low bandwidth networks between the supercomputing and
user’s sites can impede interactivity. Another approach is to transfer the simulated data to the user’s
local site for better interactivity, without stalling the simulation.

Here, we consider this problem of on-the-fly visualization at the user’s site such that the user is able
to visualize and fully analyze the simulation output locally despite low network bandwidths between
the simulation and visualization sites. This alleviates the shortcomings of in situ visualization. Remote
visualization of simulation of critical applications, where the visualization is performed at a different
location than the site of simulation, also enables geographically distributed scientists to collaboratively
analyze the visualization and provide expert opinion on the occurrence of critical events. However,
remote visualization may lead to rapid accumulation of data on the storage device (disk, SSD etc.) at
the simulation site due to low network bandwidths and limited storage capacity [32]. We developed a
framework, InSt, in [20,21], that adaptively modifies runtime parameters such as simulation speed
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and output frequency based on the output of a linear program. Our current work guarantees an upper
bound on the lag between the time when the simulation produces an output frame (simulation output
data for a time step) and the time when the frame is visualized. We use data sieving and data reduction
techniques to achieve this. It is important to reduce this lag to enable quick indentification of events
from the simulation output and enable the scientists to get an on-the-fly view of the simulation.

Simulated frames may accumulate leading to a long queue of pending frames for visualization,
and hence increase the number of frames to be sent to the visualization site before the current or
recently simulated frame is transferred. The queue length increases with time because the simulation
continuously produces output frames. This, in turn, increases the lag between when a frame is produced
and when it is visualized assuming frames are sent in the order that they are produced. Our work aims
to minimize this lag to enable efficient online visualization. One approach to reduce lag is to sample
one or a few frames from the queue. While this approach reduces the lag, it may miss important events.
A different approach is to increase the output interval so that no frames are discarded. However, this
is equivalent to not examining the simulated data fully and may lead to missing important events. Our
approach is to select the most representative frames from the queue and discard the rest. This reduces
the queue length while preserving the important events.

Contributions. (1) We have developed three algorithms to reduce the lag between frame creation
and visualization – most-recent, auto-clustering and adaptive. An essential criterion is to visualize
important events in the simulation. Most-recent tries to achieve the best possible lag, auto-clustering
tries to visualize all important events in the simulation and adaptive tries to visualize most of the
important events within acceptable lag. (2) These algorithms have been implemented within InSt.
InSt adapts to the resource dynamics as a result of executing these algorithms. (3) Using experiments
with different network configurations, we find that the adaptive algorithm strikes a good balance
between providing reduced lag and visualization of most representative frames, with up to 72% smaller
lag when compared to auto-clustering, and 37% more representative than most-recent for slow networks.
(4) The experiments show the ability of InSt to adapt to different network bandwidths and yet glean
useful information from simulations of critical weather events. Our clustering algorithms are able to
deduce the number of distinct temporal phases (clusters) in the data. We demonstrate the efficacy of
our algorithms using various metrics.

2 Related Work

On-the-fly visualization: Conventional post processing of simulation output for offline visualization is
not suitable for critical applications such as weather forecasting, which requires online visualization. In
situ visualization, where the visualization is done at the same site as simulation, has been extensively
studied [1, 4, 6, 8, 9, 12, 18, 30, 32] but has some limitations as follows. The same data structures may be
inefficient for both simulation and visualization [18,30]. The memory requirements (order of TBs [8])
for a coupled simulation and in situ visualization may exceed the limited physical memory per node on
supercomputers. Deciding visualization/analysis parameters a priori may be challenging for critical
applications, as used in prior work [3,15]. ParaView Catalyst [3, 9] requires the visualization pipeline
configurations to be predecided before processing the current simulation time step output. Adaptable
I/O system (ADIOS) [5, 15] use data staging and in situ data transformations on the output data.
Libsim [32] reads simulation data from physical memory when required by the VisIt [7] server. SENSEI
[4] can use additional infrastructures to transfer data between simulation and visualization/analysis.
Simulation code needs to be modified in the above approaches, which may stall the simulation while
data is transferred to visualization. They also do not consider remote visualization scenarios and poor
network bandwidths between simulation and visualization sites. In this work, we consider remote
visualization where the scientist/user visualizes locally (at the remote site) and has greater control
over the data. We enable the user to perform full visual analysis locally and on-the-fly without stalling
the simulation. This is helpful because analysis scenarios are often not known a priori, especially for



Efficient Online Remote Visualization 3

critical applications. While existing frameworks support zoom-in features where it is left to the user
control based on the requirements, our framework performs data selection adaptively based on the lag.

One can also generate the visualized results (images) at the simulation site and send them to
the user’s site. Cinema [26] allows scientists to decide the parameters for images a priori. Images are
typically smaller than compressed raw data, and hence results in faster data transfers. However, in
many cases the users may require raw data for detailed analysis. If the user wants to modify the
visualization pipeline, the request has to be sent to the simulation site, which in turn will increase the
interaction time of the scientist. Also, the user cannot explore and interact with the entire mesh, going
back and forth in time. In our model, we transfer the simulation output, which gives full flexibility
to the scientist to interact with the full mesh. We also perform remote visualization of the data sent
by simulation over networks which may have low bandwidths. Though the transfer time can vary
from seconds to minutes depending on the amount of data and the network bandwidth, our approach
of transferring simulation output to user’s site for visualization is a viable option for critical and
petascale applications due to more interactivity at the user’s site and expensive compute hours at the
supercomputing site.
Selection of representative frames: Keyframe selection has been studied for summarizing video [14, 16].
However, it is not directly applicable to simulation output selection for online visualization because we
want to select the most representative frames considering the current lag. In real-time video transmission,
each frame may be encoded using different bit rate depending on the perceptual quality required for
that frame [24]. In our case, capturing key events is more preferable unlike video transmission, where
continuity is important to avoid perceptual disturbance in on-demand video transmission [25], unlike
our case. Shen et al. [29] exploit data coherency between consecutive simulation time steps. Differential
information is used to compute the locations of pixels that need updating at each time step. This
is useful when a large percentage of values remain constant between consecutive time steps, as also
reported by them. We found that there are more than 80% changed elements between successive output
steps in our application. Hence sending differential information will lead to diminishing returns in our
case. Wang et al. [31] derive an importance measure for each spatial block in the joint feature-temporal
space of the data based on conditional entropy formulation using multidimensional histograms. Based
on clustering of the importance curves of all the volume blocks, they suggest effective visualization
techniques to reveal important aspects of time-varying data. Their histogram calculation takes 19
hours for a 960×660×360 volume for 222 time steps with block size of 48×33×18. Such a long time
for selection of important frames from a running simulation is clearly unsuitable for efficient online
visualization. Patro et al. [27] measure saliency in molecular dynamics (MD) simulation output. Their
keyframe selection method considers atom positions to determine saliency of the atoms in a time step
and then aggregate information to find saliency of the time step. Their saliency function is specific to
MD simulations where interesting and purposeful molecular conformational changes occur only over
larger time scales.

3 Adaptive Integrated Framework

We use our adaptive steering framework, InSt (see Figure 1, details in [20,21]), that performs automatic
tuning and user-driven steering to enable simultaneous simulation and online remote visualization.
The simulation process is the weather application that simulates weather events across time steps and
outputs weather data to available storage (such as non-volatile memory, burst buffers, SSD, disk etc.).
InSt transfers data from the simulation to the visualization site. There is an adaptive frame sender
at the simulation site and frame receiver at the visualization site. The remote visualization process
continuously visualizes the simulation output. InSt adapts to resource constraints and an application
manager determines final execution parameters for smooth and continuous simulation and visualization
of critical applications in resource-constrained environments. However, it cannot guarantee an upper
bound on the lag between the time when the simulation produces an output frame and the time when
the frame is visualized. When the network bandwidth is high, the frames are transferred quicker. In
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case of low network bandwidths, the frames take longer time to be transferred and hence the number
of frames simulated during that time is higher. This leads to lag accumulation.
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Fig. 1: InSt: Adaptive Integrated Steering Framework

S1

V1

S2

V2

S3

V3

S4 S5 S6 S7 S8

1 1
2

1
2
3

2
3
4

2
3
4
5

3
4
5
6

3
4
5
6
7

4
5
6
7
8

LAG1

LAG2

LAG3

Fig. 2: Simulation and visualization progress

Figure 2 shows increasing lag between the simulation and visualization. The two horizontal lines
show simulation and visualization progress. Si is the simulation time for the ith frame and Vi is the
visualization time for the same. LAGi shows the difference between Vi and Si, i.e. the time difference
between the visualization and simulation of the ith frame. Note that when the 1st frame reaches the
visualization site at V1, the 2nd and 3rd frames are already produced and are waiting to be sent.
When the 2nd frame reaches the visualization site at V2, the 3rd, 4th and 5th frames are queued at S5.
Though the ith frame is produced at Si, it can only be sent after the previously-queued frames are
transferred. Therefore the queue size continues to increase as shown by the numbered rectangles in
Figure 2. This is true for all kinds of intermediate storage. Since the number of frames waiting at the
simulation site increases, the time between when a frame is produced and when it is visualized also
increases. For example, the 8th frame will have to wait in queue until the previous 7 frames are sent.
The transfer times of the queued frames add to the lag for the 8th frame. This leads to cumulative
addition of lag for the later frames. Hence LAGi increases as illustrated here for the 1st, 2nd and 3rd

frames. InSt invokes a frame selection algorithm to send a subset of frames to the visualization site.
We modified InSt’s frame sender to incorporate the adaptivity, as discussed next.

4 Reduction of Simulation-Visualization Lag

The scenario shown in Figure 2 can be better or worse depending on the network bandwidth between
the simulation site and the visualization site. Since the simulation output data size is large, therefore
such data transfers will be bandwidth-limited. While latency will be a factor when considering small
data, we consider only network bandwidth in our work that considers large data. For low-bandwidth
networks, the lag accumulation will be high. So, an online visualization framework should adapt to the
network bandwidth and minimize the lag. We have developed strategies in InSt that adapt to the
network bandwidth and the length of the queue of pending frames i.e., the frames that are yet to be
sent to the visualization site from the parallel simulation site.

4.1 Requirements for Online Visualization

The lag between S3 and V3 is more than between S1 and V1 (from Figure 2), i.e. the lag for the
frames produced later is more than the lag for the earlier frames. This increasing lag is mainly due
to two reasons – (1) Sending all frames and (2) More frames are output by the simulations while a
frame is being transferred. A simple strategy to decrease lag is to increase the output interval i.e.
to not produce excess frames if the network bandwidth is low. However, this may result in missing
important events between the two frames. Since the purpose of visualization is to identify important
events, this strategy is not desirable. The lag for successive frames increases with increasing queue
of pending frames. Thus, we decrease the queue length by dropping some frames from the queue to
decrease the lag. In our work, we choose a subset of frames from the queue and discard the rest so that



Efficient Online Remote Visualization 5

the queue size decreases, which in turn will reduce the lag. Our framework adapts to different network
bandwidths to reduce the lag. The higher the network bandwidth, the lesser the number of frames that
will be dropped by InSt. The criterion to drop frames must adhere to either of the two conflicting
goals: Case 1: The sent frames contain useful information - The goal is to send good quality frames.
The quality of the frames may be based on the amount of non-redundant information contained in
them. These are the most representative frames, i.e. the frames that are distinct from each other and
represent their immediate temporal neighborhood well. However this will not give the best possible lag
because there may be many important frames in the queue. Case 2: Minimal lag is maintained - In
this case, the goal is to always maintain the best possible lag irrespective of whether all important
information is visualized or not. Thus we need to either compromise the quality of visualized frames
or the simulation-visualization lag. We extended InSt to dynamically decide which pending frames
would be sent, as detailed next.

4.2 Strategies for Selection of Time steps to Reduce the Lag

We have incorporated the following three frame selection algorithms within InSt.

Most-recent (mr) This simple strategy selects the frame that is most recently generated by the
simulation to send to the remote visualization site. Let t cur be the current time when a frame is
chosen, t gen be the time when the frame was generated by the simulation, and t tran be the time
for transferring the chosen frame to the visualization site. Then, the most-recently generated frame
results in minimal value of (t cur − t gen) + t tran among all the frames in the queue, since t gen
for the most recent frame is the highest. Thus mr aims to reduce the lag between the visualization
and simulation time of a frame to the minimal value. However, note that the most recent frame may
not be the most representative frame of all the frames in the queue. Alternatively, one can select a
representative frame from the queue of pending frames. This algorithm takes constant time.

... ...

Fig. 3: Auto-clustering Strategy

Auto-clustering (auto) This algorithm reduces the lag as well as sends only useful information to
the visualization site. Sending all the frames can result in large simulation-visualization lag (discussed
in Section 4.1). Auto selects some representative frames from the queue of pending frames so that useful
information is not lost and important frames are retained. We decide the importance of a frame based
on how well that frame represents the other frames in its temporal neighborhood. This is because it is
important to visualize the significant temporal phases in the output. In the first part of this algorithm,
we examine the current queue of pending frames and form temporal non-overlapping clusters as shown
in Figure 3. The different colors represent different clusters. These clusters represent phases in the
queue of pending frames. The phases are determined by comparing the root mean square distance of
the values of a varying field between two successive frames. Given two sets of N points, P1 and P2, the
root mean square distance and the normalized root mean square distance are given by Equations (1)
and (2) respectively, where x is the value.

RMSD(P1, P2) =

√∑N
i=1(x1,i−x2,i)2

N (1) NRMSD = RMSD
xmax−xmin

(2)

The algorithm determines the number of clusters based on the root mean square distance. After
forming the clusters, a representative frame from each cluster is chosen such that it has the least standard
deviation among the frames in that cluster. These are colored black in Figure 3. The pseudocode is
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Input: The set of pending frames F
1 foreach i ∈ F do
2 Find RMS(fi−1, fi) using Equation (2);
3 rms[fi] ← RMS(fi−1, fi);

4 end
5 avg rms ← average of rms[fi] ∀ i ∈ F ;
6 k ← 0; /* k is number of clusters */

7 foreach i ∈ F do
8 if (avg rms – rms[fi] ≥ threshold) then
9 k ← k + 1;

10 end

11 end
/* Let C(G1), C(G2), ..., C(Gk) be the frames that represent the centers of k clusters. */

/* Initially, the clusters centers are equally spaced. Refine the cluster centres. */

12 repeat
13 foreach j ∈ F do
14 Gp ← argmin

i={left,right}
(RMS(fj , C(Gi)));

15 add j to members(Gp);

16 end
17 foreach i ∈ G do
18 C(Gi) ← argmin

i∈members(Gi)
standard deviation(i);

19 end

20 until there is no change in the cluster centres;
21 foreach i ∈ G do
22 Ri ← C(Gi);
23 end

Output: The set of representative frames R

Algorithm 1: Auto-clustering Algorithm

shown in Algorithm 1. The algorithm takes as input the set of pending frames F = {f1, f2, ..., fn},
that are queued at the simulation site and outputs the set of representative frames R = {r1, r2, ..., rk},
R ⊆ F , to be sent. The number of clusters k is determined in lines 1–11. We calculate the normalized
root mean square distance (NRMSD) of pressure variable between every two consecutive frames using
Equation (2) and find the standard deviation. The value of pressure decreases over time, thereby
increasing the function range. We use NRMSD in order to avoid biasing the RMSD by higher function
range. The number of clusters is determined by the number of frames having a high standard deviation.
We have chosen a threshold of 0.4 standard deviation above the mean to define large distances of
frames from the previous frames. From initial observations, we found that 0.4 standard deviation
provides a balance between very few and very high number of clusters. Thus, the algorithm uses the
principle that if fi is distinctly different from fi+1, it may imply a change of phase.

Once the number of clusters k is determined, we find the cluster centres using an iterative method
similar to the well-known k-means [19] clustering algorithm. Unlike the traditional k-means, we aim to
find a temporal clustering, which means that the clusters are sequenced according to the temporal order.
The reason for this is to capture distinct temporal phases among the queued frames. Each cluster has
a common boundary with each of its neighboring cluster to its right and left sides (Figure 3). Initially,
we place the cluster centres at equal distance from each other. In every iteration, each frame is assigned
to the closest cluster centre among the two centres to its left and right (lines 13–16 of Algorithm 1).
After assigning the frames to one of the cluster centres to its left or right, a new cluster centre is
determined for each cluster based on the standard deviation of root mean square distance. In each of
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the clusters, the one that has the least standard deviation is selected as the new cluster centre (lines
17–19). This is continued until there is no change in cluster centres, which are our representative frames.
The space requirements for this algorithm are modest because only the data points and centroids are
stored. Specifically, the storage required is O(n + k), where n is the number of points and k is the
number of clusters. The time required is O(I ∗ n), where I is the number of iterations required for
convergence. We have found empirically that this algorithm converges fast and I is very small, therefore
this algorithm is linear in the number of data points. Although auto-clustering does not guarantee
minimal lag, it selects representative frames from the queue of pending frames to retain the frames
that contain significant information and important phases in the parallel simulation are visualized.

Adaptive (adaptive) This hybrid strategy combines the characteristics of the mr and the auto
because it is important to reduce the lag as well as to visualize the important phases of the simulation.
Adaptive gives utmost importance to visualizing the frames as soon as they are produced by the
simulation process. The user/scientist can specify an upper bound LAG UB to limit the simulation-
visualization lag. As discussed in Section 4.1, one way to reduce lag is to drop frames. But dropping
many frames may result in too much loss of information. Another approach to reduce lag without
losing too much information is to reduce the size of each frame. Since we employ frame compression
as a size reduction technique in all our strategies, we consider another kind of size reduction in this
adaptive strategy. The specific size reduction technique is to remove less important information from a
frame. Scientific data produced by simulations has different sets of parameter values, and these sets
can be prioritized into different levels of importance based on the specific needs of the scientists. For
example, weather data has different sets of variables such as pressure, temperature, wind velocities,
humidity, precipitation, etc. For the critical weather application of cyclone tracking, pressure is the
most important variable. A cyclone is characterized by continuous drop in pressure and high wind
velocity at the centre of the cyclone. So we form different levels of information by retaining different
sets – (1) Level 0: All variables, (2) Level 1: Pressure, Wind Velocity, Temperature and (3) Level 2:
Pressure. Thus, we can adaptively reduce the frame size to different levels by retaining different sets of
most useful data in the frame. Since the data size affects the data transmission time, it will decrease
if we reduce the size of each frame by sending the most important information in the frame. This is
the form of data reduction that we adopt in our work. Note that we do not reduce the high spatial
resolution of output data in order to preserve high fidelity. Scaling down frames would hamper the
data fidelity, especially for extreme events.

Input: The set of pending frames F and the set L of different levels of information in descending
order of amount of information content

/* Invoke auto-clustering algorithm to get the set of representative frames R′ */

1 R′ = auto-clustering(F)

/* Adaptively choose an appropriate level for the chosen frames */

2 foreach representative frame i ∈ R′ do
3 foreach level j ∈ L do

4 curr frame ← jth level of information in i;
5 curr transfer time ← time to transfer curr frame;
6 if (curr transfer time ≤ LAG UB) then
7 add i to R;
8 break;

9 end

10 end

11 end
Output: The set of representative frames R

Algorithm 2: Adaptive Algorithm
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It may not be always possible to send the full simulation output to the visualization site within the
lag limit, so this algorithm tries to send as much information as possible for visualization. At first,
the adaptive algorithm invokes the auto-clustering algorithm explained in Section 4.2. For each of the
representative frames output by auto-clustering, the adaptive algorithm checks if the full frame can be
sent without violating the lag limit LAG UB, i.e. it checks whether the difference in the times between
when the frame will reach the visualization site and when it was produced by the simulation process
will be less than LAG UB. If it cannot send the full frame without violating the lag limit, then it checks
whether it can send the frame with the next level of reduced information content such that the lag is
less than LAG UB. There can be multiple such levels of reduced information content depending on the
amount of information in the simulation output. With each level of reduced information in a frame,
the time to send the frame also decreases since the time to transfer data is directly proportional to its
size. If even the lowest level of reduced frame content cannot be sent, then the adaptive algorithm
discards the frame and considers the next representative frame. The pseudocode for this is shown in
Algorithm 2.

This technique ensures that the lag for the visualized frames is always less than LAG UB. When
the algorithm decides to send a frame with partial data, the time to transfer that frame is less which
implies that the number of pending frames accumulated in the queue within that time is fewer. Hence
the rate at which the queue length increases is lower when reduced frames are sent. When fewer
frames are pending, then in the next iteration, the algorithm will most likely select a full frame for
visualization within LAG UB. Hence the adaptive algorithm is able to adapt to network conditions
and current queue size. It adaptively decides whether to send or not and how much information to
send. We elaborate this using experimental results in Section 5. The time complexity of adaptive is
similar to that of auto.

4.3 Implementation

InSt invokes the frame selection algorithm when the frames are in transit from the simulation to
the visualization site, hence this ensures that the time required for the frame selection does not
increase the simulation-visualization time. We remove the frames from the simulation site once they
are transferred to the visualization site. The time required to cluster is proportional to the number of
pending frames. For example, in the high-bandwidth case, the maximum queue length is 3 when frame
selection algorithm is used. The transfer time of a full frame at 18 km resolution is around 1 minute
and the frame selection algorithm runs in less than 0.3 seconds for clustering 3 frames. However, in
certain cases like slow network bandwidths, where the queue size can be very large, the frame selection
algorithm execution time may exceed the frame transfer time. In those cases, the frame selection
algorithm considers a subset of the pending frames so that its execution time does not surpass the
transfer time. The limitation of this approach is that considering a subset of frames may result in
choosing different representative frames. However, we have found experimentally that this simple
modification maintains the quality of the data reasonably well as has been shown in Section 5.

5 Experiments and Results

In this section we present the details of the weather application used for simulation and remote
visualization, the resource configuration for the experiments and the results of our frame selection
algorithms.

Weather Model and Cyclone Tracking We used a weather forecast model, WRF (Weather
Research and Forecasting Model) [22] as the simulation process for simulating weather events. The
modeled region of forecast is called a domain in WRF. There is one parent domain which can have
child domains, called nests, to perform finer level simulations in specific regions of interest. We used
our framework, InSt for tracking a tropical cyclone, Aila [2], in the Indian region. The cyclone was
formed on May 23, 2009 about 400 kms south of Kolkata, India and dissipated on May 26, 2009 in
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the Darjeeling hills. We used the nesting feature of WRF to track the lowest pressure region or eye
of the cyclone and perform finer level simulations in the region of interest. The nesting ratio i.e. the
ratio of the nest resolution to that of the parent domain, was set to 1:3. We performed simulations
for an area of approximately 32×106 sq. km. from 60◦E - 120◦E and 10◦S - 40◦N over a period of 3
days. InSt forms the nest dynamically based on the lowest pressure value in the domain and monitors
the nest movement in the parent domain along the eye of the cyclone. A nest is spawned at the
location of the lowest pressure when the pressure drops below 995 hPa. We use a configuration file that
specifies different simulation resolutions for different pressure gradients or cyclone intensities. This
can be specified by meterologists who typically use coarser resolutions for the initial stages of cyclone
formation and finer resolutions when the cyclone intensifies. As and when the cyclone intensifies i.e.
the pressure decreases, InSt refines the nest resolution multiple times to obtain a better simulation
result from the model. The finest nest resolution was 4 km. InSt adapts the output frequency based
on the LP [20].

Framework Details The modifications to the WRF weather application for our work are minimal.
We modified WRF to include monitoring of lowest pressure in the nest domain or in the parent domain
when there is no nest. WRF is restarted whenever pressure drops below the threshold values specified
by the user. When the application configuration file specifies the number of processors and output
interval that are different from the current configuration, the simulation process is rescheduled on a
different number of processors.

The output file sizes of the parent domain varies from 300 MB to 4.1 GB per time step, depending
on the resolution and the level chosen by our adaptive approach. Finer resolution and full data (level
0) results in maximum output size. For faster I/O we used WRF’s split NetCDF approach, where each
processor outputs its own data. For example, simulation of 12 km resolution running on 288 processes
results in output of 3 MB per process per time step. The split approach is beneficial, especially for low
bandwidth, low latency networks for faster data transfer from the simulation site. It also significantly
reduces the I/O time per time step by up to 90% over the default approach of generating output
to a single large NetCDF file. We have developed a utility to merge these split NetCDF files at the
visualization site. Our plug-in for VisIt [7] enables directly reading the WRF NetCDF output files,
eliminating the cost of post-processing before data analysis. We also customized VisIt to automatically
render as and when these WRF NetCDF files are merged after arriving at the visualization site. The
simulation output has been visualized using GPU-accelerated volume rendering, vector plots employing
oriented glyphs, pseudocolor and contour plots of the VisIt visualization tool. For steering, we have
developed a GUI inside VisIt using Qt.

System Configuration We ran WRF simulations on two sites with different remote visualization
settings – high-bandwidth and low-bandwidth. For the high-bandwidth configuration, simulations were
executed on the fire cluster in Indian Institute of Science. Fire is a 20-node dual-core AMD Opteron 2218
cluster, each node has 4 GB RAM. It has 250 GB hard disk and is connected by Gigabit Ethernet. For
the low-bandwidth configuration, simulations were done on the Cray XT5 supercomputer, kraken [11],
at the National Institute for Computational Sciences (NICS) of Oak Ridge National Laboratory and
University of Tennessee, Knoxville, USA. Kraken has two six-core AMD Opteron processors (Istanbul)
and 16 GB RAM per node and connected by Cray SeaStar2+ router. We used a maximum of 48 cores
on fire and 288 cores on kraken for simulation. The average simulation-visualization bandwidth was
56 Mbps and 1.1 Mbps for fire and kraken respectively. We used the average observed bandwidth
(obtained by the time taken to transmit 1 GB message) between the simulation and visualization
sites. For all experiments, visualization was performed on a graphics workstation in Indian Institute of
Science (IISc) with a Intel(R) Pentium(R) 4 CPU 3.40 GHz and an NVIDIA graphics card GeForce
7800 GTX.

Results Next, we present experimental results of using the frame selection algorithms for simulation-
visualization lag reduction by InSt. As explained in Section 4.2, for the adaptive algorithm, the
user/scientist can specify an upper bound on the simulation-visualization lag. We experimented with
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upper bounds of 20, 30 and 45 minutes for simulation-visualization lag. The frame selection algorithms
are sequential in the current work, and are executed on a single processor at the simulation site.
We measure the performance improvement over the original all algorithm in terms of simulation-
visualization lag. We also compare the frame selection algorithms in terms of reproducibility of
information with respect to the original set of frames. This is to demonstrate that the resulting
visualization does not hinder the quality of data for scientific analysis.

Simulation-visualization Lag Figure 4a shows lag between the simulation and visualization times
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(a) High-bandwidth network configuration.
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(b) Low-bandwidth network configuration.

Fig. 4: Simulation-visualization lag. Black curve shows simulation times.

for various frame selection algorithms in high-bandwidth configuration. The x-axis shows the wall clock
time for simulation and visualization. The y-axis shows the simulation time steps. The red “all” curve
shows the visualization times for the default policy of sending all frames generated at the simulation
site. We find the curves to be overlapping because for a given time step on y-axis, the difference in wall
clock times between simulation (black) and visualization time is very small for our algorithms (as shown
by the inset image on the top left corner that zooms part of the curves). This is because the frame
selection algorithms are able to prune the frames to be sent and hence can reduce the lag accumulation
(see §4). Selectively sending pending frames and high network bandwidth minimize the queue length
and reduce the lag. Figure 4b illustrates simulation-visualization lag in low-bandwidth configuration.
Note that most-recent performs the best in terms of lag. The adaptive algorithm considerably improves
the simulation-visualization lag (reduces the lag by ∼86%) because it sends the representative frames
only if it can meet the lag bound. However, we observe time difference in hours for a bound of 45
minutes because the network bandwidth in this configuration varies, which affects the transfer times.
Note that this transfer happens over the internet between NICS and IISc, and thus it is difficult to
predict the current available network bandwidth. We will look into incorporating a better (internet)
network bandwidth estimator in future. The lag for auto-clustering is better than the all but worse
than the adaptive because the auto algorithm sends all the representative frames.

RMS distance We compute the root mean square (RMS) distance between successive frames to
measure distortion. Minimizing mean squared error leads to better perceptual quality [24]. The RMS
distance between successive frames is a measure of continuity and captures the variation between
successive frames. If a frame selection algorithm has the same variation as the original all algorithm,
then the frame selection algorithm closely follows the original algorithm. The average RMS distance
for all, auto-clustering, most recent and adaptive with 20 minutes lag bound for high-bandwidth
configuration are 0.0039, 0.0045, 0.0045 and 0.0044 respectively. We compute the RMS distance with
respect to the variable perturbation pressure P. We do not observe a significant variation in the average
RMS distance between successive frames for different frame selection algorithms. The average RMS
distance for the frame selection algorithms do not differ much from the original all strategy. This
suggests that there is no major information lost even if frames were dropped at the simulation site. The
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average RMS distance for all, auto-clustering, most recent and adaptive with 45 minutes lag bound
for low-bandwidth configuration are 0.001, 0.007, 0.018 and 0.009 respectively. The RMS distance
for frames sent by most-recent is quite high due to the huge gap between the successive frames. The
average RMS distance for the adaptive algorithm is higher than auto-clustering because the latter
has lesser output interval between two successive frames. Though the auto-clustering algorithm has
more simulation-visualization lag, it provides better continuity between the frames. The adaptive
algorithm strikes a good balance in providing reduced simulation-visualization lag and choosing the
most representative frames.

Histogram We examine the frequency distribution of the data which gives the spread or variability
in the data values from the all and the frame selection algorithms. Similar frequency distributions
imply similarity in the frequencies of the range of data values output by the algorithms. The frequency
distribution can be obtained from the histogram of the data distribution in the frames selected by the
frame selection algorithms. The histogram for all is shown in Figure 5 for the variable perturbation
pressure. Most of the pressure values for all the time steps lies in the bin number 150, which corresponds
to the perturbation pressure range of -92 Pa to -82 Pa. We show the histogram similarity between the
all and the frame selection algorithms by calculating the volume between the histograms. The volume
enclosed between the histograms of auto, mr, adaptive with lag bounds of 30 and 20 minutes and the
all algorithm are 12.16, 14.00, 16.12 and 9.95 respectively for the high-bandwidth configuration. Lesser
the volume, more similar are the histograms. The minimum volume is for the adaptive algorithm with
lag bound of 20 minutes, followed by auto-clustering. The adaptive algorithm with lag bound of 20
minutes sends some frames with reduced information which leads to reduced transfer times and hence
more frames can be sent. Therefore it is able to perform better than auto-clustering which always
sends full frames. Both these algorithms perform better than the most-recent because the most recently
produced frame may not be the most representative frame in the queue. The histogram for the adaptive
algorithm with lag bound of 30 minutes is the most dissimilar to the histogram for all algorithm. This
is because the lag limit of 30 minutes allows full frames to be transferred initially because of higher lag
limit in comparison to the lag of 20 minutes. However, later, the framework is unable to send frames
even with reduced information because the full frames incur high transfer times, which increases the
pending frame count. Therefore, during the simulation, sometimes the frames in the front of the queue
cannot be sent in order to maintain the lag bound. This leads to discarding many representative frames
and thus the adaptive algorithm with lag limit of 30 minutes performs worse than the others.

The volume between the histogram for all and the histograms for auto, mr and adaptive (45
minutes lag bound) are 58.38, 161.12 and 101.52 respectively for the low-bandwidth configuration. The
auto-clustering volume is the lowest, i.e. it is the most similar to all. This is because auto sends all the
representative frames unlike most-recent and adaptive. Though mr has the lowest lag (see Figure 4b),
it is most dissimilar to all. Hence sending the most recent frame in the queue may not be the best
strategy to reduce simulation-visualization lag with respect to quality of the frames sent. Adaptive
performs better than the mr but its volume difference from the all strategy is larger than for auto
because the adaptive never sends any frame if it is unable to meet the specified lag bound. The higher
the lag bound, more the number of frames that can be sent by the adaptive algorithm. Higher lag
bound also improves the information content of the frames sent.

Nest position changes In WRF, a moving nest captures the movement of the cyclone and the nest
centre is placed at the eye of the cyclone. An important feature of cyclone tracking is to track the eye
of the cyclone. Hence the nest movement in WRF is important because it follows the movement of the
eye of the cyclone. However, the eye of the cyclone, and therefore the nest, does not move at every
time step. Though the frame selection algorithms drop frames in order to reduce the lag, they ideally
should capture the frames in which the nest position changes. Hence we compare the algorithms in
terms of how well the frames chosen by the algorithms capture the nest movement. The number of nest
position changes captured by all, auto, mr, adaptive with lag bound of 30 minutes and adaptive with
lag bound of 20 minutes are 114, 102, 97, 94 and 106 respectively for high-bandwidth configuration.
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Fig. 6: Nest position changes for low-bandwidth configuration

This shows that the adaptive with lag bound of 20 minutes and the auto-clustering algorithms are able
to capture most of these nest movements.

Figure 6 shows the frames in which the nest position changes from the position in the previous frame
for low-bandwidth configuration. The dots in the graphs depict the frames corresponding to changes in
nest positions. These are shown for those frames that are chosen by the frame selection algorithms.
The number of nest position changes captured by all, auto-clustering, most-recent and adaptive with
lag bound of 45 minutes are 148, 12, 2 and 6 respectively. When compared to the high-bandwidth
configuration results, the low-bandwidth configuration leads to very small number of nest position
changes captured by the algorithms due to the slow network. The auto and adaptive strategies lead
to better distribution of nest position changes than the most-recent that captures the nest position
changes only at the later part of the application progress. This is because mr selects the most recent
frame in the queue without any consideration about the representativeness of the chosen frame. So it
is possible that the chosen frame does not have changes in the nest position. Auto captures the nest
position changes best at the expense of increased simulation-visualization lag. When compared to
adaptive, auto exhibits a steady-state behavior of sending the most representative frames, and hence
has a higher chance of sending frames with nest position changes.

Cyclone track The track of the cyclone shows its path from its formation to its dissipation. The

(a) Cyclone tracks for all, auto and mr from the
simulation.

(b) Simplified cyclone tracks for all, auto and mr
algorithms.

Fig. 7: Comparison of Aila tracks for all, auto and mr algorithms.

cyclone track is essentially the path of the eye of the cyclone, and is an important outcome of the high
performance simulation. Hence, we also compare the cyclone tracks generated by the all, auto and mr
frame selection algorithms. Figure 7 shows the track of the lowest pressure point in the simulation
from 24th May 2009 06:00 hours to 24th May 2009 18:00 hours. Here, we represent the track as a
polyline [28]. Figure 7a shows the tracks when all the frames were sent and when auto-clustering and
most-recent algorithms were used to send frames from simulation to visualization. It is challenging
to get accurate simulated track [13]. Figure 7b shows the simplified tracks for all, auto and mr for
high-bandwidth configuration after removing intersecting line segments and zero-length line segments.
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We also removed small angles, small line segments and loops to simplify the track. The simplified tracks
of all three are coincident. This shows that the output from our algorithms show similar simulated
tracks as all.

6 Conclusions and Future Work

We presented an adaptive framework for high-resolution simulation and online remote visualization of
critical weather applications such as cyclone tracking. The goal of this work is to help scientists who
run simulations at high-performance computing sites and would like to visualize results on-the-fly at
their local sites and perform instantaneous analysis. In some cases, it may not be preferable to do in
situ visualization at the simulation sites due to low-bandwidth networks and ability to explore and
interact better locally.

We described most-recent, auto-clustering and adaptive algorithms for frame selection at the
simulation site in order to reduce the simulation-visualization lag. We showed that the most-recent
performs the best in terms of lag-reduction but it cannot ensure that representative frames are selected.
The adaptive algorithm helps both in reducing the lag as well as improving the information content of
the visualized frames. Auto-clustering performs well in terms of sending representative frames from
the simulation site and reduces lag as compared to all. Auto and adaptive are able to form temporal
clusters (i.e. identify distinct phases) from the data without any user guidance regarding the number
of clusters. For high-bandwidth networks, auto and adaptive result in small delays. For low-bandwidth
networks, the maximum simulation-visualization lag that can be tolerated may be decided by the
user. Adaptive can modify the frame content and frequency to meet the user’s requirements. Using
experiments with different network configurations, we find that the adaptive algorithm balances well
between providing reduced lags and visualizing most representative frames, with up to 72% smaller lag
than auto-clustering, and 37% more representative than most-recent for slow networks.

In future, we plan to investigate research challenges related to multiple simultaneous simulations
and visualizations. Our framework can be extended to simultaneously support various visualization
requirements from different geographically distributed users, thereby enabling collaborative analysis
and visualization. We also plan to apply our techniques for remote visualization of other applications
such as remote online medical image analysis and, viewing and steering of astronomy data.
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